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1 Introduction

One motivation to study higher-derivative corrections to the Einstein-Hilbert action is
rooted in its connection to string theory where an infinite number of such corrections
arise in the low-energy limit of string theory [1, 2]. Although a priory there is a large
number of higher-curvature terms that can be added to the Einstein-Hilbert action at
each order of α′, many of those terms can be absorbed into a redefinition of the metric
field [3]. Consequently, only terms that include a Riemann tensor actually contribute to
the computation of physical quantities. In three dimensions, the Riemann tensor is not
independent but can be expressed in terms of the metric, the Ricci scalar, and the Ricci
tensor as the Weyl tensor identically vanishes. Thus, all higher-curvature corrections, if
treated as perturbative interactions, can be absorbed into field redefinition and one is left
with an action that only consists of an Einstein-Hilbert term, a cosmological constant, and
a gravitational Chern-Simons term [4].

Independent of string theory, three-dimensional gravity theories with a finite number
of higher-derivative corrections have their own merit as modified theories of gravity. Three-
dimensional general relativity with (or without) a cosmological constant can be written as
a Chern-Simons gauge theory [5, 6] and has no dynamical degree of freedom. Higher-
derivative terms then emerge as a mechanism to provide dynamics and lead to massive
spin-2 modes in the spectrum [7] (see also [8, 9]). There are various criteria to consider
special combinations of higher-derivative terms. One criterion is to require the absence of a
scalar ghost degree of freedom that arises for an arbitrary choice of the relative coefficients of
the higher-derivative terms [10]. From a holographic perspective, demanding the existence
of a holographic c-function is another way to single out particular combinations [11–14].

Motivated by the Chern-Simons formulation of three-dimensional general relativity,
one way to select special combinations of higher-derivative terms is to demand that they
follow from what is called a Chern-Simons-like model of gravity that includes a number of
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auxiliary Lorentz-vector valued one-form fields that, upon integrating out, yield the desired
combination [15–17]. To be specific, consider the Chern-Simons action

S = k

4π

∫
Tr
(
A ∧ dA+ 2

3A ∧A ∧A
)
, (1.1)

where k is the Chern-Simons coupling constant, the gauge field A represents a Lie-algebra-
valued one form and we take the trace using the non-degenerate invariant bilinear form
of the Lie algebra. We extend this action by replacing A by a number of Lorentz-valued
one-forms Ara, where a, b, . . . are the Lorentz indices, and r, s, t, . . . are the flavor indices
taking values in a N -dimensional flavor space. The invariant bilinear form is then replaced
by ηabgrs where grs is a symmetric, invertible metric on the N -dimensional flavour space. A
Chern-simons like action is now obtained by replacing the structure constants of the Chern-
Simons action by εabcfrst where the totally symmetric frst is a flavor tensor that does not
satisfy the Jacobi identity [16]. An N -flavor Chern-Simons-like theory consists of the
Dreibein ea, the spin-connection ωa, and (N − 2) auxiliary one-form fields. Following [17],
the field equations describing what is called extended massive gravity are given by the
following finite hierarchy of equations that can be solved for the auxiliary fields one after
the other leaving the Dreibein ea as the only independent field:

dea + εabcωbec = 0 ,
Ra + εabcebh(1)c = 0 ,

dha(1) + εabcωbh(1)c + εabcebf(1)c = 0 ,

dfa(1) + εabcωbf(1)c + 1
2ε

abcf(1)bf(1)c + εabcebh(2)c = 0 ,
...

(1.2)

where Ra is the dualized curvature two-form

Ra = dωa + 1
2ε

abcωbωc , (1.3)

and ωa, fa(n) and ha(n) (n = N/2 − 1) refer to the auxiliary fields. Assuming that the
Dreibein ea is invertible, the first equation determines ωa = ωa(e) to be the torsionless
spin-connection. Subsequently, the second equation is used to solve for ha(1) in terms of ea

and, next, the third equation is used to solve for fa(1) in terms of ea etc. The remaining
equations can be solved to determine all auxiliary fields, fa(n) and ha(n), in terms of ea

and its derivatives. Assuming a finite set of equations, the last equation determines the
dynamical equation of motion of the theory under consideration. This particular method of
constructing higher derivative gravity models uses the Schouten and Cotton tensors as the
basic building blocks. This is due to the fact that, in the process of solving the hierarchy
of equations (1.2), one finds that the lowest order auxiliary fields, h(1) and f(1), are given
by the Schouten and Cotton tensor, respectively.

Another guideline to extend the Einstein-Hilbert action with higher curvature terms
is the existence of a holographic c-function [18]. For the formulation of the holographic
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c-theorem in Einstein gravity, one begins with the following Ansatz describing the renor-
malization group flow between different critical points [18, 19]:

ds2 = 2e2A(r)(−dt2 + dx2) + dr2 (1.4)

with A(r) an arbitrary function of r. Requiring this Ansatz to be a solution of the Einstein
equations, implies

A′′(r) = T tt − T rr ≤ 0 , (1.5)

where Tab is the stress-energy tensor of the matter sector which is assumed to satisfy the
null energy condition. This inequality allows one to define a function c(r)

c(r) = 1
`PA′(r)

, (1.6)

where `P is the Planck length and which, due to the null energy condition, is monotonically
increasing.

Extending the gravitational sector with higher-derivative terms and assuming that the
matter part does not include mixed, higher derivative interactions, the necessary condition
to define a monotonically increasing function c(r) is that the equations of motion remain
second derivative when expanded on the background (1.4) [20–22]. For D ≥ 4, this con-
dition naturally selects Lovelock theories [23–25] as they have second-order field equations
for any choice of metric. Given the fact that the Weyl tensor and Cotton tensor vanishes
on the background (1.4) and the fact that the Riemann tensor decomposes into the sum
of a Weyl tensor and a Schouten tensor, one can show that the D-dimensional Lagrangian
that is compatible with the holographic c-theorem is given by [26]

e−1L = R− 2Λ +
D∑
n=0

αnP(n)(Sab) , (1.7)

where the αn are free parameters, Sab is the D-dimensional Schouten tensor, and the
polynomial P(n)(Sab) is given by

P(n)(Sab) = δa1...an

[b1...bn] Sa1
b1 · · ·San

bn . (1.8)

At first sight, this form of the Lagrangian seems to limit the existence of compatible
models to a certain order in the Schouten tensor depending on the dimension of spacetime.
However, one can define a holographic limit by first taking a D > d dimensional model, fol-
lowed by the rescaling of the Lagrangian by 1/(D−d) and next taking the limit D → d [27].
As an example, let us consider a D-dimensional model with D > 3. The P(4)(Sab) contri-
bution, which vanishes for D = 3 due to the antisymmetrization of four indices, is given by

(D − 3)
(
− (D − 2)
D(D − 1)(/S2

µν)2 + 8
D
/S

3
µνS −

6(D − 2)
D2 S2/S

2
µν −

(D2 − 3D + 2)
D3 S4

)
, (1.9)

where we decompose the Schouten tensor into its traceless part (/Sµν) and the trace part
(S) and where we have used the following identity for the traceless Schouten tensor [27]

D(D − 1)/S4
µν = (D2 − 3D + 3)(/S2

µν)2 . (1.10)
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Rescaling the Lagrangian (1.9) with a factor 1/(D − 3) followed by taking the limit
D → 3 precisely recovers the 1/m6 contribution to the holographic c-theorem in three-
dimensions [11]. Thus, there is an infinite number of higher-derivative gravity models in
any dimension and at any order that is compatible with the holographic c-theorem with
the Schouten tensor as the basic building block. Remarkably, this same mechanism also
reproduce the three-dimensional massive gravity models [11, 12, 28] whose Chern-Simons-
like formulation coincides with the hierarchy of equations (1.2) up to terms that do not
contribute to the c-function [17].

A characteristic feature of the Chern-Simons formulation of three-dimensional gravity
is that it does not describe any propagating degree of freedom and that the equations of
motion are given in terms of group-theoretical curvatures [5, 6] with an underlying Lie
algebra. If the hierarchy of field equations (1.2) for the N flavor model is extended to
an infinite number of flavors, it provides another example of a three-dimensional theory
of gravity with no dynamics. The reason is that in the infinite-dimensional case, there is
no last equation representing any dynamics. This curious property of (1.2) leads one to
consider the possibility that there is an infinite-dimensional Lie algebra that underlies the
infinite number of field equations such they can all be formulated in terms of the group-
theoretical curvatures corresponding to this infinite-dimensional Lie algebra. In this work,
we will show that this is indeed the case. Furthermore, we will show that the truncations of
this infinite-dimensional Lie algebra to a finite number of generators violates the Lie algebra
structure, i.e. the Jacobi identities are not satisfied after the truncation. As a result, after
truncation, the resulting actions become Chern-Simons-like and describe extended massive
gravity models up to terms that do not contribute to the c-function. We will show that
this infinite-dimensional Lie algebra is closely related to an infinite-dimensional extended
AdS3 algebra, The latter algebra can be truncated consistently but these truncations lead
to Chern-Simons actions that do not describe massive gravity.

Having established a relation between the holographic c-theorem and (truncations of)
an infinite-dimensional Lie algebra in 3D, we address the D > 3 case by following the same
procedure. A key ingredient in this generalized procedure is that we use a first-order formu-
lation of gravity that avoids the use of inverse Vielbein fields and that we replace the infinite-
dimensional AdS3 algebra by an infinite-dimensional AdSD algebra. In doing so, we find
that the connection between the holographic c-theorem and higher-derivative gravity mod-
els remains but that there is no longer a relation with higher-dimensional massive gravity.

2 The infinite-dimensional Lie algebra underlying the 3D holographic
c-theorem

The infinite-dimensional Lie algebra that we claim to underlie the 3D holographic c-theorem
has two sets of generators, P (n)

a and J (n)
a , with n ≥ 0, whose non-zero commutation relations

are given by

[J (m)
a , J

(n)
b ] = εabcJ

c (m+n) , [J (m)
a , P

(n)
b ] = εabcP

c (m+n) ,

[P (m)
a , P

(n)
b ] = −µ2εabcJ

c (m+n−1) , (2.1)
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where µ is an arbitrary parameter of mass dimension 1. Using that J (−1)
a = 0, the gen-

erators Ja ≡ J
(0)
a and Pa ≡ P

(0)
a are the standard generators of Lorentz transformations

and translations, respectively. The algebra (2.1) has several noteworthy properties. When
µ = 0, the infinite-dimensional Lie algebra can be consistently truncated to any finite
number of generators P (n)

a , J
(n)
a with n ≤ N , Thus, a Chern-Simons action can be formed

by assigning a gauge field to each generator and using the invariant bilinear form of the
truncated finite-dimensional Lie algebra. In that case, the field equations do not describe
the propagating degrees of freedom of a massive gravity model but instead, they correspond
to the coupling of a set of gauge fields, {ha(n), f

a
(n)}, to gravity.

The situation is rather different when µ 6= 0. In that case, the closure of the algebra is
satisfied only if it is infinite-dimensional or if we take N = 0. To see that, let us consider a
truncation of the algebra (2.1) at the order 2N−1 (N 6= 0), i.e. the highest order generators
are P 2N−1

a and J2N−1
a . The triplet of generators that fails to satisfy the Jacobi identity

is given by (Pa, PNb , JNc ). This is due to the fact that the [PNb , JNc ] commutator vanishes
according to (2.1). However, the contribution from this commutator is essential to satisfy
the Jacobi identity for the triplet (Pa, PNb , JNc ). Clearly, this particular Jacobi identity is
satisfied in the infinite-dimensional case.

Making the following assignment of gauge fields to each generator

A = eaPa + ωaJa + ha(n)P
(n+1)
a + fa(n)J

(n+1)
a , (2.2)

we can calculate the group-theoretical curvatures which, when set to zero, are the field
equations of the Chern-Simons theory. This leads to an infinite set of equations that can
be conveniently summarized by the following set of equations containing a parameter λ:

0 =
(
dea + εabcωbec

)
+
∞∑
n=1

λ2n
[
Dha(n) + εabcebf(n)c

]
+

∞∑
n,m=1

λ2(n+m)εabch(n)bf(m)c , (2.3)

0 =
(
Ra − µ2εabcebh1c

)
+ 1

2

∞∑
n,m=1

λ2(n+m)εabcf(n)bf(m)c

+
∞∑
n=1

λ2n
[
Dfa(n) − µ

2εabcebh(n+1)c
]
− 1

2µ
2
∞∑

n,m=1
λ2(n+m−1)εabch(n)bh(m)c . (2.4)

Here D represents the standard Lorentz covariant derivative, i.e.

Dfa = dfa + εabcωbfc . (2.5)

The different equations of motion or curvature constraints are found by setting all
terms multiplying a given order of λ equal to zero. The first set of equations, given
by (2.3), represent all R(P ) curvature constraints. Similarly, the second set, given by (2.4),
represent all R(J) curvature constraints. Assuming that ea is the invertible Dreibein, the
equation multiplying λ0 in the first set implies that ωa is the torsionless spin-connection
ωa = ωa(e). Subsequently, since ea is invertible, the equation multiplying λ0 in the second
set determines ha(1) to be the Schouten tensor. Next, the λ2 terms in the first set can be
used to solve fa(1) in terms of ha(1) and the λ2 terms in the second set can be used to solve
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Figure 1. The hierarchy of equations according to eqs. (2.3) and (2.4). One needs to determine
the field at the head of the arrow in order to solve for the field at the tail of the same arrow. At
λ0 order, the equations determine ω as the torsionless spin connection and h1 to be the Schouten
tensor. Then, for each following order at λ2n, the remaining auxiliary fields are solved in terms of
the dualized Dreibein curvature two-form Ra.

ha(2) in terms of fa(1) etc. Hence, the combined set of equations gives rise to the desired
hierarchy of equations (1.2) for the infinite flavor case, see figure 1. Note that in the infinite
flavor case, there is no last equation representing any dynamics which is as expected for a
Chern-Simons theory.

Now that we have shown that the infinite-dimensional Lie algebra (2.1) gives rise to a
soluble set of equations of the form (1.2), we may discuss the inconsistent truncations and
the resulting Chern-Simons-like models of gravity. If the algebra, hence the field equations,
is truncated at an order λ2N , then the hierarchy continues up to that order. There are two
possibilities. If the highest field in the truncation is f(N), then the dynamical field equation
of the theory includes a Df(N) term. Assigning the following parity-properties

Even : {ea, ha(n)} , Odd : {ωa, fa(n)} , n ≤ N , (2.6)

this implies that such a truncation gives rise to parity-even massive-gravity models, i.e. the
action giving rise to this equation of motion is parity-even. Similarly, if h(N) is the highest
field in the truncation, the dynamical field equation of the theory includes Dh(N) and hence
the theory is parity-odd.

Let us now see how this works by working out a few examples. The simplest case is
to consider a truncation to only ea and ωa and the corresponding generators Pa and Ja,
respectively. In that case, we are left with the Poincaré algebra as a truncation of (2.1)

[Ja, Jb] = εabcJ
c , [Ja, Pb] = εabcP

c , (2.7)

and the corresponding field equations are the torsion-free connection equation and the
Einstein equation. Note that this is a consistent truncation and therefore leads to a Chern-
Simons theory. According to the hierarchy, figure 1, we next include the field h1 and
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the corresponding generator P a(1). Thus, we add the following additional former structure
constants which we now interpret as the flavor tensors of the Chern-Simons-like theory

[Ja, Hb] = εabcH
c , [Pa, Hb] = −µ2εabcJ

c , (2.8)

where we have set P (1)
a ≡ Ha. Following (2.3) and (2.4), the field equations then read

0 = dea + εabcωbec ,

0 = Ra − µ2εabcebh(1)c ,

0 = Dha(1) . (2.9)

These are the field equations of 3D conformal gravity as given in [17] up to a rescaling of
ha(1) → ha(1)/µ

2. This theory is parity-odd as expected.
We can continue in accordance with figure 1 and add a new field f1 and the corre-

sponding generator Ja(1). According to (2.1), this gives us three more flavor tensors

[Ja, Fb] = εabcF
c , [Fa, Pb] = εabcH

c , [Ha, Hb] = −µ2εabcF
c , (2.10)

where we have set J (1)
a ≡ Fa. The field equations based on these flavor tensors follow

from (2.3), (2.4) and read

0 = dea + εabcωbec ,

0 = Ra − µ2εabcebh(1)c ,

0 = Dha(1) + εabcebf(1)c ,

0 = Dfa(1) −
1
2µ

2εabch(1)bh(1)c . (2.11)

These are precisely the field equations for the curvature-squared part of new massive grav-
ity [16, 17, 29], which is parity even. It is a straightforward exercise to show that the
next order models are the Chern-Simons-like formulation of the five-derivative part of 3D
extended conformal gravity involving the set {e, ω, h1, f1, h1} and the six-derivative part
of 3D extended new massive gravity involving the set {e, ω, h1, f1, h2, f2} [11, 17]. All the
gravity models discussed above precisely give rise to the curvature combinations predicted
by the c-theorem up to curvature terms that do not contribute to the c-function [11, 17].
Note, however, that beyond the six-derivative order the holographic c-theorem alone can-
not fix all relative coefficients, thus the compatible higher-curvature models include free
parameters [12]. In that case, the Chern-Simons-like models, which we obtain by the trun-
cation of the infinite-dimensional algebra (2.1), are still compatible, but they correspond
to a subclass of compatible theories whose spectrum is free from the scalar ghost [17].

For a given truncation, we may integrate the field equations (2.3) and (2.4) to an
action. We should distinguish between parity-even and parity-odd truncations. The action
for an N -th order parity-even Chern-Simons-like model, with fa(N) as highest-order field, is
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given by

Leven
N =fa(N)Dea+ha(N)Ra−

1
2µ

2εabceah(1)bh(N)c+
N−1∑
n=1

[
fa(N−n)Dh(n)a+ 1

2ε
abceaf(N−n)bf(n)c

]

− 1
2µ

2
N∑
n=1

εabceah(n+1)bh(N−n)c+
1
2

N∑
m,n=1

εabch(m)bf(n)cf(N−n−m)c

− 1
6µ

2
N∑

m,n=1
εabch(m)ah(n)bh(N−n−m+1)c . (2.12)

Since N ≥ 1, the Lagrangian (2.12) does not give the part of the Dreibein equation of
motion that follows from the Einstein-Hilbert and cosmological term. However, we may
consistently add these terms to the above Lagrangian since it does not effect the other
equations of motion that are used to solve for fa(n), h

a
(n) and ω in terms of e and its

derivatives. Upon adding these terms, the full dynamical Dreibein equation follows from
the following modified Lagrangian:

L′ even
N = σeaRa + 1

6µ
2εabceaebec +

∑
N≥1

aNL
even
N , (2.13)

where σ = 0,±1 and aN are dimensionless constants.
Similarly, the action for an N -th order parity-odd Chern-Simons-like model, with ha(N)

as highest-order field, is given by

Lodd
N = fa(N−1)Ra−µ

2eaDh
a
(N)−

µ2

2 ε
abceaebf(N−1)c+ 1

2

N−1∑
n=1

fa(n)Df(N−n−1)a

−µ
2

2

N∑
n=1

ha(n)Dh(N−n)a−µ2
N−1∑
n=1

εabceah(n)bf(N−n)c

−µ
2

2

N∑
n,m=1

εabcf(n)ah(m)bh(N−n−m)c+ 1
6

N∑
n,m=1

εabcf(n)af(m)bf(N−n−m−1)c . (2.14)

Here, we restrict to N > 1 and hence the Lagrangian (2.14) does not contain the zeroth-
order 3D conformal gravity Lagrangian. Adding this Lagrangian by hand, we obtain the
following modified Lagrangian:

L′ odd
N = 1

2`
(
ωadωa + 1

3ε
abcωaωbωc

)
− 1

2`e
aDea −

1
`
eaDh

a
1 +

∑
N>1

aNL
odd
N . (2.15)

This concludes our discussion of the 3D infinite-dimensional Lie algebra underlying the
3D holographic c-theorem.

3 Relation with the infinite-dimensional extended AdS3 Lie algebra

It turns out that the infinite-dimensional Lie algebra (2.1) underlying the 3D c-theorem
is closely related to another infinite-dimensional Lie algebra that, in contrast with the
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algebra (2.1), can be consistently truncated to each finite order. This infinite-dimensional
Lie algebra is obtained by making a Lie algebra expansion [30–32] of the AdS3 algebra

[Ja, Jb] = εabcJ
c , [Ja, Pb] = εabcP

c , [Pa, Pb] = −ΛεabcJc , (3.1)

where Λ is a mass parameter representing the cosmological constant. To perform such a
an expansion we should write AdS3 = V0 ⊕ V1 where V0 and V1 are two subspaces with

[V0, V0] ⊂ V0 , [V0, V1] ⊂ V1 , [V1, V1] ⊂ V0 . (3.2)

The subspace V0 (V1) then contains the generators that are expanded in terms of even
(odd) powers of an expansion parameter λ. We consider the special case that V0 = AdS3
and V1 = 0. Upon expansion, this leads to the infinite-dimensional extended AdS3 algebra

[J (m)
a , J

(n)
b ] = εabcJ

c (m+n) , [J (m)
a , P

(n)
b ] = εabcP

c (m+n) , [P (m)
a , P

(n)
b ] = −ΛεabcJc(m+n) .

(3.3)
Associating a gauge field to each generator,

A = EaPa + ΩaJa , (3.4)

we may expand these gauge fields in even powers of λ as

Ea = ea +
∞∑
n=1

λ2nha(n) , Ωa = ωa +
∞∑
n=1

λ2nfa(n) . (3.5)

We may use the expansion (3.5) of the fields in the group-theoretical curvatures of Ea and
Ωa and expand the field equations of the cosmological (or exotic [6, 33]) Einstein-Hilbert
action

0 = dEa + εabcΩbEc , (3.6)

0 = dΩa + 1
2ε

abcΩbΩc −
1
2ΛεabcEbEc . (3.7)

The expansion of (3.6) precisely generates the first set of equations (2.3), providing a set
of soluble equations, i.e. they determine ωa to be the torsionless spin-connection ωa(e) and
all the fa(n)’s can be solved once the ha(n)’s are known, leaving e

a to be the only fundamental
object. However, the expansion of (3.7), does not provide a soluble set, like the second set
of equations (2.4). Instead, it leads to the following set of equations:

0 =
(
Ra − 1

2Λεabcebec
)

+
N∑
n=1

λ2n
[
Df(n) − Λεabcebh(n)c

]
+ . . . . (3.8)

Here, the ellipses refer to terms quadratic in the fields that are not relevant to our discussion,
since they do not contain an invertible Dreibein. They can be calculated by implementing
the expansion (3.5) in eq. (3.7). Comparing the infinite-dimensional Lie algebras (2.1)
and (3.3), we see that they only differ in the [P, P ] commutator:

(2.1) : [P (m)
a , P

(n)
b ] = −µ2εabcJ

c (m+n−1) ⇔ (3.3) : [P (m)
a , P

(n)
b ] = −ΛεabcJc(m+n) . (3.9)
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This has the important consequence that in both cases the expansion of the second set of
equations starts in a different way:

(
Ra − µ2εabcebh(1)c

)
⇔

(
Ra − 1

2Λεabcebec
)
. (3.10)

It is clear that in the first case we can use the lowest order equation to solve for ha(1) in terms
of the Schouten tensor whereas in the second case we obtain the Einstein equation. Only
in the first case we obtain, together with the expansion of (3.6) that leads to the first set
of equations (2.3), a completely soluble set of equations. The corresponding Lagrangian
is Chern-Simons like, describes extended massive gravity and is consistent with the c-
theorem. On the contrary, in the second case, each consistent finite truncation leads to
a Chern-Simons model describing the coupling of a set of gauge fields to gravity. This
infinite-dimensional extended AdS3 algebra will be used in the next section as a guide to
derive the infinite-dimensional Lie algebra underlying the c-theorem in D ≥ 4 dimensions.

We note that the set of soluble field equations (1.2) and those corresponding to the
infinite-dimensional extended AdS3 algebra are formally related to each other by replacing
the cosmological constant Λ used in the AdS case by the massive parameter µ used in the
other case multiplied by the inverse square of the expansion parameter λ as follows:

Λ = µ2/λ2 . (3.11)

It is a unique property of three-dimensions that we were able to integrate the N -th
order field equations to an N -th order Chern-Simons like Lagrangian describing extended
massive gravity. The reason for that is because in three-dimensions, the field equations
of a Chern-Simons theory are given in terms of the group-theoretical curvatures. This
property no longer holds in D > 3 dimensions neither does the relation with massive
gravity. In fact, a proposal for a 4D new massive gravity theory as in [34] involves the use
of mixed-symmetry potentials with no obvious relation to an algebra.

Before ending this section, let us briefly comment on our assumption that the matter
part does not include mixed, higher derivative interactions when implementing the holo-
graphic c-theorem in higher-derivative gravity models. In principle, it is tempting to start
by a cosmological Einstein-Hilbert action with a minimally coupled matter sector that
satisfies the null energy condition and expands all fields, including the matter fields, in
even powers of λ and rescale the cosmological constant in accordance with (3.11). How-
ever, unlike Chern-Simons theory, the minimal matter coupling would include an explicit
metric field, and the expansion procedure yield non-trivial coupling between the gravity
sector and the matter sector. To evade this problem, we only expand the gravity sector
and include the minimally coupled matter fields that satisfy the null energy condition once
the expansion procedure is complete. Note that for parity-even models, which are the ones
that contribute non-trivially to holographic c-theorem, the dynamical field equation for the
gravity sector always arise as the vielbein equation. Hence the inclusion of the minimally
coupled matter sector does not spoil the solubility of the hierarchy of equations.
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4 Extension to D ≥ 4 dimensions

It is natural to generalize our previous observations to higher dimensions and consider
whether the infinite-dimensional structures we find in 3D also work in higher dimensions.
It is known that there exist infinitely many models that are compatible with the holographic
c-theorem in any dimensions where the basic building block is the Schouten tensor Sµν [26].
The Lagrangian describing these models is of the generic form (1.7). On the other hand, the
soluble set of field equations that we considered, which are compatible with an underlying
infinite-dimensional algebra, uses the Schouten (Sµν) and the Cotton (Cµνρ) tensors as
basic building blocks:

Sµν = 1
(D − 2)

(
Rµν −

1
2(D − 1)gµνR

)
, Cµνρ = (D − 2) (∇λSµν −∇νSµλ) . (4.1)

To see the connection between the set of soluble equations and the holographic c-
theorem, let us focus on D = 4 as D > 4 is a simple generalization. The analogue of
the hierarchy of equations (1.2) that gives rise to models that are compatible with the
holographic c-theorem takes the following form in four dimensions:

e ∧De = 0 ,

e ∧R(ω)− 1
2µ

2e ∧ e ∧ h(1) = 0 ,

e ∧Dh(1) + e ∧ e ∧ f(1) = 0 ,
...

(4.2)

For simplicity, we have refrained from denoting the explicit Lorentz indices of the different
fields. As in three dimensions, this set of field equations can be derived from the field
equations of the four-dimensional Einstein-Cartan action by means of an expansion of the
gauge fields and the rescaling of the cosmological constant. However, unlike the three
dimensions, these field equations pick up extra Vierbein factors. These factors provide the
necessary trace decompositions and allow us to determine ωab to be the torsionless spin
connection and define the auxiliary fields, ha(n) and fab(n), in terms of the Schouten tensor,
the Cotton tensor, and its descendants. When the number of auxiliary fields {ha(n), f

ab
(n)} is

taken to be infinite, these field equations become a set of equations in terms of curvatures
that transform covariantly under the following infinite-dimensional algebra

[P (m)
a ,M

(n)
bc ] = ηa[bP

(m+n)
c] , [M (m)

ab ,M
(n)
cd ] = 4η[b[cM

(m+n)
a]d] ,

[P (m)
a , P

(n)
b ] = −1

4µ
2M

(m+n−1)
ab . (4.3)

This algebra is the four-dimensional generalization of (2.1). One may verify that start-
ing with the field equations of the first order formulation of cosmological Einstein action
and expanding them by using the standard Lie algebra expansion with V0 = AdS4 and
V1 = 0, followed by a rescaling of the cosmological constant by λ−2 as we did in sec-
tion 3, produces an infinite number of field equations which transform covariantly under
the infinite-dimensional Lie algebra (4.3).

– 11 –



J
H
E
P
0
1
(
2
0
2
2
)
0
1
0

To perform the Lie algebra expansion at the level of Lagrangian, it is convenient to
use the following first-order form of the cosmological Einstein-Hilbert action that does not
contain inverse Vierbeine:

L = 1
2E ∧ E ∧R(Ω)− 1

24ΛE ∧ E ∧ E ∧ E . (4.4)

We have defined here the curvature two-form as

Rab(Ω) = 1
2R

ab
cd(Ω)Ec ∧ Ed . (4.5)

This action may be expanded using the following expansion rules

Ea = ea +
N∑
n=1

λ2nha(n) , Ωab = ωab +
N∑
n=1

λ2nfab(n) . (4.6)

To obtain the Lagrangian corresponding to the soluble models we need to rescale the
cosmological constant like we did in the 3D case, see eq. (3.11). In this case, after truncation
the would-be structure constants become flavour tensors.

It is instructive to work out a few models to see the resulting Lagrangian at a given
order of λ. We will consider two examples corresponding to a truncation at order λ2 and
λ4. If the Lagrangian is expanded to λ2-order, we obtain for D = 4:

L(2) = e ∧ h(1) ∧R(ω) + 1
2e ∧ e ∧D(ω)f(1) −

1
4µ

2e ∧ e ∧ h(1) ∧ h(1) , (4.7)

where again we have refrained from giving the explicit Lorentz indices. The field equation
for the Lagrange multiplier f(1) implies that ω is a torsion-free spin connection while the
h(1)-equation determines h(1) to be the four-dimensional Schouten tensor. Upon substi-
tuting the expressions for the spin-connection ω and the auxiliary field h(1) back into the
Lagrangian we obtain the following curvature squared Lagrangian:

L(2) = − 3
4µ2

(
RµνR

µν − 1
3R

2
)
. (4.8)

The dynamical equation for the Vierbein follows from this Lagrangian and, in contrast
to the auxiliary field equations, is not given by any truncation of the group-theoretical
curvatures corresponding to the infinite-dimensional algebra (4.3).

In D-dimensions, the same procedure yields

L
(2)
D ∼

1
µ2

(
SµνS

µν − S2
)
∼ Gauss-Bonnet — (Weyl tensor)2 , (4.9)

where Sµν is the D-dimensional Schouten tensor (4.1). For D = 3, the combination (4.9)
is precisely the NMG combination [7]. For D ≥ 4, the combination (4.9) is precisely the
D-dimensional term that is favored by the holographic c-theorem [21]. This can be seen
from the fact that the Gauss-Bonnet combination is the D-dimensional curvature-squared
Lovelock theory that has second-order field equations admitting a holographic c-theorem
whereas the second (Weyl tensor)2 term does not contribute to the holographic c-function.
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Finally, as a second example, we consider a truncation at λ4-order. This leads to the
following Lagrangian:

L(4) = e ∧ h2 ∧R(ω) + 1
2h1 ∧ h1 ∧R(ω) + e ∧ h1 ∧D(ω)f1 + 1

2e ∧ e ∧D(ω)f2

+ 1
2e ∧ e ∧ f1 ∧ f1 −

1
2µ

2e ∧ e ∧ h1 ∧ h2 −
1
6µ

2e ∧ h1 ∧ h1 ∧ h1 . (4.10)

Once again, one may verify that the set of soluble field equations are consistent with (4.3),
i.e. the field equations for f2 determine ω to be the torsionless spin connection while the
field equations for h2 and f1 determine h1 to be the Schouten tensor and f1 to be the Cotton
tensor, respectively. Substituting these results back into the fourth-order Lagrangian, we
obtain

L(4) ∼ 1
µ4

(
RµνR

νρRρ
µ −RRµνRµν + 7

36R
3
)

+ (Weyl and Cotton terms) . (4.11)

The D-dimensional generalization of this fourth-order Lagrangian is given by

L
(4)
D ∼

1
µ4

(
S3 − 3SSµνSµν + 2SµνSνρSρµ

)
+ (Weyl and Cotton terms) . (4.12)

Like in the previous case, the first combination of terms between brackets is precisely the
D-dimensional (including D = 3 [11, 12]) fourth-order contribution that is favored by
the holographic c-theorem [21]. In contrast, the second set of terms between brackets,
containing the Weyl and Cotton tensor, does not contribute to the holographic c-function.

5 Conclusions

In this work we have discussed two types of infinite-dimensional Lie algebras: one, given
in eq. (4.3) for general D and eq. (2.1) for 3D, that, upon truncation, loses its Lie algebra
structure and gives the flavor tensors leading to higher-derivative gravity models that
are polynomial in the curvatures and that are consistent with the holographic c-theorem
and that in 3D describe extended massive gravity models. The other algebra, given in
eq. (3.3) for 3D, is identified as a Lie algebra expanded AdSD algebra, that allows consistent
truncations describing a set of 1-forms coupled to gravity. The two algebras are closely
related as indicated in eqs. (3.9) and (3.11). We have used the second AdSD algebra as a
guide to come up with the first algebra (4.3) that underlies the holographic c-theorem.

The work presented here serves as a starting point for various further studies. For
instance, it would be much desired to understand the precise mathematical relationship
between the two types of infinite-dimensional algebras (2.1) and (3.3) beyond the shift given
in eq. (3.9) and to see whether there is a physical interpretation of this relationship such as
some kind of symmetry breaking. The procedure for constructing special higher-derivative
theories of gravity consistent with the holographic c-theorem can also be applied to other
situations such as non-relativistic gravity models [36] and, for 3D, to condensed matter
physics [37] where the Chern-Simons formulation of gravity plays an essential role. It may
also be useful to realize the infinite-dimensional algebra and its truncation at the level of
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Hamiltonian and Poisson brackets as this may provide an insight on the degrees of freedom
in higher-derivative gravity. Finally, there is a class of 3D gravity models that do not have
a corresponding metric formulation with a single metric. These models are referred to as
the third-way consistent models and they play an essential role in the resolution of the
‘bulk vs boundary clash in three dimensions [38–42]. Our procedure does not include these
models and it would be very interesting to see if there is an algebra that underlies the third
way to gravity models. This might be the key to generalizing the third-way gravity models
to higher dimensions which have been thus far an open problem.1
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