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1 Introduction

The spectrum of light chiral particles is a defining feature of any four dimensional quantum
field theory. Their precise number affects aspects such as the moduli space of vacua, or the
behavior of the theory under RG flow. Moreover, they are also of paramount importance
to phenomenology, in particular when it comes to models of beyond-the-Standard-Model
physics. Therefore, to be able to draw formal and phenomenological lessons from string
theory about 4d field theories, one needs efficient methods to compute the spectrum in
compactification scenarios.

From an effective field theory perspective, the chiral excess χ(R) — the difference
between chiral and anti-chiral modes of the same matter representation R — is a discrete
parameter, whereas the individual number of light (anti-)chiral modes depend on continu-
ous mass parameters. In string theory, this is reflected by the fact that χ(R) is typically
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a topologically protected quantity, whereas the (perturbative) mass parameters1 are cap-
tured by continuous deformations, or moduli, which for certain values can lead to a pair of
chiral and anti-chiral modes — a vector-like pair — to become massless.

In many string compactification scenarios, we know in principle what the relevant com-
putations are: massless fields are zero modes of some differential operators on the internal
space, and therefore counted by appropriate sheaf cohomologies. However, oftentimes these
computations are so complicated that in practice, they can only be carried out explicitly
for toy models, or for specialized values of the deformation parameters. On the other hand,
an exact understanding of how the cohomologies depend on these parameters is necessary
for a complete description of the physical interpretation. The moduli dependence and the
possibility of jumps in the massless spectrum have been first discussed in the context of
heterotic string theory in [1–6]. More recently, the complex structure moduli dependence
of the cohomology dimensions has been studied in [7, 8] and [9] in the context of instanton
and perturbative superpotential terms, respectively.

In comparison, an analogous analysis in the context of F-theory compactifications [10]
is largely missing and has only been discussed in part in [11]. The main reason is because,
unlike the chiral spectrum which is accessible via intersection theory [12–25], the vector-like
spectrum in F-theory depends on a gauge background, which is encoded in mathematically
rather intricate objects such as the intermediate Jacobian and Deligne cohomology [26–
29]. Recent progress [30, 31] has made the spectrum computationally more accessible.
Namely, for a four-dimensional N = 1 F-theory compactifications on an elliptically fibered
Calabi-Yau fourfold π : Y4 → B3 with a given gauge background, the massless spectrum
of chiral particles in representation R can be counted by certain line bundle cohomologies
hi(CR,LR), i = 0, 1 on complex curves CR ⊂ B3 — the matter curves — in the base. Given
a compact model with a fixed gauge background, CR and LR are specified by global data
in terms of polynomials on B3 , whose coefficients are (parts of) the complex structure pa-
rameters of Y4. In this case, one can model the line bundle as a coherent sheaf on B3, whose
cohomology computation can be systematized in a computer algebra system [32]. While
this algorithm can be applied to a broad class of global F-theory models, the calculations
for almost all phenomenologically interesting examples overburden even super-computers
specifically designed for such tasks. The reason is that here, and in fact in many coho-
mology computations using commutative algebra or computational algebraic geometry, we
need to compute Groebner bases, whose computational complexity scales extremely poorly.

The introduction of ideas from Big Data and machine learning to string phenomenol-
ogy [33–36] provides new perspectives; see [37] for an introduction and comprehensive
overview. One advantage that a trained algorithm provides is that it recognizes more
subtle patterns without the need of a complete, “microscopic” understanding of the task.
In particular, recent studies suggest that supervised learning can be used to predict line
bundle cohomologies in string compactifications [35, 38, 39]. One may be tempted to apply
these techniques, which are mostly motivated by heterotic compactifications, directly to

1In this work we will neglect moduli stabilization, flux-induced superpotentials and non-perturbative
effects.
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the F-theory. However, there is a significant difference in the way the line bundle data are
specified in global heterotic vs. F-theory models. In heterotic examples, the line bundles
are typically given in a “canonical” way, namely as an element of the Picard group Pic(X)
of the underlying manifold X. This was used, e.g., in [40, 41] to derive formulae for line
bundle cohomologies in terms of topological indices.

However, in the F-theory setting, there is no straightforward fashion to extract even the
structure of the Picard group of CR, given its polynomial description. Likewise, because
the same data specifies LR essentially as a sum of points pi on B3 that also lie on CR, it
is by no means obvious if, say, p1 − p2 is trivial or not on CR. What makes the situation
particularly challenging is that, by varying the complex structure parameters, the structure
of Pic(CR) as well as the points specifying LR will change. Together with the fact that we
simply do not have a large data set of non-trivial F-theory examples, it is a priori unclear
whether we could train an algorithm that reliably predicts the cohomologies for realistic
models with arbitrary complex parameters.

Instead, we will use machine learning techniques on less complex examples to gain some
intuition for circumstances under which line bundle cohomologies jump. Physically, this is
already interesting as such a jump can engineer one or possibly more massless vector-like
pairs in situations where one generically expects none. Even if the trained algorithm does
not perform perfectly, understanding its strategy can provide a guiding principle for the
behavior of the vector-like spectrum in non-trivial examples. For this reason, we focus on
white-box machine learning techniques, in particular on decision trees.

To fully understand the results of the machine learning, we further employ “formal”
techniques from algebraic geometry, in the form of Brill-Noether theory. This allows to
identify “microscopically” the sources for jumps in cohomology, either from the curve CR
or the line bundle LR becoming non-generic. With these insights, we provide an algorithmic
way to estimate the admissible numbers of vector-like pairs over the entire parameter space
of a matter curve in a global F-theory model with given gauge background. Furthermore,
our analysis also reveals a convenient diagrammatic way to encode the stratification on
the parameter space induced by the number of vector-like pairs. We believe that this is
progress towards understanding the full complex structure dependence of the vector-like
spectrum in global F-theory models.

The paper is organized as follows. In section 2 we discuss our machine learning ap-
proach. Using the exact methods implemented in [42], we generate a database [43] of
cohomologies of pullback line bundles on hypersurface curves in dP3. Interpreting these
results with decision trees, we find that curve splittings typically lead to jumps in the
vector-like spectrum. In section 3, we demonstrate that such curve splittings provide a
practial way to engineer jumps in a global F-theory GUT-model. To investigate the origin
of these jumps, we turn in section 4 to algebraic and analytic techniques. We find a unified
perspective on jumps due to curve splittings and non-generic line bundles described by
Brill-Noether theory, and introduce a diagrammatic way to illustrate the natural stratifi-
cation of the complex structure parameter space in terms of the vector-like spectrum. In
section 5, we present a refined analysis of jumps due to curve splittings. This rests on a
procedure to count the global sections by gluing “local contributions” along intersections
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of curve components, which leads to two interesting results: first, we are able to formulate
sufficient conditions for jumps of vector-like spectra. Second, we can propose an algorithmic
h0 estimate, which relies mostly on topological data, and hence provides a quick, approxi-
mative scan of the vector-like spectrum over the entire parameter space of a matter curve.
In contrast to currently existing exact methods, such as [42], our implementation [44] has
a much lower demand of computational resources and run times.

2 Machine learning

2.1 Introduction to decision trees

We are interested in tuning complex structure moduli to engineer jumps in the dimensions
of sheaf cohomologies over complex curves. It is a priori not clear how to efficiently identify
these subloci in complex structure moduli space. In order to state (at least) necessary
conditions for jumps to occur, we address the problem using machine learning. Since we
are interested in interpreting the results of the machine learning algorithm, we resort to
white-box models, in particular to binary decision trees.

In more detail, we use binary decision trees as classifiers in supervised machine learning,
following the notation and conventions of [37]. Supervised learning means that we have a
set of inputs xµi (called features) together with associated labels2 yi, where i = 1, . . . , N
counts the feature-label-pairs, and µ = 1, . . . , F counts the F features of each input. This
set of feature-label combinations is now divided into a train set and a test set (typically
around 90 percent of the pairs are assigned to the train set and 10 percent to the test set).
Using the train set, an algorithm is trained to learn a map from the features to the labels.
The training consists of adjusting parameters of the algorithm to optimize the map. This
is typically done by minimizing the loss, which is a measure for how well the algorithm
reproduces the labels. Once training ends, the algorithm is tested on the test set. This is
necessary in order to see how well it performs on (hitherto unseen) data. If the test set
have been chosen generically enough, performance on the test set will serve as an indicator
for how well the trained algorithm will perform.

After this general discussion, let us describe these steps in the context of binary decision
trees. Trees are data structures that appear abundantly in computer science. They can
be thought of as acyclic, directed, connected graphs with a unique root vertex (in trees,
vertices are called nodes). In binary trees, each node has either zero or exactly two vertices,
each of which is connected to a unique node. These two subnodes are called child nodes,
and the original node is called parent node. A node with no children is called a leaf node.

A decision tree expects numerical features x(0)
i . It then introduces boolean splitting

criteria of the type x(0)
i ≤ κi for some constant κi ∈ R. All data that satisfy this criterion

are assigned to one child node, while data that does not satisfy the criterion is assigned
to the other child node. The tree is now built recursively by splitting each child node
according to some other feature x(0)

j ≤ κj , etc. This procedure segments feature space

2In general, there could be more than one label for each feature vector; however, for the cases studied
in this paper, the label corresponds to a class the input belongs to, labeled by an integer.
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(which is in our case RN ) along hyperplanes xi = κi with the goal to find regions such that
all inputs in that region belong to the same class.

At each node, it is checked how many of the data carry which label. For single mem-
bership classification problems, which is what we will be using, the labels are just the
different classes which the input feature vector belongs to. A typical loss function is the
Gini impurity of a node, which measures how “impure” the data at that node actually is,
i.e., how many features with different classes are in the region in feature space correspond-
ing to this node. Denoting the set of features in the region of node a by Na, we find for K
classes the fraction of elements that belong to a class yk ∈ K via

pa,k = 1
|Na|

∑
i∈Na

δi,k . (2.1)

The Gini impurity Ga at node a can then be written as

Ga =
K∑
k=1

pa,k(1− pa,k) . (2.2)

In particular, if all elements of Na belong to the same class, Ga = 0. In such a case, the
node is turned into a leaf, since no further splits are necessary.

The decision tree is now trained by starting from the root node and trying to split
by any of the F features. For κi, one tries all3 intermediate values between consecutive
values of feature i. The solution that leads to the lowest Gini impurity at the child nodes is
accepted, and the procedure is repeated for the two child nodes and the remaining features,
etc.

In cases where the map from the input to the labels is not one-to-many, one can
eventually reach a perfect classification, if need be with a single element in each region.
Typically, this is undesired and hence one stops splitting a node if there are less than some
fixed number of elements in its corresponding region. Turning this around, if the minimal
number at which a node is split is set to 2, and if the tree does not find a solution where all
leaves have Gini impurity zero, this means that the map defined by the input-label-pairs is
many-to-one, i.e., even all features combined are not sufficient to distinguish between the
class labels.

2.2 Divisors and line bundles on dP3

While in the general F-theoretic setup, matters curves CR are a priori defined on a threefold
B3, in most models there is a distinguished surface S ⊂ B3 that is wrapped by the 7-branes
supporting a non-abelian gauge theory, in which the matter curve sits. A part of the
complex structure moduli then parametrizes deformations of the curve inside S, which will
in general affect the vector-like spectrum. These deformations can be described by pulling
back all defining polynomials on B3 onto S, and then simply consider the coefficients of
these in terms of the homogeneous coordinates on S.

3In case of many different values for a feature, this might be unfeasible, in which case a number of
equally spaced values are tried for κi.
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For our data collection, we will mimic such a “pulled back” description by focusing on
curves embedded inside the del Pezzo surface dP3. One advantage of this choice is that dP3
has a toric description in terms of a reflexive polygon, which simplifies many computations.
Another one is that it fits the setup for section 3, where we consider an F-theory toy model
with non-abelian gauge degrees of freedom localized precisely on a dP3 surface.

To set the notation, we denote the toric coordinates of dP3 by xi, i = 1, . . . , 6. They
are graded by homogeneous scalings with associated divisor classes, which are summarized
in the following table:

x1 x2 x3 x4 x5 x6

H 1 1 1
E1 −1 1 −1
E2 −1 1 −1
E3 −1 −1 1

(2.3)

The columns give the divisor classes of the coordinate’s vanishing loci. E.g., [{x1}] =
H − E1 − E2. The Stanley-Reisner ideal is

ISR = 〈x3x6, x2x6, x1x6, x4x5, x2x5, x1x5, x3x4, x1x4, x2x3〉 , (2.4)

and the anti-canonical class is −KdP3 =
∑
i[{xi}] = 3H −E1 −E2 −E3. The independent

intersection numbers are

H2 = 1 , Ei · Ej = −δij , H · Ei = 0 . (2.5)

In order to simplify the notation, we introduce the short-hand notation (a; b, c, d) with
a, b, c, d ∈ Z for a divisor D = aH + bE1 + cE2 + dE3.

We then define curves C inside dP3 via C = {P = 0} ≡ V (P ) with

P =
∑
i

cimi(x1, . . . , x6) , (2.6)

where mi(x1, . . . , x6) are monomials of appropriate multi-degree under the grading in
eq. (2.3). Importantly, the coefficients ci parametrize the shape of the curve and thus
model (parts of) the complex structure parameters of a global F-theory compactification.
The (arithmetic) genus of the curve depends only on the divisor class [C] of the curve (equiv-
alently, the multi-degree of the monomials in P ) and is given via adjunction formula as

g = 1 + 1
2[C] · ([C] +K) . (2.7)

Next, we also need to specify a line bundle L on C. Again, instead of focusing on the
most general setup, where L is directly specified by a set of points on C, we consider the
slightly simpler cases where L is a pullback of a line bundle L = OdP3(D) on dP3:

L = OdP3(D)|dP3
. (2.8)

One can think of the points then as the (weighted) intersections {ai pi} between C and a
generic representative in the class D. Note that in this case, another representative of D,
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intersecting C at {bj p′j}, necessarily must give the same divisor on C, i.e., {ai pi} ∼ {bj p′j}
are linearly equivalent on C. However, in general we cannot say anything about linear
equivalences among any two of the points. Therefore, we expect, and also will find, that
even for pullback line bundles, there can be special divisor alignments, i.e., p1 and p2, say,
move into special positions, when we deform C, thus leading to jumps in the cohomology.

2.3 Generating the data set

We generate training data by picking 6 different curve classes [C] with genus 1 ≤ g ≤ 6.
For each class we consider several line bundles L on dP3 and compute (using techniques
from [32]) the cohomologies hi(C(c), L|C(c)), where we vary the curve C(c) by considering
all possible combinations of ci ∈ {0, 1}, i = 1, . . . , d for the coefficients.4 This way, we calcu-
late cohomologies of L pulled back to 2d−1 genus g curves in the class [C]. While this seems
to be a very limited choice, it nevertheless reveals enough structures to correlate jumps in
cohomology with degenerations of the geometry. On the other hand, it also introduces some
bias in the data. For example, a common way the curve degenerates is if all monomials in
the defining polynomial share a common variable; this happens frequently if many ci are set
to 0. However, for certain polynomials, restricting ci ∈ {0, 1} misses out possible factoriza-
tions, where factors are not just a single variable. We will see later that we can easily gen-
eralize the interpretation based on our data with algebraic methods to these cases as well.

For this data set, we then compute/collect the following features for each choice of line
bundle L on each curve C with coefficients ci:

F1) The coefficients ci that define the curve.

F2) The genus of the curve.

F3) The number of global sections of the line bundle on the curve.5

F4) Are the curves smooth?

F5) The number of components the curve splits into.

F6) Are the splits smooth?

F7) Are the splits reduced?

F8) The genera of the split components.

F9) The intersection numbers among the split components.

Note that all of this data is numerical (the true/false features are encoded as 1/0). We
aggregate the features F4–F9 into a single feature called the split type. We want to consider
two curves as identical if their features F4–F9 are identical (up to relabeling the individual
components). In order to check this, we would in principle have to check all permutations of
all split components and see whether any of them have the same data. Since this becomes
prohibitively expensive, we perform the following necessary checks:

4We exclude the case where all ci = 0.
5Note that h1(C,L) can then be computed from the index which is topological and independent of ci.
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• Are the data F4 and F5 identical for the two curves?

• Are the data F6–F8 identical as sets for the two curves? This can be checked by
ordering the tuples and comparing them, which is much faster than checking actual
permutations.

• Is the determinant of the intersection matrix in F9 identical for the two curves? Note
that the determinant is permutation invariant. However, at that point we do not
check whether the permutations that make all sets match are actually the same.

Curves which are identical under these checks are assigned the same integer that encodes
the split type.

Equipped with this data, we generate four different data sets which we use to train the
decision trees and compare the results. In the first, we use the coefficients ci as features
and assign a label of 0 if the cohomology dimension of H0(C(c),L) has the generic (i.e.,
the lowest) value and a label of 1 if there is a jump. Note that at this point, we only
classify the curve according to whether a jump occurs, but not according to how large the
jump is. For the second data set, we use the same labels, while the features are taken to
be the topological intersection numbers between the curve components and the line bundle
divisors. For the third data set we use the split type as explained above. Finally, for
the fourth data set, we use both the split type and the topological intersection numbers
between the curve components and the line bundle divisor as features. In addition, we
perform a train:test split of 90:10 for all four data sets.

2.4 Decision trees to learn cohomology jumps

Training the decision trees only takes a few seconds on a modern desktop computer. We
train a separate decision tree for each line bundle and each of the four data sets. It is instruc-
tive to compare the performance of all four training sets on both the train and the test set.

The results for the accuracy of the trained trees on the test set are summarized in
figure 1. One notices that the accuracy of all data sets improves with the genus of the
curve. This is due to the fact that the size of the data set grows with the genus: the genus
0 curve, that we are considering, admits only 7 coefficients ci and hence only 27 − 1 = 128
data points per line bundle. In contrast, our genus 6 curve has 218−1 = 262143 data points.

For the blue data points, which uses the coefficients ci as labels, we find that the
decision tree performs best. This is to be expected, since these are the finest feature set,
i.e., the one with the most information, out of the four feature sets we studied. Indeed, the
trees reach an accuracy of essentially 1 as soon as the training set becomes large enough
(there are 3685 points in the training set for genus 3). For the other three data sets, we
see that they perform worse, but still reach high accuracies. Using just the split type as
a feature, for the larger genus cases where enough data is available, we reach accuracies
around 80 to 85 percent. Using the intersection numbers, accuracies around 94 percent
are obtained. Lastly, combining the split type and the intersection numbers, improves the
results obtained when either is used individually, to an accuracy of around 97 percent. This
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Figure 1. Average accuracy on the test set as a function of the genera of the curves for different
features.

means that the two features contain different types of information which the three can use
in order to improve its prediction when given access to both.

One can learn more information about the data by also analyzing the performance
on the training set, as explained in section 2.1. Indeed, we find that, when not imposing
constraints on the tree, the accuracy on the train set when using the coefficients as features
is always 100 percent. This is not surprising, since the coefficients uniquely identify each
case and hence the tree can learn a sequence of splits that puts each data point in the
correct leaf node (if necessary, this leaf might only contain this single data point). For the
other data sets, we find that the performance on the test set is already below 100 percent.
Hence, the features are not enough to decide whether a jump in cohomology occurs, not
even in principle.

Let us illustrate this by looking at the decision tree trained on the full data set for a
genus three curve DC = (4;−1,−1,−1) inside dP3 with line bundle DL = (1, 2,−2,−1),
cf. section B.1.5. We give the full decision tree in figure 2. Looking at the root node, we
see that for this bundle, there are 4095 different data points (“samples”). Out of these,
1791 exhibit a cohomology jump for this line bundle, while 2304 do not. The tree assigns
a class label to this (non-leaf) node based on the majority, which is “no jump”. However,
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there are almost as many data points with a jump as there are data points without, which
is why the uncertainty is high. This is encoded in the light blue color: the more certain a
node predicts no jump, the darker blue it is colored. Similarly, the more certain there is a
jump, the darker orange it is.

Recall that integers labelling the split type (based on the features F4–F9) are by
construction small if the number of components the curve splits into is small. Hence, small
split types correspond to irreducible curves, or curves with only few split components. We
expect such curves being close to generic (in a sense that will be made mathematically
more precise in section 4), hence the cohomologies should also take generic values.
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Indeed, we observe that the first split is performed according to whether or not the split
type is smaller than 5.5. This first split already gives a good indicator in the sense that out
of the 1710 training data points that have a split type of 5 or smaller, 85 percent actually
do not have a jump in their cohomologies. This also illustrates that decision trees can be
used for feature selection: important features that are good indicators for the classes tend
to be used for splitting higher up in the tree, while more unimportant features are used
further down the tree (or not at all, if they do not have any predictive power for the class
membership). Now, in our case, we only have a single feature, but it is a composite feature
of several quantities. The fact that the first split does not occur around the median (which
would be 27) but at much smaller value indicates that the number of split components is
a good criterion to distinguish jumps.

While the split types are integers, the tree always chooses half-integer decision bound-
aries. The reason is that the tree does not know that the feature only takes integer values.
Hence, splitting in the middle between the feature values that appear in the train set will
allow the most slack in either direction when the tree is presented with unseen data.

By focusing on the leaf nodes, we can also see that the tree is not classifying the data
perfectly, not even the training data. Indeed, many nodes have a non-zero Gini impurity,
i.e., both curves with and without jumps share the same split type associated with this leaf
node. Looking for example at the bottom right leaf node, we see that 48 curves have the
same split type (with value 29). However, one of these does not jump while the others do.
This means that the topological data F4–F9 used to construct the split type is not enough
to decide whether or not a cohomology jump occurs.

2.5 Interpretation of results

2.5.1 Jumps from curve splittings

We have seen that the decision tree trained on a combination of split types and intersection
numbers performs very well. Moreover, the tree trained with just the split types splits on
small split types first. This suggests that there is a tight correlation between changes in
the topology of the curve and jumps in the line bundle cohomology. In particular, the
data set has an abundance of cases with jumps where the curve C splits off one or more
rigid components: for 78 (about 95%) of the 82 pairs of geometries DC and line bundles
DL considered in our database, we find that we can split off a rigid component E, i.e.,
C → C̃ ∪ E, such that

h0
min(C̃ ∪ E,L|C̃∪E) > h0

min(C,L|C) . (2.9)

Put differently, for almost all pairs (DC , DL) in our database, there exists a rigid divisor
such that splitting off this rigid divisor from the curve C leads to a jump in the number
of global sections on that curve. At the same time, for a given combination (DC , DL), we
observe a jump of h0

min only for a subset of all possible splits C → C̃ ∪ E, suggesting that
E and DL must have some correlation in order for the cohomology to enhance. We list the
details of these splittings and jumps in section B.1.

It is obvious that the jumps stemming from rigid component splittings can be associ-
ated with the curve C becoming non-generic. While per se not unexpected, the machine
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learning process reveals — without explicitly “knowing” algebraic geometry — these fea-
tures.

It is important in this context to address the bias in the data coming from considering
only values of {0, 1} for the coefficients. Namely, within the data, we only observe jumps
associated with splittings of rigid components. Naively, one might conclude that rigidity
of a split component is a necessary condition. However, as we already stressed in the
beginning of subsection 2.3, setting enough coefficients to 0 usually factors out one of the
homogeneous coordinates xi. The corresponding curve splitting then always involves the
toric divisor V (xi) which on a dP3 is rigid for any i = 1, . . . , 6. Therefore, the strong
correlation between a rigid component and a jump is likely due to the bias in the data.

Indeed, we will find in section 4 and section 5 with insights from algebraic geome-
try, that the main source for cohomology jumps in cases of curve splittings is actually
insensitive to components being rigid. We will also supplement a concrete example in sub-
subsection 4.1.3 where we find a jump from non-rigid curve splittings. Furthermore, we
will combine these arguments with the intuition about curve splittings we gained through
the data to phrase a sufficient condition for a jump in cohomology to occur in terms of
topological data only. We will discuss this idea in section 5.

2.5.2 Unpredicted jumps

The fact that the decision tree cannot predict all jumps hints towards sources for additional
sections (and hence cohomology jumps) beyond curve splitting. Within the data set, we
observe that in rare occasions, the curve remains smooth despite a deformation which
induces a jump.

For illustration purposes, consider again the genus three curve with the line bundle
discussed above. Generically, this genus 3 curve is cut out by the polynomial

P (c) = c1x
3
1x

3
2x

2
3x4 + c2x

2
1x

3
2x3x

2
4x6 + c3x1x

3
2x

3
4x

2
6 + c4x

3
1x

2
2x

3
3x5 + c5x

2
1x

2
2x

2
3x4x5x6

+ c6x1x
2
2x3x

2
4x5x

2
6 + c7x

2
2x

3
4x5x

3
6 + c8x

2
1x2x

3
3x

2
5x6 + c9x1x2x

2
3x4x

2
5x

2
6

+ c10x2x3x
2
4x

2
5x

3
6 + c11x1x

3
3x

3
5x

2
6 + c12x

2
3x4x

3
5x

3
6 . (2.10)

The pullback of OdP3(DL) onto C defines a line bundle L of degree d = 3. By Riemann-
Roch we have χ(L) = h0 − h1 = 1.

In our database, we have computed the number of global sections for this line bundle
for coefficient choices c ∈ {0, 1}12 − 0. For these 4095 curves, we find

• h0 = 1: 2304 (56.3%) ,

• h0 = 2: 1664 (40.6%) ,

• h0 = 3: 127 (3.1%) .

Our database indicates that a jump to h0 = 3 occurs whenever c1 = c2 = c3 = c11 = c12 =
0. This corresponds to a splitting

C = V (x2) ∪ V (x5) ∪ V (P |c1=c2=c3=c11=c12=0) . (2.11)
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The majority of the cases with h0 = 2 are where either V (x2) or V (x5) splits off, each
being a rigid P1. This is in line with the above observation. However, we also have instances
(about 9% of all curves with h0 = 2) where the curve remains smooth and irreducible.
Despite having h0 = 2, the split type features cannot distinguish these cases from the
generic setup with h0 = 1, thus leading to an imperfect performance of the decision tree.

While we will come back to a detailed discussion of this phenomenon and the associated
algebraic description in terms of Brill-Noether theory in subsection 4.2, it is evident that
these cases of jumps are associated to the line bundle L on C becoming non-generic.
Moreover, we also observe that such Brill-Noether-type jumps can sometimes produce
values of h0 that cannot be obtained by splittings off rigid curve components. This becomes
particularly important in F-theory models, as we will discuss now.

3 Application: F-theory model building

In the previous section, we have used machine learning techniques to gain some intuition
on how line bundle cohomologies jump under complex structure deformations. While we
will discuss the underlying “precise” description of these various sources of jumps in the
next section, we would like to show that these “rules of thumb” inferred from the white-box
machine learning results can be applied directly in string phenomenology. To this end, we
consider an F-theory toy model and exemplify how curve splittings help “controlling” the
number of vector-like pairs.6

Let us first summarize the relevant features of the model, whose explicit construction is
detailed in [32]. The model has an SU(5) gauge symmetry localized on a dP3 surface inside
the compact base threefold B3, which itself is a smooth hypersurface inside a toric variety.
There are matter states in the representations 101, 53 and 5−2, where the subscript denote
the charges under an additional U(1) gauge symmetry. Each representation R resides on
a curve CR inside the dP3 surface. One can find a globally consistent vertical G4-flux
configuration that induces the chiral spectrum

χ(101) = 3 , χ(53) = 15 , χ(5−2) = −18 . (3.1)

In the following, we will analyze in detail the vector-like spectrum in this setup.

Geometry of curves. In the global geometry, the matter curves CR are complete inter-
sections involving the dP3 surface and another divisor on the base B3. As discussed in [32],
a generic choice of the complex structure parameters for the elliptic fourfold also induces
a generic curve CR on dP3. In other words, we can parametrize them in terms of global
sections of OdP3([CR]), where [CR] denotes the divisor class of the curve inside dP3.

Furthermore, the data defining the zero mode spectrum in a global F-theory model can
be extracted from the G4-configuration and packaged into a line bundle (or, more generally,
a coherent sheaf) for each curve CR [30, 31]. For the case at hand, the flux inducing the

6For the purpose of this work, and in particular this section, we will only focus on the matter curves
and their embeddings into the “GUT”-surface that supports the non-abelian gauge symmetry. We refer the
interested reader to recent reviews [45, 46] for detailed introduction to F-theory.
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chiral spectrum in eq. (3.1) induces line bundles which are pullbacks of various bundles on
dP3 to the curves [32].

Using the same notation as in the previous section,7 the curves with their genus and
their corresponding zero-modes counting bundles are:

curve class genus bundle hi

C101 (4;−1,−1,−2) 2 OdP3 (1;−1,−1, 1) (3, 0)
C53 (10;−3,−3,−4) 24 OdP3 (5;−4,−4, 3) (15 + n, n)
C5−2 (17;−5,−5,−7) 79 OdP3 (6; 0, 0,−6) (7, 25)

(3.2)

Note that the cohomologies on C101 and C5−2 are fixed by the exactness of the corre-
sponding Koszul resolutions, and hence there are no complex-structure-dependent jumps
possible.8 For the representation 53, no such arguments apply, and thus we expect the
number n of light vector-like pairs to vary.

The curve C53 = {a3,2 = 0} is the vanishing locus of a polynomial with class
(10;−3,−3,−4), whose explicit expression in the parametrization of the toric dP3 coordi-
nates xi are given in section A, cf. eq. (A.67). With the curve having genus 24, it would
be almost impossible to perform a scan by varying all the complex structure parameters
(eq. (A.67) has 44 coefficients), as we did previously for the low genus cases. However, the
intuition we gained from the low genus examples will help us to “control” n — that is, to
efficiently find suitable geometries realizing the desired vector-like spectrum.

3.1 Engineering jumps in cohomology

What we have learned from the machine learning results is that the line bundle cohomol-
ogy is more likely to jump if the curve in question is reducible. Though we have already
emphasized that rigidity of the components is not necessary, the abundance of toric co-
ordinates makes it handy to factor out various different curves which in this case happen
to be rigid. For the purpose of finding a concrete realization of a particular jump in the
vector-like spectrum, these rigid factors turn out to be sufficient.

We thus modify the coefficients of the defining polynomial a3,2 in eq. (A.67) such that
individual toric coordinates xi of dP3 factor out. Of course, not every such factorization will
lead to a jump: the rigid component must in some way receive a “non-trivial contribution”,
i.e., intersection, from the divisor DL defining the line bundle. The intuitions we gained
from the previous section is that a negative intersection of DL with V (xi) will lead to a
jump. It is then intuitive to assume that the more rigid components splits off, the higher
the jumps tend to be. With this intuition, we now proceed to engineer step-wise jumps of
the vector-like spectrum.

Using the linear relations in eq. (2.3) and intersection numbers in eq. (2.5), we easily
verify the divisor defining the line bundle, DL = 5H − 4E1− 4E2 + 3E3, has only negative

7Divisor classes aH + bE1 + cE2 + dE3 are denoted by (a; b, c, d).
8This can change if we modify the flux by, e.g., horizontal pieces. However, for the purpose of this work,

we focus on jumps induced by geometric changes.
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intersections with [x1] and [x6]. Inspecting eq. (A.67), one finds that if we set

c40 = c41 = c42 = c43 = c44 = 0 , (3.3)

the polynomial factors as a3,2 = x6R2, where R2 is an irreducible polynomial in the class
(10;−3,−3,−5). And indeed, a computer-assisted computation with methods from [32]
reveals that for this curve C2 = {x6R2 = 0}, we have

hi(C2, OdP3(5;−4,−4, 3)|C2
) = (17, 2) , (3.4)

We can factor out another factor x6 from R2 by setting

c34 = c35 = c36 = c37 = c38 = c39 = c40 = c41 = c42 = c43 = c44 = 0 , (3.5)

yielding C53 → C3 = {x2
6R3 = 0}, with R3 an irreducible polynomial of class

(10;−3,−3,−6). In this case, we find a jump by three,

hi(C3, OdP3((5;−4,−4, 3)|C3
) = (18, 3) . (3.6)

To achieve a jump by four, we factorize C53 → C4 = {x1 x6R4 = 0}, with [R4] =
(9;−2,−2,−5), with the following choice of complex structure:

c1 = c2 = c3 = c4 = c5 = c40 = c41 = c42 = c43 = c44 = 0 . (3.7)

Then we find
hi(C4, OdP3((5;−4,−4, 3)|C4

) = (19, 4) . (3.8)

Also a jump by five is possible. To this end, we set

c1 = c2 = c3 = c4 = c5 = c34 = c35 = c36 = c37 = 0 ,
c38 = c39 = c40 = c41 = c42 = c43 = c44 = 0 .

(3.9)

For this choice of parameters, the matter curve factorizes as C53 → C5 = {x1 x
2
6R5 = 0},

with [R5] = (9;−2,−2,−6). In this case we have

hi(C5, OdP3((5;−4,−4, 3)|C5
) = (20, 5) . (3.10)

Lastly, we also easily construct a model with six vector-like pairs, by setting

c1 = c2 = c3 = c4 = c5 = c6 = c7 = c8 = c9 = c10 = c11 = 0 ,
c34 = c35 = c36 = c37 = c38 = c39 = c40 = c41 = c42 = c43 = c44 = 0 .

(3.11)

Then C53 → C5 = {x2
1 x

2
6R6 = 0}, with [R6] = (8;−3,−3,−6). This gives

hi(C5, OdP3((5;−4,−4, 3)|C5
) = (21, 6) . (3.12)
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3.2 Single vector-like pair from Brill-Noether theory

The above examples demonstrate how the machine learning intuition led us to a step-wise
increase in the number of vector-like pairs by suitable tuning of the complex structure
parameters. These jumps occur because the matter curve in question splits into several
components. However, for this curve and line bundle, such splittings induce a jump from
zero vector-like pairs to at least two (or three, or four, or five). If we are interested in
models with a single vector-like pair — such as for the Higgs field in MSSM realizations
— then we need to look for other effects than curve splitting.

As we have seen earlier, such effects are related to the cases not predicted by the
trained decision tree. Here, the jumps in cohomology are not due to the curve becoming
non-generic, but rather the line bundle. In fact, Brill-Noether theory (to be discussed in
the next section, see also subsection A.1) tells us that for the matter curve C53 of genus
24, we expect that a scenario with a single vector-like pair — i.e., one having hi = (16, 1)
— to occur on a subvariety of dimension ρ = g − h0 · h1 = 8 of the space Jac(C53) which
parametrizes the line bundles on C53 . Note that the same formula would yield ρ = −10
for jumps by two, and hence no such jumps can occur for a generic C53 . This agrees with
the above instances, as each of those requires the curve to become non-generic.

Because of this, engineering the jump by 1 becomes more challenging, and in particular
requires additional tools from algebraic geometry. We defer the details of the relevant
computations to section A and simply remark here that the necessary tuning is

c1 = c2 = c3 = c4 = c5 = c7 = c8 = c9 = c10 = c35 = c36 = c37 = c38 = 1 ,
c40 = c41 = c42 = c43 = c44 = 1, c11 = c34 = −1, c6 = c39 = 2 .

(3.13)

One can easily verify that the polynomial a3,2 in eq. (A.67) does not factorize in this case,
and that the curve C53 remains smooth. Therefore, the enhancement in cohomology in
this case is indeed of Brill-Noether type.

4 Cohomology jumps throughout the moduli space

To put the intuition we gained from machine learning onto more solid grounds, we now
apply tools from algebraic geometry to develop a more complete, “microscopic” under-
standing for the various sources of jumps we encountered in our data. As we will see, the
resulting insights lead to a diagrammatic representation of a stratification of the complex
structure moduli space of F-theory compactifications induced by vector-like spectra.

As we have alluded to in section 2, based on our database we can essentially distinguish
two types of jumps:

1. Jumps due to a non-generic line bundle.

2. Jumps due to a non-generic curve.

This shows that our samplings are very atypical. Namely, true jump loci have lower
dimensionality than the full set of parameters. Therefore, jump loci form sets of measure
0 and should never be encountered by a genuinely random sample.
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It is central to our discussion that algebraic geomemtry can bound from below the ‘size’
of such jump loci. In particular, this is true for jumps due to non-generic line bundles.
Such jumps have been analyzed since 1874 in the context of Brill-Noether theory9 [47].
Given a generic curve Cg of genus g and an integer d, Brill-Noether theory provides an
integer ρ(r, g, d) which measures how likely it is that a line bundle Ld of degree d on Cg
has r + 1 independent non-trivial global sections, i.e., has h0(Cg,Ld) = r + 1.

To formulate this more precisely, first recall that the Jacobian Jac(Cg) of the curve Cg
is isomorphic to Cg/Λ where Λ is the full-dimensional period lattice of Cg. By the Abel-
Jacobi map, equivalence classes of line bundles of degree d form a copy of the Jacobian
Jac(Cg). Let us focus on the subset of the Jacobian formed by all equivalence classes of
line bundles of degree d which admit exactly r+ 1 global sections. Then a lower bound on
the dimension of this space is given by the integer

ρ(r, g, d) = g − (r + 1) · (r + 1− (d− g + 1)) ≡ g − n0 · n1 . (4.1)

In the last equality we use the intuitive notation n0 = r + 1. Furthermore, we have
used that by the Riemann-Roch theorem, n1 ≡ n0 − (d − g + 1) is equal to h1(Cg,Ld) if
h0(Cg,Ld) = n0. Further details on Brill-Noether theory can be found in appendix A.1,
and a more complete presentation is given in [48, 49].

An important result follows from [50]: if the curve is generic, then lines bundles of
degree d only admit numbers r + 1 of global sections for which ρ(r, g, d) is non-negative.
Put differently, there are no line bundles on generic curves with r + 1 global sections with
ρ(r, g, d) < 0. Furthermore, the value of ρ gives a very clear notion of the likelihood to
have r + 1 sections in terms of a dimension on the “moduli” space of line bundles.

Let us demonstrate this for a line bundle L of degree d = 2 on a curve Cg of genus
g = 3. By general theory, the number of section of this line bundle cannot exceed its
degree. Hence, it has 0, 1 or 2 sections. With this information, let us compute ρ(r, d, g):

r hi ρ(r, d, g)
−1 (0, 0) 3
0 (1, 1) 2
1 (2, 2) −1

(4.2)

From this we learn, that most line bundles L of degree d = 2 on a genus g = 3 curve C3 sat-
isfy h0 (C3,L) = 0. Since for these bundles ρ matches the dimension of the Jacobian of C3,
we can say that these line bundles are associated to generic points of the Jacobian. Further-
more, we learn that there are line bundles with h0 (C3,L) = 1. However, these are special
in the sense that they are associated to a codimension-1 locus in the Jacobian Jac(C3).

Finally, ρ = −1 for r = 1 begs for an explanation. This explanation follows from work
of Griffiths and Harris [50]:

On generic curves, dim(Gr+1
d ) = ρ (r, d, g).

9The physics community may find it entertaining to learn that this theory is named after Max Noether,
the father of Emmy Noether.
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So in particular, on generic curves it holds Gr+1
d = ∅ if and only if ρ (r, d, g) < 0. Conse-

quently, we conclude from eq. (A.14), that on generic genus g = 3 curve, there is no line
bundle L of degree 2 such that h0(C3,L) = 2.

Note however, that this does not rule out the possibility that non-generic curves may
host such line bundles. In the case at hand, it follows from the theorem of Clifford [50]
that hyperelliptic curves H3 of genus g = 3 admit line bundles L of degree d = 2 and
h0(H3,L) = 2. Note that hyperelliptic curves of genus g > 2 are non-generic. Hence,
this points us to jumps of the vector-like spectrum, which originate from non-generic
deformations of the curve.

Let us give another such example, which illustrates a jump on a singular curve. To this
end, let us consider a line bundle L of degree d = 5 on a genus g = 2 curve. Then χ(L) = 4
and h0(C2,L) ∈ {4, 5}. Let us compute ρ(r, d, g) for these two values of global sections:

r hi(C2,L) ρ(r, d, g)
3 (4,0) 2
4 (5,1) −3

(4.3)

Thus, on a generic curve of genus g = 2, any line bundle of degree d = 5 has 4 global
sections. Even more, since the degree d is in the stable range, we find 4 global sections for
this line bundle on every smooth curve of genus g = 2 — generic or not. Hence, 5 sections
can only be realized on a singular curve.

This can be achieved by choosing the curve parameters (which model the complex
structure moduli of global F-theory models) such that the curve becomes reducible, and
factors into various components which intersect transversely in a number of points. A
way to construct global sections on such curves is then as follows: first, consider each
component individually and identify which sections they support. Then, by demanding
that these sections agree at the intersection points, we glue these local sections to global
sections. We will return to this gluing procedure in more detail in section 5.

In this section, we will take a closer look at the interplay of jumps that occur due
to non-genericity both of the line bundle and the curve. In particular, since in global F-
theory models, both the bundle and the curve depend on the complex structure parameters
of the elliptic fibration in the same fashion (namely through the coefficients of its defin-
ing polynomials), they should be treated on the same footing, which we can summarize
diagrammatically. The following analysis requires, at a technical level, a working under-
standing of the Koszul resolution of a pullback bundle, its associated long exact sequence
in sheaf cohomology, inferring the maps in this long exact sequence from Čech ochomology
as well as a basic understanding of non-reduced curves. For convenience of the reader,
further details are provided in section A.

4.1 Jumps from curve splittings

We first analyze examples with jumps from curve splittings. We will see that rigidity of
the components that split off play no role in the section counting. The reason, why we
found in earlier sections that rigid divisors lead to jumps, is due to our special choice of
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setting all coefficients in the polynomial that specify the curve in dP3 to either zero or one.
Namely, this factors the curve into a combination of toric divisors — which happen to be
rigid in dP3 — and remaining curve components.

4.1.1 Example: one additional section

Setup. Let us return to the example of a line bundle on a genus 2 curve discussed above.
In more detail, the curve and line bundle are given by

DC = (4;−1,−2,−1) , DL = (3;−3,−1,−2) . (4.4)

The curve C (c) = V (P (c)) is defined by a polynomial P (c) ∈ H0 (dP3,OdP3(DC)) ∼= C10

with

P (c) = c1x
3
1x

3
2x3x4 + c2x

2
1x

3
2x

2
4x6 + c3x

3
1x

2
2x

2
3x5 + c4x

2
1x

2
2x3x4x5x6 + c5x1x

2
2x

2
4x5x

2
6 (4.5)

+ c6x
2
1x2x

2
3x

2
5x6 + c7x1x2x3x4x

2
5x

2
6 + c8x2x

2
4x

2
5x

3
6 + c9x1x

2
3x

3
5x

2
6 + c10x3x4x

3
5x

3
6 ,

where the coefficients c ∈ C10 form the parameter space of this genus g = 2 setup. The
line bundle L(c) = OdP3(DL)|C(c) satisfies deg(L(c)) = 5. Hence, on smooth curves, the
theorem of Riemann-Roch tells us

χ(L(c)) = deg(L(c))− g + 1 = 5− 2 + 1 = 4 . (4.6)

Moreover, since deg(L(c)) = 5 > 2g−2, we know that for smooth curves h1(C(c),L(c)) = 0.
Hence, h0(L(c)) = 5 is only possible on non-smooth curves.

Comparison with database. In our database, we have considered choices of parameters
c ∈ {−1, 0, 1}10 − 0. On about 96% of these 59048 curves, L(c) has 4 sections. This fits
with the above picture, that generically we expect 4 sections. However, we also find 2186
curves for which L(c) has 5 sections. Those curves satisfy c3 = c6 = c9 = 0, which means
that C(c) = V (x4) ∪B, where

B = V (c1x
3
1x

3
2x3 + c2x

2
1x

3
2x4x6 + c4x

2
1x

2
2x3x5x6 + c5x1x

2
2x4x5x

2
6

+ c7x1x2x3x
2
5x

2
6 + c8x2x4x

2
5x

3
6 + c10x3x

3
5x

3
6)

(4.7)

is a genus-0 curve with V (x4) · B = 3. We will now argue that L(c) admits 5 sections if
and only if C(c) decomposes in this way.

Classification of jump geometries. To this end, we consider the Koszul resolution

0→ OdP3 (DL −DC) α−→ OdP3 (DL)→ L(c)→ 0 . (4.8)

Its associated long exact sequence in sheaf cohomology takes the form

0 0 H0 (dP3,DL)∼=C1 H0 (C(c),L(c))

H1 (dP3,DL−DC)∼=C4 H1 (dP3,DL)∼=C1 H1 (C(c),L(c))

0 0 0 0 .

ϕ (4.9)
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The exactness of this sequence implies that

h0(C(c),L(c)) = 5− dim (imϕ) = 5− rk (Mϕ) , (4.10)

where Mϕ = (c3, c6, c9, 0). We explain the construction of the mapping matrix Mϕ in more
detail in section A.

Obviously, Mϕ has rank 1 iff (c3, c6, c9) 6= 0 and its rank vanishes iff (c3, c6, c9) = 0.
This immediately leads to the following classification of curve geometries:

rk (Mϕ) explicit condition curve splitting
1 (c3, c6, c9) 6= 0 C

0 (c3, c6, c9) = 0 V (x4) ∪B

(4.11)

showing that we obtain one additional vector-like pair if and only if the curve factors as
V (x4) ∪B. We illustrate this result in the following diagram:

C

V (x4) ∪B

F1 : (h0, ρ) = (4, 1)

F2 : (h0, ρ) = (5,−3)

(4.12)

In this diagram, the ath node represents a family Fa of curves, for which we give the generic
element in this family.

For example, the family F1 of curves at the first node is defined by the condition
(c3, c6, c9) 6= 0 and has the curve C as its generic element, which is a smooth, irreducible
curve of genus g = 2. Note that (non-generic) members of F1 can also be singular curves
with several components. For example, the curve V (x3

1x
2
2x

2
3x5) is defined by the condition

that all ci but c3 vanish. This curve is clearly singular and has several connected compo-
nents. Recall that F1 is the family of curves on which the line bundle in question admits
four global sections. Hence, the statement is that even on such a very singular curve, the
bundle in question admits exactly four sections.

This feature changes exactly on the family of curves F2, which are defined by
(c3, c6, c9) ≡ 0. Its generic element is a curve of the form V (x4) ∪ B, where B is
a smooth genus g = 0 curve touching V (x4) in 3 distinct points. We can also view
F1 = {c | (c3, c6, c9) 6= 0} and F2 = {c | (c3, c6, c9) = 0} as subspaces of the parameter
space C10 3 c. In this case it is trivial to see that

F1 ∩ F2 = ∅ , F2 ⊂ F1 , (4.13)

where F1 the closure with respect to the standard topology on C10. We will come back to
this property shortly.
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4.1.2 An h0-gap
Whilst factoring-off curve components typically increases the number of global sections, this
effect need not necessarily generate exactly one additional section, as we have already seen
in subsection 3.1. Rather, it can force multiple additional sections to appear simultaneously.
An example of this sort is

DC = (3;−1,−1,−1) , DL = (1;−1,−3,−1) . (4.14)

In this case, C(c) = V (P (c)) is a genus 1 curve defined by

P (c) = c1x
2
1x

2
2x3x4 + c2x

2
1x2x

2
3x5 + c3x1x

2
2x

2
4x6 + c4x1x2x3x4x5x6

+ c5x1x
2
3x

2
5x6 + c6x2x

2
4x5x

2
6 + c7x3x4x

2
5x

2
6 .

(4.15)

Moreover, L is a line bundle of degree d = −2. Hence, its degree is in the stable regime
and on any smooth curve we find h0(C,L) = 0. Still, as demonstrated in subsection 4.1.1,
non-smooth curves can admit higher numbers of global sections. Here, we will argue, that
even on singular curves, the pullback line bundle L can never have exactly one section.

To see this, let us look at the long exact sequence in sheaf cohomology associated to
the Koszul resolution of the setup:

0 0 0 H0 (DC ,L)

H1 (dP3, DL −DC) ∼= C3 H1 (dP3, DL) ∼= C5 H1 (C,L)

0 0 0 0 .

ϕ (4.16)

The exactness of this sequence implies h0(C,L) = 3− dim (imϕ) = 3− rk (Mϕ) with

Mϕ =

 c6 0 0
c7 c6 0
c3 0 0
c1 0 c3
c4 c3 c6

 . (4.17)

Consequently, the statement that on the curves in class DC the pullback of DL never has
exactly one section is equivalent to saying that Mϕ never has rank 2. We see this by
studying the four non-trivial and independent 3× 3-minors of Mϕ:

m1 = c2
6c3 , m2 = c3

6 m3 = c3
3 , m4 = c6c4c3 − c7c

2
3 − c2

6c1 . (4.18)

Now, rk(Mϕ) < 3 requires m1 = m2 = m3 = m4 = 0. This is equivalent to c3 = c6 = 0 and

Mϕ|c3=c6=0 =

 0 0 0
c7 0 0
0 0 0
c1 0 0
c4 0 0

 , (4.19)

which can have at most rank 1. More generally, we can classify the rank of Mϕ and thereby
summarize the curve geometry as follows:

rk(Mϕ) explicit condition (Fi) splitting of curve
3 c3, c6 6= 0 C

1 c3 = c6 = 0 E2 ∪B
0 c1 = c3 = c4 = c6 = c7 = 0 E6 ∪ E4 ∪ E(2)

2 ∪A

(4.20)
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Observe again that within the parameter space of c, we have

Fi ∩ Fj = ∅ , F1 ⊃ F2 , F2 ⊃ F3 . (4.21)

The corresponding diagram is

C

E2 ∪B

E6 ∪ E4 ∪ E(2)
2 ∪A

F1 : (h0, ρ) = (0, 1)

F2 : (h0, ρ) = (2,−7)

F3 : (h0, ρ) = (3,−14)

(4.22)

4.1.3 Jump from non-rigid curve splitting

We now address the bias in our data, and provide a concrete example of jumps from
a curve splitting for which none of the components is rigid. To this end, we consider
DC = (2;−1,−1, 0) and DL = (−2, 0, 4, 0). This curve is thus given by

P = c1x4x5x
2
6 + c2x1x3x5x6 + c3x1x2x4x6 + c4x

2
1x2x3 . (4.23)

For generic coefficients ci, the curve C is a smooth curve of genus g = 0 and L has degree
d = 0. Hence we conclude h0(C,L) = 1.

To understand jumps at special coefficients, we employ the Koszul resolution and find
h0 (C(c),L(c)) = 7− rk(M) where

M =



0 0 0 c1 0 c3 0
c4 0 0 0 c1 c2 c3

c3 0 0 0 0 c1 0
0 c1 0 c2 c3 c4 0
0 0 c1 c3 0 0 0
0 0 0 0 c2 0 c4


. (4.24)

The rank drops of this matrix include both cases of rigid and non-rigid splittings. Explicitly,
let us set Ai = V (xi), which are rigid components. Moreover, let us consider the following
non-rigid g = 0 curves:

D1 = V (c2x3x5x6 + c3x2x4x6 + c4x1x2x3) ,
D2 = V (c3x4x6 + c4x1x3) ,
D3 = V (c4x1x2 + c2x5x6) ,
D4 = V (c2x1x3 + c1x4x6) ,
D5 = V (c3x1x2 + c1x5x6) .

(4.25)
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With these, we can then summarize the rank drops as follows:

rk(M) explicit condition curve splitting
6 generic C

5 c1 = 0 A1 ∪D1

5 c1c4 = c2c3 D2 ∪D3

3 c1 = c3 = 0 A1 ∪A3 ∪D3

(4.26)

The corresponding diagram is of the form

C

A1 ∪D1 D2 ∪D3

A1 ∪A3 ∪D3

F1 : (h0, ρ) = (1, 0)

F2 : (h0, ρ) = (2,−2)

F4 : (h0, ρ) = (4,−12)

(4.27)

Similar to our discussion in subsubsection 4.1.2, there is a gap at h0 = 3. Crucially, since
D2 and D3 are non-rigid, the deformation C → D2 ∪D3 provides an explicit example of a
jump associated to curve splitting with no rigid components.

4.2 Jumps from non-generic line bundles

We now turn to jumps due to special alignments of the points that define a line bundle
divisor. These phenomena are described by Brill-Noether theory.

4.2.1 Additional section due to special divisors

Let us consider the pair

DC = (4;−1,−1,−1) , DL = (1; 2,−2,−1) . (4.28)

This genus g = 3 curve C(c) = V (P (c)) is defined by

P (c) = c1x
3
1x

3
2x

2
3x4 + c2x

2
1x

3
2x3x

2
4x6 + c3x1x

3
2x

3
4x

2
6 + c4x

3
1x

2
2x

3
3x5 + c5x

2
1x

2
2x

2
3x4x5x6

+ c6x1x
2
2x3x

2
4x5x

2
6 + c7x

2
2x

3
4x5x

3
6 + c8x

2
1x2x

3
3x

2
5x6 + c9x1x2x

2
3x4x

2
5x

2
6

+ c10x2x3x
2
4x

2
5x

3
6 + c11x1x

3
3x

3
5x

2
6 + c12x

2
3x4x

3
5x

3
6 . (4.29)

Brill-Noether theory implies

curve g L χ d BN-theory

C = V (P ) 3 OdP3(DL)|C 1 3

h0 h1 ρ

1 0 3
2 1 1
3 2 −3

(4.30)
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Hence, a jump on the generic curve — a Brill-Noether jump — to h0(C(c),L(c)) = 2 is
possible. To explicitly construct such curves, we again inspect the long exact sequence,
associated to the Koszul resolution of L(c), which is given by

0 0 0 H0 (DC ,L)

H1 (dP3, DL −DC) ∼= C3 H1 (dP3, DL) ∼= C2 H1 (C,L)

0 0 0 0 .

ϕ (4.31)

From the exactness of this sequence, we learn that h0(C(c),L(c)) = 3− rk (Mϕ) with

Mϕ =
( c3 c2 c1

0 c12 c11

)
. (4.32)

We set P1
a = V (x2), P1

b = V (x5). Then the possible h0 jumps are classified as

rk(Mϕ) explicit condition curve splitting
2 (c3c11, c3c12, c2c11 − c1c12) 6= 0 C1

1 c3 = 0, c2c11 − c1c12 = 0 C2

1 c1 = c2 = c3 = 0 B2 ∪ P1
b

1 c11 = c12 = 0 P1
a ∪B1

0 c1 = c2 = c3 = c11 = c12 = 0 P1
a ∪A ∪ P1

b

(4.33)

The corresponding diagram is of the form

C1

C2P1
a ∪B2 B1 ∪ P1

b

P1
a ∪A ∪ P1

b

F1 : (h0, ρ) = (1, 3)

F2 : (h0, ρ) = (2, 1)

F3 : (h0, ρ) = (3,−3)
(4.34)

The change of coefficients

c = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) → c = (1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) (4.35)

leads to a transition C1 → C2 of smooth, irreducible curves. Since the topology of the curve
does not change for this choice of parameters, such a transition cannot be detected from
the topological data which we used for our machine learning. Therefore, such transitions
are the major source of error in our decision trees.
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On smooth curves Ci, the nature of the jump C1 → C2 can be analyzed by using Serre
duality:

h1 (C,OC (DL|C)) > 0 ⇔ h0 (C,OC (KC − DL|C)) > 0
⇔ KC − DL|C effective
⇔ ∃p ∈ C : KC − p ∼ DL|C .

(4.36)

Hence, the origin of this jump is that KC and the line bundle divisor differ, modulo linear
equivalence, only by a point on C. Such a divisor is known as a special divisor. Loosely
speaking, we may thus say that the origin of this one additional sections is that the points,
which define the line bundle on the curve, move into a special alignment.

Note that also in this case, the diagram in eq. (4.34) encodes a hierarchy F1 ⊃ F2,
F2 ⊃ F3. This is a generic feature of the parameter space and reflects a stratification
induced by the vector-like spectrum.

4.3 h0-stratification of the parameter space

A stratification of a topological space X is a decomposition X =
⋃
iFi into locally closed

subspaces Fi such that

1. Fi ∩ Fj = ∅ if i 6= j,

2. if Fi ∩ Fj 6= ∅, then Fi ⊂ Fj .

Intuitively speaking, a feature associated to a subspace Fi —a so-called stratum— becomes
“less likely” with increasing codimension of Fi, and being contained in (the closure of) a
higher dimensional stratum Fj implies a “specialization” of the feature when going from Fi
to Fj with j > i. The second defining property has a convenient diagrammatic representa-
tion: let the strata Fi form vertices of a graph, then there is a directed edge going from j to
i if Fi ⊂ Fj . This is precisely the structure of the diagrams (4.12), (4.22), (4.27), and (4.34).
Here, the stratified X is the parameter space {c} associated with a pair (DC , DL), and the
strata are defined by the value of h0(C(c),L(c)) in the notation of the previous subsections.
Hence, we call these diagrams h0-stratification, or in short, stratification diagrams.

Note that Brill-Noether theory basically provides an analog description of the moduli
space of line bundles/divisors on a smooth curve. In particular, it provides lower bounds on
the dimension of the strata in terms of ρ. For F-theory models, where also deformations of
the curve’s topology become relevant, we see that the stratification by h0 can be extended
to the enlarged moduli space.

We observe that in this generalized setting, a stratum associated to a certain value of
h0 can consist of several disjoint subfamilies of different dimensions. In the example (4.34),
the stratum F2 associated with h0 = 2 decomposes as F2 = F (a)

2 ∪ F (s)
2 ∪ F (b)

2 with

F (a)
2 = {c | c11 = c12 = 0 , c1 6= 0, c2 6= 0, c3 6= 0} ,

F (b)
2 = {c | c1 = c2 = c3 = 0, c11 6= 0 6= c12} ,

F (s)
2 = {c | c3 = 0 = c2c11 − c1c12 , c1 6= 0 6= c2 , c11 6= 0 6= c12} .

(4.37)
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It is easy to see that each of these components also satisfies the axioms for strata (since
they satisfy F (x)

2 ∩ F (y)
2 = ∅ for x 6= y). Furthermore, their closure contains the common

stratum F3 = {c | c1 = . . . = c12 = 0} of higher codimension with h0 = 3, as can be seen
from the arrows connecting the three subfamilies of the stratum F2 to F3 in eq. (4.34).

In general, a stratification diagram can be roughly divided into three regions. At low
values of h0, jumps typically occur for divisor alignment, i.e., are allowed by Brill-Noether
theory on a smooth curve. To get to high h0, i.e., many vector-like pairs, the curve typically
needs to factorize into many components. In the middle regime, we can have a mixture,
meaning in particular that a jump occurs due to divisor alignment on a split component.

To illustrate such a “typical” case, consider

DC = (5;−1,−1,−2) , DL = (1; 1,−4, 1) . (4.38)

This genus g = 5 curve is given by C(c) = V (P (c)) with

P := c1x
3
1x

4
2x

2
3x

2
4 + c2x

2
1x

4
2x3x

3
4x6 + c3x1x

4
2x

4
4x

2
6 + c4x

3
1x

3
2x

3
3x4x5 + c5x

2
1x

3
2x

2
3x

2
4x5x6

+ c6x1x
3
2x3x

3
4x5x

2
6 + c7x

3
2x

4
4x5x

3
6 + c8x

3
1x

2
2x

4
3x

2
5 + c9x

2
1x

2
2x

3
3x4x

2
5x6

+ c10x1x
2
2x

2
3x

2
4x

2
5x

2
6 + c11x

2
2x3x

3
4x

2
5x

3
6 + c12x

2
1x2x

4
3x

3
5x6 + c13x1x2x

3
3x4x

3
5x

2
6

+ c14x2x
2
3x

2
4x

3
5x

3
6 + c15x1x

4
3x

4
5x

2
6 + c16x

3
3x4x

4
5x

3
6 . (4.39)

From Brill-Noether theory, we then find

curve g L χ d BN-theory

C = V (P ) 5 OdP3(DL)|C 0 4

h0 h1 ρ

0 0 5
1 1 4
2 2 1

(4.40)

The stratification of curve geometries follows from the long exact sequence

0 0 0 H0 (C(c),L(c))

H1 (dP3, DL −DC) ∼= C7 H1 (dP3, DL) ∼= C7 H1 (C(c),L(c))

0 0 0 0 .

ϕ

(4.41)
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Consequently h0 (C(c),L(c)) = 7− rk(Mϕ) and we find

Mϕ =



c15 c11 c7 0 0 0 0
0 c10 c6 c3 c11 c7 0
c12 c6 c3 0 c7 0 0
0 c5 c2 0 c6 c3 c7

c8 c2 0 0 c3 0 0
0 c14 c11 c7 0 0 0
0 c1 0 0 c2 0 c3


. (4.42)

We list the curve strata in table 1 and display the corresponding stratification diagram in
figure 3.

Of particular interest is the transition A3 ∪D1 → A3 ∪D2. The former curve admits
3, the latter 4 sections. This change in the number of sections is due to a Brill-Noether
jump on the curve components Di:

curve class genus d h0 h1 ρ

Di (5,−1,−2,−2) 4 0
0 3 4
1 4 0

(4.43)

Hence, provided that the line bundle divisor is chosen such that KDi − DL|Di
is effective,

we find an additional section on Di, due to a Brill-Noether effect. More explicitly, in the
case at hand this condition states that the line bundle divisor is linearly equivalent to the
trivial divisor, i.e. DL|Di

∼ ∅. This condition is satisfied on D2 but not on D1. For this
reason we find one additional section on A3 ∪D2.

5 Local to global section counting

In this section, we provide an in-depth analysis of the procedure of gluing local sections on
reducible curves. As a result, we can place a lower bound on the number of global sections.
We find sufficient topological conditions for a jump of h0 to occur. This further allows
us to formulate an algorithm to estimate the possible numbers of vector-like pairs on the
moduli space of F-theory compactifications.

5.1 Gluing local sections to global sections

5.1.1 Trivial boundary conditions

Let us start by looking at a simple example. To this end, we go back to the geometry
discussed in subsubsection 4.1.2, i.e.

DC = (3;−1,−1,−1) , DL = (1;−1,−3,−1) . (5.1)

Recall that in this case, C(c) = V (P (c)) is a genus 1 curve defined by

P (c) = c1x
2
1x

2
2x3x4 + c2x

2
1x2x

2
3x5 + c3x1x

2
2x

2
4x6 + c4x1x2x3x4x5x6

+ c5x1x
2
3x

2
5x6 + c6x2x

2
4x5x

2
6 + c7x3x4x

2
5x

2
6 .

(5.2)
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rk(Mϕ) explicit condition curve splitting
7 det(Mϕ) 6= 0 C0

6 det(Mϕ) = 0 C1
1

5
c3c7c12 = c15c

2
3 + c8c

2
7, c11c

2
3 = c3c6c7 − c2c

2
7

C2
1

c1c
3
7 + c10c

2
3c7 = c14c

3
3 + c3c5c

2
7

4 c3 = c7 = 0 A3 ∪D1

3
c3 = c7 = 0 c11c8 = c15c2 c11c12 = c15c6

A3 ∪D2
c11c2c5 = c14c

2
2 + c1c11c6 c10c11c2 = c1c

2
11 + c14c2c6

3 c3 = c7 = c8 = c12 = c15 = 0 A3 ∪A4 ∪D3

2 c2 = c3 = c6 = c7 = c11 = 0 A
(2)
3 ∪D4

1 c1 = c2 = c3 = c5 = c6 = c7 = c10 = c11 = c14 = 0 A
(3)
3 ∪A5 ∪D5

1 c2 = c3 = c6 = c7 = c8 = c11 = c12 = c15 = 0 A
(2)
3 ∪A4 ∪D6

0
c1 = c2 = c3 = c5 = c6 = c7 = 0

A
(3)
3 ∪A4 ∪A5 ∪D7

c8 = c10 = c11 = c12 = c14 = c15 = 0

Table 1. The curve strata for DC = (5;−1,−1,−2) and DL = (1; 1,−4, 1).

We found that for c1 = c3 = c4 = c6 = c7 = 0 we have 3 global sections. Furthermore, we
have already seen that for this choice of parameters, the curve has 4 components

C(c) = E6 ∪ E4 ∪ E(2)
2 ∪A . (5.3)

These components have the following properties:

curve component equation class g d h0(Ci, DL)
A V (c2x1x2 + c5x5x6) (1; 0,−1, 0) 0 −2 0
E4 V (x1) (1;−1,−1, 0) 0 −3 0
E6 V (x5) (1; 0,−1,−1) 0 −3 0
E

(2)
2 V (x2

3) (0; 0, 2, 0) −2 6 9

(5.4)

In the last column we give the number of sections of the restriction of the bundle OdP3(DL)
to these curve components. We will refer to these sections in the following as the local
sections.

We display this geometry in figure 4. Our task is to glue the local sections to global
sections on the curve C = E6 ∪ E4 ∪ E(2)

2 ∪ A . To this end, we work out the sections
explicitly and then subject them to boundary conditions at the intersection points of the
different curve components.

For the components A, E4 and E6 we already know that the only allowed local section
vanishes identically. On E(2)

2 however, the situation is a bit more involved since E(2)
2 is a

non-reduced curve. As a set, E(2)
2 is the locus V (x3). Using the scaling relations of dP3,
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C0

C1
1

C2
1

A3 ∪D1

A3 ∪D2 A3 ∪A4 ∪D3

A
(2)
3 ∪D4

A
(3)
3 ∪A5 ∪D5 A

(2)
3 ∪A4 ∪D6

A
(3)
3 ∪A4 ∪A5 ∪D7

h0 = 0

h0 = 1

h0 = 2

h0 = 3

h0 = 4

h0 = 5

h0 = 6

h0 = 7

B
N
-ju
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B
N
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m
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e
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Figure 3. The stratification diagram for DC = (5;−1,−1,−2), DL = (1; 1,−4, 1).

2×

2×

2×

V (x2
3)V (x1) A

V (x5)

DL · V (x1) = −3

h0 = 0

DL ·A = −2

h0 = 0

DL · V (x2
3) = 6

h0 = 9

DL · V (x5) = −3

h0 = 0

Figure 4. The 9 local sections on A lead to 9− 3× 2 = 3 global sections.
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we can then set x2 = x4 = x6 = 1 and thereby identify (x1, x5) as coordinates of E(2)
2 .

Note, however, that since E(2)
2 is a non-reduced curve, the polynomial x3 is a non-trivial

function on this curve component. These observations allow us to conclude

H0
(
E

(2)
2 , OdP3(DL)|

E
(2)
2

)
∼= P3(x1, x5)⊕ x3 · P4(x1, x5) , (5.5)

where Pi(x1, x5) is the space of polynomials of degree i in x1 and x5. Upon homogenization
with x2, x4, x6, we can then write

H0
(
E

(2)
2 , OdP3(DL)|

E
(2)
2

)
∼= SpanC

{
x3

5
x3

2x
2
4
,
x1x

2
5

x2
2x

2
4x6

,
x2

1x5
x2x2

4x
2
6
,
x3

1
x2

4x
3
6

}
(5.6)

⊕ x3 · SpanC

{
x4

5
x4

2x
3
4
,
x3

5x1
x3

2x
3
4x6

,
x2

1x
2
5

x2
2x

3
4x

2
6
,
x3

1x5
x2x3

4x
3
6
,
x4

1
x3

4x
4
6

}
.

From this, we learn that the only sections on V (x2
3), which vanish at V (x1), V (x5) and

V (c2x1x2 + c5x5x6), are linear combinations of the following three sections:

s1 = c5
x1x

2
5

x2
2x

2
4x6

+ c2
x2

1x5
x2x2

4x
2
6

= x1x5 (c2x1x2 + c5x5x6)
x2

2x
2
4x

2
6

, (5.7)

s2 = c5
x3

5x1
x3

2x
3
4x6

+ c2
x2

1x
2
5

x2
2x

3
4x

2
6

= x1x
2
5 (c2x1x2 + c5x5x6)

x3
2x

3
4x

2
6

, (5.8)

s3 = c5
x2

1x
2
5

x2
2x

3
4x

2
6

+ c2
x3

1x5
x2x3

4x
3
6

= x2
1x5 (c2x1x2 + c5x5x6)

x2
2x

3
4x

3
6

. (5.9)

Consequently, by extending these sections by zero outside of V (x2
3), we obtain 3 global

sections.

5.1.2 Non-trivial boundary conditions

Let us consider DC = (3,−1,−1,−1) and DL = (5;−4,−4, 3). We pick special values for
the parameters such that C = V (x1x

2
2x

2
4x6). The curve thus factors into four components,

as displayed in figure 5. These components have the following properties:

curve class eq. d g h0 basis of sections
E3 (0; 0, 0, 1) V (x6) 1 0 2 x4

x3
3
, x5
x2x2

3

E
(2)
5 (2;−2, 0,−2) V (x2

4) −2 −2 1 x4
x3

3

E
(2)
1 (0; 2, 0, 0) V (x2

2) 2 −2 5 x1
x2

3x6
, x4
x3

3
,
x2x2

4
x4

3x5
, x2x1x4
x3

3x5x6
,
x2x2

1
x2

3x5x2
6

E4 (1;−1,−1, 0) V (x1) −3 0 0 0

(5.10)

We have also listed bases for the sections on the individual curve components. By starting
in E3, we see that there is a unique section which extends to E(2)

5 and then to E(2)
1 — this

section is x4
x3

3
. However, this section fails to vanish on V (x1). Consequently, this geometry

only admits the global section which is identically zero.
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2×

2×

2×

2×

E3 E
(2)
5 E

(2)
1 E4

h0 = 2 h0 = 1 h0 = 5 h0 = 0

Figure 5. A non-trivial gluing example which gives no global sections.

5.1.3 From trivial to non-trivial boundary conditions

We have seen an interesting geometric transition when we discussed DC = (5,−1,−1,−2)
and DL = (1; 1,−4, 1) in subsubsection 4.3. Namely, the transition

A3 ∪D1 → A3 ∪D2 (5.11)

enforces a Brill-Noether jump on D2. Whilst D1 only supports the trivial section, D2
supports a one-dimensional space of non-trivial sections. As a consequence, A3∪D2 admits
one additional section as compared to A3∪D1. Let us investigate this finding in more detail.
We depict this geometry in figure 6 and recall the following information:

curve class degree genus h0

A3 (0; 0, 1, 0) 4 0 5
D1 (5,−1,−2,−2) 0 4 0
D2 (5,−1,−2,−2) 0 4 1

(5.12)

To simplify our analysis, let us work with a particular class of curves D1 and D2, for which
the transition D1 → D2 is particularly simple:

D1 = V
(
c12x

2
1x2x

3
3x

3
5x6 + c13x1x2x

2
3x4x

3
5x

2
6 + c16x

2
3x4x

4
5x

3
6 + c4x

3
1x

3
2x

2
3x4x5

+ c9x
2
1x

2
2x

2
3x4x

2
5x6 + x3

1x
4
2x3x

2
4 + x3

1x
2
2x

3
3x

2
5 + x2

1x
4
2x

3
4x6

− x2
1x

3
2x3x

2
4x5x6 − x1x

2
2x3x

2
4x

2
5x

2
6 − x1x

3
3x

4
5x

2
6 − x2

2x
3
4x

2
5x

3
6

+x2x3x
2
4x

3
5x

3
6

)
,

D2 = D1|c12=0 .

(5.13)

Next, we turn to the sections on A3 ∼= P1. We note that the homogeneous coordinates
are [x1 : x5]. Hence, the line bundle sections at hand are of the form (λ = x2x

−1
6 ):

H0
(
A3, L|A3

)
= 1
x3

4
· SpanC

{
x4

1 · λ2, x3
1x5 · λ, x2

1x
2
5, x1x

3
5 · λ−1, x4

5 · λ−2
}
. (5.14)

At x3 = 0, we may set x2 = x4 = x6 = 1 by the scaling relations of dP3. In terms of these
inhomogeneous coordinates, we find

A3 ∩Di = V (x3, x1 − x5) ∪ V (x3, x1 + x5) . (5.15)
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1×

1×

A3 D1/D2

h0 = 5 h0 = 0/1

Figure 6. A Brill-Noether jump D1 → D2 generates one additional global section.

That all said, we can discuss the global sections on A3 ∪D1 and A3 ∪D2:

• On D1, the only supported section vanishes identically. Hence, we may only consider
sections on A3, which vanish at A3 ∩D1. It is not too hard to see that the space of
these sections is generated by

s1 = −x4
1 + x4

5 , s2 = −x3
1x5 + x1x

3
5 , s3 = −x4

1 + x2
1x

2
5 . (5.16)

• On D2 however, the line bundle divisor is special. In fact, since it is a divisor of
degree zero, this divisor must be the trivial divisor. Consequently, the sections on
D2 are the constant ones. It is not too hard to see that the sections on A3, which
have value 1 at the intersection points A3 ∩D2, are generated by

t1 = x4
1 , t2 = t1 + s1 , t3 = t1 + s2 , t4 = t1 + s3 . (5.17)

This explains the one additional section on A3 ∩D2 as opposed to A3 ∩D1.

5.1.4 Overcounting boundary conditions

As a final example, let us look at DC = (4;−1,−1,−1) and DL = (1, 1,−3, 0). Let us
deform the curve C such that it is given by

P = x1 ·Q , Q = x2
1x

2
2x

3
3x5 + x3

2x
3
4x

2
6 + x3

3x
3
5x

2
6 . (5.18)

We display this curve geometry in figure 7. The two curve components have the following
properties:

component equation class g d h0

C1 V (x1) (1;−1,−1, 0) 0 −1 0
C2 V (Q) (3; 0, 0,−1) 1 3 3

(5.19)
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1×

1×

1×

C1 C2

h0 = 0 h0 = 3

Figure 7. Naively, we expect 3− 3 = 0 global sections. However, one section on C2 automatically
vanishes at C1 ∩ C2, leading to h0 (C1 ∪ C2,L) = 1.

Up to canonical isomorphism (induced from the connection homomorphism), we find a
basis of the sections on C2 as

B =
{ 1
x2x3

3x
2
4x6

,
x5

x2
2x

2
3x

3
4x6

,
x1

x2x2
3x

3
4x

2
6

}
. (5.20)

From this we can see that the third section automatically vanishes at the intersection
C1∩C2, whilst the other two sections do not vanish there. Consequently, and in agreement
with the computational results by gap, we find h0 (C1 ∪ C2,L) = 1.

Importantly, a naive guess cannot predict this number. In this case, we would have
counted as follows: 3 sections on C2 subject to vanishing conditions at the 3 intersection
points C1∩C2 should leave us only with the trivial section. Hence, in this example, a naive
counting fails. Such phenomena were originally studied more generally in [51, 52] — see
also [53] for a more modern exposition of the material.

5.2 Sufficient jump condition and algorithmic section estimate

As demonstrated in the previous section, gluing local sections to global sections is a non-
trivial task. The exact details depend, among other things, on the relative position of the
line bundle divisor and the intersection points of the curve components: the results change
when some of these intersection points coincide and when the bundle divisor is special on
some curve components.

In the following, we will propose a counting mechanism with the following key prop-
erties:
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• It relies mostly on topological data.

• It provides a lower bound on the number of global sections.

Of course, such a simplified counting procedure will fail to predict intricate geometries
as discussed in [51–53]. Still, it has two distinct advantages. First, since it relies mostly
on topological data, it is very fast. Given a curve C and a line bundle L on C, we can
apply the strategy to place a lower bound on h0 (C(c),L(c)) for many different choices of
parameters c of C. The collection of these lower bounds can then serve as an estimate
of the vector-like spectrum of (C,L) over the parameter space. Note that obtaining such
an estimate is unfeasible with existing exact algorithms, e.g., those implemented in [42],
since these algorithms require extensive computational resources and often take a long
time to finish. The second advantage results from the fact that our counting procedure
systematically underestimates the actual number of global sections. Therefore, it allows us
to formulate sufficient conditions for a jump in the vector-like spectrum to happen.

5.2.1 Counting procedure

Let us consider a curve C with

C =
N⋃
i=1

Ci , (5.21)

i.e., C has N components Ci. For our counting procedure to be as simple and reliable as
possible, let us avoid setups of the type discussed in subsubsection 5.1.2 and subsubsec-
tion 5.1.3. Hence, for simplicity, let us consider a line bundle L on C such that neighboring
curve components do not support non-trivial sections simultaneously.10 Put different, let
us focus on setups where for all curve components Ci the following holds true:

h0
(
Ci, L|Ci

)
> 0 ⇒ h0

(
Cj , L|Cj

)
= 0 ∀ Cj with Ci ∩ Cj 6= ∅ . (5.22)

Let us denote by bi the number of intersection points of Ci with the other curve compo-
nents. Generically, we then impose bi conditions on the “local” sections in H0(Ci, L|Ci

).
Consequently,

ni(Ci) =

h0(Ci, L|Ci
)− bi if h0(Ci, L|Ci

) ≥ bi
0 else

(5.23)

is a lower bound to the number of sections on Ci which satisfy the gluing boundary condi-
tions. The sum of these contributions over all curve components places a lower bound on
h0(C,L):

N∑
i=1

ni(Ci) ≤ h0(C,L) . (5.24)

We expect that equality holds in generic situations and that only fairly tuned geometries,
in the spirit of [51–53], will lead to a proper inequality.

10Let us emphasize that this is a simplifying assumption. We will eventually drop it.
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As simple demonstration, let us apply this procedure to the geometry in subsubsec-
tion 5.1.1:

component Ci h0(Ci, L|Ci
) bi ni

V (x1) 0 2 0
V (x2

3) 9 6 3
V (x5) 0 2 0
A 0 2 0

(5.25)

Indeed,
∑3
i=1 ni = 3 in agreement with our discussion in subsubsection 4.1.2. However, if

we apply this counting to A3 ∪ D2, as discussed in subsubsection 5.1.3, then we find the
inequality

n1 + n2 = (5− 2) + 0 = 3 < 4 = h0(A3 ∪D2,L) . (5.26)

Likewise, for the geometry in subsubsection 5.1.4, we find n1 + n2 = (3− 3) + 0 = 0 < 1 =
h0(C1∪C2,L). In both cases, special alignments of the line bundle divisor/the intersection
points of the curve components happen. These intricate phenomena are not captured by
our counting procedure, so that it can only provide a lower bound.

5.2.2 Accuracy on our database

Let us now apply this counting procedure to our database [43] to obtain an estimate of
how often the inequality is satisfied. To this end, we need to identify the number of local
sections, which can be challenging for complicated curve geometries and could call for
an application of, e.g., the exact methods implemented in [42]. However, given the vast
number of curve components in our database, we find it more appealing to focus on those
curves for which we can identify the number of local sections quicker. To this end, we focus
on the following two types of curves:

• Smooth curves:
We consider the line bundle degree d = deg(L|Ci

). Provided that d < 0, we know that
L|Ci

does not admit non-trivial sections. Conversely, if d > 2g(Ci)−2, then it follows
from application of the Kodaira vanishing theorem, that h0(Ci, L|Ci

) = d− g + 1. If
none of these conditions is satisfied, we discard the curve for this test.

• Non-split curves:
For these curves, we can simply read off the number of local sections from our
database.

Based on these local section counts, we have then applied the counting procedure presented
in subsubsection 5.2.1. Recall that a large number of curves in our database do neither
consist of smooth curve components nor are non-split. For simplicity, let us furthermore
subject the curve geometry to the condition that neighboring components do not support
non-trivial sections simultaneously. We find that we can apply this restrictive counting
procedure to roughly 60% of the cases in our database. For these, we predict the correct
number of global sections with an accuracy of more than 99%, i.e. our counting procedure
works remarkably well. We list the detailed results in subsubsection B.2.1.
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5.2.3 Sufficient conditions for jumps in cohomology

These insights of gluing local sections to form global sections, imply sufficient conditions
for jumps in cohomology. First, we have the following

Lemma 1. Let S be a smooth surface, L ∈ Pic(S) a line bundle, and |C| a linear system of
curves on S. Consider a special member C1∪C2 such that the curves C1, C2 meeting trans-
versely in C1 ·C2 > 0 distinct points. Let N1 = h0(C1, L|C1

) and N2 = h0(C2, L|C2
). Then

h0
(
C1 ∪ C2, L|C1∪C2

)
≥ N1 +N2 − C1 · C2 . (5.27)

Proof. We consider the short exact sequence 0 → L|C1∪C2
→ L|C1tC2

→ L|C1∩C2
→ 0.

The associated long exact sequence in sheaf cohomology begins with

0→ h0
(
C1 ∪ C2, L|C1∪C2

)
→ h0

(
C1 t C2, L|C1tC2

)
→ h0

(
C1 ∩ C2, L|C1∩C2

)
→ . . .

(5.28)
Now, since h0(C1 t C2, L|C1tC2

) = N1 + N2 and h0(C1 ∩ C2, L|C1∩C2
) = C1 · C2, the

statement follows. �
We can use this result, together with the insights on gluing local sections to global

sections, to derive the following

Corollary 1. Let S be a smooth surface, L ∈ Pic(S) a line bundle, and |C| a linear system
of curves on S with smooth general member C and special member C1 ∪ C2 where C1, C2
are smooth curves of genera g1, g2 meeting transversely in C1 · C2 > 0 distinct points. We
assume h1(C, L|C) = 0, deg

(
L|C2

)
> 2g2 − 2 and deg

(
L|C1

)
< min {0, g1 − 1}. Then

h0
(
C1 ∪ C2, L|C1∪C2

)
− h0 (C, L|C) ≥ g1 − 1− deg

(
L|C1

)
. (5.29)

Proof. Since deg
(
L|C1

)
< 0, there are no sections on C1. Hence, from Lemma 1 we

obtain the inequality

h0
(
C1 ∪ C2, L|C1∪C2

)
≥ h0

(
C2, L|C2

)
− C1 · C2 . (5.30)

Note that gC = g1 + g2 + C1 · C2 − 1. Consequently, since deg
(
L|C2

)
> 2g2 − 2, we can

write

h0(C2, L|C2
) = deg

(
L|C2

)
− g2 + 1

= deg
(
L|C2

)
− (gC − g1 − C1 · C2 + 1) + 1

= (deg (L|C)− gC + 1) + C1 · C2 + g1 − 1− deg
(
L|C1

)
= h0(C, L|C) + C1 · C2 + g1 − 1− deg

(
L|C1

)
.

(5.31)

Hence, we conclude

h0(C1 ∪ C2, L|C1∪C2
) ≥ h0

(
C2, L|C2

)
− C1 · C2

= h0(C, L|C) + g1 − 1− deg
(
L|C1

)
,

⇔ h0(C1 ∪ C2, L|C1∪C2
)− h0(C, L|C) ≥ g1 − 1− deg

(
L|C1

)
.

(5.32)
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Finally, since we assume deg
(
L|C1

)
< min {0, g1 − 1}, the number of additional sections

on C1 ∪ C2 is bounded from below by the positive integer g1 − deg
(
L|C1

)
− 1. �

We expect that equality holds in generic situations and that only special setups in the
spirit of [51, 52] lead to a proper inequality. Still, our result is powerful enough to give a
sufficient condition for a jump. Let us demonstrate this in the geometries discussed for the
F-theory toy model in subsection 3.1. There, we looked at S = dP3 and considered

DC = (10;−3,−3,−4) , DL = (5;−4,−4, 3) . (5.33)

We found that on the generic g = 24 curve C it holds h0(C, L|C) = 15. We then considered
the splitting C → C1 ∪ C2 where C1 = V (x6). The curve components have the following
properties:

curve class degree genus h0

C1 (0;0,0,1) -3 0 0
C2 (10;-3,-3,-5) 41 20 22

(5.34)

From this we see that Corollary 1 applies to this geometry and implies

h0 (C1 ∪ C2,L)− h0 (C,L) ≥ g1 − 1− deg
(
L|C1

)
= 0− 1− (−3) = 2 . (5.35)

This is in agreement with our discussion in subsection 3.1.
In many string theory constructions, it is important to engineer exactly one additional

vector-like pair. This is particularly true when generating exactly one Higgs pair in MSSM
constructions. It is intuitive, that such a minimal change in the vector-like spectrum,
requires only mild changes in the geometry. As long as Corollary 1 applies, a necessary
condition for such a mild change is to merely split off either a P1 or a torus — g1 ≥ 2
implies h0 (C1 ∪ C2,L)− h0 (C,L) ≥ 2.

More generally, it is of interest to identify the allowed numbers of global sections on a
given curve. Therefore, we will now describe an estimate for these values, which is based
on the counting procedure presented in subsubsection 5.2.1, Lemma 1 and Corollary 1.

5.2.4 Algorithmic spectrum estimates

We can use our results to formulate an algorithmic estimate for the vector-like spectrum
over the parameter space of a given setup (DC , DL) in a global model. For the time
being, our algorithm is focused on the case of a curve in dP3 defined by {P = 0} and
pullback line bundles on these curves. We have implemented this algorithm in the package
H0Approximator [44] as part of [42]. Our algorithm proceeds as follows:

1. Input: curve class DC and line bundle class DL

2. Identify all combinations of toric P1s that can be split off from the curve DC .

3. Identify the generic number of sections of DL on each curve component.

4. Use the counting procedure presented in subsubsection 5.2.1 as well as Lemma 1 and
Corollary 1 to place a lower bound on the number of global sections.
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⇒ The collection of all these global section estimates forms an estimate for h0 of DL on
the parameter space of the curve DC .

Let us emphasize a couple of important points of this counting procedure. First, in
the second step we do not apply exact methods, such as [42], to find the exact number
of local sections. Rather, we identify the generic number of sections, by which we mean
h0(C,L) = χ(L) if χ(L) ≥ 0 and h0(C,L) = 0 otherwise. The advantage of this is, that
the chiral index can be obtained from topology only. Hence, the number of global sections
can be estimated very quickly. Furthermore, this strategy does not violate our lower bound
philosophy, since the generic number of sections is never larger than the actual number of
sections. Consequently, this strategy allows us to quickly identify a lower bound to the
actual number of global sections.

Secondly, let us point out that one disadvantage of our approach of generic local sec-
tions is that we are unable to identify Brill-Noether jumps on the curve components in this
way. However, since such a quick spectrum estimate over the entire parameter space of the
curve is currently unfeasible or impossible to obtain with the fully accurate methods, we
accept this minor drawback.

Finally, note that upon splitting off P1s from the curve, the curve could (accidentally)
factor further. Computing these further factorizations requires a primary ideal decompo-
sition of the corresponding principal ideal. Currently, this is the most time consuming
operation in our algorithm. We reserve optimizations for future work.

This algorithm correctly predicts all the possible values of h0 for 67 of the 83 pairs
(DC , DL) in our database [43]. Only for one pair (DC , DL), our prediction misses more
than 2 values of the exact spectrum. Given the simplicity of our approximation, which
means that we cannot detect intricate Brill-Noether jumps and effects discussed in [51, 52],
we consider this a very positive result. We list the details in subsubsection B.2.2.

Let us complete this section by applying our procedure to estimate the vector-like
spectrum of the F-theory setup discussed in section 3. Recall that in this case we are
looking at DC = (10;−3,−3,−4), i.e., a complicated genus 24 curve. The line bundle
in this case is DL = (5;−4,−4, 3). Even though this geometry is fairly involved, our
approximator can estimate the spectrum in a couple of minutes:11

gap> LoadPackage( "H0Approximator" );
true
gap> FineApproximation( [10,-3,-3,-4],[5,-4,-4,3] );
(*) 56 rough approximations
(*) Rough spectrum estimate: [ 15, 17, 18, 19, 20, 21 ]

(x) h0 = 15: 9
(x) h0 = 17: 18
(x) h0 = 18: 4
(x) h0 = 19: 9
(x) h0 = 20: 12
(x) h0 = 21: 4

11In this case, this long run time is mostly attributed to the primary decomposition, which we perform
to check irreducibility of the curve components.
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(*) Checking irreducibility of curves...
(*) 26 fine approximations
(*) Fine spectrum estimate: [ 15, 17, 18, 19, 20, 21 ]

(x) h0 = 15: 3
(x) h0 = 17: 6
(x) h0 = 18: 4
(x) h0 = 19: 3
(x) h0 = 20: 6
(x) h0 = 21: 4

[ 15, 17, 18, 19, 20, 21 ]

Hence, we have identified 26 curve splittings into irreducible components, for which
our counting procedure can estimate the spectrum. Based on this, we expect h0 ∈
{15, 17, 18, 19, 20, 21}. As we know from our analysis in section 3, indeed 15 ≤ h0 ≤ 21 and
h0 = 16 is only possible by a Brill-Noether jump. The latter cannot be predicted by this
method. More information on this implementation can be found in [42].

6 Conclusion and outlook

Motivated by a better understanding of the exact massless spectra of 4d F-theory compact-
ifications, we have analyzed in this work families of curves C(c) in a complex surface and
line bundles L(c) on these. Our focus has been on the interplay between changes in the
cohomology h0(C(c),L) and variations of the parameters c, which play the role of complex
structure moduli in the context of global F-theory models. To gain insights on how these
two are related, we have used two approaches.

To begin with, we first used ideas from Big Data and machine learning to gain some
intuitions, based on computationally simpler examples, under what circumstances the co-
homology may jump, leading to additional vector-like pairs in the F-theory interpretation.
To this end we have generated, in section 2, a database [43] of cohomologies for pairs
(C(c),L(c)) by varying the parameters c, where the curves are of genus 1 ≤ g ≤ 6, and the
line bundles were pullback bundles from a dP3 surface. For these less complex examples,
the cohomologies can be computed using the computer implementations in [42]. We then
use supervised learning on decision trees to predict jumps in the value of h0. Using different
features for training, we find that, while not performing perfectly, topological criteria are
surprisingly well-suited (reaching about 95% accuracy) for distinguishing cases with generic
vs. enhanced h0. In particular, the algorithm learns from the data a strong correlation be-
tween jumps and curves C(c) which split into various components. This intuition can be
applied, without any detailed understanding of the origin of the jumps, directly to find
complex structure tunings targeted at generating additional vector-like pairs in F-theory
model building. We demonstrate this in section 3 with an F-theory toy model containing a
curve of genus 24, for which a scan over the relevant parameter space would be computa-
tionally infeasible. Nevertheless, we found that we can use curve splittings alone to easily
engineer 2 to 5 additional vector-like pairs. This highlights the effectiveness of the machine
learning approach to learn certain features from simpler examples, and without any previ-
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ous knowledge. However, we also saw there that by curve splitting alone, a spectrum with
just one vector-like pair is impossible to achieve.

To overcome this obstacle, we have employed well-known techniques in algebraic geom-
etry, such as the Koszul resolution and Čech cohomology, which also helps to explain our
findings from the machine learning approach in more detail. We conclude that deformations
of the parameters c leading to a jump in cohomology can be largely classified as either the
curve C(c) or the line bundle L(c) becoming non-generic. While the former comes from
curve splittings and is thus topological,12 the latter is due to special alignments of the
points on C(c) defining L(c), and not visible just from topological criteria. The fact that
the learner performed so well with the topological criteria is due to a bias in the dataset,
which contains only a small number of instances with non-generic line bundles. Such jumps
can never be predicted by the learner based just on split type and intersection numbers.
However, as we discussed in section 4, we find in general “equally likely” jumps due to
non-generic line bundles. The likeliness can be quantified by comparing the dimension of
the corresponding subspace of the parameter space on which the jumps occur, which for
non-generic line bundles is the subject of Brill-Noether theory. This is generalized in the F-
theoretic setup, where complex structure deformations affect genericity of the curve and line
bundle democratically. This leads to a stratification of the parameter space by the values of
h0. That is, the complex structure moduli space of global F-theory models decomposes into
disjoint subspaces labelled by the vector-like spectrum. The relationship between the strata
can be represented by a Hasse-type diagram, which we term h0-stratification diagrams.

The connection between decision trees, which are also Hasse diagrams, and the strat-
ification diagrams is rather intriguing. While they bear some resemblance with decision
trees, a key difference is that, unlike in decision trees, nodes can have more than one in-
coming edge. It would be interesting to investigate whether other graph-based machine
learning techniques, such as Graph NNs, can be used to train algorithms that can predict
the presence of jumps more accurately than the decision trees. Furthermore, recall that
global F-theory models typically contain more than one matter curve. The complex struc-
tures of these curves are determined by the global moduli of the elliptic fibration, and it is
in general not possible to tune the complex structures of all of these curves independently.
Therefore, it would be important to extend our analysis to a simultaneous h0-stratification
of the moduli space by all the matter curves in a global F-theory model.

In section 5, we have then investigated the “microscopic” origins of jumps due to
curve-splittings. It follows a simple counting procedure of local sections on individual
curve components, which we then glue to global contributions to h0 on the whole curve.
Depending on the boundary conditions imposed by the intersection patterns of the com-
ponents, this can lead to a net-increase of global sections on the reducible curve compared
to the generic case. We have used this understanding to formulate sufficient conditions for
a jump in the vector-like spectrum to occur as a result of a curve splitting. These crite-
ria are purely topological, and combine the gluing arguments with vanishing theorems on

12More generally, a curve can also remain smooth while being non-generic, e.g., if it becomes hyperelliptic.
Such transitions are of non-topological nature, and therefore more subtle to detect. We have neglected them
for simplicity in our discussions.
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individual components. Let us stress that this in general provides only a lower bound for
h0 for the split curve, because it does not take into account alignments of the intersection
points of the components and divisors on the individual components. It will be interesting
to investigate, if these bounds can be further improved by topological considerations.

Despite these simplifications, we found these criteria extremely useful to provide a
rough estimate of the possible spectrum of h0 on the moduli space of F-theory compacti-
fications, and implemented the algorithm in [44]. To fully appreciate this implementation,
let us mention that to the best knowledge of the authors, the exact algorithms implemented
in [42, 54, 55] do not allow for a parametric cohomology computation. Rather, they will
focus on one particular point in the complex structure moduli space and provide the exact
answer at this very point. Since each of these computations requires huge amounts of com-
putational resources and runtime, it is impractical to repeat such computations for many
points in the complex structure moduli space. In contrast, the new algorithm yields an ap-
proximate, but oftentimes sufficiently accurate, estimate — even for complicated examples
such as the genus 24 curve discussed in section 3 — within minutes. We leave generaliza-
tions of this counting algorithm, as well as extensions to other toric surfaces, for future work.

Another limitation of our approach is that we have only considered pullback line bun-
dles so far. However, as already alluded to in the introduction, vector-like spectra in
F-theory are oftentimes encoded in line bundles described by a formal weighted sum of
points. Such a description is computationally harder for two main reasons. First, it takes
much longer to compute line bundle cohomologies of non-pullback bundles with the tech-
nologies of [42]. This makes it more challenging to generate a sufficiently large database to
apply ideas from Big Data and machine learning. The second obstacle is the parametriza-
tion of the line bundles. Namely, distinct point configuration can encode equivalent line
bundles if their difference is the divisor of a meromorphic function. To have a better handle
on tracking how these equivalences change with complex structure deformations, we need
a better understanding of meromorphic functions on higher genus curves. The crucial tool
in this direction is the Abel-Jacobi map, which also plays a similar role in the hyperelliptic
curve cryptography. It would be interesting to see to what extent machine learning ideas
can be beneficial here.

A related issue arises for fractional bundles or root bundles. These appear frequently in
explicit global F-theory constructions that engineer a three-generation Standard-Model-like
particle physics sector [16, 21, 23–25]. The constraint to have chiral indices with |χ| = 3
in these models lead to line bundles L on curves C which satisfy L⊗n = L|C , where L is
a line bundle on the base B3 of the elliptic fibration. In case n = 2 and L|C = KC is the
canonical bundle of the curve, the bundle L can be understood as a spin bundle on C.
However, for general F-theory constructions, also 3rd and higher roots of bundles L 6= KC

appear. An understanding of which line bundles L on C satisfy such an equation again
requires a detailed understanding of which points — in this case the intersection points of
C with the divisor on B3 dual to L — on the curve define equivalent divisors. We expect
that this will also be intimately related to satisfying the quantization condition [56] for the
gauge flux background.
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Finally, it is important to point out that the complex structure parameters of the
elliptic fibration are not the only parameters of the physical theory. Rather, a large part
of this parameter space, which we have not touched upon, is in the parametrization of
all possible gauge backgrounds. This includes in particular backgrounds with so-called
non-vertical G4-flux [57, 58], for which explicit construction methods in global models are
largely unknown. While these typically do not contribute to the chiral index, it is not
clear at the moment if they could modify the flux-induced line bundles on the matter
curves. However, since non-vertical fluxes contribute prominently to a superpotential for
the moduli, their presence will dynamically select points in the moduli space that can be
a vacuum for the theory, thus have a very different, but direct influence on the vector-like
spectrum. We will therefore need a much better handle on these gauge backgrounds first
before we can develop a full understanding for the space of 4d F-theory vacua.
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A Tools: Koszul resolution, Brill-Noether theory and fat points

The purpose of this appendix is to cover some of the necessary mathematical backgrounds
and to provide more details on computations carried out throughout the paper.

A.1 Brill-Noether theory

Our exposition of Brill-Noether theory is based on [48, 49]. We refer the interested reader
to these references for more details.

A.1.1 The Jacobian of Riemann surfaces

To each smooth Riemann surface Cg one can associate a Jacobian variety Jac(Cg). This
variety is of dimension g and classifies equivalence classes of line bundle divisors of degree 0:

Jac(Cg) = Div0(Cg)/Prin(Cg) . (A.1)

In this expression Div0(Cg) is the group of all divisors of degree 0 and Prin(Cg) the group
of all principal divisors on Cg. Line bundles on Cg are isomorphic iff their divisors differ by
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a divisor in Prin(Cg). Hence, sheaf cohomologies of line bundles can only differ if the line
bundles are not isomorphic, or equivalently if their divisors differ by more than elements
of Prin(Cg). Consequently, the Jacobian of Cg plays an important role for our analysis
and in Brill-Noether theory. Let us therefore introduce the Jacobian in more detail.

Historically, the Jacobian of a curve Cg of genus g was discovered by investigating
integrals

∫
P ω where P ⊂ Cg is a (not necessarily closed) path and ω a holomorphic

differential. More generally, mark a point p0 ∈ Cg, let (ω1, . . . , ωg) be a basis of the
holomorphic differentials on Cg and consider the map

φ : Cg → Cg , p 7→
(∫ p

p0
ω1 , . . . ,

∫ p

p0
ωg

)
. (A.2)

The value of this map strongly depends on the path P ⊂ Cg which we choose to connect p0
and p. This redundancy can be removed by taking the period lattice of Cg into account. To
this end, recall that there are 2g homologically distinct closed 1-cycles in Cg, i.e., H1(Cg,Z)
is a 2g-dimensional vector space over Z.13 We now consider the map

φ : H1(Cg,Z)→ Cg , α 7→
(∫

α
ω1 , . . . ,

∫
α
ωg

)
, (A.3)

where ωi denote the above basis of holomorphic differentials on Cg. Hence, for every of the
2g-basis elements of H1(Cg,Z), we obtain an element φ(α) ∈ Cg. It turns out that these
2g elements span a full-dimensional lattice Λ in Cg — the period lattice of Cg. By virtue
of this lattice, we obtain a well-defined map

φ : Cg → Cg/Λ , p 7→
(∫ p

p0
ω1 , . . . ,

∫ p

p0
ωg

)
. (A.4)

This map is known as the Abel-Jacobi map. It can easily be extended to divisors in Cg.
Namely, for a divisor

D =
N∑
i=1

λi · pi , λi ∈ Z, pi ∈ Cg , (A.5)

we define

φ : Div(Cg)→ Cg/Λ , D 7→
N∑
i=1

λi · φ (pi) . (A.6)

The theorem of Abel (see [59] and references therein) states that two effective divisors D
and E satisfy φ(D) = φ(E) iff D and E are linearly equivalent. Consequently, we obtain
an injective group homomorphism

Φ: Div0(Cg)/Prin(Cg)→ Cg/Λ , [D] 7→
N∑
i=1

λi · φ (pi) , (A.7)

of divisor classes of degree 0. It turns out that this map is also surjective (see [59] for a
proof). Hence, there is a natural isomorphism

Jac(Cg) = Div0(Cg)/Prin(Cg) ∼= Cg/Λ . (A.8)
13See e.g. [48] for an explicit construction of the 2g-generators Ai, Bi of H1(Cg,Z).
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A.1.2 Central results
For ease of notation let Div(Cg)d denote all divisors of degree d. Then, let us consider the
restriction of eq. (A.6) to Div(Cg)d, i.e.

Φd : Div(Cg)d/Prin(Cg)→ Cg/Λ , D 7→
N∑
i=1

λi · φ (pi) . (A.9)

Let us pick an integer r ≥ −1 and study the subvariety of Jac(Cg)

Grd =
{
p ∈ im (Φd) , h0

(
Cg,OCg (Φ−1

d (p))
)

= r + 1
}
. (A.10)

Then, the central result of Brill-Noether theory states [47]

dim(Grd) ≥ ρ (r, d, g) ≡ g − (r + 1) · ((r + 1)− (d− g + 1)) . (A.11)

By use of the Riemann-Roch theorem

h0 (Cg,OCg (D)
)
− h1 (Cg,OCg (D)

)
= deg

(
OCg (D)

)
− g + 1 = d− g + 1 , (A.12)

we can rewrite this results in the suggestive form

dim(Grd) ≥ ρ (r, d, g) ≡ g − n0 · n1 , (A.13)

with n0 ≡ r + 1 and n1 = r + 1− (d− g + 1). We may thus use ρ (r, d, g) as a measure for
how likely it is that a line bundle of degree d on a genus g curve Cg has n0 = r + 1 global
sections.

Let us demonstrate this for degree d = 2 bundles on a genus-3 curve. By general
theory, the number of section of a line bundle on a curve Cg with g ≥ 1 can never exceed
its degree. Hence n0 ∈ {0, 1, 2}. With this information, let us compute ρ(r, d, g) for the
admissible values of r:

r (n0, n1) ρ(r, d, g)
−1 (0, 0) 3
0 (1, 1) 2
1 (2, 2) −1

(A.14)

From this we learn, that most line bundles L of degree 2 on a genus-3 curve C3 satisfy
h0 (C3,L) = 0. Since for these bundles ρ matches the dimension of the Jacobian of C3, we
can say that these line bundles are associated to generic points of the Jacobian. Further-
more, we learn that there are such line bundles with h0 (C3,L) = 1. However, these are spe-
cial in the sense that they are associated to a codimension-1 locus in the Jacobian Jac(C3).

Finally, ρ = −1 for r = 1 begs for an explanation. This explanation follows from work
of Griffiths and Harris [50]:

On generic curves, dim(Grd) = ρ (r, d, g).

So in particular, on generic curves it holds Grd = ∅ if and only if ρ (r, d, g) < 0. Consequently,
we conclude from eq. (A.14), that on generic genus g = 3 curve, there is no line bundle L
of degree 2 such that h0(C3,L) = 2.

Note however, that this does not rule out the possibility that non-generic curves may
host such line bundles. In the case at hand, it follows from the theorem of Cliffford [50] that
hyperelliptic curves H3 of genus g = 3 admit line bundles L of degree 2 and h0(H3,L) = 2.
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A.1.3 Brill-Noether jump

As we see from eq. (A.14), we can in general modify a line bundle on a generic curve such
that it admits additional sections. A jump from r = rgeneric to r > rgeneric + 1 is equivalent
to saying that the Serre-dual bundle admits a section, i.e., becomes effective:

KC −D > 0 ⇔ ∃pi : KC −D ∼
∑
i

pi . (A.15)

where ∼ represents linear equivalence of divisors. Obviously, this requires the line bundle
divisor D to move into special alignment relative to KC . Such a divisor is termed a special
divisor. We term a change in h0, which is solely attributed to a special alignment of the
line bundle divisor, a Brill-Noether jump.

A.2 Koszul resolution

A.2.1 Generalities

Given a curve C ⊂ S in a smooth surface S and a line bundle L = L|C where L ∈ Pic(S),
we wish to identify which deformations of the curve C lead to an increased number of
global sections for L. For hypersurface curves in dP3, the answer follows from a study
of the Koszul resolution. In this case C(c) = V (P (c)) for a polynomial P (c). Then, the
Koszul resolution of L is given by the short-exact sequence

0→ OdP3 (DL −DC) α−→ OdP3 (DL)→ L(c)→ 0 . (A.16)

The map α is induced by the polynomial P (c). Namely, for U ⊆ dP3 open, α is given by

s ∈ OdP3 (DL −DC) (U) 7→ s · P (c) ∈ OdP3 (DL) (U) . (A.17)

The Koszul resolution then induces the following long exact sequence in sheaf cohomology:

0 H0 (dP3, DL −DC) H0 (dP3, DL) H0 (C(c),L(c))

H1 (dP3, DL −DC) H1 (dP3, DL) H1 (C(c),L(c))

H2 (dP3, DL −DC) H2 (dP3, DL) 0 0 .

ϕ0

ϕ2

ϕ1 (A.18)

The maps ϕi = ϕi(c) are induced from multiplication with P (c). Therefore, these maps are
sensitive to the choice of parameters c for the curve C(c). Explicitly, the maps ϕi are vector-
space morphisms and the entries of their defining matrices are functions of the parameters
ci. Provided that we know these mapping matrices, we may thus use the exactness of the
Koszul resolution of infer hi (C(c),L(c)) as a function of the coefficients ci in P (c).
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For example, in subsection 4.1.1, we consider DC = (4;−1,−2,−1) and DL =
(3;−3,−1,−2). In this case, the Koszul resolution simplifies and takes the form

0 0 0 H0 (C(c),L(c))

H1 (dP3, DL −DC) ∼= C4 H1 (dP3, DL) ∼= C1 H1 (C(c),L(c))

0 0 0 0 .

ϕ

(A.19)
Then it follows

H1 (C(c),L(c)) ∼= cokerϕ ,
h1(C(c),L(c)) = 1− dim (imϕ) .

(A.20)

A detailed study of Čech cohomology [60] shows that in this geometry we have Mϕ =
(c3, c6, c9, 0). Hence, h1(C(c),L(c)) = 1 on curves with c3 = c6 = c9 = 0 and otherwise
h1(C(c),L(c)) = 0. Along these lines, we classify the curve geometries according to their
admitted number of global sections.

Recall that Čech cohomology expresses H i(dP3,OdP3(DL − DC)) and
H i(dP3,OdP3(DL)) as collections of local sections, which are called Čech cochains. The
mappings of these Čech cochains follow from eq. (A.17), i.e., are given by multiplication of
the local sections with the polynomial P (c) which defines the curve C(c). Importantly, the
Čech cochains define elements in Čech cohomology once considered modulo equivalence
relations induced from Čech coboundaries. Identification of the Čech cochains and
coboundaries is typically tedious, which makes these computations hard in practice.

Oftentimes, cohomCalg [61–67] can help to simplify this task. Namely, it identifies
bases of H i(dP3,OdP3(DL − DC)) and H i(dP3,OdP3(DL)) in terms of rationoms — quo-
tients of monomials in the homogeneous coordinates — and therefore simplifies the task to
identify the Čech cochains. Even more, we may be tempted to simply multiply the basis
elements identifed by cohomCalg [61–67] with the polynomial P (c) and ignore all image ra-
tionoms that have not been identified as bases for H i(dP3,OdP3(DL)) by cohomCalg under
the assumption that they correspond to Čech coboundaries.

This procedure fails whenever Čech cohomology chamber factors greater than 1
appear. In this case, cohomCalg finds that one rationom R spans a vector space of
dimension greater than 1 in sheaf cohomology. The interpretation of this is, that there
are at least two distinct Čech cochains, i.e., collections of local sections, in which the
rationom R is the only non-trivial entry. Hence, these distinct Čech cochains are both
canonically isomorphic to R. However, to identify the mapping matrices of the line bundle
cohomologies correctly, the information about R is insufficient. Rather, the corresponding
Čech cochains need to be identified explicitly.

Given these insights, we have taken extra care, to work out the mappings presented in
this work carefully with Čech cohomology. We present such a computation in large detail
in the following section.

– 47 –



J
H
E
P
0
1
(
2
0
2
1
)
1
9
6

Before we come to this, let us mentioned that a detailed study of the Koszul resolution
is not original to this work. For example, in the context of heterotic compactifications,
these resolutions — including the mappings in the induced long exact sequence — have
been studied extensively [68–72]. However, to the best of our knowledge, chamber factor
greater than 1 do not show in products of projective spaces. Hence, this complication does
not arise in existing heterotic compactifications with CICYs.

A.2.2 Čech cohomologies for section 4.2.1

Here, we present a more detailed computation of the example discussed in subsubsec-
tion 4.2.1. Recall that the curve and line bundle in question are given by

DC = (4;−1,−1,−1) , DL = (1; 2,−2,−1) . (A.21)

Moreover, recall that in this case h0 (C(c),L(c)) is uniquely determined by the mapping

ϕ : H1 (dP3,OdP3 (DL −DC)) ·P (c)−−−→ H1 (dP3,OdP3 (DL)) , (A.22)

where

P (c) = c1x
3
1x

3
2x

2
3x4 + c2x

2
1x

3
2x3x

2
4x6 + c3x1x

3
2x

3
4x

2
6 + c4x

3
1x

2
2x

3
3x5 + c5x

2
1x

2
2x

2
3x4x5x6

+ c6x1x
2
2x3x

2
4x5x

2
6 + c7x

2
2x

3
4x5x

3
6 + c8x

2
1x2x

3
3x

2
5x6 + c9x1x2x

2
3x4x

2
5x

2
6

+ c10x2x3x
2
4x

2
5x

3
6 + c11x1x

3
3x

3
5x

2
6 + c12x

2
3x4x

3
5x

3
6 . (A.23)

Namely, h0(C(c),L(c)) = 3 − rk (Mϕ). With cohomCalg [61–67], we obtain a basis of the
line bundle cohomologies:

H1(DL −DC) ∼= SpanC
{ 1
x3x3

4x
3
6
,

1
x1x2

3x
2
4x

2
6
,

1
x2

1x
3
3x4x6

}
∼= C3 , (A.24)

H1(DL) ∼= SpanC

{
x3

5x6
x1x4

,
x1x

3
2

x3x6

}
∼= C2 . (A.25)

By polynomial multiplication we then have

1
x3x3

4x
3
6
· P (c) = c3

x1x
3
2

x3x6
+ . . . , (A.26)

1
x1x2

3x
2
4x

2
6
· P (c) = c2

x1x
3
2

x3x6
+ c12

x3
5x6
x1x4

+ . . . , (A.27)

1
x2

1x
3
3x4x6

· P (c) = c1
x1x

3
2

x3x6
+ c11

x3
5x6
x1x4

+ . . . . (A.28)

On the r.h.s. of these equations, we have omitted all rationoms which cannot be expressed
as Z-linear combinations of those listed in eq. (A.25). The remainder of this section will
justify that we can indeed omit these terms. For the time being, note that this leads to

Mϕ =
( c3 c2 c1

0 c12 c11

)
, (A.29)

which is the matrix analyzed in subsubsection 4.2.1.
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Strategy. In order to justify that all omitted terms in eq. (A.28) can be ignored, we
will now analyse H1(dP3,OdP3(DL)) and H1(dP3,OdP3(DL−DC)) from the perspective of
Čech cohomology. For additional background we refer the interested reader to [60]. Recall
that for H1(dP3,OdP3(DL)) it holds

H1(dP3,OdP3(DL)) ∼= Ȟ1(U ,OdP3(DL)) = ker (δ1) /im (δ0) . (A.30)

In this expression, U is the affine open cover of the dP3 surface — we will discuss this
momentarily — and the maps δi are the boundary morphisms in the Čech complex

0→ Č0(U ,OdP3(DL)) δ0−→ Č1(U ,OdP3(DL)) δ1−→ . . . (A.31)

Thereby, let us specify our statement regarding the r.h.s. of eq. (A.28). We claim that
all omitted terms are in im(δ0), i.e., are Čech coboundaries. To justify this statement, we
proceed by investigating the following objects:

1. im (δ0(DL)),

2. ker (δ1(DL)),

3. ker (δ1(DL −DC)),

4. the map ker (δ1(DL −DC))→ ker (δ1(DL)).

Čech 0-cocycles of DL. To understand Č0(U ,OdP3(DL)), recall that dP3 has 6 homo-
geneous variables xi. These correspond to the ray generators

u1 = (0,−1) , u2 = (−1, 0) , u3 = (1,−1) ,
u4 = (−1, 1) , u5 = (1, 0) , u6 = (0, 1) .

(A.32)

In terms of these, the maximal cones in the fan of dP3 are given by

U1 = Span≥0 {u1, u3} , U2 = Span≥0 {u3, u5} , U3 = Span≥0 {u5, u6} ,
U4 = Span≥0 {u6, u4} , U5 = Span≥0 {u4, u2} , U6 = Span≥0 {u2, u1} .

(A.33)

These cones correspond to open affine subsets of the dP3, namely the subsets {xi 6= 0}.
Collectively, U = {Ui}1≤i≤6 is the open affine cover of dP3. To compute Č0(U ,OdP3(DL))
with respect to this open affine cover U , we note

DL = (1; 2,−2,−1) = H + 2E1 − 2E2 − E3 =
6∑
i=1

aiV (xi) , (A.34)

with a1 = a4 = a6 = 0 and a2 = 2, a3 = −1, a5 = 1. Now, we can quote from [60] that

Č0(U ,OXΣ(DL)) =
⊕

1≤i≤6
H0(Ui, OXΣ(DL)|Ui

, (A.35)

H0(Ui, OXΣ(DL)|Ui
) ∼=

 6∏
j=1

x
aj

j

 · ⊕
m∈PD(Ui)

C ·

 6∏
j=1

x
〈m,uj〉
j

 , (A.36)

PD(Ui) = {m ∈ Z2 , 〈m,uρ〉 ≥ −aρ ∀ρ ∈ σ(1)} . (A.37)
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The normalization in eq. (A.36) ensures that we are looking at rationoms of degree DL, as
analysed by cohomCalg. Explicitly, it holds

PD(U1) = {m ∈ Z2 ,−m2 ≥ 0 and m1 −m2 ≥ 1} , (A.38)
PD(U2) = {m ∈ Z2 ,m1 −m2 ≥ 1 and m1 ≥ −1} , (A.39)
PD(U3) = {m ∈ Z2 ,m1 ≥ −1 and m2 ≥ 0} , (A.40)
PD(U4) = {m ∈ Z2 ,m2 ≥ 0 and −m1 +m2 ≥ 0} , (A.41)
PD(U5) = {m ∈ Z2 ,−m1 +m2 ≥ 0 and −m1 ≥ −2} , (A.42)
PD(U6) = {m ∈ Z2 ,−m1 ≥ −2 and −m2 ≥ 0} . (A.43)

To express these polytopes in simpler terms, we define the regions A, B, C, D, E, F , G, H:

H A B

C

DEF

G

(A.44)

In an abuse of terminology, we use A to denote all polynomials formed from linear
combination of the Laurent monomials associated to the lattice points of the region A.
Similarly, we use the names for the other regions. Thereby, we can write

Č0(U ,OXΣ(DL)) = x2
2x5
x3
· (H +A+B,A+B + C,C +D + E,

D + E + F,E + F +G,G+H +A) .
(A.45)
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Finally note that the map δ0 : Č0(U ,OXΣ(DL)) → Č1(U ,OXΣ(DL)) is given by multipli-
cation with the following matrix:

Mδ0 =



−1 1 0 0 0 0
−1 0 1 0 0 0
−1 0 0 1 0 0
−1 0 0 0 1 0
−1 0 0 0 0 1
0 −1 1 0 0 0
0 −1 0 1 0 0
0 −1 0 0 1 0
0 −1 0 0 0 1
0 0 −1 1 0 0
0 0 −1 0 1 0
0 0 −1 0 0 1
0 0 0 −1 1 0
0 0 0 −1 0 1
0 0 0 0 −1 1


. (A.46)

Čech 1-cocycles of DL. We repeat this analysis for Č1(U ,OdP3(DL)). The elements in
this Čech cohomology are given by local sections on pairwise intersections of the Ui which
form the affine open cover of dP3. These pairwise intersections and the corresponding
polytopes are as follows:

Intersection Cone PD(Uij) Presentation
U1 ∩ U2 Span≥0(u3) {m ∈ Z2 , m1 ≥ 1 +m2} B,C,D,E, F,N

U1 ∩ U3 Span≥0(0) Z2

U1 ∩ U4 Span≥0(0) Z2

U1 ∩ U5 Span≥0(0) Z2

U1 ∩ U6 Span≥0(u1) {m ∈ Z2 , m1 ≤ 0} A,B,C, I,K,L

U2 ∩ U3 Span≥0(u5) {m ∈ Z2 , m1 ≥ −1} C,D,E, F,G,H, I, L,M,N

U2 ∩ U4 Span≥0(0) Z2

U2 ∩ U5 Span≥0(0) Z2

U2 ∩ U6 Span≥0(0) Z2

U3 ∩ U4 Span≥0(u6) {m ∈ Z2 , m2 ≥ 0} A,B,C,D,E,L,M
U3 ∩ U5 Span≥0(0) Z2

U3 ∩ U6 Span≥0(0) Z2

U4 ∩ U5 Span≥0(u4) {m ∈ Z2 , m2 ≥ m1} A,G,H, I,K,L

U4 ∩ U6 Span≥0(0) Z2

U5 ∩ U6 Span≥0(u2) {m ∈ Z2 , m1 ≤ 2} A,B,C,D,H, I,K,L,M,N

(A.47)
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In this table, we have use the following geometric loci to express the polytopes in question:

A B C D E

F

GHIK

L M
N (A.48)

To identify a basis of ker(δ1), we look at the corresponding mapping matrix

Mδ1 =



−1 1 0 0 0 −1 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 −1 0 0 0 0 0 0 0 0
−1 0 0 1 0 0 0 −1 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 −1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 −1 0 0 0 0 0
0 −1 0 1 0 0 0 0 0 0 −1 0 0 0 0
0 −1 0 0 1 0 0 0 0 0 0 −1 0 0 0
0 0 −1 1 0 0 0 0 0 0 0 0 −1 0 0
0 0 −1 0 1 0 0 0 0 0 0 0 0 −1 0
0 0 0 −1 1 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 −1 1 0 0 −1 0 0 0 0 0
0 0 0 0 0 −1 0 1 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0 1 0 0 −1 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1 1 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 −1 1 0 −1 0 0
0 0 0 0 0 0 0 0 0 −1 0 1 0 −1 0
0 0 0 0 0 0 0 0 0 0 −1 1 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 −1 1 −1



. (A.49)

Let us introduce the points

p2 = (2, 1) , p9 = (−1,−1) . (A.50)

The corresponding Laurent monomials, once multiplied by xa ≡
∏6
j=1 x

aj

j , are x3
5x6
x1x4

, x1x3
2

x3x6
,

i.e., exactly those rationoms which cohomCalg identified in eq. (A.25) as basis of the coho-
mology:

H1(DL) ∼= SpanC

{
x3

5x6
x1x4

,
x1x

3
2

x3x6

}
. (A.51)

However, here we can make this isomorphism explicit. In an abuse of terminology let p2,
p9 denote their Laurent monomials. Then it is readily verified that the following Čech
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1-cocycles furnish a basis of ker (δ1):

(0,−p2,−p2,−p2, 0,−p2,−p2,−p2, 0, 0, 0, p2, 0, p2, p2) ∼=
x3

5x6
x1x4

, (A.52)

(0,−p9,−p9,−p9, 0,−p9,−p9,−p9, 0, 0, 0, p9, 0, p9, p9) ∼=
x1x

3
2

x3x6
. (A.53)

Čech 1-cocycles of DL −DC . Finally, let us identify Č1(U ,OdP3(DL−DC)). We have

DL −DC = (−3; 3,−1, 0) = 3V (x2)− 4V (x3)− 3V (x5)− 3V (x6) . (A.54)

Thus a1 = a4 = 0, a2 = 3, a3 = −4 and a5 = a6 = −3. The points associated to the
Laurent monomials identified by cohomCalg in eq. (A.24) are:

1
x3x3

4x
3
6

= x3
2

x4
3x

3
5x

3
6
· x

3
3x

3
5

x3
2x

3
4

↔ q1 = (3, 0) , (A.55)

1
x1x2

3x
2
4x

2
6

= x3
2

x4
3x

3
5x

3
6
· x

2
3x

3
5x6

x3
2x

2
4x1

↔ q2 = (3, 1) , (A.56)

1
x2

1x
3
3x4x6

= x3
2

x4
3x

3
5x

3
6
· x3x

3
5x

2
6

x4x3
2x

2
1

↔ q3 = (3, 2) . (A.57)

The relevant pairwise intersection and polytopes are as follows:

Intersection Cone PD(Uij) Points contained
U1 ∩ U2 Span≥0(u3) {m ∈ Z2 , m1 −m2 ≥ 4} ∅
U1 ∩ U3 Span≥0(0) Z2 q1, q2, q3

U1 ∩ U4 Span≥0(0) Z2 q1, q2, q3

U1 ∩ U5 Span≥0(0) Z2 q1, q2, q3

U1 ∩ U6 Span≥0(u1) {m ∈ Z2 , −m2 ≥ 0} q1

U2 ∩ U3 Span≥0(u5) {m ∈ Z2 , m1 ≥ 3} q1, q2, q3

U2 ∩ U4 Span≥0(0) Z2 q1, q2, q3

U2 ∩ U5 Span≥0(0) Z2 q1, q2, q3

U2 ∩ U6 Span≥0(0) Z2 q1, q2, q3

U3 ∩ U4 Span≥0(u6) {m ∈ Z2 , m2 ≥ 3} ∅
U3 ∩ U5 Span≥0(0) Z2 q1, q2, q3

U3 ∩ U6 Span≥0(0) Z2 q1, q2, q3

U4 ∩ U5 Span≥0(u4) {m ∈ Z2 , −m1 +m2 ≥ 0} ∅
U4 ∩ U6 Span≥0(0) Z2 q1, q2, q3

U5 ∩ U6 Span≥0(u2) {m ∈ Z2 , −m1 ≤ −3} q1, q2, q3

(A.58)

It is not hard to verify that ker (δ1) = Span {b1, b2, b3} where

b1 = (0, q1, q1, q1, 0, q1, q1, q1, 0, 0, 0,−q1, 0,−q1,−q1) , (A.59)
b2 = (0, q2, q2, q2, 0, q2, q2, q2, 0, 0, 0,−q2, 0,−q2,−q2) , (A.60)
b3 = (0, q3, q3, q3, 0, q3, q3, q3, 0, 0, 0,−q3, 0,−q3,−q3) . (A.61)
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Images of b1, b2, b3 in Č1(U , DL). The mapping between the Čech cocycles happens
through the following mapping of complexes

0 Č0(U , DL −DC) Č1(U , DL −DC) Č2(U , DL −DC) · · ·

0 Č0(U , DL) Č1(U , DL) Č2(U , DL) · · ·

δ0 δ1

δ0 δ1

·P (c) ·P (c) ·P (c)

(A.62)
where P (c) is the global section of DC in eq. (A.23). From this it is now readily verified,
that the terms omitted on the r.h.s. of eq. (A.28) can be dropped. Namely, we map the
basis elements bi in eq. (A.61) to Č1(U , DL) by multiplying them with the polynomial
P (c). Thereby, it is not to hard to see that those terms ignored on the r.h.s. of eq. (A.28)
correspond to the elements of Č1(U , DL) which are given by

ϕi = (0, ri, ri, ri, 0, ri, ri, ri, 0, 0, 0,−ri, 0,−ri,−ri) , (A.63)

where ri is the Laurent monomial associated — upon multiplication by xa = x2
2x5
x3

— to

r1 = (−1,−3), r2 = (−1,−2), r3 = (2,−1), r4 = (−1, 0),
r5 = (2, 0), r6 = (−1, 1), r7 = (1, 1).

(A.64)

We claim that these elements ϕi are in the image of δ0 : Č0(U , DL) → Č1(U , DL) and
do therefore not contribute to Ȟ1(U , DL) = Č1(U , DL)/im(δ0). Hence, we claim that
ϕi = δ0(µi) for µi ∈ Č0(U , DL). It is readily verified, that this is indeed satisfied for the
following µi:

ϕi µi

ϕ1 (r1, r1, 0, 0, 0, r1)
ϕ2 (r2, r2, 0, 0, 0, r2)
ϕ3 (−r3,−r3, 0, 0, 0,−r3)
ϕ4 (0, 0, r4, r4, r4, 0)
ϕ5 (−r5,−r5, 0, 0, 0,−r5)
ϕ6 (0, 0, r6, r6, r6, 0)
ϕ7 (0, 0, r7, r7, r7, 0)

(A.65)

Hence, we conclude

ϕ (b1) ∼= c3
x1x

3
2

x3x6
, ϕ (b2) ∼= c2

x1x
3
2

x3x6
+ c12

x3
5x6
x1x4

, ϕ (b3) ∼= c1
x1x

3
2

x3x6
+ c11

x3
5x6
x1x4

. (A.66)

This justifies our analysis based on the matrix in eq. (A.29).
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A.2.3 Application to GUT-example

In the example discussed in section 3 we consider DC = (10;−3,−3,−4) and DL =
(5;−4,−4, 3). This curve C53 is cut-out by the following polynomial a3,2:

a3,2 = c44x
6
1x

7
2x

3
3x

4
4 + c43x

6
1x

6
2x

4
3x

3
4x5 + c42x

6
1x

5
2x

5
3x

2
4x

2
5 + c41x

6
1x

4
2x

6
3x4x

3
5

+ c40x
6
1x

3
2x

7
3x

4
5 + c39x

5
1x

7
2x

2
3x

5
4x6 + c38x

5
1x

6
2x

3
3x

4
4x5x6 + c37x

5
1x

5
2x

4
3x

3
4x

2
5x6

+ c36x
5
1x

4
2x

5
3x

2
4x

3
5x6 + c35x

5
1x

3
2x

6
3x4x

4
5x6 + c34x

5
1x

2
2x

7
3x

5
5x6 + c33x

4
1x

7
2x3x

6
4x

2
6

+ c32x
4
1x

6
2x

2
3x

5
4x5x

2
6 + c31x

4
1x

5
2x

3
3x

4
4x

2
5x

2
6 + c30x

4
1x

4
2x

4
3x

3
4x

3
5x

2
6 + c29x

4
1x

3
2x

5
3x

2
4x

4
5x

2
6

+ c28x
4
1x

2
2x

6
3x4x

5
5x

2
6 + c27x

4
1x2x

7
3x

6
5x

2
6 + c26x

3
1x

7
2x

7
4x

3
6 + c25x

3
1x

6
2x3x

6
4x5x

3
6

+ c24x
3
1x

5
2x

2
3x

5
4x

2
5x

3
6 + c23x

3
1x

4
2x

3
3x

4
4x

3
5x

3
6 + c22x

3
1x

3
2x

4
3x

3
4x

4
5x

3
6 + c21x

3
1x

2
2x

5
3x

2
4x

5
5x

3
6

+ c20x
3
1x2x

6
3x4x

6
5x

3
6 + c19x

3
1x

7
3x

7
5x

3
6 + c18x

2
1x

6
2x

7
4x5x

4
6 + c17x

2
1x

5
2x3x

6
4x

2
5x

4
6

+ c16x
2
1x

4
2x

2
3x

5
4x

3
5x

4
6 + c15x

2
1x

3
2x

3
3x

4
4x

4
5x

4
6 + c14x

2
1x

2
2x

4
3x

3
4x

5
5x

4
6 + c13x

2
1x2x

5
3x

2
4x

6
5x

4
6

+ c12x
2
1x

6
3x4x

7
5x

4
6 + c11x1x

5
2x

7
4x

2
5x

5
6 + c10x1x

4
2x3x

6
4x

3
5x

5
6 + c9x1x

3
2x

2
3x

5
4x

4
5x

5
6

+ c8x1x
2
2x

3
3x

4
4x

5
5x

5
6 + c7x1x2x

4
3x

3
4x

6
5x

5
6 + c6x1x

5
3x

2
4x

7
5x

5
6 + c5x

4
2x

7
4x

3
5x

6
6

+ c4x
3
2x3x

6
4x

4
5x

6
6 + c3x

2
2x

2
3x

5
4x

5
5x

6
6 + c2x2x

3
3x

4
4x

6
5x

6
6 + c1x

4
3x

3
4x

7
5x

6
6 . (A.67)

Hence, the Koszul resolution of the line bundle L = OdP3 (DL)|C53
is given by

0→ OdP3 (DL −DC) φ−→ OdP3 (DL)→ L → 0 , (A.68)

and the map φ is induced from multiplication with a3,2. The associated long exact sequence
in sheaf cohomology is then:

0 0 H0 (dP3, DL) ∼= C4 H0 (DC ,L)

H1 (dP3, DL −DC) ∼= C4 H1 (dP3, DL) ∼= C6 H1 (C53 ,L)

0 0 0 0 .

ϕ (A.69)

By exactness of this sequence, we have h1(C53 ,L) = 6−rk(Mϕ), where the mapping matrix
Mϕ is determined by the coefficients of a3,2:

Mϕ =



0 c1 0 0 c2 c3 c4 c5 0 0 0 0 0 0 0 0 0
c5 0 0 0 c1 c2 c3 c4 0 0 0 0 0 0 0 0 0
c11 c6 0 0 c7 c8 c9 c10 c1 c2 c3 c4 c5 0 0 0 0
0 0 c39 c34 0 0 0 0 c40 c41 c42 c43 c44 c35 c36 c37 c38

0 0 c44 0 0 0 0 0 0 0 0 0 0 c40 c41 c42 c43

0 0 0 c40 0 0 0 0 0 0 0 0 0 c41 c42 c43 c44


. (A.70)
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Some linear algebra yields that the rank of this map drops by one, if

c1 = c2 = c3 = c4 = c5 = c7 = c8 = c9 = c10 = c35 = c36 = c37 = c38 = 1
c40 = c41 = c42 = c43 = c44 = 1, c11 = c34 = −1, c6 = c39 = 2 .

(A.71)

One can easily verify that the polynomial in eq. (A.67) does not factorize for generic other
coefficients not tuned above. Hence, the curve C53 remains irreducible. By applying sage-
math [73], one can further justify the smoothness of C53 . Therefore, this tuning condition
leads to one additional section without topology change for C53 . This is an example of
jump from Brill-Noether theory.

A.3 The fat point

Finally, in our analysis, non-reduced curves feature prominently. Consequently, a basic
understanding of such curves is required. Let us therefore briefly discuss the mother of all
non-reduced varieties — the fat point. This is an example in non-compact affine space C2

with coordinates x, y. Most of this intuition carries over to compact curves. More details
can for example be found in [49, 74].

Let us consider V (x) ⊆ C2. This is the complex (non-compact) curve with coordinate
y. The difference between V (x) and V (x2) is not the collection of points, which these
vanishing sets contain, but rather the allowed functions on these spaces. Namely, recall
that in the modern language of algebraic geometry, a scheme (or equivalently in the analytic
regime — a geometric space) is a pair of a topological space and a structure sheaf. The
difference between V (x) and V (x2) is this very structure sheaf.

In staying within the regime of algebraic geometry, the structure sheaf of C2 is given
by (the sheafification of) the total coordinate ring C[x, y] — the ring of all polynomials in
the variables x and y. Likewise, we can understand the structure sheaf on V (x) from its
coordinate ring:

RV (x) = C[x, y]/ 〈x〉 = C[y] . (A.72)

Hence, functions on the variety V (x) correspond to polynomials in y. How about V (x2)?
On this space it holds

RV (x2) = C[x, y]/
〈
x2
〉

= C[y]⊕ 〈x〉 . (A.73)

Consequently, on V (x2), the polynomial x provides a non-trivial function! This is the
difference between V (x) and V (x2).

We can extend this example slightly by looking at V (y, x2). For this space we find

RV (y,x2) = C[x, y]/
〈
y, x2

〉
= 〈x〉 . (A.74)

Hence, on this point in the affine plane C, the set of non-trivial functions is 1-dimensional
and is generated by the polynomial x. This lends V (y, x2) its name — as point set it is just a
single point, yet this point is large enough to admit non-trivial functions — it is a fat point.
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B Collection of data

B.1 Curve splittings and jumps

Recall that the six toric P1s of dP3 correspond to the exceptional divisors E1, E2, E3 and
the following three divisors:

E4 = H − E1 − E2 , E5 = H − E1 − E3 , E6 = H − E2 − E3 . (B.1)

B.1.1 DC = (3;−1,−1,−1)

For this genus-1 curve we find:

bundle h0-values E1-splits E2-splits E3-splits E4-splits E5-splits E6-splits
(2, 1, -4, 1) (4, 5, 6) (4, 5, 6) (4, 5, 6) (4, 5, 6) (4, 5, 6) (4, 5, 6) (4, 5, 6)
(1, -3, -3, -2) (0, 1, 2, 3, 4, 5) (2, 3, 4, 5) (2, 3, 4, 5) (1, 3, 4, 5) (0, 1, 2, 3, 4, 5) (0, 1, 2, 3, 4, 5) (0, 1, 2, 3, 4, 5)
(1, -1, -3, 0) (0, 1, 2, 3) (0, 1, 2, 3) (2) (0, 1, 2, 3) (1, 2, 3) (0, 1, 2) (0, 2, 3)
(1, -2, -3, -2) (0, 1, 2, 3, 4) (1, 2, 3, 4) (2, 3, 4) (1, 2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4)
(1, -1, -3, -1) (0, 2, 3) (0, 2, 3) (2) (0, 2, 3) (0, 2, 3) (0, 2) (0, 2, 3)

(1, -3, -4, -2)
(0, 1, 2, 3, 4)

(2, 3, 5, 6, 7) (3, 4, 5, 6) (1, 3, 4, 6)
(0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4)

(5, 6, 7) (5, 6) (5, 6) (5, 6, 7)
(2, 1, -4, 2) (5, 6, 7) (5, 6, 7) (5, 6, 7) (6, 7) (5, 6, 7) (5, 6, 7) (5, 6, 7)
(2, 2, -4, 2) (6, 7, 8, 9) (7, 8, 9) (6, 7, 8) (7, 8, 9) (6, 7, 8, 9) (6, 7, 8) (6, 7, 8, 9)
(1, -1, -4, -1) (0, 3, 5) (0, 3, 5) (3) (0, 3, 5) (0, 3, 5) (0, 3) (0, 3, 5)
(1, 1, -3, 1) (2, 3, 4) (2, 3, 4) (2, 3, 4) (2, 3, 4) (2, 3, 4) (2, 3, 4) (2, 3, 4)
(1, 1, -3, 0) (1, 2, 3) (1, 2, 3) (2, 3) (1, 2, 3) (1, 2, 3) (1, 2, 3) (2, 3)
(1, -1, -2, 0) (0, 1) (0, 1) (1) (0, 1) (1) (0, 1) (0, 1)
(1, 1, -3, 2) (3, 4, 5) (3, 4, 5) (3, 4, 5) (4, 5) (3, 4, 5) (3, 4, 5) (3, 4, 5)

B.1.2 DC = (4;−1,−2, 1)

For this (generically disjoint) union of a genus-0 and a genus-2 curve, we find:

bundle h0-values E1-splits E2-splits E3-splits E4-splits E5-splits E6-splits
(2, -1, -2, 5) (2, 5, 7, 8) (2, 5, 7, 8) (2, 5, 7, 8) (2) (2, 5, 7, 8) (5, 7, 8) (5, 7, 8)
(1, -1, -2, -1) (2, 3) (2, 3) (2, 3) (2) (2, 3) (3) (3)
(1, -2, -2, -2) (3, 4, 5, 6, 7) (4, 6, 7) (3, 4, 5, 6, 7) (3, 4) (3, 4, 5, 6, 7) (5, 6, 7) (5, 6, 7)
(2, -3, -2, -1) (2, 3, 4, 5, 6) (4, 5) (2, 3, 4, 5, 6) (2, 3, 4, 5) (4, 5, 6) (3, 5, 6) (3, 4, 5, 6)
(1, -2, -1, 4) (0, 1, 2, 3) (1, 2, 3) (0, 1, 2, 3) (0, 1) (1, 2, 3) (1, 2, 3) (1, 2, 3)

(1, -2, -2, -3)
(4, 5, 7, 8, 9)

(5, 8, 10, 11)
(4, 5, 7, 8, 9)

(4,5)
(4, 5, 7, 8, 9)

(7, 8, 9, 10, 11) (7, 8, 9, 10, 11)
(10, 11) (10, 11) (10, 11)

(2, -3, -2, -2)
(3, 4, 5, 6, 7)

(5, 6, 7, 8) (3, 5, 6, 7, 8, 9) (3, 4, 5, 6) (5, 6, 7, 8, 9) (5, 6, 7, 8, 9) (5, 6, 7, 8, 9)
(8, 9)

(1, -2, 1, -1) (5, 6) (5, 6) (5, 6) (5) (5, 6) (6) (5, 6)
(2, -2, -1, -2) (6, 7) (6, 7) (6, 7) (6) (6, 7) (7) (6, 7)

(2, -2, -2, 7)
(1, 2, 6, 7, 10) (2, 6, 7, 10, 11) (1, 2, 6, 7, 10)

(1, 2) (2, 7, 11, 14)
(6, 7, 10, 11, 13) (6, 7, 10, 11, 13)

(11, 13, 14, 15) (11, 13, 14, 15) (13, 14, 15) (13, 14, 15) (14)
(3, -1, -2, 10) (6, 14, 21, 27, 32) (6, 14, 21, 27, 32) (6, 14, 21, 27, 32) (6) (6, 14, 21, 27) (14, 21, 27, 32) (14, 21, 27)
(1, -3, 1, -1) (4, 5, 6, 7) (4, 5, 6, 7) (4, 5, 6, 7) (4, 5, 6) (4, 5, 6, 7) (6, 7) (4, 5, 6, 7)
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B.1.3 DC = (4;−1,−2,−1)

For this genus-2 curve we find:

bundle h0-values E1-splits E2-splits E3-splits E4-splits E5-splits E6-splits
(2, 3, -3, 1) (5, 7, 8) (7) (5, 7, 8) (5, 7, 8) (5, 7, 8) (5, 7, 8) (5, 7, 8)
(3, 1, -4, -1) (3, 4) (3, 4) (3, 4) (3, 4) (3, 4) (3, 4) (4)
(2, 2, -4, 0) (1, 2, 3, 4) (2, 3, 4) (2, 3, 4) (1, 2, 3, 4) (1, 2, 3, 4) (2, 3, 4) (2, 3, 4)

(2, 1, -4, -3)
(0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (2, 3, 4, 5, 6) (2, 3, 4, 5) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4)

(1, 2, 3, 4)
(5, 6) (5) (5, 6) (5, 6)

(1, -1, -3, -2) (0, 1, 2) (0, 1, 2) (1, 2) (1, 2) (0, 1, 2) (0, 1, 2) (0, 1, 2)
(1, -2, -4, 2) (0, 1, 2, 3, 4) (1, 2, 3, 4) (2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4)

(4, 3, -3, -8)
(4, 5, 6, 7, 8) (6, 7, 8, 9, 10) (4, 5, 6, 7, 8) (7, 10, 12, 13, 15) (4, 5, 6, 7, 8) (4, 7, 9, 10, 12)

(10, 12, 13, 15, 16)(10, 12, 13, 15) (12, 13, 15, 16) ( 9, 10, 12, 13) ( 17) (9, 10, 12, 13, 15) (13, 15, 16, 18, 19)
(16, 17, 18, 19) (17, 18) (15, 17, 18, 19) ( 16, 17, 18, 19)

(1, 3, -4, -5)
(0, 1, 2, 4, 6) (0, 2, 4, 6, 7) (2, 4, 6, 8, 9) (4, 6, 8) (0, 1, 2, 4, 6) (0, 2, 4, 6, 7) (0, 1, 2, 4, 6)
(7, 8, 9, 11) (8, 9) ( 11) ( 7, 8, 9, 11) (9,11) (7)

(3, 1, -4, -5)
(0, 1, 2, 4, 5) (0, 1, 2, 4, 5) (2, 4, 6, 8, 9) (4, 5, 6, 8) (0, 1, 2, 4, 5) (0, 1, 2, 4, 5) (4, 5, 6, 7)
(6, 7, 8, 9, 11) (6, 7, 8, 9) (11) (6, 7, 8, 9, 11) (6, 7, 8, 9, 11)

(3, 2, -3, -7)
(0, 1, 2, 3, 4) (1, 2, 3, 4, 6) (1, 3, 4, 6, 7) (6, 7, 9, 10, 11) (1, 2, 3, 4, 6) (1, 3, 4, 6, 7) (6, 7, 9, 10, 11)
(6, 7, 9, 10, 11) (7, 9, 10, 11) ( 7, 9, 10, 11) ( 12) ( 7, 9, 10, 11) (9, 10, 11, 12) ( 12)
(12, 14, 15, 16) (12, 14, 15) (12, 14, 15, 16) (12, 14, 15) (14, 15, 16)

(3, 2, -3, -5)
(2, 3, 4, 5, 6) (3, 4, 5, 7, 8) (2, 3, 4, 6, 7) (4, 5, 6, 7, 8) (2, 3, 4, 5, 6) (2, 3, 4, 5, 6) (6, 7, 8)
(7, 8, 9, 10, 11) (10) ( 8, 9, 10, 11) ( 9,10) ( 7, 8, 9, 10, 11) (7, 8, 9, 10, 11)

(1, 1, -4, 2) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (2, 3, 4) (0, 1, 2, 3, 4)
(1, 0, -4, -1) (0, 2, 3) (0, 2, 3) (2) (0, 2, 3) (0, 2, 3) (0, 2) (0, 2, 3)
(3, -3, -1, -2) (4, 5) (4, 5) (4, 5) (4, 5) (4, 5) (4, 5) (4, 5)

(4, -7, -1, -3)
(3, 4, 5, 6, 7) (3, 4, 5, 6, 7) (3, 4, 5, 6, 7) (3, 4, 5, 6, 8) (3, 4, 5, 6, 7) (3, 4, 5, 6, 8) (3, 4, 5, 6, 7)
( 8, 10, 11, 12) (8, 10, 11, 12) (8, 10, 11, 13, 15) ( 10, 11, 12, 13) ( 8, 11, 13, 15) (10, 11, 13, 15) (10, 11, 12, 13, 15)
(13, 15, 17) (15, 17)

B.1.4 DC = (4;−1,−2, 0)

For this genus-2 curve we find:
bundle h0-values E1-splits E2-splits E3-splits E4-splits E5-splits E6-splits

(1, -2, -1, 4) (0, 1, 2, 3, 4, 5, 6) (1, 2, 3, 4, 5, 6) (0, 1, 2, 3, 4, 5, 6) (2, 3) (1, 3, 5, 6) (2, 3, 4, 5, 6) (2, 3, 4, 5, 6)

B.1.5 DC = (4;−1,−1,−1)

On this genus-3 curve we find:
bundle h0-values E1-splits E2-splits E3-splits E4-splits E5-splits E6-splits

(1, -2, -3, -1) (0, 1, 2, 3, 4) (1, 3, 4) (2, 3) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4)

(1, -3, -4, -3)
(0, 2, 3, 4, 5) (2, 4, 5, 7, 8) (3, 5, 6, 7, 8) (2, 4, 5, 7, 8) (0, 2, 3, 4, 5) (0, 2, 3, 4, 5) (0, 2, 3, 4, 5)
(6, 7, 8, 9, 10) (9, 10) (9) (9, 10) (6, 7, 8, 9, 10) (6, 7, 8, 9, 10) (6, 7, 8, 9, 10)

(1, 1, -3, 0) (0, 1, 2, 3) (0, 1, 2, 3) (2) (0, 1, 2, 3) (1, 2, 3) (0, 1, 2, 3) (1, 2, 3)

(1, -3, -3, -3)
(0, 2, 3, 4, 5) (2, 4, 5, 6, 7) (2, 4, 5, 6, 7) (2, 4, 5, 6, 7) (0, 2, 3, 4, 5) (0, 2, 3, 4, 5) (0, 2, 3, 4, 5)

(6, 7, 8) (8) (8) (8) (6, 7, 8) (6, 7, 8) (6, 7, 8)

(1, -3, -2, -3)
(0, 1, 2, 3, 4) (2, 3, 4, 5, 6) (1, 3, 4, 5, 6) (2, 3, 4, 5, 6) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4)

(5, 6, 7) (7) (5, 6, 7) (5, 6) (5, 6, 7)
(1, 2, -2, -1) (1, 2, 3) (2, 3) (1, 2, 3) (1, 2, 3) (1, 2, 3) (1, 2, 3) (2, 3)

(1, 1, -3, -3)
(0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (2, 4, 5) (2, 4, 5) (0, 2, 3, 4, 5) (0, 2, 3, 4, 5) (1, 2, 3, 4, 5)

(5, 6) (5, 6) (6) (6)
(2, 3, -4, -1) (4, 5, 6, 7, 8, 9) (6, 7, 8, 9) (4, 5, 6, 7, 8, 9) (4, 5, 6, 7, 8, 9) (4, 5, 6, 7, 8, 9) (4, 5, 6, 7, 8, 9) (6, 7, 8, 9)

(1, 2, -4, 2)
(2, 3, 4, 5, 6) (3, 4, 5, 6, 7) (3, 4, 5, 6, 7) (3, 4, 5, 6, 7) (2, 3, 4, 5, 6) (3, 4, 5, 6, 7) (2, 3, 4, 5, 6)

(7, 8) (8) (8) (8) (7, 8) (8) (7, 8)
(1, -2, -3, -2) (0, 1, 2, 3, 4, 5) (1, 2, 3, 4, 5) (2, 3, 4) (1, 2, 3, 4, 5) (0, 1, 2, 3, 4, 5) (0, 1, 2, 3, 4, 5) (0, 1, 2, 3, 4, 5)
(1, 3, -3, 1) (3, 4, 5, 6, 7) (5, 6, 7) (3, 4, 5, 6, 7) (3, 4, 5, 6, 7) (3, 4, 5, 6, 7) (3, 4, 5, 6, 7) (3, 4, 5, 6, 7)
(1, -1, -3, 0) (0, 1, 2, 3) (0, 1, 2, 3) (2) (0, 1, 2, 3) (1, 2, 3) (0, 1, 2, 3) (0, 2, 3)
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B.1.6 DC = (5;−2,−2,−1)

On this genus-4 curve we find:

bundle h0-values E1-splits E2-splits E3-splits E4-splits E5-splits E6-splits
(2, -2, -4, -2) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (2, 3) (1, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4)
(1, -1, -3, 0) (0, 1) (0, 1) (1) (0, 1) (0, 1) (0, 1) (0, 1)
(1, 2, -2, 0) (2, 3) (3) (2, 3) (2, 3) (2, 3) (2, 3) (2, 3)
(1, 2, -2, 1) (3, 4) (4) (3, 4) (3, 4) (3, 4) (3, 4) (3, 4)
(1, 1, -4, -1) (0, 2, 3) (0, 2, 3) (2) (0, 2, 3) (0, 2, 3) (0, 2, 3) (0, 2, 3)
(1, -1, -4, -1) (0, 2, 3) (0, 2, 3) (2) (0, 2, 3) (0, 2, 3) (0, 2, 3) (0, 2, 3)
(1, -2, -4, 2) (0, 2, 3) (0, 2, 3) (2) (0, 2, 3) (0, 2, 3) (0, 2, 3) (0, 2, 3)
(1, 1, -4, 1) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (2, 3) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (1, 3, 4) (0, 1, 2, 3, 4)
(1, -1, -2, 3) (0, 1, 2, 3) (0, 1, 2, 3) (0, 1, 2, 3) (1, 2) (0, 1, 2, 3) (1, 2, 3) (0, 1, 2, 3)
(2, -1, -4, 1) (0, 1, 2, 3) (0, 1, 2, 3) (2) (0, 1, 2, 3) (0, 1, 2, 3) (0, 1, 2, 3) (0, 1, 2, 3)
(1, 2, -3, 1) (1, 2, 3, 4) (2, 3, 4) (1, 2, 3, 4) (1, 2, 3, 4) (1, 2, 3, 4) (2, 3, 4) (1, 2, 3, 4)
(1, 1, -4, 0) (0, 2, 3) (0, 2, 3) (2) (0, 2, 3) (0, 2, 3) (0, 2, 3) (0, 2, 3)
(1, 2, -2, -2) (0, 1, 2, 3, 4) (1, 2, 3, 4) (0, 1, 2, 3, 4) (1, 2, 3, 4) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (2, 3)

B.1.7 DC = (5;−1,−1,−2)

On this genus-5 curve we find:

bundle h0-values E1-splits E2-splits E3-splits E4-splits E5-splits E6-splits
(1, -2, -2, -3) (0, 1, 2, 3) (1, 2, 3) (1, 2, 3) (1, 2, 3) (0, 1, 2, 3) (0, 1, 2, 3) (0, 1, 2, 3)

(1, 1, -4, 2)
(2, 3, 4, 5, 6) (2, 3, 4, 5, 6) (3, 4, 5, 6, 7) (3, 4, 5, 6, 7) (3, 4, 5, 6, 7) (2, 3, 4, 5, 6) (2, 3, 4, 5, 6)

(7, 8) (7, 8) (8) (8) (7, 8) (7, 8)

(1, 1, -4, 1)
(0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (3, 4) (0, 1, 2, 3, 4) (1, 2, 3, 4, 5) (1, 2, 4, 6, 7) (1, 2, 3, 4, 5)

(5, 6, 7) (5, 6, 7) (5, 6, 7) (5, 6, 7) (6, 7)
(1, -1, -3, -2) (0, 2, 3) (0, 2, 3) (2) (0, 2, 3) (0, 2, 3) (0, 2, 3) (0, 2, 3)
(1, 1, -3, -1) (0, 1, 2, 3) (0, 1, 2, 3) (2) (0, 1, 2, 3) (0, 2, 3) (0, 1, 2, 3) (1, 2, 3)
(1, 1, -3, -2) (0, 2, 3) (0, 2, 3) (2) (0, 2, 3) (0, 2, 3) (0, 2, 3) (0, 2, 3)
(1, 2, -2, -1) (0, 1) (0, 1) (1) (0, 1) (0, 1) (0, 1) (1)
(1, 1, -4, 0) (0, 1, 3, 5, 6) (0, 1, 3, 5, 6) (3) (0, 1, 3, 5, 6) (1, 3, 5, 6) (0, 1, 3, 5, 6) (1, 3, 5, 6)
(1, -2, -1, -3) (0, 1, 2) (1, 2) (0, 1, 2) (1, 2) (0, 1, 2) (0, 1, 2) (0, 1, 2)
(1, 1, -3, 1) (1, 2, 3, 4) (1, 2, 3, 4) (2, 3) (1, 2, 3, 4) (1, 2, 3, 4) (1, 2, 3, 4) (1, 2, 3, 4)
(1, -1, -2, -2) (0, 1) (0, 1) (1) (0, 1) (0, 1) (0, 1) (0, 1)
(1, -2, -3, -3) (0, 1, 2, 3, 4, 5) (1, 2, 3, 4, 5) (2, 3, 4) (1, 2, 3, 4, 5) (0, 1, 2, 3, 4, 5) (0, 1, 2, 3, 4, 5) (0, 1, 2, 3, 4, 5)
(1, 1, -4, -1) (0, 1, 3, 5, 6) (0, 1, 3, 5, 6) (3) (0, 1, 3, 5, 6) (0, 3, 5, 6) (0, 1, 3, 5, 6) (1, 3, 5, 6)

B.1.8 DC = (6;−3,−2,−1)

On this genus-6 curve we find:

bundle h0-values E1-splits E2-splits E3-splits E4-splits E5-splits E6-splits
(1, 1, -4, 1) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (2, 3) (0, 1, 2, 3, 4) (0, 1, 2, 3, 4) (1, 3, 4) (0, 1, 2, 3, 4)
(1, 0, -3, 1) (0, 1) (0, 1) (1) (0, 1) (0, 1) (0, 1) (0, 1)
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B.2 Local to global section counting applied to our database

In this section, we list results which quantify how good the counting procedure proposed
in subsubsection 5.2.1 works, when applied to our database. We have preformed two tests:

1. We consider those curves in our data, for which we can quickly identify the exact
number of sections on all curve components. This can be done quickly for non-split
curves and for curves with only smooth components. For the latter curves, we have
read-off the genus g and the line bundle degree d from our database. If d < 0, we
know that there are no non-trivial sections on this curve component. However, if
d > 2g − 2, then h0(C,L) = d − g + 1. Based on these exact local section counts,
we have then tried to predict the number of global sections. The accuracy for this is
listed in subsubsection B.2.1.

2. Our second test is based on our H0Approximator -program [44], which is part of [75].
This program considers curve degeneration, which split-off combinations of the 6 toric
P1s in dP3. For each such curve splitting, the program assumes that the number of
local sections on each curve component is generic. Since this generic value is a lower
bound to the actual number of local sections, we can use these estimates to derive a
lower bound on the number of global sections. By repeating this strategy for many
curve splittings, we obtain an estimate for the allowed h0-values over the parameter
space of the curve in question. We list the so-obtained results for all pairs (DC , DL)
in our database [43] in subsubsection B.2.2.

B.2.1 Accuracy

DC DL Applicable data sets [%] Accuracy [%]
(3, -1, -1, -1) (1, 1, -3, 0) 62.2 100
(3, -1, -1, -1) (1, 1, -3, 1) 71.6 100
(3, -1, -1, -1) (1, 1, -3, 2) 52.7 100
(3, -1, -1, -1) (1, -1, -2, 0) 52.7 100
(3, -1, -1, -1) (1, -1, -3, 0) 66.9 100
(3, -1, -1, -1) (1, -1, -3, -1) 76.4 100
(3, -1, -1, -1) (1, -1, -4, -1) 76.4 100
(3, -1, -1, -1) (1, -2, -3, -2) 90.5 100
(3, -1, -1, -1) (1, -3, -3, -2) 90.5 100
(3, -1, -1, -1) (1, -3, -4, -2) 90.5 100
(3, -1, -1, -1) (2, 1, -4, 1) 62.2 100
(3, -1, -1, -1) (2, 1, -4, 2) 48.0 100
(3, -1, -1, -1) (2, 2, -4, 2) 37.0 100

Continued on next page.
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Table 2 — Continued from previous page.

DC DL Applicable data sets [%] Accuracy [%]
(4, -1, -2, 1) (1, -1, -2, 0) 38.7 100
(4, -1, -2, 1) (1, -1, -2, -1) 38.7 100
(4, -1, -2, 1) (1, -2, 1, -1) 26.9 100
(4, -1, -2, 1) (1, -2, -1, 4) 12.6 65.1
(4, -1, -2, 1) (1, -2, -2, -2) 43.4 100
(4, -1, -2, 1) (1, -2, -2, -3) 43.4 100
(4, -1, -2, 1) (1, -3, 1, -1) 9.2 100
(4, -1, -2, 1) (2, -1, -2, 5) 4.3 100
(4, -1, -2, 1) (2, -2, -1, -2) 28.3 100
(4, -1, -2, 1) (2, -2, -2, 7) 4.4 100
(4, -1, -2, 1) (2, -3, -2, -1) 12.6 100
(4, -1, -2, 1) (2, -3, -2, -2) 12.6 100
(4, -1, -2, 1) (3, -1, -2, 10) 23.9 100
(4, -1, -2, -1) (1, 0, -4, -1) 80.4 100
(4, -1, -2, -1) (1, 3, -4, -5) 83.4 99
(4, -1, -2, -1) (1, -1, -3, -2) 88.3 100
(4, -1, -2, -1) (1, -2, -4, 2) 84.2 100
(4, -1, -2, -1) (3, 2, -3, -7) 71.8 100
(4, -1, -2, -1) (2, 1, -4, -3) 76.4 100
(4, -1, -2, -1) (2, 2, -4, 0) 50.6 100
(4, -1, -2, -1) (2, 3, -3, 1) 44.8 100
(4, -1, -2, -1) (3, 1, -4, -1) 45.4 100
(4, -1, -2, -1) (3, 1, -4, -5) 69.4 100
(4, -1, -2, -1) (3, 2, -3, -5) 54.3 100
(4, -1, -2, -1) (1, 1, -4, 2) 76.3 98.6
(4, -1, -2, -1) (4, 3, -3, -8) 60.6 100
(4, -1, -2, -1) (3, -3, -1, -2) 66.5 98.7
(4, -1, -2, -1) (4, -7, -1, -3) 74.1 92.6
(4, -1, -2, 0) (1, -2, -1, 4) 58.7 92.5
(4, -1, -1, -1) (1, 1, -3, 0) 52.2 95.8
(4, -1, -1, -1) (1, 1, -3, -1) 56.5 100
(4, -1, -1, -1) (1, 1, -3, -3) 73.8 100
(4, -1, -1, -1) (1, 2, -2, -1) 45.6 100

Continued on next page.
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Table 2 — Continued from previous page.

DC DL Applicable data sets [%] Accuracy [%]
(4, -1, -1, -1) (1, 2, -4, 2) 65.3 100
(4, -1, -1, -1) (1, 3, -3, 1) 56.9 100
(4, -1, -1, -1) (1, -1, -3, 0) 64.3 96.6
(4, -1, -1, -1) (1, -2, -3, -1) 82.4 100
(4, -1, -1, -1) (1, -2, -3, -2) 87.5 100
(4, -1, -1, -1) (1, -3, -2, -3) 85.8 100
(4, -1, -1, -1) (1, -3, -3, -3) 84.0 100
(4, -1, -1, -1) (1, -3, -4, -3) 86.2 100
(4, -1, -1, -1) (2, 3, -4, -1) 45.5 100
(5, -2, -2, -1) (1, 1, -4, 0) 62.0 100
(5, -2, -2, -1) (1, 1, -4, 1) 58.4 99.7
(5, -2, -2, -1) (1, 1, -4, -1) 67.9 100
(5, -2, -2, -1) (1, 2, -2, 0) 45.2 100
(5, -2, -2, -1) (1, 2, -2, 1) 50.8 100
(5, -2, -2, -1) (1, 2, -2, -2) 46.7 98.9
(5, -2, -2, -1) (1, 2, -3, 1) 48.9 99.0
(5, -2, -2, -1) (1, -1, -2, 3) 45.1 99.9
(5, -2, -2, -1) (1, -1, -3, 0) 72.7 100
(5, -2, -2, -1) (1, -1, -4, -1) 88.6 100
(5, -2, -2, -1) (1, -2, -4, 2) 77.3 100
(5, -2, -2, -1) (2, -1, -4, 1) 51.4 97.9
(5, -2, -2, -1) (2, -2, -4, -2) 75.2 100
(5, -1, -1, -2) (1, -2, -2, -3) 88.1 100
(5, -1, -1, -2) (1, -2, -1, -3) 84.4 100
(5, -1, -1, -2) (1, -1, -3, -2) 82.7 100
(5, -1, -1, -2) (1, -1, -2, -2) 79.3 100
(5, -1, -1, -2) (1, 2, -2, -1) 42.1 100
(5, -1, -1, -2) (1, 1, -4, 2) 54.3 99.2
(5, -1, -1, -2) (1, 1, -4, 1) 47.5 99.2
(5, -1, -1, -2) (1, 1, -4, 0) 56.8 95.0
(5, -1, -1, -2) (1, 1, -3, -2) 65.9 100
(5, -1, -1, -2) (1, 1, -3, -1) 55.5 98.6
(5, -1, -1, -2) (1, 1, -3, 1) 46.1 99.4

Continued on next page.
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Table 2 — Continued from previous page.

DC DL Applicable data sets [%] Accuracy [%]
(5, -1, -1, -2) (1, -2, -3, -3) 88.1 100
(5, -1, -1, -2) (1, 1, -4, -1) 64.4 98.8
(6, -3, -2, -1) (1, 0, -3, 1) 51.8 100
(6, -3, -2, -1) (1, 1, -4, 1) 52.4 99.7

Table 2. Accuracy of counting procedure for exact numbers of local sections.

B.2.2 Spectrum estimate

DC DL Predicted spectrum Missing values
(5, -2, -2, -1) (2, -2, -4, -2) ( 0, 1, 2, 3, 4 ) —
(5, -2, -2, -1) (1, -1, -3, 0) ( 0, 1 ) —
(5, -2, -2, -1) (1, 2, -2, 0) ( 2, 3 ) —
(5, -2, -2, -1) (1, 2, -2, 1) ( 3, 4 ) —
(5, -2, -2, -1) (1, 1, -4, -1) ( 0, 2, 3 ) —
(5, -2, -2, -1) (1, -1, -4, -1) ( 0, 2, 3 ) —
(5, -2, -2, -1) (1, -2, -4, 2) ( 0, 2, 3 ) —
(5, -2, -2, -1) (1, 1, -4, 1) ( 0, 1, 2, 3, 4 ) —
(5, -2, -2, -1) (1, -1, -2, 3) ( 0, 1, 2, 3 ) —
(5, -2, -2, -1) (2, -1, -4, 1) ( 0, 1, 2, 3 ) —
(5, -2, -2, -1) (1, 2, -3, 1) ( 1, 2, 3, 4 ) —
(5, -2, -2, -1) (1, 1, -4, 0) ( 0, 2, 3 ) —
(5, -2, -2, -1) (1, 2, -2, -2) ( 0, 1, 2, 3, 4 ) —
(3, -1, -1, -1) (2, 1, -4, 1) ( 4, 5, 6 ) —
(3, -1, -1, -1) (1, -3, -3, -2) ( 0, 1, 2, 3, 4 ) ( 5 )
(3, -1, -1, -1) (1, -1, -3, 0) ( 0, 1, 2, 3 ) —
(3, -1, -1, -1) (1, -2, -3, -2) ( 0, 1, 2, 3 ) ( 4 )
(3, -1, -1, -1) (1, -1, -3, -1) ( 0, 2, 3 ) —
(3, -1, -1, -1) (1, -3, -4, -2) ( 0, 1, 2, 3, 4, 5 ) ( 6, 7 )
(3, -1, -1, -1) (2, 1, -4, 2) ( 5, 6, 7 ) —
(3, -1, -1, -1) (2, 2, -4, 2) ( 6, 7, 8, 9 ) —
(3, -1, -1, -1) (1, -1, -4, -1) ( 0, 3, 5 ) —
(3, -1, -1, -1) (1, 1, -3, 1) ( 2, 3, 4 ) —
(3, -1, -1, -1) (1, 1, -3, 0) ( 1, 2, 3 ) —
(3, -1, -1, -1) (1, -1, -2, 0) ( 0, 1 ) —
(3, -1, -1, -1) (1, 1, -3, 2) ( 3, 4, 5 ) —

Continued on next page.
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Table 3 — Continued from previous page.
DC DL Predicted spectrum Missing values

(5, -1, -1, -2) (1, -2, -2, -3) ( 0, 1, 2, 3 ) —
(5, -1, -1, -2) (1, 1, -4, 2) ( 2, 3, 4, 5, 6, 7, 8 ) —
(5, -1, -1, -2) (1, 1, -4, 1) ( 0, 1, 2, 3, 4, 5, 6, 7 ) —
(5, -1, -1, -2) (1, -1, -3, -2) ( 0, 2, 3 ) —
(5, -1, -1, -2) (1, 1, -3, -1) ( 0, 2, 3 ) ( 1 )
(5, -1, -1, -2) (1, 1, -3, -2) ( 0, 2, 3 ) —
(5, -1, -1, -2) (1, 2, -2, -1) ( 0, 1 ) —
(5, -1, -1, -2) (1, 1, -4, 0) ( 0, 3, 5, 6 ) ( 1 )
(5, -1, -1, -2) (1, -2, -1, -3) ( 0, 1, 2 ) —
(5, -1, -1, -2) (1, 1, -3, 1) ( 1, 2, 3, 4 ) —
(5, -1, -1, -2) (1, -1, -2, -2) ( 0, 1 ) —
(5, -1, -1, -2) (1, -2, -3, -3) ( 0, 1, 2, 3, 4, 5 ) —
(5, -1, -1, -2) (1, 1, -4, -1) ( 0, 3, 5, 6 ) ( 1 )
(4, -1, -1, -1) (1, -2, -3, -1) ( 0, 1, 2, 3, 4 ) —
(4, -1, -1, -1) (1, -3, -4, -3) ( 0, 2, 3, 4, 5, 6, 7, 8, 9 ) ( 10 )
(4, -1, -1, -1) (1, 1, -3, 0) ( 0, 1, 2, 3 ) —
(4, -1, -1, -1) (1, -3, -3, -3) ( 0, 2, 3, 4, 5, 6, 7 ) ( 8 )
(4, -1, -1, -1) (1, -3, -2, -3) ( 0, 1, 2, 3, 4, 5, 6 ) ( 7 )
(4, -1, -1, -1) (1, 2, -2, -1) ( 1, 2, 3 ) —
(4, -1, -1, -1) (1, 1, -3, -3) ( 0, 1, 2, 3, 4, 5, 6 ) —
(4, -1, -1, -1) (1, 1, -3, -3) ( 0, 1, 2, 3, 4, 5, 6 ) —
(4, -1, -1, -1) (2, 3, -4, -1) ( 4, 5, 6, 7, 8, 9 ) —
(4, -1, -1, -1) (1, 2, -4, 2) ( 2, 3, 4, 5, 6, 7, 8 ) —
(4, -1, -1, -1) (1, -2, -3, -2) ( 0, 1, 2, 3, 4, 5 ) —
(4, -1, -1, -1) (1, 3, -3, 1) ( 3, 4, 5, 6, 7 ) —
(4, -1, -1, -1) (1, -1, -3, 0) ( 0, 2, 3 ) ( 1 )
(4, -1, -2, 0) (1, -2, -1, 4) ( 0, 1, 2, 3, 4, 5, 6 ) —
(4, -1, -2, 1) (2, -1, -2, 5) ( 2, 5, 7, 8 ) —
(4, -1, -2, 1) (1, -1, -2, -1) ( 2, 3 ) —
(4, -1, -2, 1) (1, -2, -2, -2) ( 3, 4, 5, 6, 7 ) —
(4, -1, -2, 1) (2, -3, -2, -1) ( 2, 3, 4, 5, 6 ) —
(4, -1, -2, 1) (1, -2, -1, 4) ( 0, 1, 2, 3 ) —
(4, -1, -2, 1) (1, -2, -2, -3) ( 4, 5, 7, 8, 9, 10, 11 ) —
(4, -1, -2, 1) (2, -3, -2, -2) ( 3, 5, 6, 7, 8, 9 ) (4)
(4, -1, -2, 1) (1, -2, 1, -1) ( 5, 6 ) —
(4, -1, -2, 1) (2, -2, -1, -2) ( 6, 7 ) —
(4, -1, -2, 1) (2, -2, -2, 7) ( 1, 2, 6, 7, 10, 11, 13, 14, 15 ) —

Continued on next page.
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Table 3 — Continued from previous page.
DC DL Predicted spectrum Missing values

(4, -1, -2, 1) (3, -1, -2, 10) ( 6, 14, 21, 27, 32 ) —
(4, -1, -2, 1) (1, -3, 1, -1) ( 4, 5, 6, 7 ) —
(6, -3, -2, -1) (1, 1, -4, 1) ( 0, 1, 2, 3, 4 ) —
(6, -3, -2, -1) (1, 0, -3, 1) ( 0, 1 ) —
(4, -1, -2, -1) (3, -3, -1, -2) ( 4, 5 ) —
(4, -1, -2, -1) (4, -7, -1, -3) ( 3, 6, 8, 11, 12, 13, 15 ) ( 4, 5, 7, 10, 17 )
(4, -1, -2, -1) (2, 3, -3, 1) ( 5, 7, 8 ) —
(4, -1, -2, -1) (3, 1, -4, -1) ( 3, 4 ) —
(4, -1, -2, -1) (2, 2, -4, 0) ( 1, 2, 3, 4 ) —
(4, -1, -2, -1) (2, 1, -4, -3) ( 0, 1, 2, 3, 4, 5, 6 ) —
(4, -1, -2, -1) (1, -1, -3, -2) ( 0, 1, 2 ) —
(4, -1, -2, -1) (1, -2, -4, 2) ( 0, 1, 2, 3, 4 ) —
(4, -1, -2, -1) (4, 3, -3, -8) ( 4, 6, 7, 9, 10, 12, 13, 15, 16, 17, 18, 19) ( 5, 8 )
(4, -1, -2, -1) (1, 3, -4, -5) ( 0, 2, 4, 6, 7, 8, 9, 11 ) ( 1 )
(4, -1, -2, -1) (3, 1, -4, -5) ( 0, 2, 4, 5, 6, 7, 8, 9, 11 ) ( 1 )
(4, -1, -2, -1) (3, 2, -3, -7) ( 0, 1, 3, 4, 6, 7, 9, 10, 11, 12, 14, 15 ) ( 2, 16 )
(4, -1, -2, -1) (3, 2, -3, -5) ( 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) —
(4, -1, -2, -1) (1, 1, -4, 2) ( 0, 1, 2, 3, 4 ) —
(4, -1, -2, -1) (1, 0, -4, -1) ( 0, 2, 3 ) —

Table 3. Spectrum estimates from the H0Approximator.
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