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1 Introduction

Alternative scenarios to inflationary cosmology are of interest since it can explain the for-
mation of the Large Scale Structure of our universe as good as inflation (for example,
see [1, 2] for comprehensive reviews on theoretical paradigms of the very early universe
alternative to inflation). The alternative scenarios can also avoid the initial spacetime
singularity, a generic problem in the inflationary cosmology [3, 4]. The removal of initial
singularity is widely acknowledged in the framework of bounce cosmologies (see [5–9] and
some recent reviews in [10–15]). There is another paradigm of the very early universe,
dubbed as the emergent universe scenario [16, 17], in which the universe is emergent from
a quasi-Minkowski spacetime. The scenario was first postulated in the string gas cosmol-
ogy [18], in which a specific pattern for primordial cosmological perturbations has been
predicted [19–23] (also see [24–26] for recent reviews).

Recently, the proposal of the conformal Galilean model [27] has inspired some particu-
lar alternative to inflation cosmologies, such as G-bounce [28, 29] and Galilean Genesis [30].
In particular, the model of Galilean Genesis describes that the universe starts from the
Minkowski spacetime, which corresponds to a specific configuration of the Galilean field
with zero energy density. This configuration is not stable [31], and even a small classi-
cal perturbation can drive the universe to deviate from the original state. Therefore, one
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requires that the Galilean field has to decay into radiation very quickly before the uni-
verse reaches the big rip singularity [32]. Moreover, the perturbations of the Galilean field
could propagate superluminally in the original model. Hence, several generalized Galilean
Genesis models have been developed in the literature [33–37]. However, in the model of
subluminal Galileon Genesis, there will always exist a region of phase space where the
perturbations propagate superluminally (with arbitrarily high speed) when one includes
any matter which is not directly coupled to the Galileon [38]. Furthermore, the gradient
instabilities appear during the transition from the Genesis phase to the epoch immediately
after [39].

In this paper, we explore the realization of the emergent universe scenario depicted
by the Degenerate Higher-Order Scalar-Tensor (DHOST) theory [40–42]. Our model can
gracefully exit the emergent phase and transfer to a radiation dominated period, without
triggering various instabilities. In this model, we deform the kinetic term for the back-
ground scalar field so one could approximately approach the Galilean symmetry in the far
past. The symmetry then is manifestly broken along with the evolution of the scalar field.
Consequently, the big rip singularity disappears, and the state of Genesis is replaced by
a smooth process of the fast roll expansion. Eventually, the universe can evolve into the
radiation-dominated phase with appropriate parameter choices.

However, the sound speed squared c2
s, which controls the propagation of primordial

perturbations, is found to become negative for a short while when the universe exits the
state of quasi-Minkowski spacetime, as encountered by the original Galileon Genesis model
as well as generalized cases [31]. To address this issue, we extend the Galileon action to
the form suggested by the DHOST theory, a natural extension to the Galileon theory. We
find that c2

s can be positive in the whole cosmological evolution with the DHOST coupling.
The present paper is organized as follows. We introduce the cosmology of the previ-

ously studied Galilean Genesis models in section 2, and propose the improved version of
Galilean Genesis (DHOST genesis) in section 3. We study the background dynamics of the
universe for our model in section 4. We provide a detailed perturbation analysis in sec-
tion 5, where the stability of the scalar perturbation is demonstrated, and also discuss the
primordial spectrum of scalar perturbations generated by vacuum fluctuations and thermal
fluctuations. We conclude with a discussion in section 6.

Throughout this paper, we take the sign of the metric to be (+,-,-,-), the canonical
kinetic term is defined as X ≡ 1

2∇µπ∇
µπ, and the reduced Planck mass is taken to be one,

i.e., M2
p ≡ 1/(8πG) = 1.

2 Cosmology of (sub-luminal) Galilean Genesis

We briefly review the cosmology of Galilean Genesis, which is realized by a scalar field
minimally coupled to Einstein gravity. The Lagrangian is given by [30]

L = −f2e2π(∂π)2 + β

2 γ(∂π)4 + γ(∂π)2�π , (2.1)

where the scalar field π is dimensionless. We define the operator � ≡ ∇µ∇µ. For the
original model of Galilean Genesis, the coefficients are set as β = 1 and γ = f3

Λ3 , where f
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and Λ are two model parameters of mass dimension. The Lagrangian has a negative sign
in front of the regular kinetic energy, which is represented by the first term of eq. (2.1).
The second term, which is a positive definite higher-order kinetic energy term, stabilizes
the model. Thus, the combination of the first and second term in eq. (2.1) exhibits the
property of the ghost condensate [43]. This type of Lagrangian enjoys the internal Galilean
invariance π → π + bµx

µ, which has been observed in [33].
When applied into the cosmological background, the above Lagrangian yields the en-

ergy density and the pressure

ρπ = −e2πf2π̇2 + 3
2βγπ̇

4 + 6γHπ̇3 ,

pπ = −e2πf2π̇2 + 1
2βγπ̇

4 − 2γπ̇2π̈ ,

and the equation of motion(EoM) can be obtained by the conservation equation. By solving
the EoM, one can find an interesting solution of a static Minkowski universe if there is,

π = ln
(
− 1
MGt

)
, M2

G ≡
2f2

3βγ . (2.2)

In this solution, it is easy to check that the energy density of the Galilean field ρπ vanishes,
and there is no expansion of the universe. However, the pressure evolves as

pπ = −(2 + β)γ
t4

,

which is negative and non-vanishing. Therefore, the above solution corresponds to the
emergent universe scenario.

In the above model, the fluctuations propagate superluminally around the NEC-
violating background. Thus, an updated version of the subluminal Galilean Genesis was
put forward in [33], where the coefficient β is modified from unity to be an arbitrary con-
stant, i.e., β is required to be between 1 and 4 so that the model is free of instability and
superluminality. However, when considering other matter components in a more realis-
tic universe, that are not directly coupled to the background field, it was shown in [38]
that there always exists a phase space suffering from the superluminality problem. The
result is tightly related to the fact that the Galilean field cannot exit the pre-emergent
phase gracefully unless it has to be assumed to decay into other fields through a defrosting
phase [32].

3 Improved DHOST Genesis

To address the general issue existing in cosmologies of Galilean Genesis, we would like
to improve the model by designing a graceful exit mechanism for the Galilean field. An
updated version of Galilean Genesis Lagrangian without external matter is given by

Lπ = −f2g(π)(∂π)2 + β

2 γ(∂π)4 + γ(∂π)2�π , (3.1)
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Figure 1. Plots of the coefficient g as a function of the scalar field π. The solid blue curve depicts
the form of g(π) in the eq. (3.1), and the solid red line represents the traditional model of Galilean
Genesis as described by eq. (2.1).

where the coefficients β and γ are the model parameters, same as the previous Galilean
Genesis model. Compared with eq. (2.1), the only difference is the appearance of a function
g(π) suggested to be

g(π) = e−2π − e2π

e−4π + e4π .

It is easy to see that g(π) goes to e2π when π � −1, and the traditional Lagrangian
of Galilean Genesis is recovered in this limit. In this regime, the sign in front of the
conventional kinetic term (∂π)2 is negative, and correspondingly, the model shares the
property of the ghost condensate due to the inclusion of the positive definite term (∂π)4.
However, when π � 1, g(π) approaches to −e−2π and therefore yields a sign change in
front of the conventional kinetic term. If π can evolve to the region π > 0, the universe can
transfer from the emergent universe phase to an expanding phase. We depict the function
g(π) and the traditional choice g(π) ≡ e2π in figure 1 to demonstrate their difference.

However, the improved form of Lagrangian in eq. (3.1) does not solve the gradient
instability problem. Thus, we extend the scenario into the DHOST theory [40–42] in order
to improve the behavior of c2

s [44]. We give a brief introduction to the DHOST theory in
appendix A,

The action for our updated DHOST Genesis model is

S =
∫
d4x
√
−g
[
− 1 + h

2 R+K (π,X) +G (π,X)�π

− h

4X
(
L

(2)
1 − L

(2)
2

)
+ h− 2XhX

4X2
(
L

(2)
4 − L

(2)
3
)]
, (3.2)

where the first term−R/2 corresponds to the standard Einstein-Hilbert action, andK(π,X)+
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G(π,X)�π is the Galileon terms, whose detailed form is taken to be:

K(π,X) = −2f2g(π)X + 2βγX2 , G(π,X) = 2γX .

Finally, h ≡ h(X) is a function of X only which represents the DHOST coupling, and
hX ≡ (∂h)/(∂X). In our case h(X) is simply taken to be

h(X) = d1X + d2X
2 ,

and the DHOST Lagrangian is defined as

L
(2)
1 = πµνπ

µν , L
(2)
2 = (�π)2 ,

L
(2)
3 = (�π)πµπµνπν , L(2)

4 = πµπ
µρπρνπ

ν .

The action (3.2) does not contain any Ostrogradski ghost degree of freedom, and in
the next two sections, we shall analyze the cosmological evolution and show the absence of
instabilities as well.

4 Background dynamics

In this section, we work with the background dynamics of our improved DHOST Genesis
Model. We present the dynamical equation and analysis of the stability issue at the back-
ground level in subsection 4.1. After that, we solve the background dynamics numerically
and give a parameterization in subsection 4.2.

4.1 Equation of motions for background dynamics and its stability issue

We consider a spatially flat FRW background ds2 = dt2 − a2(t)d~x2 and calculate the
Friedman equations by the variation of eq. (3.2) with respect to the metric as

3H2 = −f2g(π)π̇2 + 3
2βγπ̇

4 + 6γHπ̇3 , (4.1)

−2Ḣ − 3H2 = −f2g(π)π̇2 + 1
2βγπ̇

4 − 2γπ̇2π̈ . (4.2)

Note that the function h(X) does not appear in the background eq. (4.1) and eq. (4.2), so
the DHOST term has no contribution to the background dynamics. Thus, the analysis of
Galileon Genesis is valid in our model.

We may get the energy density ρπ and the pressure pπ by the Friedmann equation
3H2 = ρπ and −2Ḣ = ρπ + pπ, which implies the equation of state(EoS) parameter to
be wπ ≡ pπ/ρπ . We also define a useful parameter εH = − Ḣ

H2 , which characterizes the
background evolution.

In addition, we can write down the generalized Klein-Gordon equation by varying the
Lagrangian with respect to the scalar field π as

Pπ̈ + F π̇ = 0 , (4.3)
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where the form of F is given by

F =− 6βγ2π̇5 − 18γ2Hπ̇4 + 6f2γg(π)π̇3 + 6βγHπ̇2

+ 18γH2π̇ − f2g,ππ̇ − 6f2g(π)H , (4.4)

which corresponds to the friction term of the generalized Klein-Gordon equation. The sub-
script “,π” denotes the derivative with respect to π. For a canonical scalar field, the friction
term is 3H, which can be read from the last term of eq. (4.4), when f2g = −1/2. However,
in our case, this term also depends on other parameters, namely, the time derivative of the
scalar field π̇, the Hubble expansion rate H, and its time derivative Ḣ. Note that, in the
above expression, we have already used the second Friedmann equation. If there is any
other matter component presented in the Friedmann equation, the expression for F will
also depend on the energy density and pressure of the other matter field.

The other parameter P, which appears in front of the term π̈ in eq. (4.3), is expressed as

P = 6γ2π̇4 + 6βγπ̇2 + 12γHπ̇ − 2f2g(π) ,

and characterizes the positivity of the kinetic energy of the model. If P is negative, then
there will be a ghost mode with energy state unbounded from below, leading to quantum
instability. Thus, we expect P to be positive definite throughout the cosmological evolution.
It is obvious that P is positive at the high energy regime due to the presence of π̇4 term
with π̇ to be large enough. A large π̇ exists during the whole pre-emergent phase, where the
higher derivative terms are dominant. Afterward, if the universe exits the pre-emergent
phase with a sign change in front of the π̇2 term, then the function P can keep being
positive at low energy scales. Therefore, the model can be free of the ghost issue, and this
will be verified later in detailed numerical analysis.

4.2 Numerical evaluation and parameterization

It is hard to analytically solve eq. (4.1) and eq. (4.2), so we studied the background dynam-
ics numerically. We choose a specific value of model parameters as Λ = 1, β = 3.9, f = 10−2

(thus γ = 10−6), d1 = 0.004 and d2 = 0.18. The initial condition for the Galilean field is
imposed to be the quasi-Minkowski solution described by eq. (2.2) in the limit t → −∞.
Our numerical results are presented in figure 2 and figure 3. All dimensional parameters
are plotted in units of the reduced Planck mass Mp ≡ 1, and the horizontal axis denotes
the cosmic time t. The numerical results of the background geometry in figure 2 show a
pre-emergent phase before t = 0. The EoS parameter of the DHOST field w becomes 1/3
at the late time, which implies that the emergent universe gracefully exits to a radiation
dominated universe. The positivity of P, which labels the stability of the background
evolution of the DHOST field, is also illustrated in figure 3.

From figure 2, we see that the background dynamics can be separated into three
periods. Before the emergent event t = 0, w approaches to minus infinity, and the scale
factor a is almost constant. After the emergent event, w experience a rapid change and
approximately becomes constant for a short time. Finally, after some certain time tB, the
scalar field becomes much larger than 1, and the DHOST action is negligible compared

– 6 –



J
H
E
P
0
1
(
2
0
2
1
)
1
4
1

-1000 -500 0 500 1000

1.000

1.005

1.010

1.015

1.020

a

t

(a)

-1000 -500 0 500 1000

0.0

5.0x10
-6

1.0x10
-5

1.5x10
-5

2.0x10
-5

-1.2 -0.8 -0.4 0.0 0.4

0

1x10
-5

2x10
-5

H

t

(b)

-1000 -500 0 500 1000

-2

-1

0

1

2

-0.4 -0.3 -0.2 -0.1 0.0

-3x10
5

-2x10
5

-1x10
5

0

1x10
5w

t

(c)

Figure 2. Evolution of the background geometry as a function of cosmic time t. The scale factor
a, the Hubble parameter H, and the EoS parameter w is plotted by red, blue, and green solid line,
respectively. The approximate behavior of w, i.e. w ' 1 shortly after the genesis and w ' 1/3 for
the far future, is exhibited by the pink dash line.
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Figure 3. Evolution of the DHOST field π(represented by the solid orange curve), and its time
derivative π̇(represented by the solid purple curve), as a function of cosmic time t. We also plot out
the function P, whose positive behavior is required to stabilize the dynamics of the DHOST field
π, as discussed in the last paragraph of subsection 4.1.

to the Galileon part. This happens because π̇ is comparably small, so the matter part of
eq. (3.2) returns to an ordinary matter, and w is approximately one-third.

Based on the above observations, we make the following parametrization on the dy-
namics of the background geometry:

w =


−∞ if t < 0,

1 if 0 < t < tB,

1/3 if t > tB.

For a perfect fluid with constant w, the scale factor evolves as

a(t) ' tp , p ≡ 2
3(1 + w) . (4.5)

There should be no infinity for EoS parameter w in real physics, so we need to explain
w ' −∞ more carefully. If we substitute the approximate solution from eq. (2.2) into
eq. (4.1) and eq. (4.2), we find pπ = −(2 + β)γ/t4 + O(t−6) and ρπ = (2+β)2γ2

12t6 + O(t−8).
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This allows us to give an asymptotic behavior of w and εH at t→ −∞

w = − 12
γ(2 + β) t

2 , εH = − 18
γ(2 + β) t

2 . (4.6)

The asymptotic behavior of the background parameter at t→ −∞, to leading order is

Ḣ = (2 + β)γ
2t4 , H = −(2 + β)γ

6t3 , P = 3βγ
t2

. (4.7)

5 Perturbation analysis

This section is organized as follows. In subsection 5.1, we analyze the general property of
scalar perturbation and confirm that both ghost and gradient instabilities are absent in our
model. In subsection 5.2, we deduce the dynamical equation for the scalar perturbation
and discuss its general properties. We consider two different mechanisms for the primordial
cosmological perturbations, the scalar perturbations generated by vacuum fluctuations in
subsection 5.3 and by thermal fluctuations in subsection 5.4, respectively, and summarize
the corresponding scalar power spectrum in 5.5.

For completeness, we also study the tensor perturbations in our model in appendix B.
We show that the tensor perturbations are stable (i.e., no ghost mode and no gradient
instability), but may encounter the superluminality problem.

5.1 General analysis on scalar modes and the stability check

We study the perturbation theory of the present model by applying the ADM decomposi-
tion

ds2 = N2dt2 − hij(dxi +N idt)(dxj +N jdt) ,

where N and N i are the lapse function and shift vector, respectively.
We restrict our interest in scalar perturbations, and analysis on tensor perturbations is

presented in appendix B. For simplicity, we choose the uniform field gauge with δπ = 0 and
hij = a2e2ζδij . Now ζ represents the propagating scalar degree of freedom. We have already
acquired the form of quadratic action for linear perturbations in our previous work [45] as

S2,s =
∫
dτd3x

z2
s

2
[
ζ ′2 − c2

s (∂iζ)2
]
, (5.1)

where z2
s and c2

s take the form

z2
s = a2π̇2P

(γπ̇3 −H)2 , (5.2)

and (
− z2

s

2a2

)
c2
s = 1 + h+ 1

a

d

dt

[
a
(
hX π̇

2 − h− 1
)

H − γπ̇3

]
, (5.3)

where we use the fact hπ ≡ (∂h)/(∂π) = 0.
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Figure 4. The dynamics of z2
s(the solid green curve in the left panel) and c2

s(the solid red curve in
the right panel) as a function of cosmic time t. The positivity of z2

s and c2
s is explicitly illustrated.

We also show the approximated behavior of c2
s, which equals 1 shortly after the genesis and turns

to 1/3 at the far future by a pink dash line.

It is easy to see that the positivity of P, which has been analyzed in the previous
section, can lead to the positivity of z2

s , so the ghost problem z2
s < 0 is absent. The form

c2
s is more complicated than z2

s , so we directly examine its positivity by numerical analysis
in figure 4. From the numerical result, we see that z2

s and c2
s are strictly positive. Hence

the gradient instability and ghost instability are absent in our model. The remaining issue
is the superluminal propagation of DHOST field π as c2

s would exceed unity in the vicinity
of t = 0, as shown in figure 4b. We shall discuss this issue in the conclusion section and
appendix B.

5.2 Dynamics of scalar perturbations

We follow the standard way to evaluate the power spectrum of late-time cosmological
perturbations, as previously applied to inflationary cosmology [46, 47], string gas cosmol-
ogy [19, 21], and bounce cosmology [48]. For linear scalar perturbations, we can get the
dynamical equation by varying eq. (5.1) with respect to scalar perturbation parameter ζ

ζ ′′k + 2z′s
zs
ζ ′k + c2

sk
2ζk = 0 , (5.4)

where ζk is the Fourier-transformed ζ, representing the scalar perturbation mode with
wavenumber k. Defining Mukhanov-Sasaki (MS) variable vk = zζk, we get the standard
MS equation [49–51],

v′′k +
(
c2
sk

2 − z′′s
zs

)
vk = 0 . (5.5)

In the standard treatment, we separate the solution of eq. (5.5) into two different
scales. One is the sub-Hubble scale when the matter fluctuation part c2

sk
2 dominates

over the metric part z′′/z, and second one is the super Hubble scale in which the metric
dependent term z′′/z becomes dominant over term c2

sk
2.
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Figure 5. A sketch of the evolution of length scales in the emergent universe scenario. The vertical
axis is the physical spatial coordinate Xph, and the horizontal axis is the cosmic time t. The physical
wavelength λph = a/k of the mode with comoving wavenumber k is depicted in solid green line,
while the Hubble radius λH = |H|−1 is depicted in the blue curve. We also draw the Planck length
λp = M−1

pl in the red line for comparison. The wavenumber is taken to be k = 10−14.

We firstly consider the horizon crossing. Conventionally, the condition for Hubble
crossing of a wave mode k is

kcs ' a(tH)H(tH) , (5.6)

where tH ≡ tH(k) denotes the cosmic time of Hubble-crossing for a given wavenumber k.
We recover cs in eq. (5.6) since c2

s is not always equal to unity in our model.
We plot the evolution of the length scales in figure 5, in which we take a special

wavenumber k = 10−14 and cs = 1. The numerical results show that the horizon crossing
happens in the pre-emergent phase. This is generic for both vacuum fluctuation and
thermal fluctuation in our model: the Hubble radius becomes almost constant shortly after
the emergent event with a small value λH = O(105), as we see from figure 5. Compared to
the upper limit of the observed wavenumber kmax = O(10−8), which indicates a physical
wavelength larger than a/kmax = 108, we see that all perturbation modes become super-
horizon at the emergent event. Hence in our model, the horizon crossing should happen in
the pre-emergent phase t < 0.

Secondly, we consider the super-Hubble case, where the dynamics is determined mainly
by the background geometry. It is well-known that, for a cosmological background filled
with a matter of constant EoS parameter w, the general solution to eq. (5.5) on the super-
Hubble scale is

ζk = D + S

(η)ν ,

where D and S are constants determined by the matching condition, and ν ≡ 3(1−w)/(1+
3w). It is clear that after horizon crossing, there propagate two linearly independent
modes. The constant mode is denoted as “D-mode”, and the decreasing mode is denoted
as “S-mode”. Conventionally, it is assumed that the D-mode dominates the scalar power
spectrum since the S-mode will vanish as the universe expands. So we shall consider the
scale invariance generated by the D-mode only.
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Finally, we discuss the matching conditions for cosmological perturbations, where the
equation of state w undergoes a sharp jump. We follow the technique developed in [52, 53],
which indicates that vk and v′k are continuous across the matching surfaces, i.e. t = 0 and
t = tB. In other words, we can ignore the effect of the matching process on the scalar
perturbation vk, and hence the scalar power spectrum.

5.3 Vacuum fluctuations

In this subsection, we consider the case where the primordial perturbation comes from the
quantum vacuum fluctuations of the DHOST field π on sub-Hubble scales. In principle, we
should study the dynamical equation of vk in each period, then connect the perturbation
by appropriate matching conditions and finally study the scalar power spectrum when the
perturbation becomes super-Hubble scale. However, a simple observation from figure 2
reveals that a(t) ' 1 and H ' 2 × 10−5 after the emergent event. Since the typical co-
moving wavelength of observed scalar perturbation is k � 10−8, we see aH � k when
t > 0, and the perturbation of observational interest is super-Hubble scale. According to
the above analysis, it is sufficient to take the scalar perturbation ζk as constant after the
horizon crossing. Then we only need to consider the dynamics of scalar perturbation in
pre-emergent phase.

The action for the linear perturbation in eq. (5.1) is that of a harmonic oscillator, so
we impose the quantum vacuum initial conditions

vk(η)→ e−icsk(η−η0)
√

2k
, (5.7)

where η0 is some constant representing the freedom of choosing initial phase.
At the far past, we can get the function c2

s,0 and z2
s with the help of the asymptotic be-

havior from eq. (4.7) and eq. (2.2), and use the fact that the conformal time approximately
equals to the cosmic time t since a is approximately equal to 1, which reads

c2
s,0 ∼

4− β
β
' 0.0085, (5.8)

z2
s ∼

108β
(β − 4)2γ

a2η2 , zs ∝ aη . (5.9)

We find that c2
s remains almost constant in the pre-emergent phase, which can also be read

from figure 4.
As the time approaches t ∼ −2, the approximation breaks down. However, the scalar

perturbation will have an observational window corresponding to 15 effective e-flods [54],
which is much larger than the time interval −2 < t < 0. So the shape of the observed
scalar power spectrum cannot be influenced in this short period. Hence in this paper, we
will ignore the break down of the approximation (5.8) during the short time interval.

The background effect appearing in the MS equation is

z′′s
zs

= 2H
η

+H2 +H ′ ' (2 + β)γ
6η4 . (5.10)
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Then, eq. (5.5) takes the form as

v′′k +
(
c2
s,0k

2 − (2 + β)γ
6η4

)
vk = 0 . (5.11)

At far past, the dominant term in the parentheses of eq. (5.11) is c2
s,0k

2. For a certain
conformal wavenumber k, the term (2+β)γ/(6η4) becomes comparable to c2

s,0k
2 at the time

ηk = −
[

(2 + β)γ
6c2
s,0k

2

] 1
4

→ ηk ≤ −1000 , (5.12)

where the upper bound is taken when k takes the upper limit of observed wavelength
kmax = 10−8. This again verifies the argument in subsection 5.2 that the perturbation
should cross the horizon at t < 0.

The dynamics of the perturbation can be approximately separated into two parts.
For each wave mode k, the perturbation vk will evolve with the dominance of c2

s,0k
2 until

η = ηk, then it crosses the horizon and becomes almost constant. The general solution to
eq. (5.11) is

vk(η) = C0,+e
ics,0kη + C0,−e

−ics,0kη , (5.13)

where C0,+ and C0,− are integration constants. One may comprehensively understand the
eq. (5.13) by noticing that, in the pre-emergent phase, the background geometry is quasi-
Minkovskian, so the background should contribute little to the perturbation dynamics, and
vk propagates as a plane wave.

Imposing the initial condition from eq. (5.7) to the general solution in eq. (5.13),
C0,+ and C0,− should have k−

1
2 dependence. At the Hubble crossing for a fixed k, the

k-dependence of the scalar perturbation vk will be

vk(ηk) ∝ k−
1
2 e2ics,0k(ηk−ηk,c) , (5.14)

where ηk,c represents a phase factor. The scalar power spectrum becomes

Pζ ∝ k3
∣∣∣∣vk(ηk)z(ηk)

∣∣∣∣2 ∝ k3 . (5.15)

The expression for the scalar power spectrum in eq. (5.15) tells that the vacuum
fluctuation of the DHOST field itself cannot generate a scale-invariant power spectrum.
This is a common feature in the original Galileon Genesis models, who fails to produce scale-
invariant curvature perturbations without invoking the curvaton mechanism [30, 33, 34, 55]
unless one generalize the Galileon Genesis model at the cost of producing a strongly blue
spectra of tensor perturbation [36, 56, 57]. This feature also happens in other emergent
universe scenarios. For example, in the emergent universe scenario constructed by quintom
matter, it is found that the matter field will remain in the vacuum state and hence the
scalar power spectrum is always blue [58], unless introducing a curvaton with specific kinetic
coupling to the original matter field [59]. It is then interesting to investigate whether one
can impose curvaton mechanism or improve the model to find a mechanism of generating
a scale-invariant primordial power spectrum of curvature perturbation in follow-up work.
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5.4 Thermal fluctuations

In this subsection, we consider the case where the primordial perturbation is generated by
fluctuations from a thermal gas. We assume that the thermal gas has negligible contribution
to the background dynamics, then we only need to consider its influence on perturbation.

We begin with the case where the thermal gas is composed of point particles with
an arbitrary EOS wr. The thermal fluctuation has been studied previously in string gas
cosmology [21] and bounce cosmology [48]. In each case, the scale invariance can be possibly
generated by the thermal fluctuation mechanism. We will closely follow the methods in
the above two papers.

From the stress-energy conservation equation, it follows that the energy density and
temperature of the thermal gas change with a function of the scale factor as

ρr ' a−3(1+wr) , T ' a−3wr . (5.16)

Now we can get the heat capacity of the gas by

CV (R) = R3 ∂ρ

∂T
' R3T

1
wr , (5.17)

where R ≡ R(k) is the physical length corresponding to the co-moving momentum scale k,
and we may take it as the Hubble radius R ∼ 1/H. Up to a constant of order O(1), the
power spectrum of the metric perturbation at horizon crossing moment, generated by the
thermal gas [48], is

PΦ(k)(tH(k)) = 1
4
CV (R)
H4
tH(k)

T 2

R6 , (5.18)

where HtH(k) is the Hubble parameter at horizon crossing. Combining eq. (5.16), eq. (5.17)
with eq. (5.18), and applying the Hubble crossing condition k = aH ' H, we get

PΦ(k)(tH(k)) ∼ k−1 . (5.19)

Making use of the relation between gravitational potential Φ and ζk

Φk = −a
2Ḣ

k2H
ζ̇, (5.20)

and the fact that vk oscillates with frequency k/a on sub-Hubble scales, one has

Pζ(k)(tH(k)) = k2

a2H2ε 2
H

PΦ ∼ k
4
3PΦ. (5.21)

In the last step we have used the background equation from eq. (4.6). Thus, we obtain

Pζ(k)(tH(k)) ∼ k
1
3 , (5.22)

which gives a blue tilted spectrum.
We then discuss two more nontrivial cases where the thermal dynamics is governed by

string theory. The first case is the Gibbons-Hawking (GH) radiation [60], which has been
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studied extensively in the context of developments in string theory, particularly in light of
the role of holography [61]. the heat capacity for a thermal GH radiation is

CV (R) ∼ R2, (5.23)

which is derived from the average energy of GH radiation 〈E〉 = TR2. Combining eq. (5.18)
with eq. (5.23) and use the definition of the Gibbons-Hawking temperature associated with
the instantaneous Hubble radius T = 1/R ∼ H, the scalar power spectrum is

PΦ(k) ∼ k2. (5.24)

With the help of eq. (5.21), we obtain

Pζ(k) ∼ k
10
3 . (5.25)

The second case corresponds to the thermal fluctuation from the string gas. As revealed
in string gas cosmology [19, 21, 25, 62–64], the gas of closed strings induces a scale-invariant
spectrum with a slight red tilt of scalar metric fluctuations on all scales smaller than the
Hubble radius, as long as the fluctuations exit the Hubble radius at the end of a quasi-static
Hagedorn phase.

5.5 Scale invariance of power spectrum

We have considered primordial perturbations originated from the vacuum and thermal
fluctuations. The results are summarized as follows:

Pζ =


k3, vacuum fluctuations
k1/3, thermal particle fluctuations
k10/3, Gibbons-Hawking radiation
k0− , string gas

(5.26)

where the symbol k0− represents a scale-invariant spectrum with a slight red tilt. The
results show that thermal fluctuations from a string gas can provide a scale-invariant power
spectrum, which is a generic feature of string gas cosmology [19, 21, 25, 64]. The other
situations always give a blue scalar power spectrum. We will extend our model in the
future work to generate a nearly scale-invariant spectrum with mechanisms other than the
string gas paradigm.

6 Conclusion and discussions

In this paper, we present a realization of the emergent universe scenario by introducing a
deformed kinetic term and a DHOST coupling to the original Galileon Genesis model. We
first investigate the cosmological evolution and show that the universe can gracefully exit
the emergent phase and transfer to a radiation dominated phase. The model can meet the
standard thermal history of the universe without additional mechanisms like the decay of
the Galileon field into radiation. We then study the cosmological perturbation and show
that the model is free from gradient instability problem.

– 14 –



J
H
E
P
0
1
(
2
0
2
1
)
1
4
1

We have also investigated various theoretical conditions for deriving a nearly scale-
invariant power spectrum for primordial scalar perturbations. We find that the scale in-
variance cannot be generated in our model through the vacuum fluctuation of the DHOST
field. Fluctuations from thermal string gas can generate a scale-invariant power spectrum
with a slightly red tilt, while that from thermal gas of point particles and GH radiation will
always result in a blue spectrum. It would be interesting to see whether a scale-invariant
primordial power spectrum of curvature perturbation can be achieved with curvaton mech-
anism [65, 66] or improving the current model. It is also crucial to confront our model with
various cosmological constraints, including the high precision CMB measurement of the
primordial power spectrum, the tensor-to-scalar ratio, primordial non-gaussianities, and so
on. All these topics are to be studied in the following-up work.

Moreover, the sound speed square of both scalar and tensor perturbations will be
larger than unity near the emergent event, triggering the superluminality problem. It
has been pointed out that this issue is a generic property for cosmological applications of
Galilean/Horndeski theories [67–70]. We argued that for the DHOST cosmology, this issue
is quite model-dependent [45]. Thus, we expect careful model construction of DHOST
Genesis may avoid the superluminality issue.

We end by commenting that it is essential to study the particle production process for
the universe depicted by our model, which will be addressed in a follow-up study.
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A A brief introduction to DHOST theory

In this appendix, we give a brief introduction to the DHOST theory. DHOST theories are
defined to be the maximal set of scalar-tensor theories in four dimensional space-time that
contain at most three powers of second derivatives of the scalar field π, while propagating
at most three degrees of freedom, and Galileon theory is the specific case of DHOST theory
where EoM of the scalar field remains second order.
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The most general DHOST action involving up to cubic powers of second derivative of
the scalar field π can be written as

S[g, π] =
∫
d4x
√
−g
[
h2(π,X)R+ Cλνρδ(2) πλνπρδ

+ h3(π,X)Gλνπλν + Cλνρδαβ(3) πλνπρδπαβ
]
. (A.1)

The tensors C(2) and C(3) represent the most general tensors constructed with the metric
gλν as well as the first derivative of the scalar field, which is denoted as πλ ≡ ∇λπ. The
symbol πλν denotes the second derivative πλν ≡ ∇λ∇νπ,and the canonical kinetic term X

is defined as X ≡ 1
2∇

νπ∇νπ. Exploiting the symmetry in eq. C(2) and eq. C(3), one can
reformulate eq. (A.1) to be

Cλνρδ(2) πλνπρδ + Cλνρδαβ(3) πλνπρδπαβ ≡
5∑
i=1

aiL
(2)
i +

10∑
j=1

bjL
(3)
j ,

where ai’s and bi’s depend on π and X. We only need the quadratic DHOST terms, so we
consider all bj terms to vanish in our model.

The Lagrangian coupling to ai’s are defined as

L
(2)
1 = πµνπ

µν , L
(2)
2 = (�π)2 , L

(2)
3 = (�π)πµπµνπν ,

L
(2)
4 = πµπ

µρπρνπ
ν , L

(2)
5 = (πµπµνπν)2 ,

and to make the theory not propagating the ghost degree of freedom, the form of ai’s are
severely constrained. There are six possible combinations of ai’s which can give a healthy
action without ghost and for our purpose we shall concentrate on the type (2)N–II DHOST
theory, where there are three free functions h2, a4 and a5, and the others are constrained by

a2 = −a1 = h2
2X , a3 = h2 − 2Xh2X

2X2 . (A.2)

We can see from eq. (A.2) that the action in (3.2) is of the type (2)N–II DHOST
theory, so our model is free from Ostrogradsky instabilities.

B Tensor perturbations

In this appendix, we work out the tensor perturbations of our model. We will closely
follow the technique developed in [71]. The quadratic action for tensor modes in the
FLRW background takes the generic form as

S2,T (General) =
∫
dtd3x

a3

2
(
γ̇ijĜij,klγ̇kl − γijŴ ij,klγkl

)
, (B.1)

in which γij are tensor perturbations and Ĝ,Ŵ are determined by the theory. Then, we
can substitute eq. (3.2) into eq. (B.1) and get

S2,T (DHOST) =
∫
dηd3x

a2

8
[
γ′2ij − (1 + h)(∇kγij)2

]
, (B.2)
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Figure 6. The dynamics of the sound speed of tensor perturbation c2
T as a function of cosmic

time t. The positivity of c2
T is exhibited in the whole cosmological process, but c2

T will exceed
c2 = 1 in the neighborhood of t = 0.

where η is the conformal time defined by dη = dt/a, and ′ represents differentiation with
respect to η. One can straightforwardly see from eq. (B.2) that the ghost problem is absent
in our case. The propagation speed of tensor modes is expressed by c2

T = 1 + h. In order
to ensure the tensor modes of our model are free from gradient instability, the condition of
1 + h > 0 is required to be satisfied.

We numerically plot the sound speed of tensor perturbation c2
T in figure 6. We illustrate

that c2
T is positive during the whole cosmological process, but it will exceed the speed of

light squared, i.e., c2 > 1 for a short time interval near the genesis event, triggering the
superluminality problem. The existence of superluminality is a general feature in scalar-
tensor theory beyond Horndeski [67], and here we shall argue that superluminality does not
necessarily correspond to acasuality [69, 70, 72–74]. Still, it is interesting to see whether
we can develop a genesis model without the superluminality issue.
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any medium, provided the original author(s) and source are credited.

References

[1] R.H. Brandenberger, Alternatives to the inflationary paradigm of structure formation, Int. J.
Mod. Phys. Conf. Ser. 01 (2011) 67 [arXiv:0902.4731] [INSPIRE].

[2] R.H. Brandenberger, Introduction to Early Universe Cosmology, PoS ICFI2010 (2010) 001
[arXiv:1103.2271] [INSPIRE].

[3] A. Borde and A. Vilenkin, Eternal inflation and the initial singularity, Phys. Rev. Lett. 72
(1994) 3305 [gr-qc/9312022] [INSPIRE].

[4] A. Borde, A.H. Guth and A. Vilenkin, Inflationary space-times are incompletein past
directions, Phys. Rev. Lett. 90 (2003) 151301 [gr-qc/0110012] [INSPIRE].

[5] V.F. Mukhanov and R.H. Brandenberger, A nonsingular universe, Phys. Rev. Lett. 68
(1992) 1969 [INSPIRE].

[6] R.H. Brandenberger, V.F. Mukhanov and A. Sornborger, A cosmological theory without
singularities, Phys. Rev. D 48 (1993) 1629 [gr-qc/9303001] [INSPIRE].

– 17 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1142/S2010194511000109
https://doi.org/10.1142/S2010194511000109
https://arxiv.org/abs/0902.4731
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0902.4731
https://doi.org/10.22323/1.124.0001
https://arxiv.org/abs/1103.2271
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1103.2271
https://doi.org/10.1103/PhysRevLett.72.3305
https://doi.org/10.1103/PhysRevLett.72.3305
https://arxiv.org/abs/gr-qc/9312022
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9312022
https://doi.org/10.1103/PhysRevLett.90.151301
https://arxiv.org/abs/gr-qc/0110012
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0110012
https://doi.org/10.1103/PhysRevLett.68.1969
https://doi.org/10.1103/PhysRevLett.68.1969
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C68%2C1969%22
https://doi.org/10.1103/PhysRevD.48.1629
https://arxiv.org/abs/gr-qc/9303001
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9303001


J
H
E
P
0
1
(
2
0
2
1
)
1
4
1

[7] Y.-F. Cai, T.-t. Qiu, R. Brandenberger and X.-m. Zhang, A Nonsingular Cosmology with a
Scale-Invariant Spectrum of Cosmological Perturbations from Lee-Wick Theory, Phys. Rev. D
80 (2009) 023511 [arXiv:0810.4677] [INSPIRE].

[8] Y.-F. Cai, D.A. Easson and R. Brandenberger, Towards a Nonsingular Bouncing Cosmology,
JCAP 08 (2012) 020 [arXiv:1206.2382] [INSPIRE].

[9] D. Yoshida, J. Quintin, M. Yamaguchi and R.H. Brandenberger, Cosmological perturbations
and stability of nonsingular cosmologies with limiting curvature, Phys. Rev. D 96 (2017)
043502 [arXiv:1704.04184] [INSPIRE].

[10] M. Novello and S.E.P. Bergliaffa, Bouncing Cosmologies, Phys. Rept. 463 (2008) 127
[arXiv:0802.1634] [INSPIRE].

[11] J.-L. Lehners, Ekpyrotic and Cyclic Cosmology, Phys. Rept. 465 (2008) 223
[arXiv:0806.1245] [INSPIRE].

[12] Y.-F. Cai, Exploring Bouncing Cosmologies with Cosmological Surveys, Sci. China Phys.
Mech. Astron. 57 (2014) 1414 [arXiv:1405.1369] [INSPIRE].

[13] D. Battefeld and P. Peter, A Critical Review of Classical Bouncing Cosmologies, Phys. Rept.
571 (2015) 1 [arXiv:1406.2790] [INSPIRE].

[14] R. Brandenberger and P. Peter, Bouncing Cosmologies: Progress and Problems, Found.
Phys. 47 (2017) 797 [arXiv:1603.05834] [INSPIRE].

[15] Y.-F. Cai, A. Marciano, D.-G. Wang and E. Wilson-Ewing, Bouncing cosmologies with dark
matter and dark energy, Universe 3 (2016) 1 [arXiv:1610.00938] [INSPIRE].

[16] G.F.R. Ellis and R. Maartens, The emergent universe: Inflationary cosmology with no
singularity, Class. Quant. Grav. 21 (2004) 223 [gr-qc/0211082] [INSPIRE].

[17] G.F.R. Ellis, J. Murugan and C.G. Tsagas, The Emergent universe: An Explicit
construction, Class. Quant. Grav. 21 (2004) 233 [gr-qc/0307112] [INSPIRE].

[18] R.H. Brandenberger and C. Vafa, Superstrings in the Early Universe, Nucl. Phys. B 316
(1989) 391 [INSPIRE].

[19] A. Nayeri, R.H. Brandenberger and C. Vafa, Producing a scale-invariant spectrum of
perturbations in a Hagedorn phase of string cosmology, Phys. Rev. Lett. 97 (2006) 021302
[hep-th/0511140] [INSPIRE].

[20] R.H. Brandenberger, A. Nayeri, S.P. Patil and C. Vafa, Tensor Modes from a Primordial
Hagedorn Phase of String Cosmology, Phys. Rev. Lett. 98 (2007) 231302 [hep-th/0604126]
[INSPIRE].

[21] R.H. Brandenberger, A. Nayeri, S.P. Patil and C. Vafa, String gas cosmology and structure
formation, Int. J. Mod. Phys. A 22 (2007) 3621 [hep-th/0608121] [INSPIRE].

[22] Y.-S. Piao and E. Zhou, Nearly scale invariant spectrum of adiabatic fluctuations may be
from a very slowly expanding phase of the universe, Phys. Rev. D 68 (2003) 083515
[hep-th/0308080] [INSPIRE].

[23] M. He et al., Differentiating G-inflation from String Gas Cosmology using the Effective Field
Theory Approach, JCAP 12 (2016) 040 [arXiv:1608.05079] [INSPIRE].

[24] T. Battefeld and S. Watson, String gas cosmology, Rev. Mod. Phys. 78 (2006) 435
[hep-th/0510022] [INSPIRE].

– 18 –

https://doi.org/10.1103/PhysRevD.80.023511
https://doi.org/10.1103/PhysRevD.80.023511
https://arxiv.org/abs/0810.4677
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0810.4677
https://doi.org/10.1088/1475-7516/2012/08/020
https://arxiv.org/abs/1206.2382
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.2382
https://doi.org/10.1103/PhysRevD.96.043502
https://doi.org/10.1103/PhysRevD.96.043502
https://arxiv.org/abs/1704.04184
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.04184
https://doi.org/10.1016/j.physrep.2008.04.006
https://arxiv.org/abs/0802.1634
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0802.1634
https://doi.org/10.1016/j.physrep.2008.06.001
https://arxiv.org/abs/0806.1245
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0806.1245
https://doi.org/10.1007/s11433-014-5512-3
https://doi.org/10.1007/s11433-014-5512-3
https://arxiv.org/abs/1405.1369
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.1369
https://doi.org/10.1016/j.physrep.2014.12.004
https://doi.org/10.1016/j.physrep.2014.12.004
https://arxiv.org/abs/1406.2790
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.2790
https://doi.org/10.1007/s10701-016-0057-0
https://doi.org/10.1007/s10701-016-0057-0
https://arxiv.org/abs/1603.05834
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.05834
https://doi.org/10.3390/universe3010001
https://arxiv.org/abs/1610.00938
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.00938
https://doi.org/10.1088/0264-9381/21/1/015
https://arxiv.org/abs/gr-qc/0211082
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0211082
https://doi.org/10.1088/0264-9381/21/1/016
https://arxiv.org/abs/gr-qc/0307112
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0307112
https://doi.org/10.1016/0550-3213(89)90037-0
https://doi.org/10.1016/0550-3213(89)90037-0
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB316%2C391%22
https://doi.org/10.1103/PhysRevLett.97.021302
https://arxiv.org/abs/hep-th/0511140
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0511140
https://doi.org/10.1103/PhysRevLett.98.231302
https://arxiv.org/abs/hep-th/0604126
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0604126
https://doi.org/10.1142/S0217751X07037159
https://arxiv.org/abs/hep-th/0608121
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0608121
https://doi.org/10.1103/PhysRevD.68.083515
https://arxiv.org/abs/hep-th/0308080
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0308080
https://doi.org/10.1088/1475-7516/2016/12/040
https://arxiv.org/abs/1608.05079
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.05079
https://doi.org/10.1103/RevModPhys.78.435
https://arxiv.org/abs/hep-th/0510022
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0510022


J
H
E
P
0
1
(
2
0
2
1
)
1
4
1

[25] R.H. Brandenberger, String Gas Cosmology: Progress and Problems, Class. Quant. Grav. 28
(2011) 204005 [arXiv:1105.3247] [INSPIRE].

[26] R.H. Brandenberger, String Gas Cosmology after Planck, Class. Quant. Grav. 32 (2015)
234002 [arXiv:1505.02381] [INSPIRE].

[27] A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity,
Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].

[28] T. Qiu, J. Evslin, Y.-F. Cai, M. Li and X. Zhang, Bouncing Galileon Cosmologies, JCAP 10
(2011) 036 [arXiv:1108.0593] [INSPIRE].

[29] D.A. Easson, I. Sawicki and A. Vikman, G-Bounce, JCAP 11 (2011) 021 [arXiv:1109.1047]
[INSPIRE].

[30] P. Creminelli, A. Nicolis and E. Trincherini, Galilean Genesis: An Alternative to inflation,
JCAP 11 (2010) 021 [arXiv:1007.0027] [INSPIRE].

[31] M. Libanov, S. Mironov and V. Rubakov, Generalized Galileons: instabilities of bouncing and
Genesis cosmologies and modified Genesis, JCAP 08 (2016) 037 [arXiv:1605.05992]
[INSPIRE].

[32] L. Perreault Levasseur, R. Brandenberger and A.-C. Davis, Defrosting in an Emergent
Galileon Cosmology, Phys. Rev. D 84 (2011) 103512 [arXiv:1105.5649] [INSPIRE].

[33] P. Creminelli, K. Hinterbichler, J. Khoury, A. Nicolis and E. Trincherini, Subluminal Galilean
Genesis, JHEP 02 (2013) 006 [arXiv:1209.3768] [INSPIRE].

[34] K. Hinterbichler, A. Joyce, J. Khoury and G.E.J. Miller, Dirac-Born-Infeld Genesis: An
Improved Violation of the Null Energy Condition, Phys. Rev. Lett. 110 (2013) 241303
[arXiv:1212.3607] [INSPIRE].

[35] S. Nishi, T. Kobayashi, N. Tanahashi and M. Yamaguchi, Cosmological matching
conditionsand galilean genesis in Horndeski’s theory, JCAP 03 (2014) 008
[arXiv:1401.1045] [INSPIRE].

[36] S. Nishi and T. Kobayashi, Generalized Galilean Genesis, JCAP 03 (2015) 057
[arXiv:1501.02553] [INSPIRE].

[37] S. Mironov, V. Rubakov and V. Volkova, Genesis with general relativity asymptotics in
beyond Horndeski theory, Phys. Rev. D 100 (2019) 083521 [arXiv:1905.06249] [INSPIRE].

[38] D.A. Easson, I. Sawicki and A. Vikman, When Matter Matters, JCAP 07 (2013) 014
[arXiv:1304.3903] [INSPIRE].

[39] T. Kobayashi, M. Yamaguchi and J. Yokoyama, Galilean Creation of the Inflationary
Universe, JCAP 07 (2015) 017 [arXiv:1504.05710] [INSPIRE].

[40] D. Langlois and K. Noui, Hamiltonian analysis of higher derivative scalar-tensor theories,
JCAP 07 (2016) 016 [arXiv:1512.06820] [INSPIRE].

[41] J. Ben Achour, M. Crisostomi, K. Koyama, D. Langlois, K. Noui and G. Tasinato,
Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order, JHEP 12
(2016) 100 [arXiv:1608.08135] [INSPIRE].

[42] D. Langlois, M. Mancarella, K. Noui and F. Vernizzi, Effective Description of Higher-Order
Scalar-Tensor Theories, JCAP 05 (2017) 033 [arXiv:1703.03797] [INSPIRE].

[43] N. Arkani-Hamed, H.-C. Cheng, M.A. Luty and S. Mukohyama, Ghost condensation and a
consistent infrared modification of gravity, JHEP 05 (2004) 074 [hep-th/0312099] [INSPIRE].

– 19 –

https://doi.org/10.1088/0264-9381/28/20/204005
https://doi.org/10.1088/0264-9381/28/20/204005
https://arxiv.org/abs/1105.3247
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.3247
https://doi.org/10.1088/0264-9381/32/23/234002
https://doi.org/10.1088/0264-9381/32/23/234002
https://arxiv.org/abs/1505.02381
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.02381
https://doi.org/10.1103/PhysRevD.79.064036
https://arxiv.org/abs/0811.2197
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0811.2197
https://doi.org/10.1088/1475-7516/2011/10/036
https://doi.org/10.1088/1475-7516/2011/10/036
https://arxiv.org/abs/1108.0593
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.0593
https://doi.org/10.1088/1475-7516/2011/11/021
https://arxiv.org/abs/1109.1047
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1109.1047
https://doi.org/10.1088/1475-7516/2010/11/021
https://arxiv.org/abs/1007.0027
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1007.0027
https://doi.org/10.1088/1475-7516/2016/08/037
https://arxiv.org/abs/1605.05992
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.05992
https://doi.org/10.1103/PhysRevD.84.103512
https://arxiv.org/abs/1105.5649
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.5649
https://doi.org/10.1007/JHEP02(2013)006
https://arxiv.org/abs/1209.3768
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.3768
https://doi.org/10.1103/PhysRevLett.110.241303
https://arxiv.org/abs/1212.3607
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.3607
https://doi.org/10.1088/1475-7516/2014/03/008
https://arxiv.org/abs/1401.1045
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.1045
https://doi.org/10.1088/1475-7516/2015/03/057
https://arxiv.org/abs/1501.02553
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1501.02553
https://doi.org/10.1103/PhysRevD.100.083521
https://arxiv.org/abs/1905.06249
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.06249
https://doi.org/10.1088/1475-7516/2013/07/014
https://arxiv.org/abs/1304.3903
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.3903
https://doi.org/10.1088/1475-7516/2015/07/017
https://arxiv.org/abs/1504.05710
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.05710
https://doi.org/10.1088/1475-7516/2016/07/016
https://arxiv.org/abs/1512.06820
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.06820
https://doi.org/10.1007/JHEP12(2016)100
https://doi.org/10.1007/JHEP12(2016)100
https://arxiv.org/abs/1608.08135
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.08135
https://doi.org/10.1088/1475-7516/2017/05/033
https://arxiv.org/abs/1703.03797
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.03797
https://doi.org/10.1088/1126-6708/2004/05/074
https://arxiv.org/abs/hep-th/0312099
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0312099


J
H
E
P
0
1
(
2
0
2
1
)
1
4
1

[44] Y. Cai, Y. Wan, H.-G. Li, T. Qiu and Y.-S. Piao, The Effective Field Theory of nonsingular
cosmology, JHEP 01 (2017) 090 [arXiv:1610.03400] [INSPIRE].

[45] A. Ilyas, M. Zhu, Y. Zheng, Y.-F. Cai and E.N. Saridakis, DHOST Bounce, JCAP 09 (2020)
002 [arXiv:2002.08269] [INSPIRE].

[46] J.M. Bardeen, P.J. Steinhardt and M.S. Turner, Spontaneous Creation of Almost Scale-Free
Density Perturbations in an Inflationary Universe, Phys. Rev. D 28 (1983) 679 [INSPIRE].

[47] R.H. Brandenberger and R. Kahn, Cosmological perturbations in inflationary universe
models, Phys. Rev. D 29 (1984) 2172 [INSPIRE].

[48] Y.-F. Cai, W. Xue, R. Brandenberger and X.-m. Zhang, Thermal Fluctuations and Bouncing
Cosmologies, JCAP 06 (2009) 037 [arXiv:0903.4938] [INSPIRE].

[49] M. Sasaki, Gauge Invariant Scalar Perturbations in the New Inflationary Universe, Prog.
Theor. Phys. 70 (1983) 394 [INSPIRE].

[50] H. Kodama and M. Sasaki, Cosmological Perturbation Theory, Prog. Theor. Phys. Suppl. 78
(1984) 1 [INSPIRE].

[51] V.F. Mukhanov, Quantum Theory of Gauge Invariant Cosmological Perturbations, Sov.
Phys. JETP 67 (1988) 1297 [INSPIRE].

[52] J.-c. Hwang and E.T. Vishniac, Gauge-invariant joining conditions for cosmological
perturbations, Astrophys. J. 382 (1991) 363 [INSPIRE].

[53] N. Deruelle and V.F. Mukhanov, On matching conditions for cosmological perturbations,
Phys. Rev. D 52 (1995) 5549 [gr-qc/9503050] [INSPIRE].

[54] Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys.
641 (2020) A10 [arXiv:1807.06211] [INSPIRE].

[55] K. Hinterbichler, A. Joyce, J. Khoury and G.E.J. Miller, DBI Realizations of the
Pseudo-Conformal Universe and Galilean Genesis Scenarios, JCAP 12 (2012) 030
[arXiv:1209.5742] [INSPIRE].

[56] Y.-F. Cai, J.-O. Gong, S. Pi, E.N. Saridakis and S.-Y. Wu, On the possibility of blue tensor
spectrum within single field inflation, Nucl. Phys. B 900 (2015) 517 [arXiv:1412.7241]
[INSPIRE].

[57] S. Nishi and T. Kobayashi, Reheating and Primordial Gravitational Waves in Generalized
Galilean Genesis, JCAP 04 (2016) 018 [arXiv:1601.06561] [INSPIRE].

[58] Y.-F. Cai, M. Li and X. Zhang, Emergent Universe Scenario via Quintom Matter, Phys.
Lett. B 718 (2012) 248 [arXiv:1209.3437] [INSPIRE].

[59] Y.-F. Cai, Y. Wan and X. Zhang, Cosmology of the Spinor Emergent Universe and
Scale-invariant Perturbations, Phys. Lett. B 731 (2014) 217 [arXiv:1312.0740] [INSPIRE].

[60] G.W. Gibbons and S.W. Hawking, Cosmological Event Horizons, Thermodynamics, and
Particle Creation, Phys. Rev. D 15 (1977) 2738 [INSPIRE].

[61] W. Fischler and L. Susskind, Holography and cosmology, hep-th/9806039 [INSPIRE].

[62] R.H. Brandenberger, S. Kanno, J. Soda, D.A. Easson, J. Khoury, P. Martineau et al., More
on the spectrum of perturbations in string gas cosmology, JCAP 11 (2006) 009
[hep-th/0608186] [INSPIRE].

– 20 –

https://doi.org/10.1007/JHEP01(2017)090
https://arxiv.org/abs/1610.03400
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.03400
https://doi.org/10.1088/1475-7516/2020/09/002
https://doi.org/10.1088/1475-7516/2020/09/002
https://arxiv.org/abs/2002.08269
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.08269
https://doi.org/10.1103/PhysRevD.28.679
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD28%2C679%22
https://doi.org/10.1103/PhysRevD.29.2172
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD29%2C2172%22
https://doi.org/10.1088/1475-7516/2009/06/037
https://arxiv.org/abs/0903.4938
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0903.4938
https://doi.org/10.1143/PTP.70.394
https://doi.org/10.1143/PTP.70.394
https://inspirehep.net/search?p=find+J%20%22Prog.Theor.Phys.%2C70%2C394%22
https://doi.org/10.1143/PTPS.78.1
https://doi.org/10.1143/PTPS.78.1
https://inspirehep.net/search?p=find+J%20%22Prog.Theor.Phys.Suppl.%2C78%2C1%22
https://inspirehep.net/search?p=find+J%20%22Sov.Phys.JETP%2C67%2C1297%22
https://doi.org/10.1086/170726
https://inspirehep.net/search?p=find+J%20%22Astrophys.J.%2C382%2C363%22
https://doi.org/10.1103/PhysRevD.52.5549
https://arxiv.org/abs/gr-qc/9503050
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9503050
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1051/0004-6361/201833887
https://arxiv.org/abs/1807.06211
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.06211
https://doi.org/10.1088/1475-7516/2012/12/030
https://arxiv.org/abs/1209.5742
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.5742
https://doi.org/10.1016/j.nuclphysb.2015.09.025
https://arxiv.org/abs/1412.7241
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.7241
https://doi.org/10.1088/1475-7516/2016/04/018
https://arxiv.org/abs/1601.06561
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.06561
https://doi.org/10.1016/j.physletb.2012.10.065
https://doi.org/10.1016/j.physletb.2012.10.065
https://arxiv.org/abs/1209.3437
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.3437
https://doi.org/10.1016/j.physletb.2014.02.042
https://arxiv.org/abs/1312.0740
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.0740
https://doi.org/10.1103/PhysRevD.15.2738
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD15%2C2738%22
https://arxiv.org/abs/hep-th/9806039
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9806039
https://doi.org/10.1088/1475-7516/2006/11/009
https://arxiv.org/abs/hep-th/0608186
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0608186


J
H
E
P
0
1
(
2
0
2
1
)
1
4
1

[63] N. Kaloper, L. Kofman, A.D. Linde and V. Mukhanov, On the new string theory inspired
mechanism of generation of cosmological perturbations, JCAP 10 (2006) 006
[hep-th/0608200] [INSPIRE].

[64] R.H. Brandenberger, String Gas Cosmology, pp. 193–230, 8, 2008 [arXiv:0808.0746]
[INSPIRE].

[65] V.A. Rubakov, Harrison-Zeldovich spectrum from conformal invariance, JCAP 09 (2009)
030 [arXiv:0906.3693] [INSPIRE].

[66] Y. Wang and R. Brandenberger, Scale-Invariant Fluctuations from Galilean Genesis, JCAP
10 (2012) 021 [arXiv:1206.4309] [INSPIRE].

[67] S. Mironov, V. Rubakov and V. Volkova, Superluminality in beyond Horndeski theory with
extra scalar field, Phys. Scripta 95 (2020) 084002 [arXiv:2005.12626] [INSPIRE].

[68] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity
and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

[69] J.-P. Bruneton, On causality and superluminal behavior in classical field theories:
Applications to k-essence theories and MOND-like theories of gravity, Phys. Rev. D 75
(2007) 085013 [gr-qc/0607055] [INSPIRE].

[70] E. Babichev, V. Mukhanov and A. Vikman, k-Essence, superluminal propagation, causality
and emergent geometry, JHEP 02 (2008) 101 [arXiv:0708.0561] [INSPIRE].

[71] X. Gao and X.-Y. Hong, Propagation of gravitational waves in a cosmological background,
Phys. Rev. D 101 (2020) 064057 [arXiv:1906.07131] [INSPIRE].

[72] J.U. Kang, V. Vanchurin and S. Winitzki, Attractor scenarios and superluminal signals in
k-essence cosmology, Phys. Rev. D 76 (2007) 083511 [arXiv:0706.3994] [INSPIRE].

[73] C. Deffayet, O. Pujolàs, I. Sawicki and A. Vikman, Imperfect Dark Energy from Kinetic
Gravity Braiding, JCAP 10 (2010) 026 [arXiv:1008.0048] [INSPIRE].

[74] D.A. Dobre, A.V. Frolov, J.T. Gálvez Ghersi, S. Ramazanov and A. Vikman, Unbraiding the
Bounce: Superluminality around the Corner, JCAP 03 (2018) 020 [arXiv:1712.10272]
[INSPIRE].

– 21 –

https://doi.org/10.1088/1475-7516/2006/10/006
https://arxiv.org/abs/hep-th/0608200
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0608200
https://arxiv.org/abs/0808.0746
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0808.0746
https://doi.org/10.1088/1475-7516/2009/09/030
https://doi.org/10.1088/1475-7516/2009/09/030
https://arxiv.org/abs/0906.3693
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0906.3693
https://doi.org/10.1088/1475-7516/2012/10/021
https://doi.org/10.1088/1475-7516/2012/10/021
https://arxiv.org/abs/1206.4309
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.4309
https://doi.org/10.1088/1402-4896/ab996a
https://arxiv.org/abs/2005.12626
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.12626
https://doi.org/10.1088/1126-6708/2006/10/014
https://arxiv.org/abs/hep-th/0602178
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0602178
https://doi.org/10.1103/PhysRevD.75.085013
https://doi.org/10.1103/PhysRevD.75.085013
https://arxiv.org/abs/gr-qc/0607055
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0607055
https://doi.org/10.1088/1126-6708/2008/02/101
https://arxiv.org/abs/0708.0561
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0708.0561
https://doi.org/10.1103/PhysRevD.101.064057
https://arxiv.org/abs/1906.07131
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.07131
https://doi.org/10.1103/PhysRevD.76.083511
https://arxiv.org/abs/0706.3994
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0706.3994
https://doi.org/10.1088/1475-7516/2010/10/026
https://arxiv.org/abs/1008.0048
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.0048
https://doi.org/10.1088/1475-7516/2018/03/020
https://arxiv.org/abs/1712.10272
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.10272

	Introduction
	Cosmology of (sub-luminal) Galilean Genesis
	Improved DHOST Genesis
	Background dynamics
	Equation of motions for background dynamics and its stability issue
	Numerical evaluation and parameterization

	Perturbation analysis
	General analysis on scalar modes and the stability check
	Dynamics of scalar perturbations
	Vacuum fluctuations
	Thermal fluctuations
	Scale invariance of power spectrum

	Conclusion and discussions
	A brief introduction to DHOST theory
	Tensor perturbations

