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1 Introduction

Since Wilson [1] much attention both in condensed matter and high energy has been devoted
to the question: can theory B emerge as a low energy limit of theory A? And even possible
concatenations A → B → C → . . .? Effective field theories are undoubtedly important
links in such chains. This paper explores, in a toy model, the possibility that field theory
itself, even at high energy, may arise through a kind of symmetry breaking applied to a
much simpler system, single particle quantum mechanics.

In our toy model, single particle quantum mechanics is represented by theory A with
a finite dimensional Hilbert space of states HA ∼= CN . Initially, and for simplicity, we take
N to be a power of 2, N = 2n, but, as we will see, this choice simplifies the discussion but
may not be essential. We study symmetry breaking to a theory B which is a toy model
for field theory. Theory B has a Hilbert space HB isometric to C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸

n times

but HB

is regarded as describing a system of n interacting bosons, each with two states (a very
similar choice, not explored here, is for HB to describe n interacting spin- 1

2 Fermions). The
difference between models A and B is the probability distribution from which the system
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Hamiltonian, which we think of as the Hamiltonian of the universe, is drawn. In case A, we
consider that the Hamiltonian HA is drawn randomly from the Gaussian Unitary Ensemble
(GUE) Z on su(N), the Lie algebra of the group of symmetries of HA. We consider the
simple Lie group SU(N) to be the symmetry group of HA as overall phase is unobservable.
Since the elements of su(N) are skew-Hermitian, we multiply by −i to get a Hermitian
Hamiltonian. To complete the definition of theory A we specify the metric gij on su(N).
We choose gij to be the (ad-invariant) killing form: 〈a, b〉 ∝ tr(ad(a) ◦ ad(b)). Specifying
the metric makes the distribution Z well-defined and induces a measure on su(N), giving
meaning to the word “randomly” above. In the case gij is the Killing form, the resulting
distribution is the GUE.

Concretely, imagine a particle with access to N states |1〉 , . . . , |N〉, with the system
Hamiltonian HA built by assembling N2 i.i.d real Gaussian random variables into

1. the diagonal entries of HA,

2. and the real and imaginary parts of (HA)ij , i > j with (HA)ij = (HA)ji.

Constructing HA in this way reflects a complete agnosticism on the possible transitions,
making HA the Hamiltonian for a random single particle system.

By contrast, in case of B, some qubit structure has been chosen in the form of an isom-
etry: C2n J∼= C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸

n

. Thus the moduli space of qubits structures is the homogeneous

space
M = U(2n)�U(2)× · · · × U(2)︸ ︷︷ ︸

n

,

where J determines the inclusion. There is now a central definition:

Definition 1.1. A non-singular inner product (i.e. a metric) gij on su(2n) which is not
bi-invariant, knows about qubits (is kaq) if there is a basis {iH1, . . . , iH4n−1} for su(2n)
consisting of principal axes for gij with the property that there is an isomorphism of Lie
algebras

j : u(2)⊗ · · · ⊗ u(2)︸ ︷︷ ︸
n copies

→ u(2n)

such that iHk = j(O1,k ⊗ . . . ⊗ On,k) for 1 ≤ k ≤ 4n − 1, where Oi,k lives in the i-th copy
of u(2); that is, is there is a basis of principal axes which are pure tensors relative to j.

The previous choice J determines j. The notions of isometry and principal axis above
are with respect to a unique (up to scale) bi-invariant metric 〈a, b〉 = 1

dim su(N) tr(ad(a) ◦
ad(b)). Implicitly, this definition exploits the natural inclusion SU(N) ⊂ U(N), since our
gij is defined only on the former.

For clarity, we remark that if the (inverse) bi-invariant metric is used to raise an index
of gij to create a symmetric operator gji , then the principal axes of gij are precisely the
eigenvectors of gji . The reason the definition refers to a basis of principal axes (eigenvectors)
instead of the basis is that in the metrics we encounter there is usually degeneracy (to
numerical precision) so we need the freedom to look within eigenspaces for a basis of
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simple (pure tensor form) eigenvectors. In practice, one might wish to soften the definition
slightly and allow eigenspaces with nearly identical eigenvalues also to be combined, thus
allowing more freedom to find simple linear combinations.

We can generalize the definition above to knows-about-qunits (kaqn). We have used
qubits to define kaq but the reader can imagine other primes or combination of primes not
restricted to 2. In this initial paper, we have not attempted computations in this direction
but expect to study this in future works.

One challenge we face is the large dimension 4n − 3n − 1 of M. To decide if a given
metric gij on su(2n) is or is not kaq, it may be necessary to numerically search M. For
n = 2, we did this on several occasions. But a particularly simple family of kaq metrics
are those where there is a basis of principal axes of gij consisting of Pauli words. The
structure J determines a Pauli-word basis, called PBn on the Lie algebra su(2n) =

{−iX⊗1⊗· · · 1, iY ⊗1⊗· · ·⊗1,−iZ⊗1⊗· · ·⊗1,−iX⊗Y ⊗1 · · ·⊗1, . . . ,−iZ⊗Z⊗· · ·⊗Z},

consisting of all words of length n in the letters {1, X, Y, Z} except the all 1 word which
is in u(2n) but not su(2n). Given J , this basis is canonical up to the action of SU(2) on
each factor.

Hence forth, we normalize all metrics (also the killing form) so that det(gij) = 1. A
very interesting special case of kaq metrics on su(2n) are the previously studied penalty
metrics of [2–4], [5, 6], and [7] where

gij ∝ erw(i)δij (1.1)

where r is some positive constant and w(i) is the weight of the ith Pauli-word meaning the
number of letters it contains, X, Y, or Z, which are different from 1. Of course:

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (1.2)

We should emphasize that kaq metrics are exceedingly rare having roughly square root
the number of parameters as general metrics. A kaq metric needs 4n − 1 parameters to
specify j (on which Aut(su(2n)) acts freely and transitively), and also 4n parameters for
each product of Oi,k’s of which there are 4n − 1 (as 1 ≤ k ≤ 4n − 1). In total this makes
(4n−1)+(4n−1)(4n) = (4n+1)(4n−1) parameters for a kaq metric, whereas the metrics
space gij on su(2n) has dimension 4n(4n−1)

2 .
This paper studies symmetry breaking from theory A to theory B. This is a symmetry

breaking at the level of (probability distributions on) operators, not of states as is familiar,
for example, in the Ginzburg-Landau theory of superconductivity. To do this, we consider
(one of several possible) functionals:

f : {metrics} → R (1.3)

on the space of det = 1 inner products (i.e. normalized metrics) on su(2n) and ask: does f
break the symmetry of the bi-invariant Killing form to a kaq metric?

Let us repeat what we are looking for and why we are looking for it.
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Figure 1. Conjectural symmetry breaking from Killing to kaq.

First the “what”. We are looking for a functional f on metrics which, if minimized,
would confer the usual features of interacting physics on what, at a fundamental level, is
actually a single particle system. The systems (A and B) we study are each fully quantum
mechanical but are each drawn from their separate statistical ensembles: Gaussians defined
from quite different inner products. Because the overwhelming preponderance of kaq
metrics produce measures with infinitesimally small overlap with the ad-invariant measure
(induced by the Killing form), a kaq metric will display observable features of many-body
physics, almost certainly not seen in a Killing-random (GUE) Hamiltonian from theory A.
The distinction is most clear in the special case of penalty metric in which the expected
strength of k-body terms in the Hamiltonian HB, such as

11XY Z . . . ZY︸ ︷︷ ︸
k letters

1 . . . 1 (1.4)

(⊗ is suppressed and the non-identity letters are not required to be consecutive), will decay
exponentially with k.

If one were handed a seemingly random 2n× 2n Hermitian matrix and discovered (not
an easy computational task) that it was mostly captured, in some tensor coordinates, by
low weight terms, one would believe many-body physics was at work. The SYK model
H = ∑

Jijklγiγjγkγl [8] is a (fermionic) illustration. It assembles the system Hamiltonian
for a black hole from random 4-Majorana interactions (analogous to 2-body interactions in
the bosonic case) governed by a complete graph (no “spatial locality”). The SYK model
can easily be enhanced, in the spirit of penalty metrics, to allow exponentially weakening
higher body interactions:

H =
n∑
p=2

econst. p

 ∑
i1,...,i2p

Ji1...i2pγi1 · · · γi2p

 (1.5)

Such Hamiltonians are part and parcel of many-body physics. It would indeed be
surprising to be told that the system was “really” a single particle whose governing Hamil-
tonian had rolled off an unstable equilibrium into a kaq well. This is the surprise we are
investigating.
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Before addressing the “why,” a word about the parameter space {metrics} and the
functionals f we investigate.

The geometry of compact simple Lie groups with bi-invariant metrics is very well
understood [9]. They are symmetric spaces whose geodesics are the cosets of 1-parameter
subgroups. In this case much global information is known: for example, all points on the
cut locus (say from id) are also conjugate points. On the other hand, if the Riemannian
metric is merely left-invariant the geometry is a rich subject of contemporary research.
Local computations are straightforward [10, 11] but global properties are harder to derive
(in [7] it was recently shown that for a fixed constant c > 0 the diameter of the penalty
metrics on SU(2n) is larger by a factor, exponential in n, than the Killing metric).

Choosing a left-invariant metric on a Lie group G is of course the same thing as
choosing an inner product on its Lie algebra g (and moving that inner product about by
the differential of left multiplication). So when we study {metrics} on su(2n) we are really
studying left invariant Riemannian geometries on SU(2n). The normalization condition
det(gij) = 1 ensures a fixed volume for SU(2n) as the metric varies. The penalty metrics
make high weight directions exponentially expensive so a typical HB for such a metric will
consist mostly of low-weight (i.e. few-body) interactions, i.e. look like typical many-body
physics. So we are looking for functionals which break symmetry to penalty metrics or at
least kaq metrics. It is clearly cheating to mention a qubit structure in the definition of
f . f should be defined only from what is intrinsic to noninteracting physics, the structure
constants of su(2n), ckij , and the metric gij .

As geometers, a very natural functional might be f = −diameter. For the Killing
metric, the diameter is π but can be substantially increased by varying gij from id. While
f = −diameter might eventually reward investigation, we must restrict ourselves to study-
ing functionals f where computations are efficient. So we have tried to assemble for study
the most natural functionals built from the tensors gij and ckij . For f , we settled on Ricci
scalar curvature which is easily expressed in terms of gij and ckij , as well as a variety of (cu-
bicly) perturbed finite dimensional Gaussian integrals. The practical reason for studying
these is that it is easy to work out the first few terms of their perturbative expansions in
terms of tensor contraction diagrams. Once (a few terms of) the perturbative expansion is in
hand, there are efficient methods, e.g. Padé approximates [12] to achieve rapid convergence
(to be explored in future works) but merely summing the first few terms is useful when the
coupling k to the cubic term is small. These integrals are described in the next section.

Regrading the accuracy of our methods, a mathematical admission is in order. We
do not have a proof that the integrals we use to define our functional f have an ana-
lytic meaning. This is currently under investigation with preliminary remarks in section 4.
We proceed instead, as one often does in field theory, trusting that the integral expres-
sion, through some regularization, actually defines a function of a (complex) expansion
parameter and trust that detailed information on this function can be extracted from its
asymptotic expansion (possibly post-processed via Padé approximates). Of course, this
issue is not present when f = Ricci scalar curvature.

Finally, why? The Wilsonian dream is that at highest energy the universe has a
simple mathematical description and that any complexity in the apparent physical laws
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boundary CFT dual−−→
(

stringy
bulk theory

)
SSB−−→ ?→ · · · SSB−−→ Standard Model

∪
Quantum mechanics (QM)

(single particle)

Figure 2. A typical Wilsonian dream.

 QM on
Hilbert space
∼= CN

 SSB−−→ boundary CFT dual−−→
(

stringy
bulk theory

)
SSB−−→ ?→ · · · SSB−−→ Standard Model

∪
QM

Figure 3. Dream with prequel.

arose through spontaneous symmetry breaking (SSB). For example:
All the theories in any such story have necessarily been interacting because they are

intended to model an obviously interacting universe. The goal of this paper is to propose,
in the context of a highly restricted toy model, that a prequel is possible. That single
particle quantum mechanics could also be the beginning of the story. Adding quantum
mechanics also to the far left in figure 2, we propose that SSB, at the operator level, could
allow QM to simulate the interacting systems from which the familiar story is told, as
shown in figure 3.

Although the vision is broad, the goal of this paper is modest: explore symmetry
breaking from QM to a kaq-geometry. The reader will naturally wonder when we will
make contact with experiment or observation. Our aim here, is quite low but fundamental:
to address the fact that the universe appears to contain more than one thing. It would
be nice to deduce: the dimension(s) of spacetime, the structure of physical laws, the
existence of fermions, and the value of the fine-structure constant. But the truth is that
we are nowhere near ready to address these questions. However, to the large ensemble of
untouched questions, we would like to add a speculation.

It may have, and should have, seemed unnatural that for theory A, our random finite
dimensional QM system was placed on a Hilbert space of dimension N = 2n. What would
one expect if N was just a randomly selected large integer? Could there still be a symmetry
breaking story to a collection of various qunits? If N is chosen at random in a certain size
range (say 100 digit numbers), we can ask what is the expected size of its largest prime
factor. The answer is that it likely will have about 62 digits. This phenomenon is governed
by the Golomb-Dickman constant ≈ 0.624329989 . . . . Much beyond this is known regarding
the statistics of prime factorizations of large random integers. If N instead of being a power
of 2, is random, perhaps a suitable functional f will break the large system into qunits of
dimensions the prime factors of N .

As a test of our symmetry breaking thesis, one should look near the r.h.s. of figure 3
for some phenomenological residue of a factorization of the initial random integer N . N
should indeed be large. Since the entropy of measured black holes can be 1090 [13, 14]
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we would need n � 1090 and N � 21090 , roughly what was once called Googolplex. To
understand how the prime factorization of a large random integer might be imprinted
into the low energy physics is a major challenge, and one approach to gathering physical
evidence for the symmetry breaking hypothesis that we study here on a mathematical
plane. The distribution of primes is tightly reflected in the Riemann zeta function, and
similar zeta functions built from the length distribution of closed geodesics on a hyperbolic
surface are linked through the Selberg trace formula [15] to the spectrum of the Laplacian
on these surfaces. So statistical properties of factorization could have an audible echo in
string dynamics if we know what to listen for.

Another mathematical possibility to be explored is that the prime 2 is energetically
favored because of the relation to Majorana/Clifford algebras, and that for a general integer
N , SSB will simply round down to a power of 2, splitting the Hilbert space into a direct
sum of glassy physics, and a left-over degrees of freedom. The size of the power of 2
may depend on energy/entropy balance, as there should be many more shallow, smaller
Clifford algebra minima and fewer larger and deeper ones. Leftover degrees of freedom may
separately organize themselves into additional interacting systems. A Hamiltonian which is
a superposition of several separate interacting sectors would govern separate world branches
which, like the live and dead cat, do not know about each other.

In future works, we hope to investigate SSB to “partial”-kaq(n) minima in which
a proper summand of the Hilbert space is kaq(n), or the possibility of “multi”-kaq(n)
minima where the Hilbert space decomposes into several subspaces each of which has a
kaq(n) decomposition. For example, one might find a 17D Hilbert space decomposing as
(C3)⊗2 ⊕ (C2)⊗3.

Let us finish this introductory section with integrals used to define functionals f :
{metrics} → R, and a discussion of their symmetries. A discussion of the numerics and
ML used to enhance the numerics is in the next sections.

We define the complex-valued functions: Fk : {metrics} → C, and consider functions
of the form

fk,1 = Re(Fk), fk,2 = Im(Fk), fk,3 = |Fk|2 , k ∈ C (1.6)

Fk =
∫
~x∈R3(4n−1)

d ~x eik(GIJxIxJ+cijkyi1y
j
2y
k
3 ) (1.7)

for x = (y1, y2, y3) with yo ∈ R4n−1, o ∈ {1, 2, 3}, and for I = (i, o), xI = yio ∈ R, and

GIJx
IxJ = gijy

i
1y
j
1 + gijy

i
2y
j
2 + gijy

i
3y
j
3, i.e. G =

g 0 0
0 g 0
0 0 g

.
The structure constants ckij are defined by

[yi, yj ] = ckijyk and cijk = ck
′
ijgk′k (1.8)

This seems to be the simplest perturbed Gaussian that can be formed from the two
tensors g and c which will not vanish due to symmetry consideration. For example, if we
merely integrated over one copy, instead of three, of the Lie algebra su(2n) ∼= R4n−1, using
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gij instead of GIJ the integral would become

F̃k =
∫
~y∈R4n−1

d~y eik(gijyiyj+cijkyiyjyk). (1.9)

But observe that the cubic perturbation cijkyiyjyk = 0 since cijk = −cjik, by the skew
symmetry of the Lie bracket [, ]. The formula in (1.7) indeed seems the most natural way
to build a nontrivial perturbed Gaussian integral from the tensors g and c.

Another functional that will be considered is the Euclidean version of the above, where
−i in the exponent in (1.7) is replaced by −1.

We should say a little about the symmetries of Fk restricted to the kaq subsetMn
kaq ⊂

Mn := {metrics on su(N)}. There is the adjoint action of SU(N) on su(N) inducing an
action on Mn, and since Mn

kaq is defined via the existence of some qubit decomposition,
this action preserves Mn

kaq. The isomorphism to C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
n

is merely precomposed

by the inverse of the element of SU(N). This action, for example has isotopy properly
containing (SU(2)× · · · × SU(2)︸ ︷︷ ︸

n copies

) onMn
penalty.

For numerical reasons, we are best able to study fk,2 for k positive real in the range
of 100 ≤ k ≤ 1000 and fk,1 for k positive imaginary in a similar range.

Once we locate a locally minimizing metric g we diagonalize it and call the 4n − 1
eigenvalues the large spectrum. Each of the corresponding 4n − 1 eigenvalues is a 2n × 2n
skew-Hermitian matrix and we refer to their spectra (which are imaginary) as the little
spectra. When there is eigenvalue degeneracy, there is additional choice choosing principle
axes (eigenvectors of gji ) and the concomitant little spectra.

There is a very quick and often reliable check that a metric is in Mn
kaq: the little

spectra should all be consistent with the proposed tensor product structure. This is useful
primarily when a non-degenerate eigenvalue in the little spectrum (a 1D eigenspace). A
further more definitive test is discussed in section 4. In practice we can usually understand
the kaq status of the local minima we locate.

The rest of the paper is organized as follows:

• Section 2. A detailed look at the numerical methods and the machine learning tech-
niques that enabled them.

• Section 3. A summary of what computations were carried out and the most significant
conclusions for symmetry breaking to kaqs.

• Section 4. Summary and outlook.

• Appendices A–C. Appendices on the theoretical and linear algebra results.

1.1 The summary of results

Numerical study of a variety of functionals on inner product on su(4) and su(8) finds, in
addition to an unstable critical point at the bi-invariant Killing form, metric structure often
involving multiple local minima. In many cases we have identified these as kaq metrics
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(see figures 9 and 10). Although our study was necessarily limited to very low dimensions,
it provides evidence for our proposed SSB scenario. It is furthermore intriguing that the
choice of functional does not need to be fine tuned, indicating that perhaps many natural
functionals formed from gij and ckij commonly have kaq minima. One could add another
layer of probability and consider not just our system Hamiltonian H selected from a metric
dependent Gaussian, but also that metric gij drawn from local minima of functionals f
themselves drawn from a distribution D of functionals.

Next, a few disclaimers: Ricci scalar curvature was numerically challenging and we
were only able to locate critical points whose locations had previously been determined
analytically [16] and we already knew would be kaq. These local minima are associated
in the two cases with the Lie subalgebras so(4) ⊂ su(4) and sp(2) ⊂ su(4) respectively.
Surprisingly, for the functionals studied on su(4), some of the solutions appear numerically
to be sp(2) Jensen local minima as well. The metric is small on the Lie subalgebra and
large on its orthogonal complement. For other local minima for su(4) and su(8), similar
Lie subalgebras have been found that correspond to one (or a combination of some) of the
eigenspaces. A more detailed description is given in section 3.

This points to the fact that in addition to the class kaq, there is a class on metrics
which we shall call subn having the structure described above. Particularly for small n,
subn and kaqn have considerable intersection among metrics on su(2n).

We must consider to what extent the evidence is actually for kaq and not sub. So
far, we have not seen local minima in subn\ kaqn.

In summary, we find considerable numerical evidence to support the plausibility of
spontaneous symmetry breaking to kaq metrics, as the prequel to interacting physics.

2 Numerical methods

2.1 Loss function

2.1.1 Gaussian perturbed integral

Expanding the perturbative series of (1.7) up to third order, yields a summation of two,
four and six vertex trivalent tensor networks, where vertices are labelled by c and edges by
g or g−1. This expansion follows a similar procedure outlined in [17, equation 1.7 onwards].
We start with the bosonic Gaussian perturbed integral in (1.7), and make a simple change
of variable ~x→ ~x =

√
k~x,

Fk = k−3(4n−1)/2
∫
R3(4n−1)

d ~x e
i
2GIJx

IxJ e
i√
k
cijky

i
1y
j
2y
k
3 (2.1)

= k−3(4n−1)/2
∫
R3(4n−1)

d ~x e
i
2GIJx

IxJ
∞∑
m=0

im

m!km/2 (cijkyi1y
j
2y
k
3 )m (2.2)

Focusing on the m-th term of the expansion gives a Gaussian integral∫
R3(4n−1)

d ~x e
i
2GIJx

IxJ (cijkyi1y
j
2y
k
3 )m (2.3)
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which can be computed using standard methods[(
cijk
−i∂
∂V i

1

−i∂
∂V j

2

−i∂
∂V k

3

)m ∫
R3(4n−1)

d ~x e
i
2 (gijyi1y

j
1+gijyi2y

j
2+gijyi3y

j
3)+V i1 yi1+V j2 y

j
2+V k3 yk3

]
~V=0

(2.4)

∝
[(
cijk
−i∂
∂V i

1

−i∂
∂V j

2

−i∂
∂V k

3

)m
e−

i
2G

IJVIVJ

]
~V=0

(2.5)

Writing e−
i
2G

IJVIVJ as a Taylor series ∑p
(− i

2G
IJVIVJ )p
p! , since the exponent GIJVIVJ is

a quadratic expression, the only nonzero terms after differentiation and setting ~V = 0
correspond to the power p = 3m

2 , i.e.(
cijk
−i∂
∂V i

1

−i∂
∂V j

2

−i∂
∂V k

3

)m (
− i2G

IJVIVJ

) 3m
2
. (2.6)

Indeed all other terms are zero, when p < 3m
2 , as there are 3m partials and less (< 2× 3m

2 )
variables, and when p > 3m

2 , as ~V = 0.
By following the power of imaginary number i in the previous equations, we observe

that Im(Fk) = fk,2 corresponds to m ≡ 2 (mod 4), while the rest is Re(Fk) = fk,1. Sim-
ilarly, the Euclidean version of this integral has alternating signs ±1 depending on m

(mod 4).
Our numerical experiments are based on m = 2, 6 and on m = 2, 4 for the Euclidean

version.
We can show that the expression above can be viewed as a contraction of a trivalent

network without any loops, and m vertices cijk and edges gii, gjj , gkk. Note each partial
needs to be paired with its corresponding term in (− i

2G
IJVIVJ) 3m

2 . Let us fix a j and con-
sider the example of −i∂

∂V j2
which is associated with some term c−j−. Inside (− i

2G
IJVIVJ) 3m

2 ,

the term V j
2 comes with another gjj′V j′

2 . Therefore, there can not be any loops, or any
pairing between two different indices, like i and j. As V j′

2 is similarly paired with −i∂
∂V j

′
2
,

which is associated with some term c−j′−, we get an edge connecting the two vertices c−j−
and c−j′− with gjj′ labeling that edge.

We note a further simplification, by using (1.8), allowing us to conclude that vertices
can be labelled by ckij instead of cijk, while edges are labelled by gii′ , gjj′ and gkk′ instead
of gkk′ . The reason for the change in the latter edge type is that when two vertices cijk and
ci′j′k′ are connected along the kk′ indices, two factors of gkk′ come from cijk and ci′j′k′ (thus
transforming them to ckij , ck

′
i′j′), and one gets cancelled by gkk′ coming from gkk

′
V k

3 V
k′

3 .
Each diagram also comes with a coefficient. The coefficient can be computed by fol-

lowing the scalars in equations above for each m, and considering all permutations to each
diagram labelling.

We list all diagrams for m = 2, 4, 6 in figures 4, 5, 6 along with their coefficients.
For m = 2, there is only the diagram

• Theta

with coefficient 1
2! . For m = 4, there is a common coefficient 1

4! .
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k ij

c

c

Figure 4. Theta diagram. All diagrams are trivalent networks without any loop, and vertices are
the structure constants ck

ij . Each vertex has indices i, j, k which are paired with their counterpart
in another vertex. This pairing is done using g along edge of type k (colored red) and g−1 for type
i and j.

k k

i

j

i

j

k

k

i

j

i

jc c

c c

c c

c

c

Figure 5. Tincan and Tetrahedron with some sample labeling. Red lines are labelled by g and
black lines by g−1.

• Two thetas

• Tincan

• Tetrahedron

For m = 6, there is a common coefficient 1
6! .

• Three thetas

• Tincan and theta

• Tetrahedron and theta

• Prism

• K3,3

• Extended tincan

• Necklace

• TetraTheta
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i

i
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j
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i

k

c

c

c

c

c

c

c c c

c c c

c c

c

c

c

c

c c

c

c

c

c

c

c

c

c

c

c

Figure 6. From left to right, top to bottom: Prism, K3,3, Extended tincan, Necklace, and Tetra-
Theta diagrams, each with some sample labeling. Red lines are labelled by g and black lines by g−1.

Hence, the functions of study are

F26(c, g, k) = 1
6!(sum of 6-vertex diagrams)− k2

2! (the 2-vertex diagram Theta) (2.7)

F24(c, g, k) = 1
4!(sum of 4-vertex diagrams)− k

2!(the 2-vertex diagram Theta) (2.8)

where the power of k for each m is −3(4n−1)+m
2 , thus the ratio yields the term k2 in F26

and k in F24 for m = 2.
Remark 2.1. As mentioned in the introduction, and illustrated in experiments and in ap-
pendix C, the tensor contractions above are each convex with minimum at Id. This is
why it is expected that a signed sum of these diagrams gives local minima around a local
maximum at Id (figure 1).

In order to fix the volume by restricting to the space of metrics with det(g) = 1, we
add the term (det(g) − 1)2 with a high enough coefficient to the loss function. The more
obvious normalization is a suitable fractional power of 1

det(g) . However, not only this power
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gii′ gkk
′ gii′gjj′R = −1

2

c

c

IdkjIdjk −1
4

c

c

Figure 7. Ricci scalar curvature.

is different for networks with different number of vertices, but also, such an expression
leads to more severe numerical round-off errors because of the fractional power, as well as
a more involved formula for the gradient than (det(g)− 1)2 (see remark 3.4).

Furthermore, in many instances, the value of F26, F24 is too high, which makes the
use of scaling factors for the functional and det(g) necessary in order to avoid numerical
instability, sometimes leading to det(g) being sent to zero.

The general form of the loss function is:

L26(c, g, k) = r−1
1 F26(c, g, k) + r2(det(g)− 1)2, (2.9)

L24(c, g, k) = r−1
1 F24(c, g, k) + r2(det(g)− 1)2, (2.10)

where r1 ≥ 1, r2 � 1. The term solution will be exclusively used to refer to the critical
points of the loss function found through gradient descent, which experimentally (through
many random small perturbations) have been checked to be local minima. This last check
is necessary, as we are looking for local minima of F26, F24 inside the det(g) = 1 subspace,
and it is not immediately clear that the set of such local minima is equal to that of L26, L24
in the space of all metrics g.

2.1.2 Ricci scalar curvature

The Ricci scalar curvature for all unimodular Lie algebras can be computed as follows [16]:

R = −1
2
∑
i,i′,j,k

ckijc
j
i′kgii′ −

1
4
∑
i,j,k

∑
i′,j′,k′

ckijc
k′
i′j′gii′gjj′g

kk′ (2.11)

which in diagrammatic notation figure 7.
For su(2n), this can be simplified to

R = 1
2
∑
i,j,k

(ckij)2gii −
1
4
∑
i,j,k

∑
i′,j′,k′

ckijc
k′
i′j′gii′gjj′g

kk′ . (2.12)

To find the critical points, we need to minimize ||∇R|| which can be computed explicitly
using the formula above. Minimizing ||∇R|| through gradient descent is too slow, likely
because the functional has a shape very close to flat. In this kind of situation, in machine
learning applications, one method that generally provides better results is the evolutionary
method. The idea is to do an approximate gradient descent, but much faster and with
more potential in finding lower minima in almost flat-shaped graphs.
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Instead of computing a gradient, we perturb by small amount the given point (parent)
and compute the value of M many of its perturbations (children). The child with the
smallest evaluation is chosen as the new parent. In our application, we choose M = 20 and
perturb each entry of the parameter by using a uniform distribution on (1, 1/30).

2.2 Initialization of the gradient descent

Different initializations of the metric g lead to the discovery of different local minima of
the loss function. In addition, some forms of initializations are preserved under gradient
descent. We need to discuss some terminology and lemmas to discuss the initializations.

Definition 2.1. Given a metric g, the degeneracy pattern is the set {d1, . . . , dt} of the
dimensions of its eigenspaces. An ordered degeneracy pattern is a tuple (d1, . . . , dt) where
the corresponding eigenvalues 0 < λd1 < . . . < λdt are in ascending order.

As an example, the ordered penalty degeneracy pattern (or just ordered penalty pat-
tern) is (6, 9), (9, 27, 27) for su(4), su(8), respectively.

The gradient flow preserves particular degeneracy patterns related to the Clifford
group: given n qubits, the Clifford group Cn = {V ∈ U2n |VPnV

† = Pn} is the group of
unitary gates that normalize the Pauli group Pn = {eiθπ/2σi1⊗· · ·⊗σin |θ ∈ {0, 1, 2, 3}, ij ∈
{0, x, y, z}}, where σ0 = Id.

Let a subgroup H < Cn act on Pn/{±1,±i}, where we identify words that are pro-
portional to each other. Consider the orbits of H, which also provide a decomposition of
the Pauli word basis PBn of su(2n), thus determining a degeneracy pattern. We have the
following theorem.

Theorem 2.1 (Appendix B.3). Let D be diagonal with a degeneracy pattern determined
according to the orbits of a subgroup H < Cn as explained above. The gradient flow
preserves not only the diagonal form of the metric, but also the degeneracy pattern modulo
the merging of the eigenspaces, e.g {d1, d2, d3} could become {d1, d2 + d3}.

Remark 2.2. As a direct corollary, gradient descent reaches a critical point (experimentally
checked to be local minima) with that degeneracy pattern modulo merging.

We can now discuss different types of initialization to start the gradient descent with.
All such initialization are normalized to have det = 1, and determine the set of parameters
on which gradient descent is performed.

• DiagPerturbId: A uniform random diagonal perturbation of the local maxima at
identity, the set of parameters being the diagonal entries.

• PenMetricOmega: Penalty metric with gradient on the weight parameter w = er

in (1.1), which means the local minima are found in the space of penalty metrics.
Thus, a solution may not necessarily be a local minimum in the space of all metrics
(but see remark 2.3). This is to search for the minimum that the penalty metric can
achieve and compare it to the lowest local minima found in other ways.
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• PenMetricPattern: Penalty metric with gradient descent on w1, . . . , wn where wi
is the entry for Pauli word of weight i. All wi are initialized using a random w, i.e.
wi = wi at the start. Once the local minimum is reached, we can observe how far
the local minima found is from a penalty metric by comparing the ratios wi+1/wi.

• GenPerturbId: A general (nondiagonal) random Gaussian perturbation of identity,
the set of parameters being entries of the matrix.

• GenMetric: A random metric, the parameters being entries initialized by standard
normal distribution.

Remark 2.3. For su(4), PenMetricOmega is effectively the same as the more general
PenMetricPattern: there is only one ratio (w2/w1) to calculate and it gives the weight
parameter w. On the other hand, a penalty pattern for su(8) could experience a merging of
eigenspaces or lead to a solution where the eigenvalues do not represent a penalty pattern
(i.e. w2/w1 6= w3/w2), and all local minima found with this initialization for su(8) are
as such.

2.3 Adam optimization algorithm

The Adam optimization algorithm [18] has become one of the most used algorithms for
deep learning and more generally machine learning applications. Similar to the vanilla
stochastic gradient descent, it is used to update parameters of a functional iteratively.
However, it has many advantages compared to the stochastic gradient descent, and has
been experimentally shown to lead to lower minima faster compared to other stochastic
optimization algorithms [18]. Most important to our application, it satisfies some desirable
characteristics:

• Computationally efficient with little memory requirements.

• Invariant to diagonal rescale of the gradients.

• Appropriate for problems with sparse gradients.

• Hyper-parameters have intuitive interpretation and typically require little tuning.

In contrast to stochastic gradient descent, Adam has a learning rate for each parameter
which is separately adapted during learning. The name Adam comes from adaptive moment
estimation, as it computes individual adaptive learning rates for each parameter from
estimates of first and second moments of the gradients. This helps with sparse gradients
situations and cases where the gradient is highly noisy (like in nonstationary settings). For
our purpose, we would like an algorithm that avoids saddle points and has a better chance
of finding the more interesting local minima by not getting stuck in small basins.

Figure 8 shows the implementation of the algorithm. The hyperparameters of Adam
with their default values are described below.

• α (default 0.001): The learning rate (LR) or stepsize. The proportion that weights
are updated. We prefer small values to have a more thorough search and find more
local minima.
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Figure 8. Adam algorithm as in [18].

k = 100, 200 DiagPerturbId GenPerturbId PenMetricPattern
r1 1 1 1
r2 106 106 106

k = 500, 1000 DiagPerturbId GenPerturbId PenMetricOmega PenMetricPattern
r1 104 104 104 104

r2 103 104 103 103 or 104

Table 1. The scaling factors for L2,6 for su(4)(k = 100, 200), su(8)(k = 500, 1000).

• β1 (default 0.9): The exponential decay rate for the first moment estimates. This
hyperparameter like the next ones required no tuning.

• β2 (default 0.999): The exponential decay rate for the second-moment estimates. In
regions with a small or sparse gradients, β2 should be close to 1.

• ε (default 10−8): This is to avoid any division by zero in the implementation.

2.3.1 Scheduling and hyperparameters

LR decay can be used with Adam. In all cases, LR is 10−3 but is halved during the gradient
descent every 20000 steps, as the algorithm struggles to converge in its final stages, as it
jumps over and back on lower minima basins due to larger than appropriate LR. All other
hyperparameters are taken with their default values. Scaling factors mostly depend only
on the type of the integral and value of k. The scaling factors chosen for each initialization
are given in tables 1 and 2. Generally, we prefer to choose higher r1 to scale F26 or F24 if
they attain very high values, which happens as k grows larger. If they attain high values
but we can still be confident about the accuracy of the computations, r1 is set to 1 while
r2 is chosen high enough (106) to avoid det(g) vanishing.
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k = 100, 200 DiagPerturbId GenPerturbId PenMetricPattern
r1 10 10 10
r2 103 103 103

k = 1000 DiagPerturbId GenPerturbId PenMetricPattern
r1 10 10 10
r2 103 103 103

Table 2. The scaling factors for L2,4 for su(4)(k = 100, 200), su(8)(k = 1000).

3 Optimization results and conclusions

We shall make a few remarks before discussing the results.
Remark 3.1. In tables above, GenMetric is absent. It was observed through experiments
that they

• did not give any new local minima (in terms of degeneracy pattern), or

• they did not converge, as either the values of the functionals were generally too high
for us to have confidence in the numerics, or the complicated scheduling necessary in
the hyperparameter tuning made it too hard to have a stable gradient descent.

Remark 3.2. As mentioned in remark 2.3, for su(4), “PenMetricPattern = PenMetri-
cOmega”, but for su(8), they are gradient descents in different spaces. In the case of L2,4
(table 2), we could not collect any nontrivial result for su(8) by using PenMetricOmega,
hence why its column is absent.
Remark 3.3. Our experiments involved two values of k although the values in-between were
tried to some extent, and did not deliver any new results. If a degeneracy pattern reappears
for higher values of k, it is always the case that eigenvalues are further apart.

We assess our solutions using the following type of evidences, listed in the order used
in the paper.

• Finding Lie subalgebra structure by computing the brackets of (a collection of)
eigenspaces.

• We propose two different ways for providing evidence/proof regarding the existence
of a map j as defined in 1.1. In this paper, we explore the first one to some extent:

1. An evidence for the existence of j can be found by looking for what is called
pattern breaking. First one finds a partition of the given degeneracy pattern
that has the same dimensions as the penalty pattern; e.g. for su(4), the pattern
(3, 1, 1, 8, 2) (see further below) has one partition such as ({3, 1, 2}, {1, 8}) where
the dimensions in each set add up to the penalty pattern (6, 9). Next, we check
if the Lie algebra generated by the set of eigenspaces ({3, 1, 2} in the example)
corresponding to the weight one Pauli words is isomorphic to the Lie subalgebra
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su(2)⊕ . . .⊕ su(2) (n = 2 times in the example). This ensures that there exists
a map j, at least for the restriction to weight one Pauli words. The final step,
not carried out in this work, would be to see if the rest of the eigenvectors can
also be mapped under such a j to a local tensor product form.

2. A more direct approach is a gradient descent in the space of all Lie algebra
isomorphisms j−1. We can check whether j−1(Hi) is in tensor product form by
computing the entanglement entropy and aim to minimize the overall entangle-
ment entropy of j−1(Hi)s.
Consider the case of su(4) where we would like to measure the distance of j−1(Hi)
to a decomposition into a tensor product O1 ⊗O2. Fixing j (or J), determines
an isomorphism of the underlying C4 (on which su(4) are the skew-Hermitian
transformations) into C4 ∼= C2

1⊗C2
2. Think of j−1(Hi) as a vector in C2

1⊗C2
2⊗

(C2
1)? ⊗ (C2

2)? so that the partial trace ρi = TrC2
1
(j−1(Hi)) ∈ C2

2 ⊗ (C2
2)? under

the natural map.
By computing the entanglement entropy of j−1(Hi) which is S(j−1(Hi)) :=
Si = Tr(ρi log ρi), we can define the loss function as ∑dim su(4)=15

i=1 Si and aim to
minimize it over {j}. If∑Si can be made “close” to zero, then we conclude that
{Hi}dim su(4)=15

i=1 , is kaq up to some error (depending on how “close” to zero);
i.e. the eigenvectors for g have attained something close to a tensor product
form. Note that for higher number of qubits, like in su(8), this test needs to be
performed successively to prove decomposition into O1 ⊗O2 ⊗O3.

• If we find a nondegenerate eigenvalue, we make a little spectra test on the correspond-
ing skew-Hermitian matrix, to find if the spectrum can rule out that the matrix is
not in the form of a tensor product.

• In the case of PenMetricPattern, we make a direct inspection and look at the
ratios of eigenvalues of different weight spaces (remark 2.3).

• In the case of PenMetricOmega, we check if the solution is a local minima in the
space of all metrics, and if the weight parameter is smaller than one.

We used the TensorNetwork package to compute the diagrams and PyTorch to do gra-
dient descent using Adam. For the hardware, we used one NVIDIA Tesla V100 GPU. Most
simulations took at most 2 hours to converge, with the diagonal initializations converging
faster.
Remark 3.4. PyTorch uses Automatic differentiation (Autograd) to compute gradient of a
function f . It does so by first building a computational tree of f using simpler functions,
such as linear, trigonometric, etc., for which the gradient formula is built into the program
and can be calculated exactly. Then, it computes the gradient using the chain rule.

As such, to make gradient descent computations faster on the computer, we replace g
with g−1, making sure that one type of edge (k) gets labelled by g−1, and two labelled by
g. Thus, when we examine the results (eigenvalues of g), we will need to take the inverse
again. Note that as the parameters of our program are the entries of g, the computation
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Figure 9. Patterns found for the su(4) for each functional and their possible classification. *: all
sp(2)s are found in diagonal solutions. **: the penalty metric. ***: the ordered patterns are slightly
modified given that the eigenvalues were numerically close; this is done to represent the ordered
degeneracy pattern in a way that relates it to a previously found ((3, 1, 1, 8, 2)) or well-known
(Majorana) pattern. ?: the classification of the pattern (8, 6, 1) is unclear.

for gradients of terms involving g is far simpler than those involving g−1, as the formula
for the latter involves many long expressions in terms of g entries (determinants of minors
and division by det(g)). Therefore, it makes sense to make such a replacement as it allows
us to cut the number of edges labelled by g−1 in half (and double the number of those
labelled by g).

3.1 DiagPerturbId and GenPerturbId results

There are different degeneracy patterns among the solutions of DiagPerturbId andGen-
PerturbId. We will list the (lowest) local minima ordered degeneracy patterns along with
eigenvalues for the highest k (if it appears for both k), and provide explanation regarding
the kaq/sub-ness of the metrics. In these lists, LM = local minima and LLM = lowest
local minima. A summary of the results is presented in figures 9 and 10.

1. L2,6 and su(4) with k = 100, 200:

• LM: The second pattern occurs exclusively for k = 100 while the last two patterns
do so for k = 200.

1. (10, 5), (0.315, 10.079)
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Figure 10. Patterns found for the su(8) for each functional. *: the diagonal patterns lead to very
similar (30, 32, 1) pattern in each functional (see the text for details). ?: the classification of all the
other patterns such as (10, 15, 1, 32, 5) is unclear.

2. (3, 1, 1, 8, 2), (0.650, 0.678, 0.686, 0.951, 3.417)
3. (1, 3, 1, 4, 4, 2), (0.309, 0.311, 0.333, 0.381, 3.424, 10.526)
4. (8, 6, 1), (0.396, 2.523, 44.247)

• LLM for both k: (10, 5) where the 10D eigenspace is sp(2).

We found nondiagonal metrics for all patterns above, and diagonal metrics with the (10, 5)
pattern only (for both k). The second pattern is interesting as we find it is a pattern
breaking of (6, 9), where the 1D eigenspace with corresponding eigenvalue 0.686 along with
the 2D and 3D eigenspaces, form a Lie algebra isomorphic to su(2)⊕su(2) (similar to Pauli
words with weight one), while the 4× 4 skew-Hermitian matrix in the other 1D eigenspace
has the eigenvalue structure of a tensor product. For k = 200, some of solutions with
pattern (1, 3, 1, 4, 4, 2) have that property as well. Finally, the 6D degeneracy for the last
pattern does not form a Lie algebra, and the matrix in the 1D eigenspace does not have
the eigenvalue structure of a tensor product.

2. L2,6 and su(8) with k = 500, 1000:

• LM: Only the last pattern occurs exclusively for k = 1000.

1. (30, 32, 1), (0.341, 2.375, 9.901)
2. (10, 15, 1, 32, 5), (0.3771, 0.3835, 0.4432, 1.3020, 2.8011)
3. (1, 9, 1, 12, 16, 9, 8, 4, 3), (0.352, 0.359, 0.381, 0.671, 0.689, 1.197, 1.25, 12.5, 20.0)

• LLM: (10, 15, 1, 32, 5) for both k.
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In diagonal solutions, only (30, 32, 1) appears, while the other two patterns occur in non-
diagonal solutions. We know by taking all brackets that the eigenvectors in 1 + 30 (and
30 by itself) give a Lie algebra, but we have not classified it. The same property holds for
(10, 15, 1, 32, 5) where 1 + 5 + 10 + 15 (and 5 + 10 + 15) is a 31D (30D) Lie algebra.

Given that (9, 27, 27) is the penalty pattern, it can only be related to (1, 9, 1, 12, 16, 9,
8, 4, 3) if we were to observe some pattern breaking similar to the instance in su(4). It is the
case (up to 1e−3 errors) that one of the two nines has structure constants similar to that of
Pauli words with weight one, i.e. su(2)⊕su(2)⊕su(2). However, the matrix in each of the 1D
eigenspaces can not be a tensor product of three 2×2 matrices, although they can be a ten-
sor product of a 4×4 and 2×2 matrix. Given that we are only approximating the functional,
this suggests that maybe locality does not fully form and one should consider the possibility
of partial kaq-ness where there are tensor products of qunits instead of (C2) qubits.

3. L2,4 and su(4) with k = 100, 200:

• LM:

1. (10, 5), (0.790, 1.602) only for k = 100.

2. (1, 3, 1, 8, 2), (0.347, 0.407, 0.448, 0.971, 10.921) for both k.

3. (6, 4, 1, 4), (0.383, 0.448, 1.645, 4.794) only for k = 200.

4. (1, 1, 2, 4, 2, 1, 2, 2), (0.365, 0.404, 0.548, 0.586, 0.653, 1.222, 2.118, 9.039) only for
k = 200.

• LLM for both k: (1, 3, 1, 8, 2).

We found diagonal metrics with the (10, 5) pattern (k = 100) and (6, 4, 1, 4) (k = 200).
The latter corresponds to the Majorana fermion degeneracy pattern, where ψ1, . . . , ψ4 form
a penalty pattern (4, 6, 4, 1), but note the order is not the same. This could be due to the
competition the functional feels between forming two local minima, the so(4) local minima
(same as the penalty pattern (6, 9)) and the Majorana pattern (4, 6, 4, 1), explaining why
6 falls before 4 in the ordered pattern.

The pattern (1, 1, 3, 8, 2) is related to the penalty pattern similar to (3, 1, 1, 8, 2) in L2,6
for su(4). The case of (1, 1, 2, 4, 2, 1, 2, 2) is yet unknown, however we can show numerically
that it is not a pattern breaking of a penalty pattern.

4. L2,4 and su(8) with k = 1000:

• LM:

1. (30, 32, 1), (0.520, 1.620, 61.728)

2. (1, 1, 15, 1, 2, 4, 2, 16, 16, 2, 1, 2), (0.543, 0.549, 0.552, 0.606, 0.742, 0.746, 0.776,
0.86, 1.268, 2.994, 3.416, 5.714)

• LLM: (1, 1, 15, 1, 2, 4, 2, 16, 16, 2, 1, 2).
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Only (30, 32, 1) is found among diagonal metrics and it is related to a Lie algebra similar
to the pattern (30, 32, 1) in L2,6. The second pattern is also related to a similar Lie algebra
as 1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 4 + 15 forms a 31D Lie algebra. The 1D eigenspaces
are matrices with eigenvalue structure that can be realized by a tensor product (4× 4 and
2× 2). However, none of the patterns can be a breaking of the penalty pattern (9, 27, 27).

3.2 PenMetricOmega and PenMetricPattern results

Using penalty metric intializations, local minima with such patterns are obtained. As noted
in remark 2.3, we need to check if the eigenvalues are generated by a weight parameter
which is smaller than one.

For su(4) and both of L2,4, L2,6, the answer is always affirmative for the lowest local
minima in PenMetricPattern. The loss value attained is ≥ 95% of the lowest loss value
found (in LLMs in the previous part), and the weight parameter is pushed more towards
zero as k increases.

For su(8), there are local minima in PenMetricPattern, with ≥ 95% of the loss value
of LLM previously listed, which have the same ordered degeneracy pattern as the penalty
pattern. However the two ratios w2/w1, w3/w2 do not match; the relative difference is
about 30%, more than what could be attributed to numerical errors (although it could be
due to missing terms in our expansion of the integral). The lowest local minima are given
by degeneracy patterns with order (27 + 9, 27) for L2,6, where weight one and three have
merged, and (27, 27, 9) with weight two being the smallest for L2,4. Finally, The solutions
with PenMetricOmega initialization achieved ∼ 90% of the LLM loss value, but none
were local minima in the space of all metrics.

3.3 Ricci scalar curvature results

As mentioned in the introduction, our search for minimizing ||∇R|| yielded the results
in [16]. Thus, only diagonal solutions in sub2 ∩ kaq2 were found corresponding to so(4)
(6D) and sp(2) (10D) Lie subalgebras.

4 Summary and outlook

There are many directions in which this work can be refined. One could start by inves-
tigating the nature of those 31D Lie subalgebras in su(8), while collecting more data for
PenMetricOmega and more importantly a larger set of (especially higher) values of k.
Results in this work and preliminary unreported results for k > 200 for su(4), suggest
that new patterns emerge for higher values of k, which are consolidation of previous ones
known for lower ks. Perhaps there is a tendency for energy-close eigenspaces to cluster as
k increases while the energies of truly distinct eigenspaces grow further apart. We can then
ask about the low-energy limit, and what eigenspaces remain.

With regards to kaq-ness, we still do not have a mechanism/theory to prove it given a
certain degeneracy pattern, other than checking the Lie subalgebra structure. By doing so,
we are ignoring the possibility that a solution is kaq but does not have any Lie subalgebra
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among (any proper collection of) its eigenspaces. One way to address this issue is a gradient
descent in the space of all Lie algebra isomorphisms j−1, as mentioned in section 3.

Also, we did not use any post-processing technique like Padé approximates, which
could provide a more accurate estimation of the functional.

Another direction is the study of complex fermionic perturbed Gaussian integrals which
could reveal similar patterns.

Finally, we would like to have similar numerical simulations for other su(N)s like su(6),
to see if kaq-ness would still manifest itself in the form of C3 ⊗ C2, showing that there is
nothing special about N = 2n regarding decomposition to local tensor factors.
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A The structure constants can only distinguish weights

We are interested in exploring the symmetries of the anti-commutativity graph of Pauli
words GPBn defined below.

Definition A.1. The graph of Pauli words GPBn has vertices PBn, and two vertices are
connected when they anti-commute.

As a simple initial observation, note that all Pauli words have identical spectra, half
the eigenvalues are 1 and half -1, thus they are all in the same adjoint orbit, so it turns out
to be a rather subtle matter to find asymmetric structures in GPBn which have any hope
of distinguishing, for example, high weight from low weight Pauli words. In this appendix,
we initiate the study of such subtle asymmetries in the hope that it will allow us in the
future to reverse-engineer functionals which break to penalty metrics.

If there are asymmetries in this graph, especially among the vertices with different
weights, one can hope to derive a metric sensitive to such asymmetries. Recall a graph is
k-ultrahomogeneous if any given isomorphism between two of its induced subgraph with at
most k vertices can be extended to an automorphism of the graph. As the following fact
demonstrates, GPBn is symmetric.

Fact A.1. GPBn is a 22n−1-regular 2-ultrahomogeneous graph. The 2-ultrahomogeneity is
facilitated by the Clifford group transformations.

Remark A.1. Following this fact, one has graph automorphisms of GPBn where vertices
of different weights are sent to each other. Moreover, it is a standard Lie algebra fact
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that the Lie algebra automorphisms of u(N) all come from conjugations by U(N) and a
complex conjugation (Z2 of the Dynkin diagram), hence by definition of Cn, all Lie algebra
automorphisms that preserve Pn come from the Clifford group and complex conjugation,
and the latter acts trivially on PBn.
Remark A.2. The fact above also means that a simple preference for more commutativity
(and less anti-commutativity or less || [a, b] ||) can not be the sole reason behind the possible
emergence of a penalty metric. Hence minimizing simple functionals like ∑ ||[a, b]|| will not
deliver the desired result.

However, we will show that the additional structure imposed by ckij on this graph is
exactly what is needed to distinguish the vertices with different weight. We recall a fact
that will be useful for our next theorem.
Fact A.2. For every a, b ∈ Pn, either [a, b] = 0 or ab = −ba. Hence, ckij = 0, ∀k or ckij 6= 0

for a unique k, implying ij = ckij
2 k, and ckij satisfies skew- symmetry, i.e. cjik = −ckij , etc.

We ask if it is possible to have a graph automorphism which preserves the structure
constants ckij while not preserving weights (see (1.1) for the definition of weight)? The
negative answer below gives meaning to the title of this section and provides the theoretical
motivation for the possibility of penalty metric to emerge from optimization of Gaussian
perturbed integrals:

Theorem A.1. Given any φ ∈ Aut(GPBn), cφ(k)
φ(i)φ(j) = ckij , ∀i, j, k if and only if φ is a per-

mutation of tensor factors composed with some local automorphism, i.e. φ∈Aut(GPB1)⊗n×
Sn, consequently preserving the weight of each word.

Proof. In the following, any Pauli word basis element like −iX ⊗ 1⊗ . . .⊗ 1 is represented
a X1 . . . 1, where tensors and −i are dropped for convenience. We wish to prove that
φ(X1 . . . 1) has weight one. Assuming otherwise, without loss of generality, possibly after
composing with a suitable automorphism in Aut(GPB1)⊗n × Sn, we have φ(X1 . . . 1) =
X . . .X1 . . . 1 where there are l > 1 many Xs.

Consider the triangle (i = X1 . . . 1, j = Y 1 . . . 1, k = Z1 . . . 1) which has ckij = +2.
Sitting at the opposite side of each of i, j, k with respect to the triangle edges, and not con-
nected to them, we have the subgraphs Si = Xsu(2n−1), Sj = Y su(2n−1), Sk = Zsu(2n−1),
respectively. Furthermore, every vertex sj ∈ Sj is connected to i (and k), and has a coun-
terpart i.sj = sk ∈ Sk such that cskisj = +2. There exists a similar structure for j, Sk, Si
and k, Si, Sj . Finally, there exists a fourth subgraph Sijk = 1su(2n−1) not connected to the
triangle ijk. This gives the structure of the whole GPBn when viewed from this triangle
(see figure 11).

Using fact A.1, Given any triangle ijk with ckij 6= 0, the previous description of GPBn

holds for any such i, j, k, with the exception of the fact about cskisj = +2 for all sj , sk corre-
sponding pairs. This means all triangles with ckij 6= 0 have three subgraphs corresponding
to each vertex and not connected to them, and each vertex is connected to the other two
subgraphs completely. Also, there is a fourth subgraph not connected to the triangle.

As a result, if φ(X1 . . . 1) = X . . .X1 . . . 1, since φ is a graph automorphism, it must
send the triangle and structure described above to that of (φx = X . . .X1 . . . 1, φy =
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Figure 11. For each triangle with ij = −ji = k, one can partition the vertices into four sets
Si, Sj , Sk, Sijk, where i is connected to all vertices in Sj , Sk (and similarly for j, Si, Sk and k, Si, Sj)
and Sijk is not connected to any of i, j, k. Further, for each sj ∈ Sj , there is a corresponding vertex

sk ∈ Sk such that csk
isj
6= 0 and isj =

c
sk
isj

2 sk.

φ(Y 1 . . . 1), φz = φ(Z1 . . . 1)). Therefore, as φ preserves c, we must have csφzφxsφy
= +2 for

all corresponding pairs sφy , φx.sφy = sφz . This implies that vertices of Sφy are Pauli words
where the first l letters have odd many Y s and even many Zs. However, since cφzφxφy = +2,
the same is true about φy. As φy is not connected to Sφy , this means the set of Pauli words
where the first l letters have odd many Y s and even many Zs must have an isolated vertex.
In its first l > 1 letters,

• if φy has at least three Y s, then one can exchange two of those with an X and a 1,
to find a neighbor of φy in Sφy .

• If instead φy has one Y in its first l letters, then the whole word φy has either

– two Zs in its first l letters, in which case we replace them by X and 1, or
– an X in its first l letters, in which case we replace Y by 1 and X by Y , or
– an X or Y or Z outside of its first l letters, in which case we replace it by Y , X

or Z,

and in all these cases we find a neighbor in Sφy .
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The only remaining case is when φy = Y 1 . . . 1. Applying the same argument to φz (this
time with odd many Zs and even many Y s) implies φz = Z1 . . . 1, and since φx.φy =
φz =⇒ φx = X1 . . . 1.

This proves that φ has to preserve the weight one Pauli words and modulo some local
automorphism and permutation, that φ(X1 . . . 1) = X1 . . . 1. As Sφy must have odd many
Y s in its first l = 1 letters and Y 1 . . . 1 is the only isolated vertex among such words,
we have φy = Y 1 . . . 1, and similarly φz = Z1 . . . 1. Restricting φ to each of the four
subgraphs Si = Xsu(2n−1), Sj = Y su(2n−1), Sk = Zsu(2n−1), 1su(2n−1), the proof follows
by induction.

Remark A.3. Let φ ∈ Cn. For any a ∈ PBn, one can write φ(a) = ηaφa, for some
φa ∈ PBn, ηa ∈ {±1} (notice ηa 6= ±i as a, φa are skew-Hermitian). Then, if [a, b] 6= 0, for
some unique d ∈ PBn:

ab = cdab
2 d =⇒ φ(a)φ(b) = cdab

2 φ(d) =⇒ cφdφaφb = ηc
ηaηb

cdab.

The theorem above states that there is no φ ∈ Cn, for which ηd
ηaηb

= 1 whenever cdab 6= 0.

B Gradient descent and degeneracy patterns

In this section, we prove theorem 2.1. First, we show that gradient descent preserves
diagonal metrics.

Theorem B.1. Given any trivalent tensor network T (c, g) without loops, with vertices
labelled by c (structure constants of Pauli word basis), and edges labelled by g, g, g−1 for
type i, j, k edges, we have

∂T

∂gab
|D = 0,

for all diagonal metrics D and a 6= b.

Proof. To compute a tensor contraction, one selects indices at the two ends of each edge,
e.g. for an edge of type i the selection i, i′ yields a term like gii′c−i−c−i′−.

Thus, differentiating such an expression is done by selecting any edge and choosing
labels a, b on the two ends, while the rest of the edges are labelled using the diagonal metric
D (see figure 12 for more details). We wish to show that if a 6= b, any such network contracts
to zero. To do so, we prove the structure constants multiplier ∏

i,j,k labels on edges
ckij obtained

from any label selection over the edges, is zero if exactly one edge is picked nondiagonally,
like in a, b.

Without loss of generality, assume that a, b is chosen on an edge of type i. Edges of
type j and i form a cycle decomposition of the graph. Consider the product of the indices
over those edges; as every edge has two equal indices on both ends (except for a, b), the
product is some scalar times a.b.

On the other hand, if the structure constants multiplier is nonzero, it means at every
vertex, i, j, k were chosen such that ckij 6= 0. Furthermore, in that product, every i is
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D−1 DEab D−1 EabD Eba DD
∂T
∂gab
|g=D =

c

c

+

c

c

−det(Da,b)
det(D)

c

c

Figure 12. Differentiating the Theta diagram at a diagonal metric D. Differentiating the i or j
edges is easy, as it just requires replacing the matrix by the elementary matrix Eab. Note the last
term requires computing ∂g−1

∂gab
atD. Considering the entries, we need to compute (−1)m+n ∂

det(gmn)
det(g)
∂gab

,
where gmn are the minors. It is straightforward to show that evaluating this expression at a diagonal
metric D leaves a nonzero term only for m = b, n = a. The matrix Da,b is the diagonal matrix
obtained by removing the two a, b-th rows and the two a, b-th columns.

followed by a j giving ckij
2 k. The ks are each repeated twice as they appear twice on each

edge. As a result, the product should be a scalar, but a 6= b, so a.b is not a scalar and we
reach contradiction.

Corollary B.2. Starting at a diagonal metric, gradient descent on loss functions defined
in (2.9), (2.10) stays in the diagonal metrics space.

Proof. Both (2.9), (2.10) are linear combinations of tensor networks, and the (det(g)− 1)2

term can be easily checked to have the same property under gradient descent.

Recall how a subgroup H < Cn defines a degeneracy pattern 2.1.

Theorem B.3. Let D be diagonal with a degeneracy pattern determined according to the
orbits of a subgroup H < Cn. The gradient flow of loss functions (2.9), (2.10) preserves not
only the diagonal form of the metric, but also the degeneracy pattern modulo the merging
of the eigenspaces, e.g {d1, d2, d3} could become {d1, d2 + d3}.

Proof. We previously showed that D stays diagonal under gradient flow. Next, we need to
show that entries corresponding to the same eigenspace stay equal, i.e. have equal gradients.
It suffices to prove so for every tensor network T ; as the determinant term (det(g) − 1)2

has the same property, the statement would follow.
Assume gaa = gbb where there is an h ∈ H such that h(a) = ηab where ηa ∈ {±1}.

To show ∂T
∂gaa

= ∂T
∂gbb

, we use the same picture as in the previous theorem. Every tensor
contraction in the summation giving ∂T

∂gaa
is given by fixing both ends of some edge e with

label a. This tensor is sent to an equal contraction in ∂T
∂gbb

by simply applying h on the
tensor. Indeed, since gxx = gh(x)h(x) for any x, the coefficients involving g entries are equal.
As for the structure constants multiplier, since h(i) = ηihi for some hi in the Pauli word
basis, we need to show that ∏

i,j,k selected labels
ckij =

∏
i,j,k selected labels

chkhihj .
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This is true for any h ∈ Cn. Indeed, as computed in remark A.3,

chkhihj = ηk
ηiηj

ckij ,

and since in the product ∏
i,j,k selected labels

ckij every label appears twice and ηx ∈ {±1}, ∀x,

we are left with the equality of the two products.

Remark B.1. While on one hand, this theorem implies that one can find local minima with
a penalty degeneracy pattern by simply initializing at such a pattern, it also means that
the penalty pattern is not special in that regard, as we can find local minima with many
other degeneracy patterns.

C Individual diagrams are convex

Experiments show that the individual tensor networks used in the asymptotic expansion
of (1.7) are all positive convex functions with unique minimum at g = Id. We can provide
some theoretical evidence in this regard for some of the diagrams.

We start with the Theta diagram Θ(c, g). Assume g = UDU † where D is diagonal and
U unitary. We wish to show minD Θ(c, UDU †) = Θ(c, Id).

We can rewrite the expression above as minD Θ(cU , D) = Θ(cU , Id) = Θ(c, Id), where
the edges of tensor c with the tensors U (or U †) are contracted. We have

Θ(cU , D) =
∑
i,j,k

|cU(k)
U(i)U(j)|

2didjd
−1
k .

Writing di = ewi , Θ(cU , D) becomes a positive sum of exponentials of affine functions in
wi, hence convex. By using the arithmetic-geometric mean inequality, the minimum can
be seen to occur at g = Id. As previously mentioned, experiments have shown that this
minimum is unique.

We can prove similar results for other diagrams such as the Tincan, by bringing the
contraction in the form written above for Θ(cU , D), through successive minimization over
some edges, while others are assumed fixed and once contracted give two equal tensors
being contracted over the same indices, same as in Θ.

For the Tincan T (c, g), the starting idea is similar, fixing U in the diagonalization of g
and letting D be the variable. However, at first, the vertical edges are also assumed to be
fixed, meaning the variable is D on the 4 vertical edges. The contraction of tensors along
the vertical lines gives two 4-valent tensors A,B connected with D (or D−1) along each
edge. The two tensors are equal due to the symmetry of the diagram and the previous
contraction being done along the same index. Hence, we obtain an expression similar to
the one for Θ(cU , D), implying the minimum is attained at D = Id on the horizontal edges,
given the vertical edges. Next step is to consider D on the vertical edges as the variable
and the proof follows similarly.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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