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1 Introduction

Different aspects of hadron structure are described by the various partonic distributions.
At partonic level, one of the most intimated function to reveal the structure of hadron is
the parton distribution function (PDF) [1–4]. Being function of longitudinal momentum
fraction (x) only, the PDFs do not provide any knowledge about the spatial location and
the transverse motion of partons inside the hadron. However, the modern distributions, i.e.
the generalized parton distributions (GPDs) [5–7] and the transverse momentum-dependent
parton distributions (TMDs) [8–11], have been widely investigated in both experimentally
and theoretically to perceive the combined hadronic structural information. The modern
tomography is able to explain the three-dimensional structural information of the hadron.
Basically, the three-dimensional TMDs are the extended version of collinear PDFs, predict-
ing the information of the hadronic consituents within the transverse momentum space.
These distributions also help to gain the knowledge about the correlation between spins of
the hadron and the parton. The bunch of hidden information inside the hadron can be re-
trieved with the selection of high energy scattering processes. The complimentary method
to acquire the TMDs are Drell-Yan processes [12–16] and Z0/W± production [17–19]. The
conventionally used process for measuring TMDs is semi-inclusive deep inelastic scattering
(SIDIS) [20–22].

Our aim of this paper is to predict the holographic quark distributions of ρ-meson in
the momentum space using the light-front (LF) dynamics. By illustrating the relativistic
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importance, the light-front dynamics having remarkable accomplishments provide a suit-
able framework to study the hadron structure [23–25]. To study the leading twist ρ-meson
TMDs, we take the minimal Fock-state expansion into account, i.e. |M〉 =

∑
|qq̄〉ψqq̄. In the

case of ρ-meson, there are total nine T-even TMDs at leading twist. These functions arise
from the different matrix elements emerging from the bilocal operator. However, three
TMDs are special distributions for ρ-meson: f1LL(x,k2

⊥), f1LT (x,k2
⊥),and f1TT (x,k2

⊥),
which are absent for spin-0/1

2 targets. The variables x and k⊥ are the longitudinal momen-
tum fraction and transverse momentum carried by the active quark. By applying certain
integrations on TMDs, one can get the four collinear PDFs in ρ-meson. In other words, if
we do not consider any perturbative effects, spin-1 hadron can produce four PDFs, one of
which is tensor-polarized corresponding to the unpolarized quark.

The tensor polarized PDF b1(x) being sensitive to the parton’s orbital angular mo-
mentum is of great importance theoretically as well as experimentally [26–34]. The utmost
existing experimental data of structure function b1 is available for the deutron state, formed
by the two weakly bounded spin-1/2 hadrons, only [35]. On the other hand, experimental
data is not yet available for the ρ-meson, whereas on the theoretical front, the PDF b1(x)
has been studied using simple relativistic model in ref. [36]. A detailed investigation on
ρ-meson TMDs has been done in Nambu-Jona-Lasinio (NJL) model focusing on the covari-
ant approach [37]. An important discussion on deep inelastic inclusive processes for spin-1,
such as ρ-meson, has been reported in ref. [38]. Furthermore, the distributions containing
the quark transverse momentum and the corresponding fragmentation functions have been
explained in ref. [39]. Hino and Kumano discussed the polarized Drell-Yan processes to
study the structure functions of spin-1 hadrons [40, 41].

The LF holographic model for the ρ-meson [42] is widely implemented to successfully
study the various decays [43, 44]. It is interesting to extend the investigation to study the
leading twist quark TMDs in ρ-meson using this model. Also, it would be interesting to
compare the TMDs obtained in the LF holographic model with one of another successful
model, the LF quark model [45, 46]. The overlap representation of light-front wave func-
tions (LFWFs) approach is used to reveal the quark TMDs of ρ-meson in both the models.
On account of the light-front helicities of partons inside the hadron, this approach allows
us to retrieve the understanding of encoded spin-spin and spin-orbit correlations in the
TMDs explicitly [47].

The work is arranged as follows. In section 2, the essential details on basic formalism of
the LF holographic model are presented. Section 3 contains the general relations between
the various leading twist spin-1 hadron TMDs and the correlation functions. We evaluate
the T-even TMDs in terms of the overlaps of the LFWFs via different light-front amplitudes
and discuss the numerical results and their positivity constrains in this section. In section 4,
we provide the detailed study of the PDFs of ρ-meson and also discuss the scale evolution
of the PDFs. The spin densities generated from the different polarization configurations of
the quark and the ρ-meson are explained in section 5. The summary is given in section 6.
The details about the general formalism of LF quark model and explicit expressions of the
TMDs are presented in appendix A. The required description of density matrix of spin-1
is given in appendix B.
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2 Light-front holographic ρ-meson wave functions

Let us begin with the holographic Schrödinger equation, which is derived in the semiclas-
sical approximation to QCD in the light-front and is assured by the dynamical part of the
holographic wave function. The holographic Schrödinger equation is derived as:(

− d2

dζ2 −
1− 4L2

4ζ2 + Ueff(ζ)
)

Φ(ζ) = M2Φ(ζ), (2.1)

with ζ2 = x(1− x)b2
⊥, where b⊥ defines the transverse separation of quark and antiquark

in the hadron. For deriving eq. (2.1), it is assumed that there is neither any quark mass
nor any quantum loop [48–51]. The light-front holography provides a link between the
weakly coupled string modes propagate in the higher dimensional AdS space-time and the
QCD Hamiltonian formulated in the physical spacetime at the fixed light-front time. The
comparison of the wave equation for the amplitude of spin-J string modes propagating
in a modified AdS5 space-time, with the light-front wave equation described in eq. (2.1),
leads to the identification of the fifth dimension z in AdS5 with the LF variable ζ, where
(2 − J)2 = L2 − (µR)2 with R and µ being the radius of curvature of AdS5 space-time
and the 5-d mass of the string modes, respectively [50]. The consequence of mapping
ζ ↔ z allows us to solve the single variable LF Schrödinger equation with known effective
confining potential Ueff(z). The dilation field ϕ(z), which distorts the pure AdS5 geometry,
is used to derive the confining potential Ueff(ζ):

Ueff(ζ, J) = 1
2ϕ
′′(ζ) + 1

4ϕ
′(ζ)2 + 2J − 3

2ζ ϕ′(ζ). (2.2)

The choice of dilation field conditions the underlying action leading to the holographic
Schrödinger equation, eq. (2.1), being conformally invariant. The quadratic confinement
potential has tendency to do so, U(ζ) = κ4ζ2 [52], which requires the choice of dilation
field to be ϕ = κ2z2. Therefore, from eq. (2.2):

Ueff = κ4ζ2 + 2κ2(J − 1), (2.3)

where κ is known as the mass scale parameter, which determines the strength of the dilation
field in AdS spacetime. The value of κ = 523 ± 24MeV, which is fixed by the fit to the
Regge trajectories of light mesons [53]. Solving eq. (2.1) by substituting the confining
potential, one can get the eigenvalue as the meson mass spectra:

M2 = (4n+ 2L+ 2)κ2 + 2κ2(J − 1) (2.4)

and

ΦnL(ζ) = κ1+L
√

2n!
(n+ L)!ζ

1/2+L exp
(
−κ

2ζ2

2

)
LLn(κ2ζ2), (2.5)

as the dynamical part of the holographic wave function.
The complete holographic wave function is written as [42, 50]:

ψ(x, ζ, θ) = eιLθX(x) Φ(ζ)√
2πζ

, (2.6)
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where X(x) corresponds to the longitudinal part of the wave function, which is fixed by
mapping the spacelike electromagnetic form factor calculated in AdS/QCD [54] and the
light-front formalism [55, 56]. In AdS5, the form factor is evaluated by an overlap integral
of the incoming and outgoing hadronic modes convoluted with the bulk-to-boundary prop-
agator which maps onto the free electromagnetic current in physical spacetime. In physical
spacetime, the form factor is expressed by the integral overlap of the meson LFWFs. This
matching procedure yields X(x) =

√
x(1− x) [50]. Meanwhile, mapping of the gravi-

tational form factor in the AdS5 and the physical spacetime also provides an identical
result [54]. The ground state holographic wave function is then expressed in the transverse
impact-parameter space as:

ψ(x, ζ2) = κ√
π

√
x(1− x) exp

(
−κ2ζ2

2

)
, (2.7)

and in the transverse momentum space as:

ψ(x,k2
⊥) ∝ 1√

x(1− x)
exp

(
−M

2

2κ2

)
, (2.8)

where the invariant mass of the quark-antiquark pair is determined byM2 = k2
⊥/{x(1−x)}.

The Fourier transform of the transverse separation between quark and antiquark b⊥ leads
to provide the quark transverse momentum k⊥. The above equation of the holographic
wave function is true for the massless quarks.

For massive quarks, one needs to assume something beyond the AdS5 correspondence.
Since, the quark masses are associated with the longitudinal part of the kinetic energy, not
with the transverse, the introduction of massive quarks requires specification of either the
longitudinal wave function or the dynamical equation for this. Brodsky and de Téramond
have proposed an ansatz for the former [57], while the latter has been considered in ref. [58],
which provide a light-front equation for the longitudinal part that includes quark masses
and the model (t’Hooft) potential.

Here, we adopt the Brodsky-de Téramond ansatz that extends the transverse momen-
tum dependence to include the full invariant mass. A simple generalization of the LFWF
eq. (2.8) for massive quarks follows from the assumption that the momentum space LFWF
is a function of the invariant off-shell energy. For massive quarks, this invariant mass
should be

M2
ff̄ ′ = k2

⊥
x(1− x) +

m2
f

x
+

m2
f̄ ′

1− x , (2.9)

with f (f̄ ′) being the flavor of the quark (antiquark). The ansatz replacesM2 withM2
ff̄ ′

and then, the form of the holographic wave function for the meson bound state with massive
quarks becomes

ψ(x,k2
⊥) ∝ 1√

x(1− x)
exp

(
− k2

⊥
2κ2x(1− x)

)
exp

(
−µ

2
12

2κ2

)
, (2.10)

where µ2
12 = m2

f

x +
m2
f̄ ′

1−x . We emphasize that eq. (2.10) is an educated guess and adding µ2
12 to

eq. (2.1) does not lead to eq. (2.10) as the solution. However, this treatment is also noted
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and adopted in the literature [59–61], which is misleading. Meanwhile, the holographic
wave function, eq. (2.10), has been successfully used in the description of diffractive ρ
meson electroproduction at HERA [42], in B → ργ [43] and B → K∗γ [62] decays as
well as in the prediction of B → ρ [44], B → K∗ form factors [62] and B → K∗µ−µ+

decays [63]. This LFWF has also been used to investigate the spectrum [60] and the
distribution amplitudes [64] of light and heavy mesons. For the excited meson states
one can follow the same procedure by replacing the key invariant mass variable in the
polynomials in the LFWF using eq. (2.9) [50].

The massive quarks also lead to the essential modification in the hadronic mass, i.e.,
a shift in the predicted meson masses,

M2 = M2
0 + ∆M2, (2.11)

where M2
0 stands for the meson mass squared in the limit of massless quarks and the mass

shift is given by [50, 57]

∆M2 =
〈

Ψ

∣∣∣∣∣∣m
2
f

x
+

m2
f̄ ′

1− x

∣∣∣∣∣∣Ψ
〉
. (2.12)

The modified holographic wavefunction, given by eq. (2.10), is used to compute ∆M2.
Since, we are dealing with the ρ-meson in this work, which follows: mf = mf̄ ′ = mq,

where mq represents the mass of the light quarks (u and d). Therefore, the holographic
wave function, in eq. (2.10), becomes:

ψ(x,k2
⊥) ∝ 1√

x(1− x)
exp

(
−

k2
⊥ +m2

q

2κ2x(1− x)

)
. (2.13)

Till now, the helicities of the quark and the antiquark are not included. To take these
into account, one can express the wave functions as [65]:

ΨΛ
hq ,hq̄(x,k⊥) = χΛ

hq ,hq̄ψ(x,k2
⊥) , (2.14)

with Λ = L(T ) as the longitudinal (transverse) spin projection of the ρ-meson and

χLhq ,hq̄ = 1√
2
δhq ,−hq̄ ; χ

T (±)
hq ,hq̄

= 1√
2
δhq±,hq̄±. (2.15)

Here, hq(hq̄) are defined as the quark (antiquark) helicity. The spin structures in eq. (2.15)
correspond to a nondynamical spin wavefunction. Note that since the holographic wave
function defined in eq. (2.10) does not depend on the spin, there is no distinction between
the light pseudoscalar and the light vector mesons. Thus, with a universal AdS/QCD
scale, this would yield the degenerate decay constants for the pseudoscalar and the vector
mesons, in contradiction with the experiment [66]. On the other hand, this would also
lead to the same decay constants for the longitudinally and transversely polarized vector
mesons, in contradiction with lattice QCD [67, 68]. The mentioned shortcomings can be
addressed by taking the dynamical spin effects into account. Considering dynamical spin
effects, the vector meson wave functions can then be written as [42, 65]:

ΨΛ
hq ,hq̄(x,k⊥) = χΛ

hq ,hq̄(x,k⊥)ψ(x,k2
⊥), (2.16)
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where the Lorentz invariant spin structure for the vector meson is expressed by accounting
the photon-quark-antiquark vertex:

χ
L(T )
hq ,hq̄

(x,k⊥) =
ūhq(k+,k⊥)
√
x

εΛ · γ
vhq̄(k′+,k′⊥)
√

1− x
, (2.17)

where k and k′ denote the 4-momenta of the quark and the antiquark respectively. The
longitudinal momentum fraction carried by the quark and the antiquark are defined as
x = k+

P+ and (1−x) = k′+

P+ , respectively. The polarizations vectors, εΛ, for the longitudinally
polarized and the transversely polarized ρ-meson are given by

εL =
(
P+

Mρ
,−Mρ

P+ , 0, 0
)

; ε±T = ∓ 1√
2

(0, 0, 1,±ι) . (2.18)

This leads to the spin improved LFWFs for the longitudinally polarized ρ-meson at the
scale µ2

LFH = 0.20GeV2 [42, 65]:

ΨL
hq ,hq̄(x,k⊥) = NL δhq ,−hq̄

(
M2
ρx(1− x) +m2

q + k2
⊥

) ψ(x,k2
⊥)

x(1− x) , (2.19)

and for the transversely polarized ρ-meson as:

ΨT (+)
hq ,hq̄

(x,k⊥) = NT
(
k⊥e

ιθk⊥ (xδhq+,hq̄− − (1− x)δhq−,hq̄+)

+mqδhq+,hq̄+
) ψ(x,k2

⊥)
x(1− x) , (2.20)

ΨT (−)
hq ,hq̄

(x,k⊥) = NT
(
k⊥e

−ιθk⊥ ((1− x)δhq+,hq̄− − xδhq−,hq̄+)

+mqδhq−,hq̄−
) ψ(x,k2

⊥)
x(1− x) , (2.21)

where the normalization constants NL(T ) are determined by

∑
hq ,hq̄

∫ dx d2k⊥
2(2π)3 |Ψ

Λ
hq ,hq̄(x,k⊥)|2 = 1, (2.22)

depending upon the polarization of the ρ-meson.
We state that the spin-improved holographic light-front wavefunctions are distinct from

the boosted wave functions in the quark model obtained by boosting the non-relativistic
Schrödinger wave function in the meson’s rest frame to the light-front. This is usually
performed using the Brodsky-Huang-Lepage prescription [69], together with the Melosh-
Wigner rotation [70] for the spin structure. On the other hand, the spin structures in
holographic model are fixed by the rules of light-front field theory for coupling a quark and
an antiquark into ρ meson (point-like), while nonperturbative bound state effects are cap-
tured by the holographic wavefunction given by eq. (2.13). The holographic wavefunctions
are directly formulated on the light-front and thus, they are frame-independent and avoid
the ambiguities associated with a boosting prescription.

Having said that, it is worth noting that the boosting of a harmonic oscillator rest
frame Schrödinger wavefunction results in the boosted Gaussian wavefunction, eq. (A.3)

– 6 –
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in appendix A, which seems similar to the holographic Gaussian wave function given by
eq. (2.13). However, we must highlight three essential differences between these two wave
functions: first, the harmonic confining potential in the holographic Schrödinger equa-
tion, eq. (2.1), is uniquely fixed by a specific mechanism of conformal symmetry breaking
in semiclassical light-front QCD unlike the assumed harmonic potential in the ordinary
Schrödinger equation. Second the AdS/QCD scale parameter, κ, is extracted from the
mass spectroscopic data and it fixes the width of the holographic Gaussian, where as the
width of the boosted Gaussian is a free parameter, which has to be fixed by some constraint
on the wave function. Thirdly, the two wave functions differ by an overall notable factor:
1/
√
x(1− x) which makes their end-point behaviours different.
Though these wave functions are not derived from QCD first principle, so far these

phenomenological models are proven to reproduce many interesting properties of ρ meson.
These wave functions have been successfully applied to describe the data on diffractive
ρ meson electroproduction [42, 71], decay constant [46, 71], distribution amplitude [43],
electromagnetic and vector to pseudoscalar transition form factors [45, 65, 72] etc. . It
has been observed that the diffractive ρ-meson electroproduction data differentiate the
two wave functions and found to be in agreement with the holographic Gaussian [42].
For vector mesons like ρ, there exist no experimental data for TMDs or PDFs, however,
it is nevertheless important to investigate these in various nonperturbative approaches or
phenomenological models of QCD. Additionally, the TMD fragmentation functions [73, 74]
for an elementary quark fragmentation process to vector mesons can be obtained from the
TMDs and may be measurable in the production of vector mesons [75]. We thus adopt
two different approaches/models for illuminating ρ meson TMDs. On the other hand, till
date, the ρ-meson TMDs and PDFs have been studied only in the framework provided
by the NJL model [76, 77], incorporating important aspects of quark confinement via the
infrared cutoff in the proper-time regularization scheme [78–80], where the chiral symmetry
is dynamically broken. It has also been stated that the TMDs do not exhibit the familiar
Gaussian behavior in the transverse momentum [37]. It is therefore interesting to compare
our predictions with the results of the NJL model.

3 Transverse momentum-dependent parton distributions

The quark TMDs of the hadron are defined through the transverse momentum-dependent
quark correlation function. For the spin-1 target having k⊥ as its active constituent trans-
verse momentum, the quark correlator function is given by [14, 37–39, 41, 81, 82]

Θ(Λ)S
ij (x,k⊥) =

∫ dz− d2z⊥
(2π)3 eιk·z S〈P,Λ|ϑ̄j(0)L†(0,0⊥|n)L(z−, z⊥|n)ϑi(z−, z⊥)|P,Λ〉S ,

≡ ε∗Λ(µ)(P ) Θµν
ij (x,k⊥) εΛ(ν)(P ), (3.1)

with the gauge link L, defined as [81, 82]:

L(z−, z⊥|n) = P exp
(
−ιg

∫ n·∞

z−
dη− ·A+(η−, z⊥)

)
× P exp

(
−ιg

∫ ∞
z⊥

dη⊥ ·A⊥(z− = n · ∞, η⊥)
)
. (3.2)
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The gauge link L guarantees the gauge invariance of the non-local operator in eq. (3.1). For
simplicity, in this work, we assume the gauge link to be unity, which leads us to determine
the T-even TMDs only. In eq. (3.1), the state |P,Λ〉S indicates that the projection of
the target’s spin on the direction S is equal to Λ = ±1, 0. ϑ represents the flavor SU(2)
quark field operator. The quark correlation matrix is expressed as the contraction of the
polarization-independent Lorentz tensor matrix Θµν

ij with the polarization 4-vector εµ(ν).
We define the kinematical variables of the target’s state in light-front frame as

P =
(
P+, P−,P⊥

)
=
(
P+,

M2
ρ

P+ ,0⊥
)
. (3.3)

At the leading-twist, there are nine T-even TMDs for the ρ-meson, which are related
to the quark-quark correlators depending on the different spin projections Λ = 0,±1 and,
the longitudinal and transverse polarizations of the target as:

〈γ+〉(Λ)
S (x,k⊥) = f1(x,k2

⊥) + SLL f1LL(x,k2
⊥)

+ SLT · k⊥
Mρ

f1LT (x,k2
⊥) + k⊥ · STT · k⊥

M2
ρ

f1TT (x,k2
⊥) , (3.4)

〈γ+γ5〉(Λ)
S (x,k⊥) = SL g1L(x,k2

⊥) + k⊥ · S⊥
Mρ

g1T (x,k2
⊥) , (3.5)

〈γ+γiγ5〉(Λ)
S (x,k⊥) = Si⊥h1(x,k2

⊥) + SL
ki⊥
Mρ

h⊥1L(x,k2
⊥)

+ 1
2M2

ρ

(
2 ki⊥k⊥ · S⊥ − Si⊥ k2

⊥

)
h⊥1T (x,k2

⊥) . (3.6)

The correlations in eqs. (3.4)–(3.6) are defined by

〈Γ〉(Λ)
S (x,k⊥) = 1

2TrD
(
ΓΘ(Λ)S (x,k⊥)

)
≡ ε∗Λ(µ)(P ) 〈Γ〉µν(x,k⊥) εΛ(ν)(P ) (3.7)

where the Dirac matrices Γ are γ+, γ+γ5 or γ+γiγ5 with i = 1, 2, and we introduce the
following quantities with implicit S and Λ dependence:

SLL =
(
3Λ2 − 2

)(1
6 −

1
2S

2
L

)
, (3.8)

SiLT =
(
3Λ2 − 2

)
SLSi⊥, (3.9)

SijTT =
(
3Λ2 − 2

)(
Si⊥S

j
⊥ −

1
2S

2
⊥ δ

ij
)
. (3.10)

Here, Si(j)⊥ symbolizes the transverse polarization of the target meson in the directions
i(j) = x or y, while SL is the longitudinal polarization of the target. The correlator
equates the respective spin-1 meson TMDs corresponding to the unpolarized quark, the
longitudinally polarized quark and the transversely polarized quark identified with the
several alphabets f , g and h. The subscript 1 in the various TMDs refers to the twist-
2 or leading-twist. We emphasize that for ρ-meson to be longitudinally polarized means
|SL| = 1 and |S⊥| = 0, which corresponds to the spin projections Λ = 0,±1 parallel to
the direction of quark momentum. However, when the ρ-meson is transversely polarized,
the condition converses, i.e. |SL| = 0 and |S⊥| = 1, which describes the spin projections
Λ = 0,±1 perpendicular to the direction of the quark momentum.
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3.1 Overlap formalism

An equivalent way to derive the TMDs explicitly is to represent the correlator in the basis
where one considers the light-front helicities of both, the target and the active parton [47].
The light-front helicity amplitudes with hq(h′q) and Λ(Λ′), which define the initial(final)
state helicities of the active quark and the target, respectively, can be expressed as:

Ah′qΛ′,hqΛ(x,k⊥) = 1
(2π)3

∑
hq̄

ΨΛ′∗
h′q ,hq̄

(x,k⊥) ΨΛ
hq ,hq̄(x,k⊥) , (3.11)

where ΨΛ
hq ,hq̄

are the light-front wave functions. By symmetry, we choose the row entries
as (h′q Λ′) = (+ +), (+ 0), (+−), (−+), (− 0), (−−), and the column entries as (hq Λ) =
(+ +), (+ 0), (+−), (−+), (− 0), (−−). We can therefore express the light-front helicity
amplitude matrix for spin-1 hadron as:

Φ =



A++,++ A++,+0 A++,+− A++,−+ A++,−0 A++,−−
A+0,++ A+0,+0 A+0,+− A+0,−+ A+0,−0 A+0,−−
A+−,++ A+−,+0 A+−,+− A+−,−+ A+−,−0 A+−,−−
A−+,++ A−+,+0 A−+,+− A−+,−+ A−+,−0 A−+,−−
A−0,++ A−0,+0 A−0,+− A−0,−+ A−0,−0 A−0,−−
A−−,++ A−−,+0 A−−,+− A−−,−+ A−−,−0 A−−,−−


. (3.12)

The light-front helicity amplitudes can be parametrized by the following combinations of
ρ-meson TMDs [37]:

Φ =



f+ kL√
2Mρ

g
(+)
1T

k2
L

M2
ρ
f1TT

kR
Mρ
h⊥1L

√
2h1 0

kR√
2Mρ

g
(+)
1T f0 kL√

2Mρ
g

(−)
1T

k2
R√

2M2
ρ
h⊥1T 0

√
2h1

k2
R

M2
ρ
f1TT

kR√
2Mρ

g
(−)
1T f− 0 k2

R√
2M2

ρ
h⊥1T − kR

Mρ
h⊥1L

kL
Mρ
h⊥1L

k2
L√

2M2
ρ
h⊥1T 0 f− − kL√

2Mρ
g

(−)
1T

k2
L

M2
ρ
f1TT

√
2h1 0 k2

L√
2M2

ρ
h⊥1T −

kR√
2Mρ

g
(−)
1T f0 − kL√

2Mρ
g

(+)
1T

0
√

2h1 − kL
Mρ
h⊥1L

k2
R

M2
ρ
f1TT − kR√

2Mρ
g

(+)
1T f+


, (3.13)

where

f+ = f1 −
1
3f1LL + g1L, (3.14)

f0 = f1 + 2
3f1LL, (3.15)

f− = f1 −
1
3f1LL − g1L, (3.16)

g
(±)
1T = g1T ± f1LT , (3.17)
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and
kR(L) = kx ± ιky. (3.18)

By comparing the two matrices given in eqs. (3.12) and (3.13), we obtain the ρ-meson
TMDs in terms of the overlaps of the LFWFs as:

f1(x,k2
⊥) = 1

6(2π)3

∑
hq ,hq̄

(
|Ψ0

hq ,hq̄(x,k⊥)|2

+ |Ψ+1
hq ,hq̄

(x,k⊥)|2 + |Ψ−1
hq ,hq̄

(x,k⊥)|2
)
, (3.19)

g1L(x,k2
⊥) = 1

4(2π)3

∑
hq̄

(
|Ψ+1

+,hq̄(x,k⊥)|2 − |Ψ+1
−,hq̄(x,k⊥)|2

− |Ψ−1
+,hq̄(x,k⊥)|2 + |Ψ−1

−,hq̄(x,k⊥)|2
)
, (3.20)

g1T (x,k2
⊥) = Mρ

4
√

2 (2π)3k2
⊥

∑
hq̄

(
kR
(
Ψ+1∗

+,hq̄(x,k⊥) Ψ0
+,hq̄(x,k⊥)

−Ψ+1∗
−,hq̄(x,k⊥) Ψ0

−,hq̄(x,k⊥) + Ψ0∗
+,hq̄(x,k⊥) Ψ−1

+,hq̄(x,k⊥)

−Ψ0∗
−,hq̄(x,k⊥) Ψ−1

−,hq̄(x,k⊥)
)

+ kL
(
Ψ0∗

+,hq̄(x,k⊥) Ψ+1
+,hq̄(x,k⊥)

−Ψ0∗
−,hq̄(x,k⊥) Ψ+1

−,hq̄(x,k⊥) + Ψ−1∗
+,hq̄(x,k⊥) Ψ0

+,hq̄(x,k⊥)

−Ψ−1∗
−,hq̄(x,k⊥) Ψ0

−,hq̄(x,k⊥)
))

, (3.21)

h1(x,k2
⊥) = 1

4
√

2(2π)3

∑
hq̄

(
Ψ+1∗

+,hq̄(x,k⊥) Ψ0
−,hq̄(x,k⊥)

+ Ψ0∗
−,hq̄(x,k⊥) Ψ+1

+,hq̄(x,k⊥) + Ψ0∗
+,hq̄(x,k⊥) Ψ−1

−,hq̄(x,k⊥)

+ Ψ−1∗
−,hq̄(x,k⊥) Ψ0

+,hq̄(x,k⊥)
)
, (3.22)

h⊥1L(x,k2
⊥) = Mρ

4(2π)3k2
⊥

∑
hq̄

(
kR
(
Ψ+1∗
−,hq̄(x,k⊥) Ψ+1

+,hq̄(x,k⊥)

−Ψ−1∗
−,hq̄(x,k⊥) Ψ−1

+,hq̄(x,k⊥)
)

+ kL
(
Ψ+1∗

+,hq̄(x,k⊥) Ψ+1
−,hq̄(x,k⊥)

−Ψ−1∗
+,hq̄(x,k⊥) Ψ−1

−,hq̄(x,k⊥)
))

, (3.23)

h⊥1T (x,k2
⊥) =

M2
ρ

2
√

2(2π)3
1

k4
⊥

∑
hq̄

(
k2
R

(
Ψ+1∗
−,hq̄(x,k⊥) Ψ0

+,hq̄(x,k⊥)

+ Ψ0∗
−,hq̄(x,k⊥) Ψ−1

+,hq̄(x,k⊥)
)

+ k2
L

(
Ψ0∗

+,hq̄(x,k⊥) Ψ+1
−,hq̄(x,k⊥)

+ Ψ−1∗
+,hq̄(x,k⊥) Ψ0

−,hq̄(x,k⊥)
))

, (3.24)

f1LL(x,k2
⊥) = 1

2(2π)3

∑
hq ,hq̄

(
|Ψ0

hq ,hq̄(x,k⊥)|2

− 1
2
(
|Ψ+1

hq ,hq̄
(x,k⊥)|2 + |Ψ−1

hq ,hq̄
(x,k⊥)|2

))
, (3.25)
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f1LT (x,k2
⊥) = Mρ

4
√

2(2π)3k2
⊥

∑
hq̄

(
kR
(
Ψ+1∗

+,hq̄(x,k⊥) Ψ0
+,hq̄(x,k⊥)

+ Ψ+1∗
−,hq̄(x,k⊥) Ψ0

−,hq̄(x,k⊥)−Ψ0∗
+,hq̄(x,k⊥) Ψ−1

+,hq̄(x,k⊥)

−Ψ0∗
−,hq̄(x,k⊥) Ψ−1

−,hq̄(x,k⊥)
)

+ kL
(
Ψ0∗

+,hq̄(x,k⊥) Ψ+1
+,hq̄(x,k⊥)

+ Ψ0∗
−,hq̄(x,k⊥) Ψ+1

−,hq̄(x,k⊥)−Ψ−1∗
+,hq̄(x,k⊥) Ψ0

+,hq̄(x,k⊥)

−Ψ−1∗
−,hq̄(x,k⊥) Ψ0

−,hq̄(x,k⊥)
))

, (3.26)

f1TT (x,k2
⊥) =

M2
ρ

4(2π)3k4
⊥

∑
hq̄

(
k2
R

(
Ψ+1∗

+,hq̄(x,k⊥) Ψ−1
+,hq̄(x,k⊥)

+ Ψ+1∗
−,hq̄(x,k⊥) Ψ−1

−,hq̄(x,k⊥)
)

+ k2
L

(
Ψ−1∗

+,hq̄(x,k⊥) Ψ+1
+,hq̄(x,k⊥)

+ Ψ−1∗
−,hq̄(x,k⊥) Ψ+1

−,hq̄(x,k⊥)
))

. (3.27)

Using the holographic LFWFs, eqs. (2.19)–(2.21), in the overlap representations, eqs. (3.19)–
(3.27), we extract the explicit expressions for the leading-twist T-even TMDs for the ρ-
meson in the LF holographic model as:

f1(x,k2
⊥) = 1

3(2π)3

(
N 2
L

(
M2
ρ x(1− x) +m2

q + k2
⊥

)2 |ψ(x,k2
⊥)|2

x2(1− x)2

+N 2
T

(
m2
q + k2

⊥

(
2x2 − 2x+ 1

)) |ψ(x,k2
⊥)|2

x2(1− x)2

)
, (3.28)

g1L(x,k2
⊥) = N 2

T

2(2π)3

(
m2
q + k2

⊥ (2x− 1)
) |ψ(x,k2

⊥)|2

x2(1− x)2 , (3.29)

g1T (x,k2
⊥) = NLNT

Mρ√
2(2π)3

(
M2
ρ x(1− x) +m2

q + k2
⊥

) |ψ(x,k2
⊥)|2

x2(1− x)2 , (3.30)

h1(x,k2
⊥) = NLNT

mq√
2(2π)3

(
M2
ρ x(1− x) +m2

q + k2
⊥

) |ψ(x,k2
⊥)|2

x2(1− x)2 , (3.31)

h⊥1L(x,k2
⊥) = −N 2

T

mqMρ

(2π)3
|ψ(x,k2

⊥)|2

x2(1− x) , (3.32)

h⊥1T (x,k2
⊥) = 0 , (3.33)

f1LL(x,k2
⊥) = 1

(2π)3

(
N 2
L

(
M2
ρ x(1− x) +m2

q + k2
⊥

)2 |ψ(x,k2
⊥)|2

x2(1− x)2

−N 2
T

(
m2
q + k2

⊥

(
2x2 − 2x+ 1

)) |ψ(x,k2
⊥)|2

2x2(1− x)2

)
, (3.34)

f1LT (x,k2
⊥) = NLNT

Mρ√
2(2π)3 (2x− 1)

(
M2
ρ x(1− x) +m2

q + k2
⊥

)
× |ψ(x,k2

⊥)|2

x2(1− x)2 , (3.35)

f1TT (x,k2
⊥) = N 2

T

M2
ρ

(2π)3
|ψ(x,k2

⊥)|2

x(1− x) , (3.36)
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OAM Lz Configurations: |Λ〉→ |hq+hq̄〉

−2 |−1〉→
∣∣∣+1

2 + 1
2

〉
−1 |0〉→

∣∣∣+1
2 + 1

2

〉
|−1〉→

∣∣∣+1
2−

1
2

〉
|−1〉→

∣∣∣−1
2 + 1

2

〉
0 |+1〉→

∣∣∣+1
2 + 1

2

〉
|0〉→

∣∣∣+1
2−

1
2

〉
|0〉→

∣∣∣−1
2 + 1

2

〉
|−1〉→

∣∣∣−1
2−

1
2

〉
+1 |+1〉→

∣∣∣+1
2−

1
2

〉
|+1〉→

∣∣∣−1
2 + 1

2

〉
|0〉→

∣∣∣−1
2−

1
2

〉
+2 |+1〉→

∣∣∣−1
2−

1
2

〉
Table 1. The possible orbital angular momentum Lz contributions for ρ-meson light-front wave
functions based on the different configurations of spin projections of valence quarks hq,hq̄ and
hadron spin Λ.

where ψ(x,k2
⊥) is given in eq. (2.13). Meanwhile, all the T-even TMDs in the LF quark

model are evaluated in appendix A.
The LFWFs satisfy the angular momentum conservation projected along z-axis, i.e.

Jz =
∑n
i=1 s

i
z +

∑n−1
j=1 L

j
z, where n = 2 in this particular case. The intrinsic spin con-

tribution is denoted by s1
z + s2

z, while the relative orbital angular momentum (OAM) is
Lz for each configuration of LFWF. Here, s1

z and s2
z represent hq and hq̄, respectively

and Lz = Λ− (hq + hq̄). For the ρ-meson, the different configurations of the LFWFs with
the OAMs Lz = 0,±1 and ±2, which correspond to the S, P and D wave compositions
respectively, are listed in table 1.

We observe that f1, g1L, h1 and f1LL are all diagonal in OAM in the overlap repre-
sentation. In other words, there is zero OAM transfer from the initial to the final state of
the hadron. Meanwhile, the overlap configurations of the other TMDs show interference
between several wave compositions, which may refer to the non-zero OAM transfer from
the initial to the final state of the ρ-meson.

3.2 Numerical results

For the numerical predictions of the ρ-meson TMDs, we use the quark mass, mu/d =
0.33GeV and the universal AdS/QCD scale, κ = 0.523GeV as in refs. [65, 83, 84]. In
figures 1, 2, and 3, we illustrate the ρ-meson TMDs in the LF holographic model at the
model scale µ2

LFH = 0.20GeV2 and compare with the LF quark model predictions at
µ2

LFQM = 0.19GeV2. On the left panels of these figures, the TMDs are shown as a function
of x when k⊥ is fixed, whereas, we show the TMDs as a function of k2

⊥ for fixed values
of x on the right panels. In figure 1, we present the unpolarized quark TMD, f1(x,k2

⊥),
as well as the longitudinally polarized quark TMDs: g1L(x,k2

⊥) and g1T (x,k2
⊥), while the

transversely polarized quark TMDs: h1(x,k2
⊥), h⊥1L(x,k2

⊥), and h⊥1T (x,k2
⊥) are displayed

in figure 2. The qualitative behaviors of the TMDs f1, g1L, and g1T in the LF holographic
model are found to be consistent with the LF quark model. We also observe the similar
trend followed by the TMDs h1 and h⊥1L. However, we find that h⊥1T is zero in the LF
holographic model but it is nonzero in the LF quark model. Note that h⊥1T has also been
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Figure 1. (Color online) The unpolarized TMD f1(x,k2
⊥) and the longitudinally polarized quark

TMDs g1L(x,k2
⊥) and g1T (x,k2

⊥) with respect to x at different value of k2
⊥ (left panel), i.e., k2

⊥ =
0.1 GeV2 (solid curves) and k2

⊥ = 0.2 GeV2 (dashed curves). On the right panel, these TMDs
are shown with respect to k2

⊥ at different values of x, i.e., x = 0.3 (solid curves) and x = 0.6
(dashed curves). The blue and red curves correspond to the light-front holographic model at the
model scale µ2

LFH = 0.20GeV2 and the light-front quark model predictions at the model scale
µ2

LFQM = 0.19GeV2, respectively.

found to be zero in the NJL model [37]. The TMDs f1, g1T and h1 describe the momen-
tum distributions of the unpolarized quark in the unpolarized meson, the longitudinally
polarized quark in the transversely polarized meson, and the transversely polarized quark
in the transversely polarized meson, respectively. It can be noticed that the TMDs f1,
g1T (known as “worm gear 2” distribution) and h1 (known as transversity distribution)
exhibit symmetry under x ↔ (1 − x) in the LF holographic model. Similar behavior of
these TMDs have been observed in the NJL model [37]. However, in the LF quark model,
only f1 is symmetric under the transformation. The TMDs, which describe the momentum
distributions of the longitudinally polarized quark and the transversely polarized quark in
the longitudinally polarized meson, are defined as: the helicity TMD g1L, and the “worm
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Figure 2. (Color online) The transversely polarized quark TMDs h1(x,k2
⊥), h⊥1L(x,k2

⊥) and
h⊥1T (x,k2

⊥) with respect to x at different value of k2
⊥ (left panel), i.e., k2

⊥ = 0.1 GeV2 (solid curves)
and k2

⊥ = 0.2 GeV2 (dashed curves). On the right panel, these TMDs are shown with respect to
k2
⊥ at different values of x, i.e., x = 0.3 (solid curves) and x = 0.6 (dashed curves). The blue and

red curves correspond to the light-front holographic model at the model scale µ2
LFH = 0.20GeV2

and the light-front quark model predictions at the model scale µ2
LFQM = 0.19GeV2, respectively.

gear 1” h⊥1L, respectively. Unlike f1, g1T and h1, the longitudinally polarized meson TMDs,
g1L and h⊥1L, are asymmetric under x ↔ (1− x) and h⊥1L displays a negative distribution.
It can be seen from figure 2(c) that it needs less than half of the momentum fraction to be
carried by the transversely polarized quark to get the distribution peak. The pretzelosity
TMD h⊥1T describes the momentum distribution when both the quark and the ρ-meson
are transversely polarized and also, their polarizations are perpendicular to each other.
Therefore, h⊥1T has different overlap contributions from h1. However, due to the different
spin structures, h⊥1T does not vanish in the LF quark model and found to be negative and
asymmetrical with respect to x, shown in lower panel of figure 2. Neverthless, the different
responses are observed in the LF quark model: (i) the lesser number of TMDs show sym-
metry as compared to the NJL model [37] and the LF holographic model, (ii) h⊥1T 6= 0. The
reason behind the difference in the observations lie in the spin structure of the ρ-meson.
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Figure 3. (Color online) The tensor-polarized TMDs f1LL(x,k2
⊥), f1LT (x,k2

⊥) and f1T T (x,k2
⊥)

with respect to x at different value of k2
⊥ (left panel), i.e., k2

⊥ = 0.1 GeV2 (solid curves) and
k2
⊥ = 0.2 GeV2 (dashed curves). On the right panel, these TMDs are shown with respect to k2

⊥
at different values of x, i.e., x = 0.3 (solid curves) and x = 0.6 (dashed curves). The blue and red
curves correspond to the light-front holographic model at the model scale µ2

LFH = 0.20GeV2 and
the light-front quark model predictions at the model scale µ2

LFQM = 0.19GeV2, respectively.

In other words, the presence of the P-wave component i.e. Lz = ±1 in the longitudinally
polarized (Λ = L) and the D-wave component i.e. Lz = ±2 in the transversely polarized
(Λ = T ) ρ-meson wave functions in the LF quark model are responsible for the asymme-
try in g1T and h1 and the non-vanishing h⊥1T . Further, the dominance of TMDs on the
quark longitudinal momentum fraction come to an end at the extended values of the quark
transverse momentum and the quark TMDs get vanished.

Further, in figure 3, we display the tensor-polarized TMDs designated for the unpo-
larized quark. As discussed before, we plot these TMDs with respect to x at the fixed
values of k2

⊥ (left panel) and vice versa (right panel). We observe that f1LL has a pos-
itive peak at x = 0.5, and two negative peaks at lower (< 0.5) and higher x (> 0.5) or
equivalently, it has two zero crossings over x. For f1LL, there is no OAM transfer between
the initial and final states as seen in the eq. (3.25). Basically, the positive contribution
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from the S-wave and the negative contributions from the other wave compositions of the
LFWFs cancel each other’s effect which leads to the zero distribution at the crossing over
points. The S-wave contribution dominates at the central region of x, whereas at lower
and higher x domains, the other contributions rule over. However, with increasing k⊥,
the effect of cancellation decreases resulting in the small negative distribution peaks. f1LL
shows symmetry under x↔ (1−x). Further, f1LT is shown in the middle panel of figure 3.
It vanishes at x = 0.5 and exhibits the positive and the negative distributions at x > 0.5
and x < 0.5, respectively. The overlap of f1LT , eq. (3.26), is observed to transfer one unit
of OAM from the initial to the final states. In this case, the cancellation occurs due to
Lz = ±1 contributions. Lz = 0 component of the wave functions is always positive in
nature, however, according to eq. (3.26), the difference in terms corresponding to Lz = +1
and Lz = −1 brings zero into the picture. f1LT is anti-symmetric under x↔ (1− x). The
left over tensor-polarized TMD f1TT , shown in the lower panel of figure 3, shows the sum
of the overlaps providing the two units of OAM transfer from the initial to the final states.
Again, because of the different spin structure, the tensor-polarized TMDs do not survive
in the LF quark model. We also remark that in addition to the different spin structures
of two light-front models, the overall factor 1/

√
x(1− x) in the holographic wave function

enhances the distributions, which are diagonal in OAM in the overlap representation, i.e.,
f1, g1L, h1 and f1LL at k2

⊥ → 0 compared to those distributions in the LF quark model.
The enhancement of the distributions in the holographic model can be seen in the fig-
ures 1(b), 1(d), 2(b), and 3(b). Note that as expected all the TMDs in both the LF models
vanish at the end points x→ {0, 1} for any value of k⊥. Surprisingly, a distinct feature of
the TMDs has been observed in NJL model [37], where the TMDs are non-zero at the end
points for low k⊥. To understand x and k2

⊥ dependence together, the three-dimensional
structure of the eight non-zero TMDs in the LF holographic model is shown in figure 4.
Overall features of all the TMDs have also been observed in the NJL model [37].

Further, to compare our results with the available theoretical predictions, we compute
the k⊥ moments for several TMDs [37]

〈ka⊥〉TMD ≡
∫

dx d2k⊥|k⊥|aTMD(x,k2
⊥)∫

dx d2k⊥TMD(x,k2
⊥)

, (3.37)

where a represents the order of the moment. In table 2, we compare our predictions for
the first and the second order k⊥ moments in the LF holographic model and the LF quark
model with the only available theoretical results from the NJL model [37]. We observe that
except for g1L, our predictions are under estimated and they are in more or less accord with
the NJL model [37], however, the results in the LF quark model are closer to the results
predicted in the NJL model compared to the LF holographic model. Our predictions for
the moments of g1L differ significantly from the NJL model. f1LL and f1LT are not shown
in table, because in both the LF models, the denominator of the k⊥ moment is evaluated to
be zero for both f1LL and f1LT TMDs. Similar observation has been made in NJL model.
Also, the moments corresponding to f1TT in the LF quark model are not filled up because
the denominator of eq. (3.37) vanishes.
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Figure 4. (Color online) Light-front holographic TMDs of the ρ-meson as a function of x and k2
⊥

at the model scale µ2
LFH = 0.20GeV2.
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LF holographic model LF quark model NJL model
TMDs (This work) (This work) [37]

〈k⊥〉 〈k2
⊥〉 〈k⊥〉 〈k2

⊥〉 〈k⊥〉 〈k2
⊥〉

f1 0.238± 0.011 0.073± 0.007 0.328± 0.016 0.140± 0.013 0.32 0.13
g1L 0.204± 0.008 0.054± 0.004 0.269± 0.012 0.098± 0.009 0.08 −0.11
g1T 0.229± 0.010 0.077± 0.006 0.269± 0.012 0.098± 0.009 0.34 0.16
h1 0.229± 0.010 0.077± 0.006 0.307± 0.014 0.124± 0.011 0.34 0.16
h⊥1L 0.204± 0.008 0.054± 0.004 0.269± 0.012 0.098± 0.009 0.33 0.15
h⊥1T – – 0.237± 0.011 0.077± 0.007 – –
f1LL – – – – – –
f1LT – – – – – –
f1TT 0.211± 0.009 0.067± 0.005 – – 0.32 0.14

Table 2. The first moment 〈k⊥〉 [in GeV] and the second moment 〈k2
⊥〉 [in GeV2] predictions

corresponding to several ρ-meson TMDs are compared with NJL model results [37]. The theory
uncertainties result from the uncertainties in the constituent quark mass mq = 0.33± 0.03GeV and
the AdS/QCD scale κ = 0.523± 0.024GeV in the LF holographic model whereas in the LF quark
model, the values of the parameters are mq = 0.20± 0.02GeV and β = 0.41± 0.02GeV.

3.3 Positivity constraints

Let us now check the positivity constraints of our holographic TMDs for the ρ-meson. For
the spin-1 hadron, the TMDs satisfy the following relations [37, 39]:

f1(x,k2
⊥) ≥ 0 , (3.38)

f0(x,k2
⊥) ≥ 0 ⇒ f1(x,k2

⊥) ≥ −2
3f1LL(x,k2

⊥) , (3.39)

f+(x,k2
⊥) ≥ 0 ⇒ f1(x,k2

⊥) + g1L(x,k2
⊥) ≥ 1

3f1LL(x,k2
⊥) , (3.40)

f−(x,k2
⊥) ≥ 0 ⇒ f1(x,k2

⊥)− g1L(x,k2
⊥) ≥ 1

3f1LL(x,k2
⊥) , (3.41)

f0(x,k2
⊥)f+(x,k2

⊥) ≥ 2|h1(x,k2
⊥)|2 , (3.42)

f0(x,k2
⊥)f+(x,k2

⊥) ≥ k2
⊥

2M2
ρ

|g(+)
1T (x,k2

⊥)|2 , (3.43)

f0(x,k2
⊥)f−(x,k2

⊥) ≥ k2
⊥

2M2
ρ

|g(−)
1T (x,k2

⊥)|2 , (3.44)

f0(x,k2
⊥)f−(x,k2

⊥) ≥ k4
⊥

2M4
ρ

|h⊥1T (x,k2
⊥)|2 , (3.45)

f+(x,k2
⊥)f−(x,k2

⊥) ≥ k2
⊥

M2
ρ

|h⊥1L(x,k2
⊥)|2 , (3.46)
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Figure 5. The positivity constraints on the holographic TMDs, plotted with respect to k2
⊥ at fixed

x = 0.5.

f+(x,k2
⊥)f−(x,k2

⊥) ≥ k4
⊥

4M4
ρ

|f1TT (x,k2
⊥)|2 , (3.47)

3f1(x,k2
⊥) ≥ f1LL(x,k2

⊥) ≥ −3
2f1(x,k2

⊥) , (3.48)
3
2f1(x,k2

⊥) ≥ f1(x,k2
⊥)− 1

3f1LL(x,k2
⊥) ≥ g1L(x,k2

⊥) , (3.49)
3
2f1(x,k2

⊥) ≥ f1(x,k2
⊥) + 1

6f1LL(x,k2
⊥) ≥ h1(x,k2

⊥) . (3.50)

Figures 5 and 6 confirm that the different positivity constraints, defined in eqs. (3.39)–
(3.47), are satisfied by our holographic TMDs for the ρ-meson. In figure 5, the correspond-
ing TMDs in each constraint equation are shown as a function of k2

⊥ at fixed x = 0.5,
while figure 6 displays the constraint equations of TMDs as a function of x for fixed
k⊥ = 0.15GeV.
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Figure 6. The positivity constraints on the holographic TMDs, plotted with respect to x at fixed
k⊥ = 0.15GeV.

4 Parton distribution functions

The PDFs encode the distribution of the longitudinal momentum and the polarization
carried by the partons with no information on the parton intrinsic transverse momentum
k⊥. Therefore, one can retrieve the PDFs by integrating eqs. (3.4)–(3.6) over k⊥ [38, 41]:

〈γ+〉(Λ)
S (x) ≡ f1(x) + SLL f1LL(x) , (4.1)

〈γ+γ5〉(Λ)
S (x) ≡ SL g1(x) , (4.2)

〈γ+γiγ5〉(Λ)
S (x) ≡ Si⊥h1(x) . (4.3)

After integrating over the quark transverse momenta, the 6× 6 light-front helicity ampli-
tudes matrix, eq. (3.12), can then be parameterized by the leading-twist PDFs, defined

– 20 –



J
H
E
P
0
1
(
2
0
2
1
)
1
3
6

as [39]:

Φ(x) =

f1 + g1 − f1LL
3 0 0 0

√
2h1 0

0 f1 + 2f1LL
3 0 0 0

√
2h1

0 0 f1 − g1 − f1LL
3 0 0 0

0 0 0 f1 − g1 − f1LL
3 0 0√

2h1 0 0 0 f1 + 2f1LL
3 0

0
√

2h1 0 0 0 f1 + g1 − f1LL
3


,

(4.4)

where the positivity constraints on the PDFs are generated as

f1(x) ≥ 0 , (4.5)

3f1(x) ≥ f1LL(x) ≥ −3
2f1(x) , (4.6)

3
2f1(x) ≥ f1(x)− 1

3f1LL(x) ≥ |g1(x)| , (4.7)(
f1(x) + 2

3f1LL(x)
)(

f1(x) + g1(x)− 1
3f1LL(x)

)
≥ 2|h1(x)|2 . (4.8)

In figure 7, we show the behavior of the leading-twist PDFs of ρ-meson namely, the
unpolarized distribution f1(x), the helicity distribution g1(x), the transversity distributon
h1(x), and the tensor polarized distribution f1LL(x) at the model scales with respect to the
longitudinal momentum fraction carried by the quark. We compare our results in the LF
holographic model as well as in the LF quark model with the predictions of NJL model [37].
We obtain the holographic PDFs by integrating out k⊥ of the TMDs f1(x,k2

⊥), g1L(x,k2
⊥),

h1(x,k2
⊥) and f1LL(x,k2

⊥) given in eqs. (3.28), (3.29), (3.31) and (3.34) respectively, while
in the LF quark model, the corresponding TMDs are evaluated in eqs. (A.17), (A.18),
and (A.23). Overall, the qualitative behavior of the holographic PDFs and ones in the
LF quark model are consistent with the predictions in the NJL model [37]. The tensor-
polarized PDF f1LL being an important quantity, related to b1 structure function [26],
vanishes in the LF quark model, whereas the holographic f1LL is in more or less agreement
with the one in the NJL model [37], within the range 0.1 < x < 0.9. However, it differs
significantly when x → {0, 1}, as shown in 7 (left panel). Surprisingly, the PDFs in the
NJL model do not vanish at the end points, however, as expected, appear to be zero at
x → {0, 1} in both the LF models. f1LL has been measured by HERA for the deutron,
spin-1 target [35]. In figure 8, we illustrate that our holographic PDFs also satisfy the
positivity constraints mentioned in eqs. (4.5)–(4.8).

Further, at the model scale, the following sum rules are satisfied by our PDFs,∫ 1

0
dx f1(x) = 1 , (4.9)∫ 1

0
dx x f1(x) +

∫ 1

0
dx (1− x) f1(x) = 1 , (4.10)∫ 1

0
dx f1LL(x) = 0 ;

∫ 1

0
dx x f1LL(x) = 0 . (4.11)
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Figure 7. Left panel: the PDFs: f1(x), g1L(x), h1(x) and f1LL(x) as functions of x. Right panel:
the PDFs multiplied by x, i.e., xf1(x), xg1L(x), xh1(x) and xf1LL(x) are plotted with respect to x.
The solid-blue and dashed-red curves represent the results evaluated in the LF holographic model
and the LF quark model, respectively. Our results are compared with the predictions of the NJL
model (dotted-green curves) [37].

4.1 QCD evolution for ρ meson PDFs

By performing the QCD evolution, the valence quark distributions at high µ2 scale can be
obtained with the initial input PDFs. We use the next-to-next-to-leading order (NNLO)
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [85–87] of QCD, to evolve
our PDFs from our model scales to higher scale µ2. We explicitly evolve our initial ρ
meson PDFs in both the LF holographic and the LF quark model to the scale µ2 = 5 GeV2
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Figure 8. Several positivity constraints on PDFs plotted with respect to x.

utilizing the Higher Order Perturbative Parton Evolution toolkit to numerically solve the
NNLO DGLAP equations [88].

We adopt µ2
LFH = 0.20 ± 0.02GeV2 and µ2

LFQM = 0.19 ± 0.02GeV2 for the initial
scales of the LF holographic and the LF quark models, respectively, which we determine
by matching the valence quarks moment: 〈x〉 =

∫ 1
0 dxx f1(x) at µ2 = 5GeV2, with the

result from the NJL model, after performing the QCD evolution of the valence quark PDF.
Since the experimental data for ρ-meson PDFs are not available, we consider the results of
the NJL model as the testimonial [37] and set a 10% uncertainty in the initial scales. We
notice that at µ2 = 5GeV2, the valence quark and valence antiquark together carry ∼ 41%
of the total moment of ρ-meson. Note that the obtained initial scales of the LF holographic
and the LF quark models are close to that of the NJL model, where µ2

NJL = 0.16GeV2.
We interpret the initial scales associated with the LF models as effective scales where the
structures of the ρ meson is described by the motion of the valence quarks only.

We show our result for the valence quark PDFs of the ρ meson at µ2 = 5GeV2 after
QCD evolution in figure 9, where we compare the valence quark distributions with the
results from the NJL model [37]. We again notice that except f1LL in LF quark model,
our results agree with the NJL model predictions. The error band in the valence quark
distributions is due to the spread in the initial scales µ2

LFH = 0.20±0.02GeV2 and µ2
LFQM =

0.19± 0.02GeV2 propagated by the QCD evolution.

5 Spin densities in the momentum space

The TMDs can be interpreted as the quark densities inside the hadron. One can define
the quark momentum distributions inside the target with the different polarization combi-
nations via TMDs. The spin densities describe the correlation between the quark and the
target spins. Following eqs. (3.4)–(3.6), we define the quark spin densities in the momentum
space for the spin-1 target as,

ρ (x, kx, ky, (λ,λ⊥), (Λ,Λ⊥)) = f1 + λΛg1L + λΛi⊥
ki⊥
Mρ

g1T + λi⊥Λi⊥h1 + λi⊥Λ ki⊥
Mρ

h⊥1L

+ (3λ2 − 2)
((1

6 −
1
2Λ2

)
f1LL + ΛΛi⊥

ki⊥
Mρ

f1LT

+
(

Λi⊥Λj⊥ −
1
2Λ2
⊥δ

ij
)
ki⊥k

j
⊥

M2
ρ

f1TT

)
. (5.1)

– 23 –



J
H
E
P
0
1
(
2
0
2
1
)
1
3
6

(a)

μ2 = 5 GeV2

LF Holographic Model

LF Quark Model

NJL Model

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

x

x
f 1
(x
)

(b)
0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

x
g
1
(x
)

(c)
0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

x

x
h
1
(x
)

(d)
0.0 0.2 0.4 0.6 0.8 1.0

-0.04

-0.02

0.00

0.02

0.04

x

x
f 1
L
L
(x
)

Figure 9. The evolved PDFs for ρ meson: (a) xf1(x), (b) xg1L(x), (c) xh1(x) and (d) xf1LL(x)
as functions of x. The blue bands are LF holographic model results evolved from the initial scale
µ2

LFH = 0.20 ± 0.02GeV2 using the NNLO DGLAP equations to the scale µ2 = 5GeV2. The red
bands are LF quark model results evolved from the initial scale µ2

LFQM = 0.19 ± 0.02GeV2 to the
same final scale. The green dotted lines represent the results from the NJL model [37].

Here λ and Λ correspond to the quark and the target spins in the longitudinal direction.
Note that in this section, λ and Λ denote different quantities from the previous sections.
The configurations for these two can be λ =↑, ↓ (or +1,-1) and Λ =↑, ↓ (or +1,-1). λ⊥ =⇑,⇓
(or +1,-1) and Λ⊥ =⇑,⇓ (or +1,-1) symbolize the transverse spins of the quark and the
target ρ-meson, respectively. Here, we consider the transverse polarization to be along
x-direction. Depending on the different spin directions of the quark and the ρ-meson, we
predict the various spin correlations, which are discussed below.

We integrate out the longitudinal momentum fraction x to get all the spin densities in
the transverse momentum plane. In figure 10, we show the spin densities in the transverse
momentum plane by considering the different polarization configurations of the quark and
the ρ-meson in the longitudinal direction. ρ↑↑ = f1 − 1

3f1LL + g1L and ρ↑↓ = f1 − 1
3f1LL −

g1L designated to λ = Λ =↑ and λ =↑,Λ =↓ are explained in figures 10(b) and 10(c),
respectively. In view of ρ↑↑, one can observe the probability of finding the quark in the
ρ-meson with the spin aligned to the spin of the composite system, while ρ↑↓ explains the
probability when both spins are anti-aligned. ρ↑↑(kx, ky) and ρ↑↓(kx, ky), allow only those
overlap configurations of LFWFs, which display the effect of only two wave contributions
out of three. ρ↑↑ has the contributions from the squared of the wave functions which
describe the S-wave and the P-wave separation, while ρ↑↓ can be obtained from the squared
of the P-wave and the D-wave components. In other words, no OAM transfer occur between
the initial and the final states in these cases. Also, both the densities ρ↑↑ and ρ↑↓ are
axially symmetric. However, due to constructive interference between f1 and g1L in ρ↑↑,
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Figure 10. (Color online) Quark density plots for f1(kx, ky)(upper panel); ρ↑↑(kx, ky), ρ↑↓(kx, ky)
(middle panel) and ρ⇑⇑(kx, ky), ρ⇑⇓(kx, ky) (lower panel) in the momentum plane. The gray colored
vacant small and large circles (upper right corner) corresponds to both quark and the ρ-meson being
unpolarized. The dot and cross inside the circles denote the longitudinal polarization in same and
opposite directions respectively. The arrow along upward and downward directions symbolize the
transverse polarization of the quark and the ρ-meson.
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Figure 11. (Color online) Quark density plots for ρ↑⇑(kx, ky), ρ↑⇓(kx, ky)(upper panel) and
ρ⇑↑(kx, ky), ρ⇑⇓(kx, ky) (lower panel) in the momentum plane. The gray colored small and large
circles (upper right or left corner) with dot and cross inside, denote the longitudinal polarization
in same and opposite directions respectively. The arrow along upward and downward directions
symbolize the transverse polarization of the quark and the ρ-meson.

much larger magnitude has been observed as compared to ρ↑↓, where f1 and g1L appear
with the opposite signs. To shed light on the transverse spin densities, let us consider
λ⊥ = Λ⊥ =⇑ and λ⊥ =⇑,Λ⊥ =⇓ shown in figures 10(d) and 10(e) respectively, indicated
by ρ⇑⇑ = f1 −

k2
⊥

M2
ρ
f1TT + h1 and ρ⇑⇓ = f1 −

k2
⊥

M2
ρ
f1TT − h1. These spin densities are

the mixture of zero and two units of OAM transfer overlap terms. These are also axially
symmetric. Due to a similar reason mentioned in the case of the longitudinal spin densities,
ρ⇑⇑ dominates over ρ⇑⇓.

The distorting effects are observed in ρ↑⇑(↑⇓) and ρ⇑↑(⇑↓) as shown in figure 11. ρ↑⇑(↑⇓)
spin densities come into the picture when the spin directions of the quark and the ρ-meson
are longitudinal and transverse respectively, i.e. λ =↑,Λ⊥ =⇑ (⇓). To describe ρ⇑↑(⇑↓), the
spin directions λ⊥ =⇑,Λ =↑ (↓) are considered. We observe that the distortion effect takes
place with these considerations because of the terms kx

Mρ
g1T in ρ↑⇑(↑⇓)(= f1 ± kx

Mρ
g1T ) and

kx
Mρ
h⊥1L in ρ⇑↑(⇑↓)(= f1 ± kx

Mρ
h⊥1L). In these cases, the densities feature a significant dipole
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deformation along x-direction arising due to the terms mentioned above, while the f1 is
stick to the monopole effect. These terms lead to the distortion in the plots when imple-
mented together. One can also notice that the distortion of the longitudinally-polarized
quark in the transversely-polarized target is opposite to that of the transversely-polarized
quark in the longitudinally polarized target. The reason is that g1T is positive, while h⊥1L
is negative for ρ-meson.

6 Conclusions

In this work, we have presented the leading-twist TMDs for the ρ-meson in the LF holo-
graphic model where the dynamical spin effect has been taken into account in the wave
functions. The TMDs have been analyzed by practising the overlap representation of the
light-front wave functions in the constituent valence quark Fock space via the model in-
dependent overlap forms of the different light-front amplitudes. We have compared the
holographic predictions with the distributions evaluated in the LF quark model, which
contains a different spin structure from that in the LF holographic model.

We have observed that the TMDs f1, g1L, g1T , h1, and h⊥1L show a quite similar
behavior in both the light-front models. However, the holographic h⊥1T TMD vanishes and
shows the negative distribution in the LF quark model. On the other hand, the tensor
polarized TMDs, f1LL, f1LT and f1TT in the LF quark model appear to be zero but
nonzero in the LF holographic model, where f1LL and f1TT exhibit symmetry and f1LT
shows anti-symmetry under x↔ (1− x). Nevertheless, our holographic predictions on all
the TMDs have been found consistent with the previous finding in the NJL model [37]. All
the TMDs satisfy the necessary positivity constraints [37, 39]. We have also presented first
two moments, 〈k⊥〉 and 〈k2

⊥〉, of various TMDs, which are comparable with the available
predictions of the NJL model.

Next, we have evaluated the four survived PDFs for the ρ-meson, namely, the unpo-
larized f1, the helicity g1, the transversity h1 and the tensor f1LL PDFs. We have again
compared our results in the LF holographic and the LF quark models with the available
NJL model predictions and observed the qualitative agreement between our results (except
f1LL in the LF quark model) and the NJL model predictions. The PDF f1LL, which re-
quires the tensor polarization of the meson, is an important measurable quantity, vanishes
in the LF quark model. The valence quark PDFs in the holographic model, after QCD
evolution, are consistent with the NJL model results.

We have also studied the spin densities in the transverse momentum plane of the quark
inside the ρ-meson with the different polarization configurations. The distributions for both
the quark and the target polarized in the longitudinal or in the transverse directions have
been found to be axially symmetric. Meanwhile, we have observed the dipolar distortions
on top of the unpolarized symmetric distribution when the quark is longitudinally polarized
and the target is transversely polarized, or vice-versa. The distortions have been found
to be opposite for the longitudinal-transverse and the transverse-longitudinal polarization
configurations of the quark and the ρ-meson.
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For further investigation, the future developments should focus on the inclusion of
the nontrivial gauge link that will provide a prediction of the various T-odd ρ-meson
TMDs. The presented results in this study together with other theoretical predictions on
the TMDs and the PDFs may help the experimental groups to measure these distributions
for the ρ-meson. Any experimental data on these distributions and the comparison with
the theoretical predictions can help one to gain the valuable knowledge on the internal
structure of the ρ-meson.
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A Light-front quark model

The complete light-front wave function is accomplished by appraising the spin and the
momentum wave functions i.e. χ and ψ depending upon the spin projections of the ρ-
meson, Λ, at the scale µ2

LFQM = 0.19GeV2 [45, 46]:

ΨΛ
hq ,hq̄(x,k⊥) = χΛ

hq ,hq̄(x,k⊥)ψ(x,k2
⊥), (A.1)

with ∑
hq ,hq̄

χΛ∗
hq ,hq̄(x,k⊥)χΛ

hq ,hq̄(x,k⊥) = 1. (A.2)

According to the Brodsky-Huang-Lepage (BHL) prescription, the momentum wave function
is written as

ψ(x,k2
⊥) = N exp

[
−

k2
⊥ +m2

q

8β2x(1− x)

]
. (A.3)

The spin part of the wave function is provided by relating the spin states transforming
from the instant form to the light-front form by using the Melosh-Wigner method. For
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Λ = T (+) with the quark and the antiquark helicities being hq and hq̄, we have

χ
T (+)
+,+ (x,k⊥) = mq(M+ 2m) + k2

⊥

(M+ 2mq)
√

k2
⊥ +m2

q

, (A.4)

χ
T (+)
+,− (x,k⊥) = (xM+mq) kR

(M+ 2mq)
√

k2
⊥ +m2

q

, (A.5)

χ
T (+)
−,+ (x,k⊥) = − ((1− x)M+mq) kR

(M+ 2mq)
√

k2
⊥ +m2

q

, (A.6)

χ
T (+)
−,− (x,k⊥) = − k2

R

(M+ 2mq)
√

k2
⊥ +m2

q

, (A.7)

for Λ = L,

χL+,+(x,k⊥) = (1− 2x)MkL

(M+ 2mq)
√

2
(
k2
⊥ +m2

q

) , (A.8)

χL+,−(x,k⊥) = mq(M+ 2mq) + 2k2
⊥

(M+ 2mq)
√

2
(
k2
⊥ +m2

q

) , (A.9)

χL−,+(x,k⊥) = mq(M+ 2mq) + 2k2
⊥

(M+ 2mq)
√

2
(
k2
⊥ +m2) , (A.10)

χL−,−(x,k⊥) = − (1− 2x)MkR

(M+ 2mq)
√

2
(
k2
⊥ +m2

q

) , (A.11)

for Λ = T (−)

χ
T (−)
+,+ (x,k⊥) = − k2

L

(M+ 2mq)
√

k2
⊥ +m2

q

, (A.12)

χ
T (−)
+,− (x,k⊥) = ((1− x)M+mq) kL

(M+ 2mq)
√

k2
⊥ +m2

q

, (A.13)

χ
T (−)
−,+ (x,k⊥) = − (xM+mq) kL

(M+ 2mq)
√

k2
⊥ +m2

q

, (A.14)

χ
T (−)
−,− (x,k⊥) = mq(M+ 2mq) + k2

⊥

(M+ 2mq)
√

k2
⊥ +m2

q

, (A.15)

where

M =

√
k2
⊥ +m2

q

x(1− x) . (A.16)
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Following eqs. (3.19)–(3.27), the explicit expressions of TMDs in LF quark model are
given by

f1(x,k2
⊥) = 1

3(2π)3

(1
2
(
3 (mq (M+ 2mq))2 + (1− 2x)2M2k2

⊥

)
+ 4k2

⊥

(
mq(M+ 2mq) + k2

⊥

)
+ k2

⊥

(
2mq(M+mq) + (1− 2x+ 2x2)M2

)) |ψ(x,k2
⊥)|2

ω2 , (A.17)

g1L(x,k2
⊥) = 1

2(2π)3
(
mq(M+ 2mq)

(
mq(M+ 2mq) + 2k2

⊥

)
−M(M+ 2mq)(1− 2x)

) |ψ(x,k2
⊥)|2

ω2 , (A.18)

g1T (x,k2
⊥) = Mρ

2(2π)3 (M+ 2mq)
(
mqM(1− 2x) +

(
mq(M+ 2mq) + 2k2

⊥

))
× |ψ(x,k2

⊥)|2

ω2 , (A.19)

h1(x,k2
⊥) = 1

2(2π)3

((
mq(M+ 2mq) + 2k2

⊥

) (
mq(M+ 2mq) + k2

⊥

)
−M(xM+mq)(1− 2x)k2

⊥

) |ψ(x,k2
⊥)|2

ω2 , (A.20)

h⊥1L(x,k2
⊥) = − Mρ

(2π)3 (M+ 2mq)
(
mq ((1− x)M+mq) + k2

⊥

) |ψ(x,k2
⊥)|2

ω2 , (A.21)

h⊥1T (x,k2
⊥) = −

M2
ρ

(2π)3

(
M ((1− x)M+mq) (1− 2x) +

(
mq(M+ 2mq) + 2k2

⊥

))
× |ψ(x,k2

⊥)|2

ω2 , (A.22)

f1LL(x,k2
⊥) = 0 , (A.23)

f1LT (x,k2
⊥) = 0 , (A.24)

f1TT (x,k2
⊥) =

M2
ρ

(2π)3

(
M2x(1− x)− (k2

⊥ +m2
q)
) |ψ(x,k2

⊥)|2

ω2 , (A.25)

with
ω = (M+ 2mq)

√
k2
⊥ +m2

q , (A.26)

whereM and ψ(x,k2
⊥) are defined in eqs. (A.16) and (A.3) respectively. To find the numer-

ical results, we use the quark mass and β parameter as: mq = 0.2GeV and β = 0.41GeV
respectively [45].

B Density matrix description of spin-1 hadron

The spin density matrix ρ(S) of spin-J is totally related to the tensor matrices of 2J
rank. The spin-1 matrices correspond to three cartesian and six traceless and symmetric
tensor matrices denoted by Σi and Σij

(
= 1

2
(
ΣiΣj + ΣjΣi

)
− 2

3δ
ijI
)
respectively, which are
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given by

Σx = 1√
2

 0 1 0
1 0 1
0 1 0

 , Σy = 1√
2

 0 −ι 0
ι 0 −ι
0 ι 0

 , Σz =

 1 0 0
0 0 0
0 0 −1

 , (B.1)

Σxx = 1
6

−1 0 3
0 2 0
3 0 −1

 , Σxy = 1
2

 0 0 −ι
0 0 0
ι 0 0

 , Σxz = 1
2
√

2

 0 1 0
1 0 −1
0 −1 0

 , (B.2)

Σyy = 1
6

−1 0 −3
0 2 0
−3 0 −1

 , Σyz = 1
2
√

2

 0 −ι 0
ι 0 ι

0 −ι 0

 , Σzz = 1
3

 1 0 0
0 −2 0
0 0 1

 . (B.3)

Now, the spin density matrix ρ(S) is expressed as

ρ(S) = 1
3

(
1 + 3

2 ΣiSi + 3 ΣijT ij
)
, (B.4)

with
S = (SxT ,S

y
T ,SL) , (B.5)

and

T ij = 1
2


SxxTT + SLL SxyTT SxLT

SyxTT SyyTT + SLL SyLT

SxLT SyLT −2SLL

 , (B.6)

where SyyTT = −SxxTT and SxyLT = SyxLT . Therefore, from eq. (B.4)

ρ(S) =


1
3 −

SLL
2 + SL

2
SxLT−ιS

y
LT

2
√

2 + SxT−ιS
y
T

2
√

2
SxxTT−S

yy
TT−2ιSxyTT
4

SxLT+ιSyLT
2
√

2 + SxT+ιSyT
2
√

2
1
3 + SLL −S

x
LT−ιS

y
LT

2
√

2 + SxT−ιS
y
T

2
√

2
SxxTT−S

yy
TT+2ιSxyTT
4 −S

x
LT+ιSyLT

2
√

2 + SxT+ιSyT
2
√

2
1
3 −

SLL
2 −

SL
2

 (B.7)

with
− 1 ≤ SL ≤ 1, − 1

3 ≤ SLL ≤
2
3 . (B.8)
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