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1 Introduction

Ever since the discovery of the AdS/CFT correspondence [1] within the context of type IIB
string theory, holographic methods have become an extremely valuable tool in the study
of quantum field theories at strong coupling. This stimulated a massive production of su-
persymmetric supergravity backgrounds describing lower dimensional AdS vacua. Histori-
cally, the first examples where the correspondence was fully understood were AdS5×S5 [2],
AdS4×S7 [3] and AdS7×S4, which are respectively dual to N = 4, d = 4 SYM, 3d ABJM
theories and N = (2, 0) 6d SCFT’s. In identifying and testing the correspondence a crucial
role is played by the underlying brane picture, engineering the field theory on the one side
of the correspondence, while yielding the dual AdS background on the other, upon taking
the near-horizon limit.

In the three aforementioned celebrated examples, the brane picture is simply given by a
single stack of non-dilatonic branes, such as D3, M2 and M5 branes, respectively. The near-
horizon geometry in these cases simply turns out to be given by the direct product of AdS
times a sphere and no warping is present. When treating more involved situations featuring
a non-trivial warping and a reduced amount of supersymmetry, it becomes increasingly
difficult to obtain a complete understanding of supergravity AdS vacua in terms of brane
systems. A collection of AdS warped geometries understood as near-horizon limits of brane
intersections can be found e.g. in [4].

From a pure supergravity viewpoint, an enormously helpful tool for exploring super-
symmetric AdS solutions is represented by the pure spinor formalism [5–7], which explicitly
exploits the interplay between differential forms, spinors and geometry in order to determine
and classify which geometries involving lower dimensional AdS factors may be consistently
obtained as supersymmetric string theory backgrounds. However, despite triggering cru-
cial developments in the production of novel fully-backreacted AdS warped geometries, this
method is not particularly helpful when it comes to understanding the underlying brane
system which originated them.

On the other hand, a physically well-understood mechanism that yields geometries of
the above type is the backreaction of some defect branes inserted within the background of
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object t x1 r θ1 θ2 θ3 ρ ϕ1 ϕ2 ϕ3 z

M5 × × × × × × − − − − −
M2 × × − − − − ∼ ∼ ∼ ∼ ×
M5 × × − − − − × × × × ∼

Table 1. The 1
4 -BPS brane system underlying the intersection of M2–M5 branes intersecting M5

branes. The “∼” denotes smearing along the corresponding directions.

a pre-existing stack of branes. This phenomenon was originally studied in [8], where this
was proposed as the stringy description of defect CFT’s. In this work, it was also shown,
by means of a probe calculation, how the backreaction due to the presence of defect branes
induces a warping on the worldvolume of the probe branes, which then becomes AdS times
a sphere rather than flat Minkowski space.

If we focus on AdS3 solutions in particular, a wide range of possibilities opens up
for what concerns the choice of internal manifolds, spin structures and preserved super-
symmetries. Partial attempts of classification can be found e.g. in [9–23]. Our focus in
this paper is the class of solutions found in [24]. The corresponding geometry is given
by AdS3 × S3/Zk × CY2 × I with warping w.r.t. the interval I, where special situations
where k = 1 and/or CY2 = R4 describe cases with enhanced supersymmetry. In [24] in
particular, two different branches of AdS3×S3/Zk ×CY2× I solutions are studied. In the
former branch the warp factors in front of the AdS3 and S3 blocks of the metric are equal,
while in the latter they differ by an extra factor.

In [25] the brane origin of the former branch of solutions is explained in terms of
M2–M5–KK defects intersecting a stack of M5–KK branes. The aim of our work is to
provide a brane set-up describing the other branch of solutions. The paper is organized
as follows. In section 2 we review the results of [25]. Subsequently, in 3, we introduce the
novel ingredients needed in order to provide the brane interpretation of the other branch
of AdS vacua. These will include M2–M5 defects at conical singulairities within the CY2,
as well as exotic background five-branes carrying M2 charge. Finally, in 4 we present the
full solution providing the brane interpretation for this second class of M-theory vacua.

2 Review of M2–M5–M5 brane systems

In this section we summarize the results of [25] whereN = (0, 4) AdS3×S3/Zk×S̃3/Zk′×Σ2
string backgrounds of M-theory have been obtained as near-horizon regime of “defect” M2–
M5 branes ending on a stack of orthogonal M5 branes with both the 5-branes placed at
A-type singularities. These near-horizon geometries turn out to belong to a sub-class within
the general classification of N = (0, 4) AdS3×S3/Zk ×CY2× I solutions presented in [24]
and thus provide, for this sub-class, a clear interpretation in terms of non-perturbative
objects.

Let us consider a “simplified” situation in which the KK-monopoles are absent since
to the aims of this paper the inclusion of Taub-NUT singularities is not necessary. In this
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case the system we have to deal with preserves 8 supercharges and it is featured by M2–M5
branes completely localized within the worldvolume of the orthogonal M5 branes. The
metric for such a system has the form

ds2
11 = H−1/3

(
H
−1/3
M5 H

−2/3
M2 ds2

Mkw2 +H
2/3
M5 H

1/3
M2

(
dr2 + r2ds2

S3

))
+H2/3

(
H
−1/3
M5 H

1/3
M2

(
dρ2 + ρ2ds2

S̃3

)
+H

2/3
M5 H

−2/3
M2 dz2

)
.

(2.1)

The smearing of M2–M5 brane charges implies that HM2 = HM2(r) and HM5 = HM5(r),
while the orthogonal M5 branes are completely localized in their transverse space, i.e.
H = H(z, ρ). This charge distribution breaks the SO(3) × SO(3) invariance since, as we
said, the M2–M5 charges are completely localized within the M5’s worldvolume. The flux
configuration corresponding to the aforementioned distribution of charges is given by

G(4) = d
(
H−1

M2

)
∧ volMkw2 ∧ dz + ∗(4) (dHM5) ∧ dz

+ ∂ρHρ
3 dz ∧ volS̃3 −HM2H

−1
M5 ∂zHρ

3 dρ ∧ volS̃3 ,
(2.2)

where ∗(4) is performed within the R4 parametrized by (r, θi). For this flux configuration,
it turns out that the equations of motion and Bianchi identities of the defect branes and
those of the orthogonal M5’s decouple in the following way(

r3ḢM2
)· != 0 , ∆R4 H + ∂2

z H
!= 0 , (2.3)

where we denoted by · the derivative w.r.t. r and ∆R4 represents the Laplace operator in
the R4 space spanned by

(
ρ, ϕi

)
. Moreover from the equations of motion for the 3-form

one also infers that HM2
!= HM5. The equation for HM2 can be easily solved by

HM2 = HM5 = 1 + QM2
r2 , (2.4)

where QM2 are the charges of M2 (M5) branes.
Let us now consider the r → 0 limit. In this regime the full 11d background takes the

form of a stack of M5 branes wrapping an AdS3 × S3 geometry of M2–M5 branes1

ds2
11 = QM2H

−1/3
(
ds2

AdS3 + ds2
S3

)
+H2/3

(
ds2

R4 + dz2
)
,

G(4) = 2QM2 volAdS3 ∧ dz + 2QM2 volS3 ∧ dz
− ∂zHρ3 dρ ∧ volS̃3 + ∂ρHρ

3 dz ∧ volS̃3 ,

(2.5)

where ds2
R4 = dρ2 + ρ2 ds2

S̃3 and the function H is a harmonic function on the 5d flat
transverse space of the M5 branes parametrized by (ρ, z). In this regime the solution
enhances its supersymmetry to 16 supercharges preserved ( 1

2 -BPS). In particular it realizes
small N = (4, 4) supersymmetry since only one of the two SU(2) symmetry factors is
preserved.

1We redefined the 2d Minkowski coordinates as (t, x1)→ QM2 (t, x1).
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object t x1 r θ1 θ2 y ρ ϕ1 ϕ2 φ z

M5 × × × × × × − − − − −
M2 × × − − − − ∼ ∼ ∼ ∼ ×
M5 × × − − − − × × × × ∼
KK × × − − − ISO × × × × ×

Table 2. 1
8 -BPS brane setup of defect M2–M5 branes intersecting orthogonal M5 branes with KK

monopoles. y is the compact direction of the KK monopoles [25].

The inclusion of KK monopoles. At the level of the local description of near-horizon
background (2.5), the possible inclusion of KK-monopoles is technically straightforward
since it consists in the mere substitution of the 3-sphere2 appearing in (2.5) with a lens-
space, i.e. S3 → S3/Zk. This operation implies a further breaking of a quarter of supersym-
metry and it produces AdS3 backgrounds preserving small N = (0, 4) supersymmetry [25].
These backgrounds are included in the classification of N = (0, 4) AdS3×S3/Zk×CY2× I
solutions studied in [24]. At the level of the brane picture the above arguments are re-
alized by including KK-monopoles charges QKK in the transverse spaces of the M2–M5
defect branes. The full brane solution has been studied in [25] and here we just present
the metric
ds2

11 = H−1/3
[
H
−1/3
M5 H

−2/3
M2 ds2

Mkw2 +H
2/3
M5H

1/3
M2

(
HKKds

2
R3 +H−1

KK(dy +QKKω)2
)]

+H2/3
[
H

2/3
M5H

−2/3
M2 dz2 +H

−1/3
M5 H

1/3
M2 ds

2
R4

]
,

(2.6)

with dω = volS2 and ds2
R3 = dr2 + r2ds2

S2 . The parameter QKK coincides with the Zk-
orbifold of the 3-sphere, namely k = QKK. This can be showed explicitly by changing the
radial coordinates as r → 4−1Q−1

KK r
2 [4], in this way the 4d flat manifold parametrized by

(r, θi, y) can be written as foliations of the Lens space S3/Zk.
Finally it worths to mention that in [25] it has been showed that the aforementioned

N = (0, 4) AdS3 backgrounds reproduce asymptotically a (locally) AdS7/Zk×S4 geometry,
allowing an interpretation in holography as a N = (0, 4) conformal surface defect. In what
follows we will always consider M-branes intersections that do not include KK monopoles,
but that allows their inclusion as an immediate generalization following the aformentioned
prescriptions.

3 The new ingredients: the M5ξ brane and conical defects

We have seen in the previous section that a specific type of AdS3 solutions to 11d super-
gravity can be interpreted as the near-horizon geometries of M2–M5 defect branes placed
within a background given by a stack of M5 branes. With the inclusion of KK monopoles,
the aforementioned solutions turn out to be a subclass of N = (0, 4) AdS3×S3/Zk×CY2×I
backgrounds studied in [24].

2The presence of a Taub-NUT singularity within the flat space parametrized by (r, θi) allows a further
inclusion of an A-type singularity within the orthogonal R4 parametrized by (ρ, φi) without any further
breaking of SUSY [25].
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object t x1 x2 u1 u2 u3 ζ θ1 θ2 θ3 θ4

M5ξ × × × × × × − − − − −

Table 3. The M5ξ or dyonic membrane describing M5 branes with M2 charges dissolved along
the hypersurface parametrized by (u1, u2, u3). The transverse space R5 is parametrized by the
coordinates (ζ, θ1, θ2, θ3, θ4). The object is 1

2 -BPS.

The goal of this section is to discuss the new ingredients needed to find the brane
picture of more general AdS3 vacua within the class of [24], namely AdS3 × S3 sliced
backgrounds described by a relative warping3 between AdS3 and S3. To this aim we will
need to deform both the background objects (the M5 branes) and the defect ones (the
M2–M5 bound state). In this section we will start out by analyzing these two deformations
separately and eventually, in the next section, we shall present the complete solution in
which these two effects are combined. As an effect of superimposing the two, a dynamical
constraint will finally relate the parameters controlling the two deformations.

The M5ξ brane solution. In addition to M-branes and their intersections, another class
of objects feature the spectrum of M-theory. The first example of these objects was first
found in [26] by studying the compactification of M-theory on a T 3. In this work a “dyonic”
multi-membrane solution was worked out within N = 2 8d supergravity by exploiting the
SL(2,R) invariance of the theory. This solution represents a solitonic five-brane carrying
membrane charge distributed within a 3d hypersurface inside of its worldvolume.

From the point of view of the physics of M-branes, this is equivalent to considering an
exotic (M2, M5) bound state given by an M5 brane carrying a dissolved M2 charge within
its worldvolume. This object preserves 16 supercharges in 11d.

The explicit form of the solution is specified by the choice of a harmonic function H

over the transverse space R5, and a duality angle ξ fixing the ratio between the (magnetic)
five-brane charge and the (electric) membrane charge deforming its worldvolume. We will
refer to this object as M5ξ or dyonic membrane. The explicit form of the solution is given
by [26]

ds2
11 = H−2/3

(
s2 + c2H

)1/3
ds2

Mkw3 +H1/3
(
s2 + c2H

)−2/3
ds2

R3+

H1/3
(
s2 + c2H

)1/3 (
dζ2 + ζ2ds2

S4

)
,

G(4) = c ∗(5) (dH) + s d
(
H−1

)
∧ volMkw3 + sc

(s2 + c2H)2dH ∧ volR3 ,

(3.1)

where s ≡ sin ξ and c ≡ cos ξ, whereas H satisfies ∆R5H = 0. We immediately observe
that (3.1) admits two relevant limits:

• ξ = 0: purely magnetic case describing fully-localized M5 branes.

• ξ = π
2 : purely electric case describing M2 branes smeared over the hyperplane

spanned by (u1, u2, u3).
3In the notation of [24] this additional warping is encoded in a linear function called u.
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object t x1 r θ1 θ2 θ3 ρ ϕ1 ϕ2 ϕ3 z

M2 × × − − − − ∼ ∼ ∼ ∼ ×
M5 × × − − − − × × × × ∼

Table 4. The 1
4 -BPS brane system underlying the intersection of M2–M5 branes intersecting M5

branes. The conical singularity is located within the R4
γ parametrized by (r, θi).

For any other value of the duality angle ξ, one has an exotic five-brane carrying membrane
charge. We point out that the presence of the last term in G(4) makes it manifest that we
are not dealing with a mere superposition of M2 and M5 branes. In fact such an intersection
would drastically break all of the supersymmetries, while the presence of such a term in
G(4) crucially saves us from SUSY breaking by taking M2–M5 interactions into account.

A particular asymptotically flat solution is the one describing an object carrying spher-
ically symmetric charge in the transverse space R5, which corresponds to choosing H as

H = 1 + Q

ζ3 , (3.2)

where Q represents the five-brane charge. It is perhaps worth noticing that, for any ξ 6= π
2 ,

the near-horizon geometry of this object will still yield an AdS7 factor. To see this explicitly,
take the ζ → 0 limit to get a metric of the form

`−2 ds2
11 ∼

(
dζ2

ζ2 + ζ

(
c1/3

Q
ds2

Mkw3 + c−1

Q
ds2

R3

))
+ ds2

S4 , (3.3)

with ` ≡ c1/6Q1/3, which can be recognized as the direct product of AdS7 and S4, after a
suitable rescaling of the coordinates of Mkw3 and R3, respectively.

M2–M5 intersections at conical defects. Let us now have a look at the deformation
needed for an M2–M5 defect to be compatible with an M5ξ background. First of all we
start by considering the M2–M5 set-up included in (2.1), where the orthogonal M5 branes
have been removed (see table 4). The common transverse space to the defect will be an
R4 spanned by the polar coordiantes

(
r, θi

)
and the M2 and M5 branes are fully localized

in this space. This time though, a conical defect must be placed at the origin of this
hyperplane, i.e. at r = 0. Let us first see how this conical defect is introduced within R4.

By adopting embedding coordinates in R5, call them
{
XI
}
, the embedding of a four-

dimensional cone is defined through

(
X5
)2
−
∣∣1− γ2∣∣
γ2 (XaXa) = 0 , (3.4)

where γ is a non-zero constant and a runs from 1 to 4. Upon introducing 4d local coordi-
nates through

Xa = γrµa, X5 =
∣∣∣1− γ2

∣∣∣1/2
r, (3.5)
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where {µa} are the embedding coordinates of a three-sphere and hence satisfy µaµa = 1.
The induced metric then reads

ds2
R4
γ

= dr2 + γ2 r2ds2
S3 , (3.6)

which corresponds to a hyperplane with deficit angle δ ≡ 2π (1−γ) and it contains a conical
singularity at r = 0 for any γ 6= 1. Note that the apex angle 2ψ of the corresponding cone
is related to the γ parameter through γ = sinψ.

Let us now place our M2–M5 defect branes as depicted in table 4, where the M5 charge
is uniformly distributed along the coordinate z and the M2 branes are smeared over the
worldvolume of the M5.

The effect of placing a conical singularity at the origin of the R4 parametrized by
(
r, θi

)
is a backreaction that appears in the metric through a z dependent factor named f . The
explicit solution is given by

ds2
11 = f2/3

(
H
−2/3
M2 H

−1/3
M5 ds2

Mkw2 +H
1/3
M2H

2/3
M5

(
dr2 + γ2r2ds2

S3

))
+

+ f−1/3
(
H

1/3
M2H

−1/3
M5

(
dρ2 + ρ2ds2

S̃3

)
+ f−1H

−2/3
M2 H

2/3
M5 dz

2
)
,

G(4) = γ−1d
(
H−1

M2

)
∧ volMkw2 ∧ dz + ∗(4) (dHM5) ∧ dz .

(3.7)

where ∗(4) is performed over R4
γ . From the equations of motion and Bianchi it follows that

the functions HM2(r) and HM5(r) both satisfy the harmonicity condition on R4
γ , while f

has to be a linear function of z,(
r3Ḣα

)· != 0 with , f ′′
!= 0, (3.8)

where α = M2, M5 and we denoted respectively by · & ′ the derivatives with respect to r
& z. Moreover, the full set of EOM’s and Bianchi identities require the absence of constant
term inside HM2(r) and fix f ′ in terms of γ. Summarizing, the complete solution for the
defect is gven by

HM2 = QM2
r2 , HM5 = cM5 + QM5

r2 ,

f = c+Qz, with Q = ± 2√
QM2

√
1− γ2

γ
,

(3.9)

where cM5 and c are arbitrary constants. The corresponding geometry when zooming in
at r → 0 is given by,4

ds2
11 = Q

1/3
M2Q

2/3
M5 f

2/3
(
ds2

AdS3 + γ2ds2
S3

)
+ f−1/3ds2

R4 + f−4/3dz2,

G(4) = 2QM5γ
−1 volAdS3 ∧ dz + 2QM5γ

3 volS3 ∧ dz,
(3.10)

where ds2
R4 = dρ2 +ρ2ds2

S̃3 . This near-horizon metric constitutes a AdS3×S3×R4 solution
of M-theory with warping along the 11th z coordinate. This background preserves the
same number of supersymmetries of the M2–M5 set-up without any conical singularity.
This is obviously related to the presence of the linear function f whose effect is exactly
that of compensating the deformation due to the conical singularity.

4We redefined the 2d Minkowski coordinates as (t, x1)→ Q
1/2
M2Q

1/2
M5 (t, x1).
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branes t x r θ1 θ2 θ3 ρ ϕ1 ϕ2 ϕ3 z

M5ξ × × × × × × − − − − −

M2 × × − − − − ∼ ∼ ∼ ∼ ×

M5 × × − − − − × × × × ∼

Table 5. The brane picture underlying the 2d SCFT described by M2 and M5 branes as defects
within the 6d N = (2, 0) SCFT living on the worldvolume of the M5ξ. The above system is 1

4 -BPS.

4 The full solution and its limits

After analyzing the background and defect branes separately, we are now ready to study
the complete brane system realizing the general AdS3 solutions in [24]. The underlying
brane picture is sketched in table 5 and it describes a stacks of dyonic membranes M5ξ
orthogonal to M2–M5 defect branes at a conical singularity. The crucial element we observe
is the impossiblity for the dyonic membrane to wrap the defect geometry of M2–M5 unless
one does not include a conical singularity. This is related to the fact that the M2 charge
extended within the worldvolume of dyonic membranes breaks the isometries of its 6d
worldvolume and this effect has to be compensated by the backreacted geometry of the
defect branes M2–M5. Based on the previous analysis, we can cast the following Ansatz
for the 11d metric

ds2
11 = f2/3H−2/3

(
s2 + c2H

)1/3 (
H
−2/3
M2 H

−1/3
M5 ds2

Mkw2 +H
1/3
M2H

2/3
M5 dr

2
)

+

+ f2/3H1/3
(
s2 + c2H

)−2/3
H

1/3
M2H

2/3
M5 γ

2r2ds2
S3+

+ f−1/3H1/3
(
s2 + c2H

)1/3 (
H

1/3
M2H

−1/3
M5

(
dρ2 + ρ2ds2

S̃3

)
+ f−1H

−2/3
M2 H

2/3
M5 dz

2
)
,

(4.1)
where the function H(ρ, z) is now associated with the dyonic membrane M5ξ and s = sin ξ,
c = cos ξ as they have been introduced in (3.1). The functions HM2(r) and HM5(r) describe
the defect branes M2–M5 at the conical singularity parametrized by the parameter γ.
Finally the function f(z) is the additional warping appearing when placing the defect at
the singularity as in (3.7). The corresponding 4-flux has the following form

G(4) = c d
(
H−1

M2

)
∧ volMkw2 ∧ dz + c3 ∗(4) (dHM5) ∧ dz+

− sH−1/2
M2 volMkw2 ∧ dr ∧ d

(
fH−1

)
− sc2 r3H

3/2
M5 volS3 ∧ d

(
f
(
s2 + c2H

)−1
)

+

+ cρ3
(
f−1∂ρHdz −HM2H

−1
M5∂zHdρ

)
∧ volS̃3 ,

(4.2)
where ∗(4) is performed over R4

γ . By looking at the above expression we can recognize in
the first two terms the contribution of defect branes M2–M5 written in (3.7), while the
other terms represent deformations of the 4-flux of the dyonic membrane (3.1) due to the
backreaction of the conical singularity.
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The functions H(ρ, z), f(z), HM2(r) and HM5(r) satisfy the following system of differ-
ential conditions (

r3ḢM2
)· != 0

(
r3ḢM5

)· != 0,

f−1∆R4H + ∂2
zH

!= 0, f ′′
!= 0 ,

(4.3)

where · & ′ again denote differentiation w.r.t. r & z, respectively, and ∆R4 represents the
Laplace operator in the R4 space spanned by

(
ρ, ϕi

)
. If one compares this situation with

the case of (2.3), the equation of H does not decouple completely from the defect since it
is explicitly deformed by the function f associated to the conical singularity.

As in the case of (2.3), the equation of motion of the 3-form A(3) turns out to further
demand HM2

!= HM5, thus resulting in the absence of constant term in (3.9) for HM5, as
well. Crucially, one obtains a dynamical relation between the characteristic parameter of
the conical defect γ and the duality angle ξ of the M5ξ brane:

γ
!= c ≡ cos ξ , (4.4)

which in turn implies that the duality angle ξ needs to be the complement to π
2 of the half

apex angle of the cone. Finally, due to (4.4), the first derivative of the f function can now
be directly expressed in terms of ξ through

Q
!= − 2√

QM2
tan ξ . (4.5)

Hence, as for the M2–M5 system at a conical singularity (3.9), f ′ is again fixed in terms
of γ. We can then see that the inclusion of a conical singularity within the transverse
space of defect branes M2–M5 is the necessary condition for their intersection with the
dyonic membrane M5ξ. In fact, as we will discuss in more detail in next section, one can
immediately see from (4.5) that the angle ξ is trivialized when ones set f ′ = Q = 0 ane the
11d metric (4.1) collapses to the already-knwon case of M2–M5 ending on a stack of M5
branes studied in section 2.

Recognizing the underlying AdS3 solution. Once explicitated all the quantities re-
garding the defect branes M2–M5, the explicit background (4.1) reproduces the dyonic
membrane wrapping the fully-backreacted geometry of the defect,

ds2
11 = f2/3

(
H−2/3

(
s2 + c2H

)1/3
L2 ds2

AdS3 + H1/3
(
s2 + c2H

)−2/3
κ2 ds2

S3

)
+

+ f−1/3H1/3
(
s2 + c2H

)1/3 (
dρ2 + ρ2 ds2

S̃3 + f−1 dz2
)
,

G(4) = −sL3 volAdS3 ∧ d
(
f H−1

)
− sc−1 κ3 volS3 ∧ d

(
f
(
s2 + c2H

)−1
)

+

+
(
QM2L

3volAdS3 +QM5κ
3volS3

)
∧ dz + cρ3

(
f−1∂ρHdz − ∂zHdρ

)
∧ volS̃3 ,

(4.6)
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where the field equations and the Bianchi identities fix the ratio of the defect charges5 in
terms of the duality angle ξ as

QM2
QM5

!= − c3 , (4.7)

while the AdS and the sphere radii must be given by

L = 2
QM5

c−2, κ = 2
QM5

c−1, (4.8)

and finally the first derivative of the linear function f reads Q = QM5 sc.
Note that, as already anticipated since the very beginning, this construction yields an

AdS3 × S3 × S̃3 × Σ2 solution in which the relative warping between AdS3 and the first
S3 are different, while in the construction review in section 2, one always gets equal warp
factors for the two. Note that, due to the absence of extra KK monopoles, these solutions
preserve sixteen real supercharges and hence can be fit within the classification of [14]. The
special situation with no relative warping between AdS3 and S3 can be recovered by taking
the ξ → 0 limit. It is worth mentioning that, within this parametrization, one smoothly
approaches the solution (2.1) as ξ → 0. Taking the duality angle to zero, by taking the
on-shell relations (4.4) & (4.5), physically identifies the following limiting procedure

• M5ξ →M5, i.e. the background M2 charge disappears leaving us with a plain M5
brane,

• γ → 1, i.e. the conincal singularity in R4 disappears,

• f ′ → 0, i.e. no more extra warping in the x10 = z coordinate.

These are all physical features of the AdS3 × S3 × S̃3 × Σ2 solution reviewed in section 2,
which can be obtained as the near-horizon limit of an M2–M5–M5 brane system.

Recovering the AdS7 asymptotic geometry. Let us now take a closer look at the
second order PDE satisfied by the function H(ρ, z)

f−1∆R4
ρ
H + ∂2

zH = 0 . (4.9)

Since we are describing M2–M5 defect branes placed inside of a background M5ξ brane,
we would expect to be able to recover an (asymptotically locally) AdS7 × S4 geometry
when approaching the origin of the 5d transverse space of the M5ξ parametrized by (ρ, z),
just like it is discussed right above equation (3.3). However, one might at first sight be
worried by the fact that the solution to the PDE in (4.9) is represented by a non-harmonic
function, contrary to the one spelled out in (3.2). Nevertheless, even though writing down
a full closed-form solution for H is not an easy task, one gets easily convinced that, at
least in the (ρ, z) → (0, 0) limit, the Laurent expansion for H will be dominated by the
harmonic function H0 solving

f(0)−1∆R4
ρ
H0 + ∂2

zH0 = 0 . (4.10)
5To avoid ambiguities with the solutions presented in previous sections, we point out that the defect

charges QM5 and QM2 we have chosen to present the AdS3 solution (4.6) do not coincide with the parameters
used in previous section for the corresponding full brane solution (4.1).
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object t x1 r θ1 θ2 y ρ ϕ1 ϕ2 φ z

M5ξ × × × × × × − − − − −
M2 × × − − − − ∼ ∼ ∼ ∼ ×
M5 × × − − − − × × × × ∼
KK × × − − − ISO × × × × ×

Table 6. 1
8 -BPS brane setup of defect M2–M5 branes at a conical singularity intersecting orthogonal

M5ξ branes with KK monopoles. This background describes the supergravity dual of N = (0, 4) a
surface defect within the 6d N = (1, 0) SCFT dual to AdS7/Zk vacua of M-theory.

By further redefining things s.t. f(0) = 1, H0 is just given by the expression (3.2), where
ζ ≡

(
ρ2 + z2)1/2. Hence, when approaching the origin, the metric in (4.6) exactly takes

the form of (3.3), but with ds2
Mkw3

& ds2
R3 replaced by ds2

AdS3
& ds2

S3 , respectively. This
defines an AdS3 × S3 foliation of an asymptotically locally AdS7 geometry over the λ ≡
log ζ coordinate. Deviations from empty AdS7 are subleading in λ, and are supported by
the presence of non-vanishing components of A(3) wrapping both volAdS3 and volS3 , both
yielding non-vanishing G(4) flux.

Inclusion of KK monopoles and N = (0, 4) solutions. The solutions AdS3 × S3 ×
S̃3 × Σ2 presented in (4.6) preserves 16 supercharges. Let’s shortly discuss the inclusion
of KK monopoles to produce N = (0, 4) solutions. As we exlained in section 2, from the
point of view of the local supergravity picture the inclusion of a Taub-NUT singularity is
equivalent, to the mere substitution of S3 → S3/Zk in the background (4.6). We refer to
section 2 where the prescriptions to include KK monopoles to these types of backgrounds
are outlined. After the inclusion of KK monopoles in the string background (4.1), we
obtains the following background

ds2
11 = f2/3

(
H−2/3

(
s2 + c2H

)1/3
L2 ds2

AdS3 + H1/3
(
s2 + c2H

)−2/3
κ2 ds2

S3/Zk

)
+

+ f−1/3H1/3
(
s2 + c2H

)1/3 (
ds2
M4 + f−1 dz2

)
.

(4.11)
It is easy to show that ifM4 = T 4, the aforementioned background turns out to be included
in the classification6 of N = (0, 4) AdS3 × S3/Zk × CY2 × I solutions in M-theory of [24]
once we choose M4 = CY2 = T 4. In particular the backgrounds (4.6) provide a clear brane
interpretation of those solutions in [24] featured by a warping within AdS3 and S3/Zk that,
in that context, it is encoded in a linear function called u. We conclude by mentioning that
providing a clear interpretation as near-horizon of brane solution of those AdS3 solutions
in [24] characterized by CY2 = K3, remains an open problem.

6The general solution (B.1) of appendix B in [24] includes our backgrounds (4.11). In particular by
fixing CY2 = T 4 and by considering the connection A vanishing, it turns out that our linear function f(z)
plays the role of the function u introduced therein. The quantity (u′)2 turns out to be expressed in our
notation in terms of the parameter Q given in (4.5), hence in terms of tan ξ. Finally our function H is the
h4 function of [24].
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