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1 Introduction

The Sachdev-Ye-Kitaev model [1–9] motivates the recent advances in holographic under-
standing of (quantum) gravity [10–16]. The SYK model admits supersymmetric general-
izations [17]. In this paper we focus on the N = 2 supersymmetric SYK model. Some
details of the correlation functions are computed in [18]. The partition function of this
model is discussed in detail in [19, 20]. Similar to its purely fermionic counterpart [21, 22],
the supersymmetry model can also be studied in the doubly scaled large-q limit [23]. Some
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properties of the spectrum of the model are discussed in [24]. A bulk interpretation of the
supersymmetric Schwarzian model is discussed in [25]. Supersymmetry turns out to be
crucial in the construction of higher dimensional covariant analogue of the disordered SYK
model [26–30].

In this work we continue the study of the correlation functions in the N = 2 SYK
model [18], focusing on the low energy modes. Detailed discussion about these soft modes
can be found in e.g. [6, 20, 31–34] After a brief review of the N = 2 SYK model, we
start with an analysis of the large-q limit. In particular, we work out the large-q prop-
agators in section 3, the corrections to the eigenvalues of the “nondiagonal” kernels are
found in section 4.1, and the corrections to the “diagonal” kernels in 4.2. We evaluate
Lyapunov exponents in section 5. We further discuss the effective action of the soft modes
corresponding to the spontaneous and explicit breaking of the super-reparametrization in
section 6. We discuss the contribution of the exact ground states to the correlation function
in section 7 and show that their contribution is negligible at slightly higher temperature
so the full correlator at finite temperature could be obtained from the conformal part of
the zero temperature correlation function by a reparametrization Finally we consider the
correlators of the Schwarzian operators in section 8.

2 Review of the N = 2 supersymmetric SYK model

The Lagrangian of the N = 2 SYK model reads [17, 18]

L = ψ̄i∂τψi − b̄ibi + i(q−1)/2Ci j1 ... jq−1 b̄iψj1 . . . ψjq−1 + i(q−1)/2C̄ij1...jq−1biψ̄j1 . . . ψ̄jq−1 ,

(2.1)

where the Gaussian distribution of random coupling satisfies

〈Ci1...iq C̄i1...iq〉 = (q − 1)!J
N q−1 . (2.2)

The model is proposed in [17].1 Four point correlation functions in the N = 2 SYK
model are computed explicitly in [18]. The connected piece of the four-point function, at
the leading order of 1

N , only receives contributions from the set of the ladder diagrams that
can be iteratively generated by the action of a set of ladder kernels. In the N = 2 SYK
model, there are several kinds of relevant kernels.

1. The correlation function 〈ψi(τ1)bi(τ2)ψ̄j(τ3)b̄j(τ4)〉 receives contributions from a set
of ladder diagrams with a bosonic line and a fermionic line on the ladder rails. They
can be constructed by repeated actions of the “diagonal” kernel

Kd = J(q − 1)Gψ(τ14)Gb(τ23)
(
Gψ(τ34)

)(q−2)
. (2.3)

In the conformal limit, the eigenvalues of this kernel are ks,dc and ka,dc [18].

2. The 〈ψi(τ1)ψ̄i(τ2)ψj(τ3)ψ̄j(τ4)〉, 〈ψi(τ1)ψ̄i(τ2)bj(τ3)b̄j(τ4)〉, 〈bi(τ1)b̄i(τ2)ψj(τ3)ψ̄j(τ4)〉
and 〈bi(τ1)b̄i(τ2)bj(τ3)b̄j(τ4)〉 correlation functions receive contributions from ladder

1Other earlier discussions about introducing supersymmetry to this model can be found in e.g. [35, 36].
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Figure 1. Action of the non-diagonal kernels K11, K12, K21. In the plots the solid lines represent
fermionic propagators and the dashed lines represent bosonic propagators.

diagrams with 2 bosonic lines or 2 fermionic lines on both rails. They can be con-
structed by repeated actions of the matrix of “non-diagonal” kernels, as shown in
figure 1. The different components of this matrix are

K11 = J
(q − 1)!
(q − 3)!G

ψ(τ14)Gψ̄(τ23)Gb̄(τ34)
(
Gψ(τ34)

)q−3 (2.4)

K12 = J
(q − 1)!
(q − 2)!G

ψ(τ14)Gψ̄(τ23)
(
Gψ(τ34)

)q−2 (2.5)

K21 = J
(q − 1)!
(q − 2)!G

b̄(τ14)Gb(τ23)
(
Gψ(τ34)

)q−2 (2.6)

In the conformal limit, they have the eigenvalues ks,11
c (h), ks,12

c (h), ks,21
c (h) that cor-

respond to symmetric eigenfunctions, and the eigenvalues ka,11
c (h), ka,12

c (h), ka,21
c (h)

that correspond to antisymmetric eigenfunctions. The matrix of these eigenvalues can
be diagonalized to yield ks,±c (h), ka,±c (h). See [18, 37] for more computational details.

Notice that the 4-point functions receiving contributions from the diagonal kernels do not
mix with those receiving contributions from the non-diagonal kernels. Therefore in the
following, we call the 4-point functions constructed by these kernels the “diagonal” and
“non-diagonal” channels respectively.

The different eigenvalues obey the following relationship [18]:

ka,dc (h) = ks,−c

(
h+ 1

2

)
= ka,+c

(
h− 1

2

)
(2.7)

ks,dc (h) = ks,+c

(
h− 1

2

)
= ka,−c

(
h+ 1

2

)
, (2.8)

which is a manifestation of supersymmetry among the operators propagating in the differ-
ent channels.

The spectrum of physical operators that run in this set of 4-point function are deter-
mined by the condition that at least one of the eigenvalues equals to one. The dimensions
of the operators in the different channels are determined by the h that satisfy

ka/s,±c (h) = 1 . (2.9)
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For example the lightest multiplets are found to satisfy the equations

ka,dc

(3
2

)
= ks,−c (2) = ka,+c (1) = 1 (2.10)

ks,dc

(3
2

)
= ks,+c (1) = ka,−c (2) = 1 , (2.11)

where we find two multiplets each consisting of 1 spin-1, 2 spin- 3
2 and 1 spin-2 operators.

The sum of ladder diagrams can be evaluated as a geometric sum of the diagonalized
kernels, which is schematically of the form 1

1−K acting on the zero-rung basis. One can
further decompose it into a sum over a complete set of orthonormal eigenfunction basis that
diagonalize the kernels with h = 1

2 +i s, which constitutes the principle series, as well as h ∈
Z, which constitutes the discrete set. However, one need to check if any of the eigenvalues
corresponding to these eigenfunctions is one; when this happens the above geometric sum
diverges. This in general is not a problem since the solution to the eigenvalue equation (2.9)
are mostly irrational. However, the aforementioned supermultiplets consisting h = 1, 3/2, 2
operators do appear in the set of orthonormal eigenfunctions and the eigenvalues of the
kernels acting on them give 1. So they lead to genuine divergences of 4-point functions in
the conformal limit [17, 18], like the fermionic model [6].

This is simply a signature that such operators actually corresponds to zero modes in the
space of solutions to the Schwinger-Dyson equation in the conformal limit: their presence
is due to the spontaneous breaking of the supersymmetric reparametrization symmetry of
the conformal limit of the Schwinger-Dyson equation. To regularize this divergence, one
has to also introduce a small explicit breaking of the conformal symmetry, which amounts
to correct the eigenvalues of equation (2.10) by stepping outside of the conformal limit.
The simplest approach to do so is to consider the large-q limit where we can solve the
model without relying on the conformal symmetry.

3 Green’s functions

We start by finding the exact propagators of the supersymmetric SYK model in the large-
q limit.

3.1 The N = 1 model

We consider the following ansatz for fermionic and bosonic large-q propagators.

Gψ(τ) = 1
2sgn(τ)

(
1 + 1

q
gψ(τ) + · · ·

)
(3.1)

Gb(τ) = −δ(τ) + 1
2q gb(τ) + · · · , (3.2)

where gψ(−τ) = gψ(τ) and gb(−τ) = gb(τ). Notice that this is slightly different from (2.34)
of the [17], but we will nevertheless show that it reproduces their result. The propagators
in the frequency domain read

Gψ(ω) = − 1
iω

+ 1
2q (sgn ◦ g̃ψ(ω)) (3.3)

Gb(ω) = −1 + 1
2q g̃b(ω) (3.4)
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where ◦ refers to convolutions in frequency space and g̃ψ,b is the Fourier transform of the
gψ,b functions. They can be inverted and then plugged into the Schwinger-Dyson equations
of the propagators. To the first order in 1/q, this leads to

Gψ(ω)−1 = −iω + ω2

2q sgn ◦ g̃ψ(ω) = −iω − Σψ(ω) (3.5)

Gb(ω)−1 = −1− 1
2q g̃b(ω) = −1− Σψ(ω) . (3.6)

Solving the equations gives the expressions for the self energies, which can further be
transformed back to the time domain to get

Σψ(τ) = 1
2q∂

2
τ

(
sgn(τ)gψ(τ)

)
, Σb(τ) = 1

2q gb(τ) . (3.7)

On the other hand, the self energies can also be computed as

Σψ(τ) = (q − 1)JGb(τ)(Gψ̄(τ))q−2 , Σb(τ) = J(Gψ(τ)q−1 . (3.8)

Plugging in the large-q ansatz for propagators (3.2), we get

Σψ(τ) = q − 1
q

J

2q−1 sgn(τ)gb(τ)egψ(τ) , Σb(τ) = J

2q−1 e
gψ(τ) (3.9)

In the large-q limit, we keep J = qJ/2q−2 fixed, similar to large-q analysis of other analo-
gous models [6, 17]. Rewriting the previous set of equations in terms of J , and comparing
with equation (3.7), we get

J 2sgn(τ)e2gψ(τ) = ∂2
τ

(
sgn(τ)gψ(τ)

)
, J egψ(τ) = gb(τ) . (3.10)

They agree with (2.35) of [17] (up to factors of sgn(τ) on both sides of the gψ equation,
the effect of this factor is not observed in this computation that is constrained in [0, β).)
After rescaling gψ by a factor of 2, the gψ equation is identical to (2.16) of [6], and it has
a solution [6]

e2gψ(τ) = cos2
(
πv

2

)
sec2

(
πv

(1
2 −
|τ |
β

))
(3.11)

βJ = πv

cos(πv/2) . (3.12)

Next we consider a similar computation for the N = 2 model.

3.2 The N = 2 model

In the N = 2 model, we assume the following large - q propagators,

Gψ(τ) = 1
2sgn(τ)

(
1 + 1

q
gψ(τ) + · · ·

)
, Gψ̄(τ) = 1

2sgn(τ)
(

1 + 1
q
gψ̄(τ) + · · ·

)
(3.13)

Gb(τ) = −δ(τ) + 1
2q gb(τ) + · · · , Gb̄(τ) = −δ(τ) + 1

2q gb̄(τ) + · · · , (3.14)
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where GO(τ) = 〈T O(τ)Ō(0)〉. Inverting them and plugging them into the Schwinger-Dyson
equation leads to the following expressions for the self energies

Σb(τ) = 1
2q gb(τ) , Σb̄(τ) = 1

2q gb̄(τ) , (3.15)

Σψ(τ) = 1
2q∂

2
τ

(
sgn(τ)gψ(τ)

)
, Σψ̄(τ) = 1

2q∂
2
τ

(
sgn(τ)gψ̄(τ)

)
. (3.16)

On the other hand, self energies in the N = 2 model are defined as

Σb(τ) = J(Gψ(τ)q−1 , Σb̄(τ) = J(Gψ̄(τ)q−1 , (3.17)

Σψ(τ) = (q − 1)JGb(τ)(Gψ̄(τ))q−2 , Σψ̄(τ) = (q − 1)JGb̄(τ)(Gψ(τ))q−2 . (3.18)

After substituting the expressions of propagators and comparing with the other expressions
of the self energies (3.17) and (3.18), we get the following set of equations,

gb(τ) = J egψ(τ) , ∂2
τ

(
sgn(τ)gψ(τ)

)
= J sgn(τ)gb(τ)egψ̄(τ) (3.19)

gb̄(τ) = J egψ̄(τ) , ∂2
τ

(
sgn(τ)gψ̄(τ)

)
= J sgn(τ)gb̄(τ)egψ(τ) (3.20)

Eliminating gb(τ) and gb̄(τ) from the equations, we get

∂2
τ

(
sgn(τ)gψ(τ)

)
= J 2sgn(τ)egψ(τ)gψ̄(τ) = ∂2

τ

(
sgn(τ)gψ̄(τ)

)
. (3.21)

We thus find that our ansatz (3.13) and (3.14) lead to identical gψ(τ) and gψ̄(τ) up to a
linear function in τ . Finiteness of the Green’s functions at large time forbids such linear
terms and hence we conclude that gψ(τ) = gψ̄(τ), gb(τ) = gb̄(τ). We then conclude that
they are both solved by equation (3.11) which we recast here

e2gψ(τ) = cos2
(
πv

2

)
sec2

(
πv

(1
2 −
|τ |
β

))
(3.22)

βJ = πv

cos(πv/2) . (3.23)

Notice that the v → 1 limit is equivalent to the βJ → ∞ limit.

4 The regularized 4-point functions

Next we consider the diverging contribution to the 4-point function, which is regularized
by slightly stepping away from the conformal limit. We discuss the “non-diagonal” and
“diagonal” kernels respectively.

4.1 The non-diagonal channel

Kernels of equation (2.4) act on a two-component vector of “eigenfunctions”

K11ψ1 = k11ψ1 , K
12ψ2 = k12ψ1 , K

21ψ1 = k21ψ2 , (4.1)
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whose repeated action can be conveniently encoded into repeated multiplication by the
following matrix (

〈ψ1|K11|ψ1〉 〈ψ1|K12|ψ2〉
〈ψ2|K21|ψ1〉 0

) (
k11 k12

k21 0

)
(4.2)

where kij are the numbers in (4.1). We can first diagonalize this matrix of kij and then
the computation of the geometric series of the matrix can be trivialized.

Concretely, the eigenequations read

k11ψ1(τ1, τ2) = Jq2
∫
dτ3dτ4

sgn(τ14)
2

sgn(τ23)
2

×
(
−δ(τ34) + 1

2q gb(τ34)
) sgn(τ34)q−3

2q−3 egψ(τ34)ψ1(τ3, τ4) (4.3)

k12ψ1(τ1, τ2) = qJ

∫
dτ3dτ4

sgn(τ14)
2

sgn(τ23)
2

sgn(τ34)q−2

2q−2 egψ(τ34)ψ2(τ3, τ4) (4.4)

k21ψ2(τ1, τ2) = qJ

∫
dτ3dτ4δ(τ14)δ(τ23)sgn(τ34)q−2

2q−2 egψ(τ34)ψ1(τ3, τ4) . (4.5)

Those equations can be recast into differential form after applying ∂τ1∂τ2 to both sides,

J 2e2gψ(τ21)ψ1(τ2, τ1) = k11
∂

∂τ1

∂

∂τ2
ψ1(τ1, τ2) (4.6)

J sgn(τ21)egψ(τ21)ψ2(τ2, τ1) = k12
∂

∂τ1

∂

∂τ2
ψ1(τ1, τ2) (4.7)

J sgn(τ21)egψ(τ21)ψ1(τ2, τ1) = k21ψ2(τ1, τ2) . (4.8)

Eliminating the ψ1(τ1, τ2) in the equations, we obtain

J 2sgn(τ12)egψ(τ12)ψ2(τ1, τ2) = k12k21
∂

∂τ1

∂

∂τ2
sgn(τ21)e−gψ(τ12)ψ2(τ1, τ2) (4.9)

Following [6], we take the following Fourier ansatz

ψ2(τ1, τ2) = e−iny

sin(x̃/2)ψ2,n(x) , x̃ = vx+ (1− v)π (4.10)(
n2 + 4∂2

x −
v2

k12k21 sin2(x̃/2)

)
ψ2,n(x) = 0 , (4.11)

where

x = τ1 − τ2 , y = τ1 + τ2
2 . (4.12)

Notice that we did not assume any symmetry properties of ψ1 and ψ2 in deriving equa-
tion (4.9) and (4.10). The general solution of equation (4.10) is

ψ2,h,n(x) = c1ψ
(1)
2,h,n(x) + c2ψ

(2)
2,h,n(x) (4.13)

ψ
(1)
2,h,n(x) =

(
sin x̃2

)h
2F1

(
h− ñ

2 ,
h+ ñ

2 ; 1
2; cos2

(
x̃

2

))
(4.14)

ψ
(2)
2,h,n(x) = cos x̃2

(
sin x̃2

)h
2F1

(1 + h− ñ
2 ,

1 + h+ ñ

2 ; 3
2; cos2

(
x̃

2

))
, (4.15)
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where c1, c2 are arbitrary constants and ñ = n/v. In the above expressions, we have also
set β = 2π and identified k12k21 = 1

h(h−1) after which the eigenfunction with dimension h
solves the equation (4.11). The solution ψ1,n can be obtained by substituting this solution
into the third equation of equation (4.6). Then the first equation of equation (4.6) can be
solved as follows. Rewriting this equation in terms of ψ2(τ), we get (after making use of
egψ(τ1,τ2) = egψ(τ2,τ1)),

J 2sgn(τ12)egψ(τ21)ψ2(τ1, τ2) = k11
∂

∂τ1

∂

∂τ2
sgn(τ21)e−gψ(τ12)ψ2(τ2, τ1) . (4.16)

Next, we eliminate the r.h.s. of (4.6) with the help of (4.7) and rewrite the l.h.s. of (4.6)
with the help of (4.8), we get

k21k12ψ2(τ1, τ2) = k11ψ2(τ2, τ1) . (4.17)

It is then useful to decompose ψ2 into the symmetric and antisymmetric basis in τ1 and
τ2: ψ2(τ1, τ2) = ψS2 (τ1, τ2) + ψA2 (τ1, τ2), where ψS2 (τ1, τ2) = ψS2 (τ2, τ1) and ψA2 (τ1, τ2) =
−ψA2 (τ2, τ1). Then we get

k12k21(ψA2 (τ1, τ2) + ψS2 (τ1, τ2)) = k11(ψS2 (τ1, τ2)− ψA2 (τ1, τ2)) (4.18)

which can be rearranged into the form

(k11 − k12k21)ψS2 (τ1, τ2) = (k11 + k12k21)ψA2 (τ1, τ2) (4.19)

The nontrivial solutions of this equation are k12k21 + k11 = 0 = ψS2 (τ1, τ2), which means
ψ2 is antisymmetric and ψ1 symmetric; or k12k21 − k11 = 0 = ψA2 (τ1, τ2), which means ψ2
is symmetric an ψ1 is antisymmetric.

4.1.1 The conformal Limit

The eigenvalues of the non-diagonal kernels in the conformal limit were found in [17, 18]

ka,±c (h) = ∓
Γ(2− 1

q )Γ(1− h
2 −

1
2q )Γ( 1

2q + h
2 )Γ(1

2 − h+ 1
q ∓

1
2)

Γ(1 + 1
q )Γ(1 + h

2 −
1
2q )Γ( 1

2q −
h
2 )Γ(3

2 − h−
1
q ∓

1
2)

(4.20)

ks,±c (h) = ∓
Γ(2− 1

q )Γ(1
2 −

h
2 −

1
2q )Γ(1

2 + h
2 + 1

2q )Γ(1
2 − h+ 1

q ∓
1
2)

Γ(1 + 1
q )Γ(1

2 + h
2 −

1
2q )Γ(1

2 + h
2 −

1
2q )Γ(3

2 − h−
1
q ∓

1
2)

(4.21)

In the limit of q →∞, they become

ka,+c (h) = −1
h
, ka,−c (h) = 1

h− 1 , ks,+c (h) = 1
h
, ks,−c (h) = 1

1− h (4.22)

Now we try to reproduce these results from our large q analysis. Diagonalizing the matrix(
k11 k12
k21 0

)
(4.23)

with k11, k12, k21 defined by (4.1) leads to

k̃± =
k11 ±

√
k2

11 + 4k12k21

2 (4.24)
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Next recall that our large q analysis leads to ks11 = −k12k21 and ka11 = k12k21, where ks11
corresponds to the case of even ψ1(x) and ka11 corresponds to the case of odd ψ1(x). So we
expect the following identification

k̃a,± ∼
ka11 ±

√
(ka11)2 + 4k12k21

2 = k12k21 ±
√

(k12k21)2 + 4k12k21
2 (4.25)

k̃s,± ∼
ks11 ±

√
(ks11)2 + 4k12k21

2 = −k12k21 ±
√

(k12k21)2 + 4k12k21
2 . (4.26)

In the conformal limit v = 1, (4.10) tells us that the conformal weight h of ψ2 is given by
k12k21 = 1

h(h−1) . Substituting this into (4.25) leads to

k̃a,± = 1
2h(h− 1) ±

√√√√( 1− 2h
2h(h− 1)

)2
=
{
− 1
h
,

1
h− 1

}
(4.27)

k̃s,± = 1
2h(1− h) ±

√√√√( 1− 2h
2h(h− 1)

)2
=
{1
h
,

1
1− h

}
, (4.28)

which matches the results from (4.22). Note that there are only two eigenvalues in the strict
q →∞ limit leading to operators with non-negative dimension: k(h) = 1: ka,−(2) = 1 and
ks,+(1) = 1. According to [18], they live in the same supermultiplet. Furthermore, their
conformal dimension lives on the integration contour of the 4-point function, so they lead
to actual divergence of the 4-point functions. To regulate such divergences, we go slightly
away from the conformal limit. This is discussed in the next section.

4.1.2 Stepping out of the conformal limit

Next we consider the contribution to the 4-point function from the h = 2 supermulti-
plet, which correspond to the super-reparametrization modes. In the large-q limit we can
explicitly regulate their contributions by stepping away from the conformal limit.

We first analyse the symmetry property of the eigenfunctions in our problem. We first
consider the eigenfunction ψ2 whose two external legs, which are to be fused to the kernels,
are both bosonic and are periodic

ψ2(τ1 + 2π, τ2) = ψ2(τ1, τ2) , ψ2(τ1, τ2 + 2π) = ψ2(τ1, τ2) . (4.29)

Notice that here and in the following of this section we set β = 2π for simplicity. The swap
statistics further leads to

ψS2 (τ1, τ2) = ψS2 (τ2, τ1) , ψA2 (τ1, τ2) = −ψA2 (τ2, τ1) , (4.30)

where the two different symmetries under the swapping of the two fields are both possible
because the two fields at the two positions are conjugate to each other, instead of being
the same. As a result, we get

ψS2 (2π − x, y + π) = ψS2 (x, y) , ψA2 (2π − x, y + π) = −ψA2 (x, y) , (4.31)
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We then check the property of our solution under (x, y)→ (2π − x, y + π). Using the fact
that the transformation x→ 2π−x translates to x̃ = vx+(1−v)π → −vx+(1+v)π = 2π−x̃,
the symmetry property of the solution (4.14) around x = π is manifest

ψ
(1)
2 (2π − x) = ψ

(1)
2 (x) , ψ

(2)
2 (2π − x) = −ψ(2)

2 (x) . (4.32)

It is then clear that the symmetric and antisymmetric pieces of the solution read

ψ2,h(x) = ψSh (x) + ψAh (x) (4.33)

ψSh (x) = c1
∑
n=2Z

e−iny

sin(x̃/2)ψ
(1)
2,h,n(x) + c2

∑
n=2Z+1

e−iny

sin(x̃/2)ψ
(2)
2,h,n(x) (4.34)

ψAh (x) = c1
∑

n=2Z+1

e−iny

sin(x̃/2)ψ
(1)
2,h,n(x) + c2

∑
n=2Z

e−iny

sin(x̃/2)ψ
(2)
2,h,n(x) , (4.35)

where we have written out the explicit h dependence in the eigenfunctions for the conve-
nience of the later discussion. It is not surprising that such a rewriting is possible since
in the non-diagonal channels, the fields on the ladder-rungs are all bosonic and hence one
should be able to rewrite eigenfunctions in the set of basis of the bosonic eigenfunctions.
However, a crucial difference from the results in [6] is that in our expressions the n can be
both even and odd for either of the expressions. This doubling precisely correspond to the
fact that there are two h = 2 multiplets, one corresponds to the super-reparametrization
mode and the other one is expected to be a normal operator. Comparing with the results
in [6], we find ψS2 (x) is precisely the solution considered there for the SYK model based on
Majorana fermions and it is clear that it correspond to the super-reparametrization mode.
The ψA2 (x) corresponds to the other spin-2 super-multiplet.

We first try to understand better the nature of the second h = 2 multiplet by checking
whether it leads to a divergence in the 4-point function and hence correspond to zero
modes. The way we verify this is to consider the process of going to the conformal limit,
which is controlled by the limit v → 1. Explicitly, we first consider the divergence of the
eigenfunctions in the conformal limit v = 1, we get

e−iny

sin(x̃/2)ψ
(1)
2,h,n(x) diverges at h = 1 , n = 2Z and h = 2 , n = 2Z + 1 ∪ {0} , (4.36)

e−iny

sin(x̃/2)ψ
(2)
2,h,n(x) diverges at h = 1 , n = 2Z + 1 ∪ {0} and h = 2 , n = 2Z ∪ {±1} .

(4.37)

First recall that the n = 0,±1 modes at h = 2 and the n = 0 mode at h = 1 of the above
expansion correspond to the global sl(2,R) symmetry of the solution. They are true zero
modes of the model that we want to remove. Therefore, in the following discussion, we will
not consider them since they are always removed from the theory.

Next notice that when we consider the v → 1 limit, the eigenfunctions are expected to
approach the eigenfunction in the conformal limit, in particular the mode near h = 2 are
expected to approach the h = 2 mode in the conformal limit that leads to the divergence
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of the 4-point functions. Notice that this divergence is the property of the associated
eigenvalues and the eigenfunctions themselves should be well defined and normalizable.
From the above analysis, in particular (4.35), (4.34), (4.36) and (4.37) we see precisely that
the ψS1 and ψA2 diverges in the limit v → 1. This means that in the conformal limit the
would-be eigenfunctions associated to the antisymmetric spin-2 operator and the symmetric
spin-1 operator all diverge. Since we only consider normalizable eigenfunctions of the kernel
when computing the 4-point functions, we then conclude that the operators associated to
the would-be ψS1 and ψA2 eigenfunctions in the conformal limit actually decouple from the
theory in the conformal limit, and they do not enter the correlation functions. This is
compatible with the fact that these two operators are in the same h = 1 multiplet. There
decoupling means there is only one spin-2 operator in the conformal limit of the theory,
which is simply the stress tensor.

Given this we consider only the other two components, namely ψS2 and ψA1 , that
correspond to the stress tensor and a spin-1 operator in the same multiplet in the conformal
limit. Although these eigenfunctions do not diverge in the strict conformal limit v → 1,
they do lead to divergence of the correlation function due to the divergence of the geometric
sum of the kernel. We thus seek to go away from the conformal limit so that the dimension
is away from the conformal answer h = 2, 1. Hence the kernel no longer evaluates to 1
and the divergence is regulated. The process of going away from the conformal limit can
be conveniently parametrized by the values of v that are different from 1. As v increases
from 1, the dimension h of the real eigenfunctions get corrected so that the eigenfunctions
remains normalizable as the theory is driven away from the conformal limit. To determine
such corrections to the dimension h, we can simply require the eigenfunctions ψS2 and ψA1
to be regular at any v around 1.

The condition for this to happen is similar to [6], namely one of the first two arguments
of the eigenfunction should vanish. This means the dimension should have the following
dependence on v

ψA1 : h1(v) = 1 + ñ− n = 1 + n
1− v
v

(4.38)

ψS2 : h2(v) = 2 + ñ− n = 2 + n
1− v
v

, (4.39)

that renders both ψS2 and ψA1 to be finite at v 6= 1. Here we have used h1(v) to represent
the dimension of the spin-1 operator corresponding to the ψA1 eigenfunction and h2(v) to
represent the operator correspond to the ψS2 eigenfunction away from the conformal limit.
Given this correction, it is simple to determine what are the eigenvalues of the non-diagonal
kernel away from the conformal limit at any value v

ks,+ = 1
h1(v) = 1

1 + n(1− v)/v (4.40)

ka,− = 1
h2(v)− 1 = 1

1 + n(1− v)/v . (4.41)

Since these eigenvalues of the kernels are now away from 1, the corresponding geometric
series converges and the 4-point function is thus well defined and sensible. Furthermore,
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Figure 2. Action of the diagonal Kernels K(1)
d ,K

(2)
d . In the figure the real lines represent fermionic

propagators and the dashed lines represent bosonic propagators.

note that the seeming mismatch of the S,A label on the eigenfunction ψ and that on the
eigenvalue ka/s,± is not a typo, this is simply because the eigenfunctions we considered
here are the second component in the vector that has the opposite symmetry property as
the (first component of the) multiplet.

4.2 The diagonal channel

The diagonal kernels act on a two-component vector of eigenfunctions as

K
(1)
d ψ2 = k1ψ1 , K

(2)
d ψ1 = k2ψ2 , (4.42)

where the ψi depend on two times: in ψ1(τ1, τ2) the line attached to τ1 is bosonic and the
line attached to τ2 is fermionic, in ψ2(τ1, τ2) the line attached to τ1 is fermionic and the
line attached to τ2 is bosonic, as illustrated in figure 2.

Their repeated actions can again be represented by repeated multiplication of
the matrix  0 〈ψ1|K(1)

d |ψ2〉

〈ψ2|K(2)
d |ψ1〉 0

 =
(

0 k1

k2 0

)
. (4.43)

The kernels K(1)
d , K(2)

d are

K
(1)
d = J(q − 1)Gψ(τ13)Gb(τ24)

(
Gψ(τ34)

)(q−2) (4.44)

K
(2)
d = J(q − 1)Gb(τ13)Gψ(τ24)

(
Gψ(τ34)

)(q−2)
. (4.45)

Working to the leading order in 1/q and plugging in the expression (3.13), (3.14), (3.15)
and (3.16), the eigen-equation for K(1)

d is thus

−J(q − 1)
2q−1

∫
dτ3dτ4sgn(τ13)δ(τ24)sgn(τ34)egψ(τ34)ψ2(τ3, τ4) = k1ψ1(τ1, τ2) (4.46)

Applying ∂τ1 to both sides and integrating over τ3 and τ4, we get

−J sgn(τ12)egψ(τ12)ψ1(τ1, τ2) = k1∂τ1ψ2(τ1, τ2) . (4.47)

Repeating the previous calculation for K(2)
d yields

J sgn(τ12)egψ(τ12)ψ2(τ1, τ2) = k2∂τ2ψ1(τ1, τ2) . (4.48)

– 12 –



J
H
E
P
0
1
(
2
0
2
1
)
0
8
2

Substituting (4.47) into (4.48), we obtain

J 2sgn(τ21)egψ(τ21)ψ2(τ1, τ2) = −k1k2
∂

∂τ2

(
sgn(τ21)e−gψ(τ21) ∂

∂τ1
ψ2(τ1, τ2)

)
. (4.49)

Assuming the ansatz

ψ2(τ1, τ2) = e−iny

sin
1
2 (x̃/2)

ψd2,n(x) , x̃ = vx+ (1− v)π , (4.50)

where n is now half-integer since the eigenfunction is fermionic, the above equation has a
solution

ψd2,n(x) = e−
1
2 (ix̃)(−1)−

n
v

(
−1 + eix̃

) 1
k

+ 1
2
(
eix̃
)− 2n+v

4v

×
(
c1(−1)n/v

(
eix̃
)n
v

+ 1
2

2F1

(1
k
,
n

v
+ 1

2 + 1
k

; n
v

+ 1
2; eix̃

)
+i c2e

ix̃
2F1

(
1 + 1

k
,−n

v
+ 1

2 + 1
k

; 3
2 −

n

v
; eix̃

))
(4.51)

where k2 = k1k2 is the square of the eigenvalues of the matrix (4.43). The h = 3
2 mode,

which is in the same supermultiplet that contains the spin-1 and spin-2 modes correspond-
ing to ψA1 and ψS2 , is an eigenfunction of this kernel matrix (4.43) with eigenvalue k = 1
and therefore could potentially lead to divergence. As in the previous nondiagonal case,
we first require that this eigenfunction remains finite in the v → 1, k → 1, x→ 0 limit for
any |n| > 1

2 .
2 This condition removes half of the solution by setting

c1 = 0 , ∀n > 1
2 , and c2 = 0 , ∀n < −1

2 . (4.52)

The remaining half modes are true eigenvalues that leads to a divergence of the 4-point
functions 〈ψibiψ̄j b̄j〉. To regulate such divergences, we slightly move away from the con-
formal limit, namely we consider v 6= 1. As the previous non-diagonal case, we determine
the eigenvalues k of the matrix (4.43) at v 6= 1 by requiring the eigenfunctions to be finite
around x = 0. This can only be true when either of the first two arguments is a non-positive
integer or half integer. For example, when n > 0 the term proportional to c2 contributes
and we require

−n
v

+ 1
2 + 1

k
= n0 , (4.53)

where n0 is a non-positive integer or half integer. This determines

n0 = 3− 2n
2 , (4.54)

and the solution of the equation (4.53) is

k = 1
1− n(1− 1/v) , ∀n > 1

2 . (4.55)

2Here the k → 1 limit is equivalent to h = 3
2 .
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Similarly, for negative modes, we require

n

v
+ 1

2 + 1
k

= 3 + 2n
2 , (4.56)

which leads to

k = 1
1 + n(1− 1/v) , ∀n < −1

2 . (4.57)

Combining the two cases we get the expression of the eigenvalues of the diagonal ker-
nel (4.43) away from the conformal limit

k = 1
1− |n|(1− 1/v) . (4.58)

The shift of the eigenvalue is proportional to |n|, which is similar to the results in the
nondiagonal kernels.

With all the ingredients above, we can compute the regularized contribution from the
soft-modes to the 4-point function, which is just geometric sums of the kernels on the
eigenfunctions of the h = 2 multiplets where the eigenvalues are shifted as in (4.40), (4.41)
and (4.58). The details of this computation is in exact parallel with the computation in [38]
so we do not repeat here.

5 Chaos exponents

We can compute the chaotic behaviour of the supersymmetric model in the large-q limit as
well. Since we expect that the largest exponent is again due to the spin-2 reparametrization
mode, we only focus on the non-diagonal channels.

We compute the chaotic exponent by diagonalizing the set of retarded kernels follow-
ing [3, 4, 6, 18]. The retarded kernels are defined to be

K11
R = J

(q − 1)!
(q − 3)!G

ψ
R(τ14)Gψ̄R(τ23)Gb̄lr(τ34)

(
Gψlr(τ34)

)q−3 (5.1)

K12
R = J

(q − 1)!
(q − 2)!G

ψ
R(τ14)Gψ̄R(τ23)

(
Gψlr(τ34)

)q−2 (5.2)

K21
R = J

(q − 1)!
(q − 2)!G

b̄
R(τ14)GbR(τ23)

(
Gψlr(τ34)

)q−2
, (5.3)

where the retarded propagators GR and the Wightman propagators Glr are obtained from
the Euclidean propagators by analytically continuation.

To the leading order of the large-q limit, the retarded propagators are given by GψR(t) =
θ(t) and Gb(t) = −δ(t) which satisfy the SUSY relation Gb(t) = −∂tGψ(t). We also need
to compute the large-q expression of the left-right blob in the ladder kernel, for this we
need to analytically continue large powers of fermionic propagators

Σψ(τ) ∼ Gψ(τ)q−2 = sgn(τ)q−2

2q−2 egψ(τ) , (5.4)
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Because in the supersymmetric model the q is odd, the continuation to real time clearly
depends on from where we do the continuation. For example, in the τ > 0 region, the
continuation of Gψ(τ)q−2 = 1

2q−2 e
gψ(τ) leads to

1
2q−2 e

gψ(β/2+it) = 1
2q−2

cos(πv/2)
cosh(πvt) ≡

1
2q−2 e

g̃ψ(t) . (5.5)

In the τ < 0 region, Gψ(τ)q−2 = − 1
2q−2 e

gψ(τ) we get

1
2q−2 e

gψ(β/2+it) = − 1
2q−2

cos(πv/2)
cosh(πvt) = − 1

2q−2 e
g̃ψ(t) . (5.6)

On the other hand, the continuation to the left-right form of the product Gψ(τ)q−3Gb(τ) =
1

2q−2
1
q gb(τ)egψ(τ) does not depend on the sign of τ due to the even power q − 3: the

continuation simply gives

1
2q−3

1
q
J e2gψ(β/2+it) = 1

2q−2
1
q
J cos(πv/2)2

cosh(πvt)2 . (5.7)

To compute the Lyapunov exponent in the large - q limit, we diagonalize the retarded
kernels with the above large-q expressions and an exponentially growing ansatz. The
eigenequations are similar to the Euclidean computation (4.1)

K11
R ψ1 = kR11ψ1 , K12

R ψ2 = kR12ψ1 , K21
R ψ1 = kR21ψ2 , (5.8)

where (ψ1 , ψ2) is a two-component vector of eigenfunctions.
In terms of the large-q expressions, they become

J 2
∫
dt3dt4θ(t14)θ(t23)e2g̃ψ(t34)ψ1(t3, t4) = k11ψ1(t1, t2) (5.9)

J
∫
dt3dt4θ(t14)θ(t23)sgn(t34)eg̃ψ(t34)ψ2(t3, t4) = k12ψ1(t1, t2) (5.10)

J
∫
dt3dt4δ(t14)δ(t23)sgn(t34)eg̃ψ(t34)ψ1(t3, t4) = k21ψ2(t1, t2) . (5.11)

Applying ∂t1∂t2 on both sides of the first two equations, and integrating over the delta
functions, we get

J 2e2g̃ψ(t21)ψ1(t2, t1) = k11
∂

∂t1

∂

∂t2
ψ1(t1, t2) (5.12)

J sgn(t21)eg̃ψ(t21)ψ2(t2, t1) = k12
∂

∂t1

∂

∂t2
ψ1(t1, t2) (5.13)

J sgn(t21)eg̃ψ(t21)ψ1(t2, t1) = k21ψ2(t1, t2) . (5.14)

Plugging the expression for ψ2 from the third equation into the second one, we obtain

J 2sgn(t12)eg̃ψ(t12)ψ2(t1, t2) = k12k21
∂

∂t1

∂

∂t2
sgn(t21)e−g̃ψ(t12)ψ2(t1, t2) . (5.15)
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Assuming an ansatz of the form ψ2(t1, t2) = eλL(t1+t2)/2

cosh(v(t1−t2)/2)u(t1 − t2), the above equation
simplifies to a form (

λ2
L

4 −
d2

dx2

)
u(x) = π2v2

β2k12k21

1
cosh2(πvx/β)

u(x) , (5.16)

where x = t1 − t2. In terms of x̃ = πvx/β, this equation becomes(
λ2
Lβ

2

4π2v2 −
d2

dx̃2

)
ũ(x̃) = 1

k12k21

1
cosh2(x̃)

ũ(x̃) . (5.17)

The physical value of the Lyapunov exponent λL renders at least one of the eigenvalues to
be 1. Given the expression of the matrix of the eigenvalues of the retarded kernels(

kR11 k
R
12

kR21 0

)
, (5.18)

at least one eigenvalue equal to 1 means the eigenvalue equation

µ(µ− kR11)− kR12k
R
21 = 0 , (5.19)

has a solution at µ = 1. This means kR11 + kR12k
R
21 = 1. Similar to the analysis in sec-

tion (4.1), we must have either kR11 = kR12k
R
21, corresponding to ψ1 being antisymmetric

and ψ2 symmetric, or kR11 = −kR12k
R
21, corresponding to ψ1 being symmetric and ψ2 anti-

symmetric. According to the analysis in section 4.1.2, only the multiplet with a symmetry
property of the first case is present in the spectrum. This leads to kR12k

R
21 = kR11 = 1

2 .
At this value the equation (5.17) is recognized as the Schrödinger equation describing a
particle moving in a V (x̃) = −2/ cosh2(x̃) potential, and the energy is parametrized by
E = − λ2

Lβ
2

4π2v2 . There is one bound state in this potential with energy E = −1. This means
the Lyapunov exponent is given by

λL = 2π
β
v , (5.20)

which saturates the chaos bound [39].

6 Effective action

Up to now we have regularized the contribution to the 4-point functions from the stress
tensor multiplet. The regularized result controlled by the v → 1 limit that, as indicated
in (3.23), controls the leading βJ piece of the 4-point functions. As in the original fermionic
SYK model, choosing one solution of the reparametrization invariant infrared Schwinger-
Dyson equation breaks the super-reparametrization symmetry spontaneously and our reg-
ularization further breaks the super-reparametrization symmetry explicitly. Therefore we
expect the would-be Goldstone modes to have finite action. We can write down such an ef-
fective action by requiring that it reproduces the leading βJ piece of the 4-point functions.
In this section, we derive this effective action explicitly.
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We start by performing the disorder average of the random coupling of the action (2.1)
and obtain a bilocal action

S =− log det(∂τ − Σ̃ψ̄ψ) + log det
(
Σ̃b̄ψ(∂τ − Σ̃ψ̄ψ)−1Σ̃ψ̄b − δ(τ)− Σ̃b̄b

)
− log det(∂τ − Σ̃ψψ̄) + log det

(
Σ̃bψ̄(∂τ − Σ̃ψψ̄)−1Σ̃ψb̄ − δ(τ)− Σ̃bb̄

)
+
∫
dτ1dτ2

(
Σ̃ψψ̄(τ1, τ2)G̃ψψ̄(τ1, τ2) + Σ̃ψ̄ψ(τ1, τ2)G̃ψ̄ψ(τ1, τ2)

+ Σ̃bb̄(τ1, τ2)G̃bb̄(τ1, τ2)Σ̃b̄b(τ1, τ2)G̃b̄b(τ1, τ2) + Σ̃b̄ψ(τ1, τ2)G̃b̄ψ(τ1, τ2)

+ Σ̃bψ̄(τ1, τ2)G̃bψ̄(τ1, τ2)− JG̃b̄b(τ1, τ2)G̃ψ̄ψ(τ1, τ2)q−1

− JG̃bb̄(τ1, τ2)G̃ψψ̄(τ1, τ2)q−1 − J(q − 1)G̃b̄ψ(τ1, τ2)G̃ψ̄b(τ1, τ2)G̃ψ̄ψ(τ1, τ2)q−2

− J(q − 1)G̃bψ̄(τ1, τ2)G̃ψb̄(τ1, τ2)G̃ψψ̄(τ1, τ2)q−2
)
, (6.1)

where we have inserted the following Lagrange multiplier constraints∫
DG̃ψ̄ψDΣ̃ψ̄ψ exp

(
−N Σ̃ψ̄ψ(τ1, τ2)

(
G̃ψ̄ψ(τ1, τ2)− 1

N
ψ̄i(τ1)ψi(τ2)

))
= 1 (6.2)∫

DG̃ψψ̄DΣ̃ψψ̄ exp
(
−N Σ̃ψψ̄(τ1, τ2)

(
G̃ψψ̄(τ1, τ2)− 1

N
ψi(τ1)ψ̄i(τ2)

))
= 1 (6.3)∫

DG̃b̄bDΣ̃b̄b exp
(
−N Σ̃b̄b(τ1, τ2)

(
G̃b̄b(τ1, τ2)− 1

N
b̄i(τ1)bi(τ2)

))
= 1 (6.4)∫

DG̃bb̄DΣ̃bb̄ exp
(
−N Σ̃bb̄(τ1, τ2)

(
G̃bb̄(τ1, τ2)− 1

N
bi(τ1)b̄i(τ2)

))
= 1 (6.5)∫

DG̃b̄ψDΣ̃b̄ψ exp
(
−N Σ̃b̄ψ(τ1, τ2)

(
G̃b̄ψ(τ1, τ2)− 1

N
b̄i(τ1)ψi(τ2))

)
= 1 (6.6)∫

DG̃bψ̄DΣ̃bψ̄ exp
(
−N Σ̃bψ̄(τ1, τ2)

(
G̃bψ̄(τ1, τ2)− 1

N
bi(τ1)ψ̄i(τ2)

))
= 1 (6.7)∫

DG̃ψ̄bDΣ̃ψ̄b exp
(
−N Σ̃ψ̄b(τ1, τ2)

(
G̃ψ̄b(τ1, τ2)− 1

N
ψ̄i(τ1)bi(τ2)

))
= 1 (6.8)∫

DG̃ψb̄DΣ̃ψb̄ exp
(
−N Σ̃ψb̄(τ1, τ2)

(
G̃ψb̄(τ1, τ2)− 1

N
ψi(τ1)b̄i(τ2)

))
= 1 . (6.9)

Further notice that because the time dependence are different the above equations of the
quantity GŌO and GOŌ are independent. A fermion number conserving solution to the set
of saddle point equations, which is simply the set of Schwinger-Dyson equations, of the G̃,
Σ̃ fields from the above action consists of the following vanishing components

Gb̄ψ = Gψ̄b = Gbψ̄ = Gψb̄ = 0 , Σb̄ψ = Σψ̄b = Σbψ̄ = Σψb̄ = 0 , (6.10)

as well as the other nonvanishing components that satisfy

(∂τ − Σψψ̄) ∗Gψ̄ψ = δ , (∂τ − Σψ̄ψ) ∗Gψψ̄ = δ , (6.11)

(−δ − Σbb̄) ∗Gb̄b = δ , (−δ − Σb̄b) ∗Gbb̄ = δ , (6.12)
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where we have used the untilded Gij , Σij to denote the solutions to the Schwinger-Dyson
equations, and we have also used the property Gψ̄ψ(τ) = −Gψψ̄(−τ) and Gb̄b(τ) = Gbb̄(−τ).

The would-be Goldstone modes correspond to the spontaneously broken super-
reparametrization symmetry of the Schwinger-Dyson equations, whose action can be real-
ized as infinitesimal deformation of the solution. Notice that here we consider the solution
of the full Schwinger-Dyson equation so the super-reparametrization symmetry is also ex-
plicitly broken. This is the reason that we will get a finite effective action at the end.
Notice that if this symmetry were not explicitly broken, the Goldstone mode should map
solutions of the Schwinger-Dyson equations to the solution of the equations. But since
in our case this symmetry is explicitly broken from the beginning, we do not require the
deformed solution to solve the same set of equations.

Given this, the effective action for such explicit and spontaneous breaking can be
obtained by substituting the perturbed solution G̃ψψ̄ = Gψψ̄ + gψψ̄, G̃bb̄ = Gbb̄ + gbb̄,
Σ̃ψψ̄ = Σψψ̄+σψψ̄, Σ̃bb̄ = Σbb̄+σbb̄ into the action and read out the terms of the perturbation
to quadratic order. For example, the kinetic terms come from the functional derivatives
and read

1
2 log det(∂τ − Σψψ̄ − σψψ̄) = 1

2tr log(∂τ − Σψψ̄ − σψψ̄) (6.13)

= 1
4tr

((
∂τ − Σψψ̄

)−1
σψψ̄

(
∂τ − Σψψ̄

)−1
σψψ̄

)
(6.14)

= 1
4

∫
dτ1 dτ2 dτ3 dτ4Gψ̄ψ(τ12)σψψ̄(τ23)Gψ̄ψ(τ34)σψψ̄(τ41) .

(6.15)
Similarly, we have

1
2 log det(−δ − Σbb̄ − σbb̄) = 1

4

∫
dτ1 dτ2 dτ3 dτ4Gb̄b(τ12)σbb̄(τ23)Gb̄b(τ34)σbb̄(τ41) . (6.16)

The quadratic effective action becomes

Seff =− 1
4

∫
dτ1 dτ2 dτ3 dτ4 σψψ̄(τ12)Gψ̄ψ(τ13)Gψ̄ψ(τ24)σψψ̄(τ34)

− 1
4

∫
dτ1 dτ2 dτ3 dτ4 σψ̄ψ(τ12)Gψψ̄(τ13)Gψψ̄(τ24)σψ̄ψ(τ34)

+ 1
4

∫
dτ1 dτ2 dτ3 dτ4 σbb̄(τ12)Gb̄b(τ13)Gb̄b(τ24)σbb̄(τ34)

+ 1
4

∫
dτ1 dτ2 dτ3 dτ4 σb̄b(τ12)Gbb̄(τ13)Gb̄b(τ24)σb̄b(τ34)

+ 1
4

∫
dτ1 dτ2 dτ3 dτ4 σb̄ψ(τ12)Gbb̄(τ13)Gψψ̄(τ24)σbψ̄(τ34)

+ 1
4

∫
dτ1 dτ2 dτ3 dτ4 σbψ̄(τ12)Gb̄b(τ13)Gψ̄ψ(τ24)σψb̄(τ34)

+
∫
dτ1dτ2

(
gψψ̄σψψ̄ + gψ̄ψσψ̄ψ + gb̄bσb̄b + gb̄bσb̄b + gb̄ψσb̄ψ + gbψ̄σbψ̄

− J
(
q − 1

2

)
Gbb̄G

q−3
ψψ̄

g2
ψψ̄
− J

(
q − 1

2

)
Gb̄bG

q−3
ψ̄ψ

g2
ψ̄ψ
− (q − 1)JGq−2

ψψ̄
gbb̄gψψ̄

− (q − 1)JGq−2
ψ̄ψ

gb̄bgψ̄ψ − (q − 1)JGq−2
ψ̄ψ

gb̄ψgψ̄b − (q − 1)JGq−2
ψψ̄

gbψ̄gψb̄

)
. (6.17)
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Next we integrate out the σij fields to get an effective action of the gij fields

Seff =g ∗
(
X 0
0 Y

)−1

∗ g + ḡ ∗
(
X̄ 0
0 Ȳ

)−1

∗ ḡ + gb̄ψ ∗ Z ∗ gψ̄b + gbψ̄ ∗ Z ∗ gψb̄

−
∫
dτ1dτ2

(
J

(
q − 1

2

)
Gbb̄G

q−3
ψψ̄

g2
ψψ̄

+ J

(
q − 1

2

)
Gb̄bG

q−3
ψ̄ψ

g2
ψ̄ψ

+ (q − 1)JGq−2
ψψ̄

gbb̄gψψ̄

− (q − 1)JGq−2
ψ̄ψ

gb̄bgψ̄ψ + (q − 1)JGq−2
ψ̄ψ

gb̄ψgψ̄b + (q − 1)JGq−2
ψψ̄

gbψ̄gψb̄

)
, (6.18)

where “∗” represents convolution and g = (gψψ̄, gbb̄), ḡ = (gψ̄ψ, gb̄b). The X, Y , Z actions
are respectively

(X ∗ f)(τ1, τ2) =
∫
dτ3 dτ4Gψ̄ψ(τ13)Gψ̄ψ(τ24)f(τ3, τ4) , (6.19)

(Y ∗ f)(τ1, τ2) =
∫
dτ3 dτ4Gb̄b(τ13)Gb̄b(τ24)f(τ3, τ4) , (6.20)

(Z ∗ f)(τ1, τ2) =
∫
dτ3 dτ4Gψ̄ψ(τ24)Gb̄b(τ13)f(τ3, τ4) . (6.21)

We can then rewrite equation (6.18) as

Seff =g ∗
(
X 0
0 Y

)−1

∗ g + ḡ ∗
(
X̄ 0
0 Ȳ

)−1

∗ ḡ

+ gbψ̄ ∗ Z ∗ gb̄ψ + gbψ̄ ∗ Z̄ ∗ gψb̄ −
∫
dτ1dτ2

(
g

(
U V

V 0

)
g + ḡ

(
Ū V̄

V̄ 0

)
ḡ

+ (q − 1)JGq−2
ψ̄ψ

gb̄ψgψ̄b + (q − 1)JGq−2
ψψ̄

gbψ̄gψb̄

)
, (6.22)

where U = J (q−1)(q−2)
2 GbG

q−3
ψ , V = J q−1

2 Gq−2
ψ , and we have absorbed all the integrals in

to the convolution notation “∗”. A further change of variables to

g̃ =

√√√√(U V

V 0

)
g , g̃b̄ψ =

√
(q − 1)JG(q−2)/2

ψ gb̄ψ , g̃bψ̄ =
√

(q − 1)JG(q−2)/2
ψ gbψ̄ , (6.23)

puts the action into the form

Seff = g̃ ∗ (K̃−1 − I) ∗ g̃ + g̃b̄ψ ∗ (K̃−1
d − I) ∗ g̃ψ̄b + conjugate , (6.24)

where I is the identity matrix for convolution, i.e. δ(τ1−τ3)δ(τ2−τ4), and the symmetrized
versions of non-diagonal and diagonal kernels are respectively

K̃ =

√√√√(U V

V 0

)(
X̂ 0
0 Ŷ

)√√√√(U V

V 0

)
, K̃d = J(q − 1)G(q−2)/2

ψ ẐG
(q−2)/2
ψ , (6.25)
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which precisely agree with the symmetrized version of (2.3) and (2.4) in the sense that the
factor of

√(
U V
V 0

)
should be understood as taking “half” of the left-right blob in the ladder

rung, which can be checked as

K̃2 =

√√√√(U V

V 0

)(
X̂ 0
0 Ŷ

)(
U V

V 0

)(
X̂ 0
0 Ŷ

)√√√√(U V

V 0

)
, (6.26)

which contains one more ladder rung than K̃ that is represented by

K =
(
X̂ 0
0 Ŷ

)(
U V

V 0

)
. (6.27)

Since the symmetric kernels are conjugate to the kernels (2.4)

K̃ = RKR−1 , R =

√√√√(U V

V 0

)
, (6.28)

the eigenvector h̃ of the symmetric kernels is related to the eigenvector h of the original
kernels as

h̃ = Rh , (6.29)

where

K ∗ h = kh , K̃ ∗ h̃ = kh̃ . (6.30)

Therefore when the g in (6.24) is the (broken) reparametrization of the conformal prop-
agators, the g̃ is an eigenvector of the symmetric kernels with a shifted eigenvalue away
from the conformal eigenvalue 1.

In fact, it is easy to check that the variation of the conformal 2-point functions is an
eigenfunction of the non-diagonal kernels with eigenvalue one. To show this, we start by
varying Schwinger-Dyson equations in the conformal limit,

δεGψ ∗ Σψ +Gψ ∗ δεΣψ = 0 (6.31)
δεGb ∗ Σb +Gb ∗ δεΣb = 0 , (6.32)

where f ∗ g ≡
∫
dt2f(t1, t2)g(t2, t3). We then rewrite the equations using the conformal

Schwinger-Dyson equations to

−δεGψ +Gψ ∗ δεΣψ ∗Gψ = 0 (6.33)
−δεGb +Gb ∗ δεΣb ∗Gb = 0 . (6.34)

The variations of the self energies are

δεΣb = J(q − 1)(Gψ)q−2δεGψ (6.35)
δεΣψ = (q − 1)J(Gψ)q−2δεGb + (q − 1)(q − 2)JGb(Gψ)q−3δεGψ . (6.36)
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They can be further written in terms of the kernels of equation (2.4)

− δεGψ +K11δεGψ +K12δεGb = 0 (6.37)
− δεGb +K21δεGψ = 0 . (6.38)

In a matrix form this reads (
K11 K12
K21 0

)(
δεGψ
δεGb

)
=
(
δεGψ
δεGb

)
, (6.39)

which is a simple generalization of the result of the original SYK model [6]. Further notice
that the statement is true for any variation around the conformal solution.

6.1 Super-Schwarzian action from correlation functions

The above derivation is valid in general. In this section we would like to get the βJ enhanced
contribution in the effective action, where the deformation g and ḡ are the reparametriza-
tion of the conformal solutions and the kernels also take up the leading correction beyond
the value in the conformal limit.

The time reparametrizations of the conformal propagators, g = (δεGψ , δεGb), can
be worked out according to the transformation rule of the two point function of primary
operators

δεGc =
(
∆ε′(θ1) + ∆ε′(θ1) + ε(θ1)∂θ1 + ε(θ2)∂θ2

)
Gc . (6.40)

Assuming β = 2π and plugging ε(θ) =
∑
n εne

−inθ into the conformal propagators,

Gψ(τ) = bψ(
β
π sin(πτβ )

)2∆ψ
, Gb(τ) = bb(

β
π sin(πτβ )

)2∆b
, (6.41)

we get

gψ̄ψ = δεnGψ̄ψ = i
1
q

(1
2

)1/q
bψ sin

(
x

2

)−1/q
e−inyfn(x) (6.42)

gb̄b = δεnGb̄b = i
q + 1
q

(1
2

)1+1/q
bb sin

(
x

2

)−(1+1/q)
e−inyfn(x) (6.43)

gψ̄b = δεnGψ̄b = 0 , gb̄ψ = δεnGb̄ψ = 0 , (6.44)

where fn(x) = n cos
(
nx
2
)
− sin

(
nx
2
)

cot
(
x
2
)
and in the above expressions, we have used the

fact that the value of gψ̄b and gb̄ψ vanish in the conformal limit. On the other hand, the
shift of the eigenvalues away from the conformal limit are, to the order of 1/(βJ), given
by equation (4.40), equation (4.41). Putting all these factors together, the onshell action
of the time reparametrizations modes is

Seff,ε = g̃(RK−1R−1 − I)Rg = g̃ ∗ (Rk−1 −R)g = g ∗R2g (k−1 − 1) (6.45)

= 2
∫
dτ1dτ2(δεnGψ, δεnGb)

(
U V

V 0

)
(δε−nGψ, δε−nGb)(k−1 − 1) (6.46)

= −q − 1
q2

v − 1
v

(2π)2

β2 π2Jbqψn
2(n2 − 1)εnε−n , (6.47)
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We now proceed to compute the effective action of the spontaneously and explicitly
broken U(1) gauge symmetry. The local U(1) transformations a = ane

int acts on the
propagators as

δaGc =
(
eiα1a(θ1)+iα2a(θ2) − 1

)
Gc , (6.48)

where αi are the U(1) charge of the fields in the 2-point function. In particular the funda-
mental fields have the following charges

α(ψ̄) = −1
q
, α(ψ) = 1

q
, α(b̄) = 1− q

q
, α(b) = q − 1

q
. (6.49)

Their absolute values are twice the conformal dimensions, which is consistent with the fact
that the supermultiplets we considered are all short. We then find

δanGψ = −2
q
einy sin(nx/2)Gψ (6.50)

δanGb = 21− q
q

einy sin(nx/2)Gb . (6.51)

To the leading order, the change in eigenvalues is again given by equation (4.40), equa-
tion (4.41), the effective action is then

Seff,a = 2
∫
dτ1dτ2(δanGψ, δanGb)

(
U V

V 0

)
(δa−nGψ, δa−nGb)(k−1 − 1) (6.52)

= −4q − 1
q2

v − 1
v

π2Jbqψn
2ana−n . (6.53)

Next we consider the fermionic transformations, and for simplicity we consider the
chiral and anti chiral supersymmetry transformations simultaneously. The transformation
of the Green’s functions of the primary ψ and b fields gives the following fermionic variations

gψ̄b = −
(
η̄(τ2)′

q
Gψ̄ψ(τ12)− η̄(τ1)Gb̄b(τ12) + η̄(τ2)∂τ2Gψ̄ψ(τ12)

)
(6.54)

gb̄ψ = −
(
η(τ1)′

q
Gψ̄ψ(τ12) + η(τ2)Gb̄b(τ12) + η(τ1)∂τ1Gψ̄ψ(τ12)

)
. (6.55)

Then to the leading order, we get the following effective action

Seff,ε = g̃b̄ψ ∗ (K̃−1
d − I) ∗ g̃ψ̄b (6.56)

= J(q − 1)
∫
dτ1dτ2Gψ(τ1, τ2)q−2gb̄ψ(τ1, τ2)gψ̄b(τ1, τ2) (k−1

d − 1) (6.57)

= −2(4n2 − 1)sgn(n)iπ2 q − 1
q2 Jbqψ

2π
β
|n|1− v

v
η̄−nηn (6.58)

= 2(4n2 − 1)(−n)iπ2 q − 1
q2 Jbqψ

2π
β

v − 1
v

ηnη̄−n , (6.59)

where the first factor of 2 is because of an identical contribution from the conjugate channel.
Notice that in all the above derivations we have omitted some steps of the integrals, whose
details can be found in appendix A.
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Putting everything together, we arrive at a quadratic-order mode expansion of the
effective action

Seff =− α(2π)2

β2

∑
n∈Z

n2(n2 − 1)εnε−n − 4α
∑
n∈Z

n2ana−n

− α2π
β

∑
n∈Z+1/2

2(4(−in)2 + 1)(−in)ηnη̄−n (6.60)

where αS = π2 q−1
q2

v−1
v Jbqψ. In the position space, this corresponds to the following action

quadratic in ε, η, a,

Seff = −α(2π)2

β2

∫
dτ
(
(ε′′)2 − (ε′)2

)
− 4α

∫
dτ(∂a)2 − 2α

∫
dτ(4ηη̄′′′ + ηη̄′) . (6.61)

Notice that from our 4-point function computation we can only determine the quadratic
order of the effective action. Interactions of these soft modes can be determined via higher
point correlation functions, which is out of the scope of the current paper.

The result reproduces the result in [17, 19].3 Comparing the bosonic part of this
action with the Schwarzian effective action of the complex SYK model, see e.g. [40–43], the
N = 2 supersymmetry further fixes the relative coefficients between the contribution from
the reparametrization mode and the U(1) mode. This relative coefficient is also crucial in
connection to the microscopic entropy counting of the near extremal black holes, see e.g.
the discussion in [44].

There are other ways of deriving the supersymmetric Schwarzian action. In the fol-
lowing we discuss another approach and show that its results agree with the results from
the above computation.

6.2 Super-Schwarzian action from supersymmetrization

One can derive the supersymmetric Schwarzian effective action by supersymmetrizing the
bosonic Schwarzian effective action. In [17], the bosonic part of theN = 2 super-Schwarzian
effective action is computed explicitly, here we provide a detailed derivation of the full
N = 2 effective action and match with our previous computation from the correlation
functions (in particular from the summation over the ladder kernels). Following [17], the
supersymmetric Schwarzian derivative action is

IN=2 =
∫
dτd2θS(τ ′, θ′, θ̄′; τ, θ, θ̄) =

∫
dτSb(τ ′, θ′, θ̄′; τ, θ, θ̄) , (6.62)

where the fermionic integral measure is defined as∫
d2θθθ̄ = 1 , (6.63)

and

S(τ ′, θ′, θ̄′; τ, θ, θ̄) = ∂τ D̄
′

D̄θ̄′
− ∂τD

′

Dθ′
− 2 ∂τθ

′∂τ θ̄
′

(D̄θ̄′)(Dθ′)
, (6.64)

3Notice that in our perturbative analysis we only detect the zero-winding, i.e. n = 0, sector, see e.g. [19]
for more general discussions.
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is the supersymmetric Schwarzian derivative with the superderivatives defined by

D = ∂θ + θ̄∂τ , D̄ = ∂θ̄ + θ∂τ . (6.65)

The (τ ′, θ′, θ̄′) are the super-reparametrized supercoordinates. The bosonic reparametriza-
tion transformation reads

B : τ ′ = f(τ) , θ′ = eia(τ)
√
∂τf(τ)θ , θ̄′ = e−ia(τ)

√
∂τf(τ)θ̄ . (6.66)

The chiral fermionic piece of the super-reparametrization is

F : τ ′ = τ + θ̄(τ)η(τ) , θ′ = θ + η(τ + θ(τ)θ̄(τ)) , θ̄′ = θ̄ , (6.67)

and the anti-chiral fermionic transformation is

F̄ : τ ′ = τ + θ(τ)η̄(τ) , θ′ = θ , θ̄′ = θ̄ + η̄(τ − θ(τ)θ̄(τ)) . (6.68)

To get the super-Schwarzian action, we consider successive actions of F , F̄ followed by B.
This gives the super-Schwarzian action

IN=2 =
∫
dτ
[
Sch(f(τ), τ)− 2(∂τa(τ))2 − 4η(τ)∂3

τ η̄(τ) + 8i∂τa(τ)η(τ)∂2
τ η̄(τ)

−2
(
Sch(f(τ), τ)− 2(∂τa(τ))2 − 2i∂2

τa(τ)
)
η(τ)∂τ η̄(τ)

]
, (6.69)

where

Sch(f(τ), τ) = ∂3
τf(τ)
∂τf(τ) −

3
2

(
∂2
τf(τ)
∂τf(τ)

)2

, (6.70)

and we have kept only terms that are quadratic in the fermionic transformation variables
η and η̄. We have also used integration by parts to simplify the result.

To compare with the above results derived from the correlation function (6.61), we
change variable to

f(τ) = tan
(
τ + ε(τ)

2

)
. (6.71)

Keeping terms upto quadratic order in the fields, we get

IN=2 =1
2

∫
dτ
(
ε′(τ)2 − ε′′(τ)2 − 4a′(τ)2 − 8η(τ)η̄(3)(τ)− 2η(τ)η̄′(τ) + 1

)
(6.72)

Comparing with the answer in (6.61), we find exact agreement with the N = 2 super-
Schwarzian derived from our ladder kernel expressions, up to an overall coefficient that is
not determined in this approach.
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7 The ground state contributions to the Green’s function

It is shown in [17, 19] that the N = 2 SUSY SYK model in 0 + 1d has exact ground states.
In this section we want to understand better the properties of these zero modes and in
particular their contributions to the Green’s function.

We consider the low energy spectral density of the model worked out in [19]

ρn(E) = cos(πnq)
1− 4n2q2

[
δ(E) +

√
an
E
I1
(
2
√
anE

)]
, an = 2π2C(1− 4n2q2) , (7.1)

where n is the charge under the u(1) and I1 is the modified Bessel function of the first
kind. This is simply the Laplacian transform of the partition function in the Schwarzian
effective theory

Zn =
∫
dEe−βEρn(E) = cos(πnq)

1− 4n2q2 e
an
β . (7.2)

The full density matrices are

ρeven(E) =
∞∑

n=−∞
ρn(E) , ρodd(E) =

∞∑
n=−∞

(−1)nρn(E) , (7.3)

where the subscript “even” and “odd” label the oddity of N . Formally, we can carry out
the sum to get

ρo(E) = Co1δ(E) + Co2(E) , o = even or odd . (7.4)

In particular, we get

Ceven
1 = π

2q sin( π2q ) , Codd
1 = π

2q cot
(
π

2q

)
. (7.5)

Notice that in the large-q limit the coefficients are

lim
q→∞

Ceven
1 = 1 , lim

q→∞
Codd

1 = 1 . (7.6)

While the full Co2(E) function is complicated to get explicitly, we can carry out this sum-
mation numerically and the results are shown in figure 3(a) and figure 3(b).

In particular we observe

Ceven
2 (0) = 2π2 , Codd

2 (0) = 2π2(2Λ + 1) , (7.7)

where Λ is the UV cutoff that should be taken to ∞.
We want to understand the effect of the exact ground states, represented by the δ(E)

function, in the above density matrix.
We start with the Euclidean 2-point function

GEAB(τ) = 〈A(τ)B(0)〉 = 〈eHτA(0)e−HτB(0)〉 (7.8)

= Tr
[∑
m

|m〉〈m|e−βHeHτA(0)e−HτB(0)
]

(7.9)
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(a) The spectral density for even N . The red
and blue curve are Λ = 20 and Λ = 60 respec-
tively. The plot is computed at q = 3, C = 1.
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(b) The spectral density for odd N . The red
and blue curve are Λ = 20 and Λ = 60 respec-
tively. The plot is computed at q = 3, C = 1.

Figure 3. The spectral density of the N = 2 model.

= Tr
[∑
m,n

|m〉〈m|
(
e(τ−β)Em−EnτA(0)|n〉〈n|B(0)

)]
(7.10)

∼ 1
N 2

∫
dEmdEnρ(Em)ρ(En)

(
e(Em−En)τ−EmβAnmBmn

)
(7.11)

where Amn and Bmn are matrix elements and N is the normalization factor

N =
∫
dEmρ(Em) . (7.12)

Further notice that the sign ∼ is to emphasis that here we approximate the two sums by
two separate integrals over the density of states.

7.1 Energy-energy correlator

We can start to consider a special correlator that can be computed exactly. Consider the
energy-energy correlator

〈H(τ)H(0)〉 =
∫
dEmdEnρ(Em)ρ(En)e(Em−En)τ−EmβE2

nδm,n (7.13)

=
∫
dEmρ(Em)2E2

me
−Emβ (7.14)

=
∫
dEmC2(Em)2E2

me
−Emβ . (7.15)

So it only receives contribution from the continuous spectrum, this means some special
correlation functions does not receive contributions from the exact ground states of the
N = 2 model.

7.2 A crude approximation

We can consider more general correlation functions. To evaluate those, in this section we
would like to use a crude approximation inspired from the ETH hypothesis [45, 46]

Amn = aδm,n , Bmn = bδm,n . (7.16)
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Then the above propagator reduces to

GEAB = ab

∫
dEmρ(Em)2e−Emβ (7.17)

= ab

∫
dEm

(
C2

1δ(Em)2 + 2C1C2(Em)δ(Em) + C2(Em)2
)
e−Emβ (7.18)

= ab

[
C2

1δ(0) + 2C1C2(0) +
∫
dEmC2(Em)2e−Emβ

]
, (7.19)

where we have used

ρ(E) = C1δ(E) + C2(E) , (7.20)

for N being either even or odd.
We can compare the relative size of the contributions from continuous spectrum and

the ground states. At very low temperature β → ∞, the integral is localized at Em = 0.
We observe that for odd N the contribution from the continuous spectrum is much larger
than the contribution from the grounds state

C2(0)2

C2
1δ(0) + 2C1C2(0)

∼ Λ→∞ . (7.21)

Notice that in evaluating this expression, we have used the following limit expression

δ(x) = lim
Λ→∞

Λ
(

Θ
(
x+ 1

2Λ

)
−Θ

(
x− 1

2Λ

))
, (7.22)

where Λ is the same cutoff we introduced in the computation (7.7), together with the
scaling (7.6) and (7.7). It is clear that as the temperature increases more and more high
energy modes contribute significantly so the contribution from the continuous spectrum is
more and more dominant. While for even N this ratio at β → ∞ is always small due to
the gap in the spectrum, see e.g. figure 3(a).

It is true that we are using a very crude approximation so the above statement might
be too extremal, but we will see in our later less crude approximation that this is a gen-
eral property.

7.3 A better approximation

We can consider the case where the matrix elements are assumed to be constant,

Amn = a , Bmn = b , (7.23)

which is the opposite extreme of assuming them to be diagonal. Then the correlation
function reads

GEAB(τ) ∼ 1
N 2

∫
dEmdEnρ(Em)ρ(En)e(Em−En)τ−EmβAnmBmn (7.24)

= ab

N 2

∫
dEme

−(β−τ)Emρ(Em)
∫
dEnρ(En)e−τEn (7.25)

= ab

N 2Z(β − τ)Z(τ) . (7.26)
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To proceed, we can the use the explicit form of the partition functions

Zeven(β) =
∫
dEe−βEρeven(E) =

∞∑
n=−∞

∫
dEe−βEρevenn (E) (7.27)

=
∞∑

n=−∞

cos(πnq)
1− 4n2q2 e

2π2C(1−4n2q2)
β (7.28)

=
∫
dC

2π2

β

∞∑
n=−∞

cos(πnq)e
2π2C(1−4n2q2)

β (7.29)

=
∫
dy
(
ϑ3
(
0, y−16q2)− ϑ2

(
0, y−16q2))

, (7.30)

and for the odd N case

Zodd(β) =
∫
dEe−βEρodd(E) =

∞∑
n=−∞

∫
dEe−βEρoddn (E) (7.31)

=
∞∑

n=−∞

1
1− 4n2q2 e

2π2C(1−4n2q2)
β (7.32)

=
∫
dC

2π2

β

∞∑
n=−∞

e
2π2C(1−4n2q2)

β (7.33)

=
∫
dy ϑ3

(
0, y−4q2)

. (7.34)

To separate the ground states contribution from the continuous spectrum contribution we
compute separately the contributions to the partition functions from the ground state

Ioddg =
∫
dEe−βECodd

1 δ(E) = Codd
1 (7.35)

Ieveng =
∫
dEe−βECeven

1 δ(E) = Ceven
1 . (7.36)

The contributions from the continuous piece are

Ioddc (β) = Iodd(β)− Codd
1 (7.37)

Ievenc (β) = Ieven(β)− Ceven
1 . (7.38)

We can now compare the contributions from the conformal continuous spectrum with
the contributions from the ground states by numerically compute the two contributions to
the Green’s function. The answer is shown in figure 4 and figure 5. There we see explicitly
that as β decreases to relatively small value, the contribution from the continuous spectrum
becomes more and more dominant.

Here we discuss a few relations between our results with that in [23]. One conclusion
of [23] is that the contribution to the 2-point function from the ground state is never
negligible in the double scaling large-q limit. From our previous computation we see this
statement depends on the operators in the correlators; for example the ground state does
not contribute to the energy-energy correlators.
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Figure 4. Contribution to the Green’s function from the continuous spectrum. The computation
is done at β = 100π, C = 1. The left panel is for the even N case; the right panel is for the odd
N case. The horizontal axis is the Euclidean time ranging from 0 to 100π. The vertical axis is
the contribution to the Green’s function from the continuous spectrum in percentage. This is the
temperature that is relevant to the discussion in [23]
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Figure 5. Percentage of the contribution to the Green’s function from the continuous spectrum.
The computation is done at β = π, C = 1. The left panel is for the even N case; the right panel is
for the odd N case.

For a generic correlator, at very low temperature the high energy modes are not sig-
nificantly excited so it is expected that the ground state contribution is always significant.
This is the temperature range discussed in [23]: the double scaling limit result, although
correctly reproduce the energy spectrum, is valid in the range 1/λ � β � 1/λ2. So in
the double scaling limit, namely λ → 0, the inverse temperature β is constrained to be
infinite. As a result, the conclusion of [23] that in the low energy domain the ground state
contribution is always important is indeed consistent with our expectation.

On the other hand, as the temperature increases (but still in the range of the IR con-
formal window) one can check that the ground state contribution is less and less important.
Eventually it becomes negligible and one can show that the dominant contribution is from
the conformal spectrum. So in that wider temperature range the conformal answer remains
a good approximation of the exact solution. This is what we explained above and have
shown in figure 4 and 5.

So at very low temperature the ground state contribution is always not negligible, while
in a higher temperature range the conformal answer dominates and is a good approximation
to the exact solution. Therefore although the conformal answer at zero temperature indeed
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only captures a finite piece of the exact 2-point function, but it is still special and useful
in the sense that the finite temperature solutions can be obtained from it by a simple
reparametrization and the result does contribute dominantly at finite temperatures.

8 Schwarzian correlators

In this section we consider the correlators of the super-Schwarzian operator (6.64), (6.62)
in the supersymmetric model such as

〈Sb(τ1)Sb(τ2) . . . Sb(τn)〉 , (8.1)

where we have used the short hand notation Sb(τ ) = Sb
(
τ1, θ1, θ̄1; τ, θ, θ̄

)
.

One crucial difference between our following computation in the supersymmetric model
from the Schwarzian correlators in the pure fermionic model computation is that the N = 2
model has a U(1) symmetry as well as fermionic (bilinear) components in the N = 2 super-
conformal algebra and the partition function receives contributions form different winding
sectors. This can be seem from the explicit expression of the partition function (7.30)
and (7.34). For later convenience, we first recast them together with their derivatives here.
As obtained in [19], the partition function for any given winding number n is again one-loop
exact and can be written as

Zn(β) = cos(πqn)
1− 4q2n2 exp

[
2π2C

β

(
1− 4n2q2

)]
. (8.2)

The full partition function is then

Zeven =
∞∑

n=−∞
Zn(β) , Zodd =

∞∑
n=−∞

(−1)nZn(β) . (8.3)

Analytic (integral) expressions of Z even/ odd can be found in (7.30) and (7.34), we can
further get its derivative

∂

∂g̃
Zeven = ∂

∂g̃

∞∑
n=−∞

cos(πnq)
1− 4n2q2 e

g̃π(1−4n2q2) = π
∞∑

n=−∞
cos(πnq)eg̃π(1−4n2q2) (8.4)

= πeπg̃
(
ϑ3
(
0, e−16g̃πq2)− ϑ2

(
0, e−16g̃πq2))

, (8.5)

and

∂

∂g̃
Zodd = ∂

∂g̃

∞∑
n=−∞

1
1− 4n2q2 e

g̃π(1−4n2q2) = π
∞∑

n=−∞
eg̃π(1−4n2q2) (8.6)

= πeπg̃ϑ3
(
0, e−4g̃πq2)

, (8.7)

where

g̃ = 2πC
β

. (8.8)

Further derivatives can be act on the theta functions.
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Another crucial difference is the property of the super-Schwarzian operator

S
(
τ1, θ1, θ̄1; τ, θ, θ

)
= ∂τDθ̄

Dθ1
− ∂τDθ1

Dθ1
− 2 ∂τθ1∂τ θ̄1(

Dθ̄1
)

(Dθ1)
, (8.9)

which we now review. The super-Schwarzian satisfies

S
(
τ2, θ2, θ̄2; τ, θ, θ̄

)
= (Dθ1)

(
D̄θ̄1

)
S
(
τ2, θ2, θ̄2; τ1, θ1, θ̄1

)
+ S

(
τ1, θ1, θ̄1; τ, θ, θ̄

)
. (8.10)

For simplicity, we rewrite the super-Schwarzian derivative operation in terms of the maps
f1, f2 ∈ R1|2 → R1|2:

f1 : (τ, θ, θ̄) 7→
(
τ1, θ1, θ̄1

)
(8.11)

f2 : (τ1, θ1, θ̄1) 7→
(
τ2, θ2, θ̄2

)
. (8.12)

For example S
(
τ1, θ1, θ̄1; τ, θ, θ̄

)
associated to the above transformation can be denoted by

S (f1). The above relation can be recast into the form

S(f2 ◦ f1) = (Dθ1)
(
D̄θ̄1

)
S(f2) ◦ f1 + S(f1) . (8.13)

As a consequence, we get

0 = S(f−1
1 ◦ f1) = (Dθ1)

(
D̄θ̄1

)
S(f−1

1 ) ◦ f1 + S(f1) (8.14)

⇒ S(f1) = − (Dθ1)
(
D̄θ̄1

)
S(f−1

1 ) ◦ f1 . (8.15)

In the coordinate basis, this gives the inversion formula

S(τ1, θ1, θ̄1; τ, θ, θ̄) = − (Dθ1)
(
D̄θ̄1

)
S(τ, θ, θ̄; τ1, θ1, θ̄1) . (8.16)

The full partition function of the supersymmetric Schwarzian theory is [19]

Z =
∫ Dφ1DσDη1Dη̄

Osp(2|2) exp
(
IN=2

)
≡
∫
dµ[f1] exp

(
IN=2

)
, (8.17)

where

IN=2 = g̃

∫ 2π

0
dτ

∫
dθdθ̄S

(
τ1, θ1, θ̄1; τ, θ, θ̄

)
= g̃

∫ 2π

0
dτSb

(
τ1, θ1, θ̄1; τ, θ, θ̄

)
, (8.18)

with Sb
(
τ1, θ1, θ̄1; τ, θ, θ̄

)
purely bosonic as defined in (6.64), (6.62) and the (τ1, θ1, θ̄1) is a

super-reparametrization of the super-coordinates. The super-reparametrization is required
to preserve the chirality of the two supersymmetries, this means the super-derivatives obey

Dθθ̄
′ = 0 , Dθ̄θ

′ = 0 , Dθτ
′ = θ̄′Dθθ

′ , D̄θ̄τ
′ = θ′D̄θ̄θ̄

′ , (8.19)

where we have spelt out the θ and θ̄ in the super-derivative for clarification.
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Although we will not use the explicit parametrization of the super-reparametrization
transformation, for illustration purpose we provide one example [17]

τ ′ = f(τ) + θḡ(τ) + θ̄g(τ) + θθ̄h(τ) (8.20)

θ′ = ρ(τ + θθ̄)
(
θ + η(τ + θθ̄)

)
(8.21)

θ̄′ = ρ̄(τ − θθ̄)
(
θ + η̄(τ − θθ̄)

)
, (8.22)

where

ρ(τ) = eiσ(t)f ′(t)
1
2

(
1 + 1

2η(t)η̄′(t) + 1
2 η̄(t)η′(t) + iη̄(t)η(t)σ′(t) + 3

4 η̄(t)η(t)η̄′(t)η′(t)
)
(8.23)

ρ̄(τ) = e−iσ(t)f ′(t)
1
2

(
1 + 1

2η(t)η̄′(t) + 1
2 η̄(t)η′(t) + iη̄(t)η(t)σ′(t) + 3

4 η̄(t)η(t)η̄′(t)η′(t)
)

(8.24)

g(τ) = ρ(τ)ρ̄(τ)η(τ) (8.25)

ḡ(τ) = ρ(τ)ρ̄(τ)η̄(τ) (8.26)

h(τ) = ρ(τ)η(τ)∂τ (ρ̄(τ)η̄(τ))− ρ̄(τ)η̄(τ)∂τ (ρ(τ)η(τ)) . (8.27)

With all the preparation, we now proceed to compute the correlators of the super-
Schwarzian operator, following a general method discussed in [19]. Using the relation (8.10),
we can compute

ZN=2 =
∫
dµ[f2] exp

(
g̃

∫
dτdθdθ̄S(f2)

)
(8.28)

=
∫
dµ[f2] exp

(
g̃

∫
dτdθdθ̄

(
Dθ1D̄θ̄1S

(
τ2, θ2, θ̄2; τ1, θ1, θ̄1

)
+ S (f1)

))
. (8.29)

Because the second term in the exponential does not depend on f2, its integration over the
measure is trivially identity, we can thus rewrite the above into∫

dµ[f2] exp
(
g̃

∫
dτdθdθ̄

(
Dθ1D̄θ̄1S

(
τ2, θ2, θ̄2; τ1, θ1, θ̄1

)))
= e−g̃

∫
dτdθdθ̄S(f1)ZN=2 (8.30)

= exp
(
g̃

∫
dτdθdθ̄

(
Dθ1D̄θ̄1S

(
τ, θ, θ̄; τ1, θ1, θ̄1

)))
ZN=2 . (8.31)

Next we change the integral measure according to

dτ1dθ1dθ̄1 = Ber
(
∂(τ1, θ1, θ̄1)
∂(τ, θ, θ̄)

)
dτdθdθ̄ (8.32)

where Ber stands for the Berezinian of the transformation Jacobian

J =
(
∂(τ1, θ1, θ̄1)
∂(τ, θ, θ̄)

)
=

∂ττ1 ∂τθ1 ∂τ θ̄1
∂θτ1 ∂θθ1 ∂θθ̄1
∂θ̄τ1 ∂θ̄θ1 ∂θ̄θ̄1

 . (8.33)
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Making use of the definition

D = ∂θ + θ̄∂τ , D̄ = ∂θ̄ + θ∂τ , (8.34)

we rewrite the above Jacobian factor into

J =

∂ττ1 ∂τθ1 ∂τ θ̄1
∂θτ1 ∂θθ1 ∂θθ̄1
∂θ̄τ1 ∂θ̄θ1 ∂θ̄θ̄1

 =

∂ττ1 ∂τθ1 ∂τ θ̄1
Dτ1 Dθ1 Dθ̄1
D̄τ1 D̄θ1 D̄θ̄1

 =

 ∂ττ1 ∂τθ1 ∂τ θ̄1
θ̄1Dθ1 Dθ1 0
θ1D̄θ̄1 0 D̄θ̄1

 . (8.35)

For a supermatrix with the block form

X =
(
A B

C D

)
, (8.36)

the Berezinian exists if both A and D are invertible, in which case the Berezinian is
defined by

Ber(X) = det(A−BD−1C) det(D−1) . (8.37)

With this we can evaluate the Berezinian as

Ber(J) = Ber

 ∂ττ1 ∂τθ1 ∂τ θ̄1
θ̄1Dθ1 Dθ1 0
θ1D̄θ̄1 0 D̄θ̄1

 = (Dθ1)−1(D̄θ̄1)−1 Ber

∂ττ1 ∂τθ1 ∂τ θ̄1
θ̄1 1 0
θ1 0 1

 (8.38)

= (Dθ1)−1(D̄θ̄1)−1
(
∂ττ1 + θ̄1∂τθ1 + θ1∂τ θ̄1

)
= 1 , (8.39)

where we have used (8.19)

{D, D̄} = 2∂τ , (8.40)

to rewrite

∂ττ1 + θ̄1∂τθ1 + θ1∂τ θ̄1 = (Dθ1)(D̄θ̄1) . (8.41)

We can thus rewrite (8.30) as∫
dµ[f2] exp

(
g̃

∫
dτ1dθ1dθ̄1

(
Dθ1D̄θ̄1S

(
τ2, θ2, θ̄2; τ1, θ1, θ̄1

)))
= e−g̃

∫
dτdθdθ̄S(f1)ZN=2 (8.42)

= exp
(
g̃

∫
dτ1dθ1dθ̄1

(
Dθ1D̄θ̄1S

(
τ, θ, θ̄; τ1, θ1, θ̄1

)))
ZN=2 . (8.43)

Now we can choose a special function f1 : {τ, θ, θ̄} 7→ {τ1, θ1, θ̄1}

τ1 = τ + ε(τ) , θ1 = (1 + ∂ε(τ))
1
2 θ , θ̄1 = (1 + ∂ε(τ))

1
2 θ̄ . (8.44)

It is easy to find its inverse (f1)−1

τ = τ1 − ε1(τ1) , ε1(τ) = ε(τ − ε(τ)) (8.45)

θ =
(

1 + ∂τ1ε(τ1)
1− ∂τ1ε1(τ1)

)− 1
2
θ1 , θ̄ =

(
1 + ∂τ1ε(τ1)

1− ∂τ1ε1(τ1)

)− 1
2
θ̄1 . (8.46)
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Then from above we get∫
dµ[f2] exp

(
g̃

∫
dτ1dθ1dθ̄1

(
Dθ1D̄θ̄1S

(
τ2, θ2, θ̄2; τ1, θ1, θ̄1

)))
= e−g̃

∫
dτdθdθ̄S(f1)ZN=2 (8.47)

= e
g̃
∫
dτ

(2ε(3)(t)(ε′(t)+1)−3ε′′(t)2)
2(ε′(t)+1)2

ZN=2 . (8.48)

We can further evaluate the factor Dθ1D̄θ̄1

Dθ1D̄θ̄1 =
(
−θθ̄ε′′(τ)

2
√
ε′(τ) + 1

+
√
ε′(τ) + 1

)(
θθ̄ε′′(τ)

2
√
ε′(τ) + 1

+
√
ε′(τ) + 1

)
(8.49)

= 1 + ε′(τ) = 1 + ε(τ1)
τ1

τ1
τ

= 1 + ∂τ1ε(τ1)
1− ∂τ1ε(τ1 − ε(τ1)) , (8.50)

with which we can expand the two sides of the equation in terms of the small quantity ε(τ)
and its derivatives, namely∫

dµ[f2] exp
(
g̃

∫
dτ1dθ1dθ̄1

(
1 + ∂τ1ε(τ1)

1− ∂τ1ε(τ1 − ε(τ1))

)
S
(
τ2, θ2, θ̄2; τ1, θ1, θ̄1

))

= e
g̃
∫
dτ

(
− 3

2(∂2ε(τ))2
)
ZN=2 .

(8.51)

Expanding (8.51) to the leading order, the above relation leads to

0 =
∫
dµ[f2]

∫
dτ1dθ1dθ̄1∂τ1ε(τ1)S

(
τ2, θ2, θ̄2; τ1, θ1, θ̄1

)
eg̃
∫
dτ1dθ1dθ̄1S(τ2,θ2,θ̄2;τ1,θ1,θ̄1) .

(8.52)

Requiring periodicity in the time circle and using integration by parts, this leads to

〈
∫
dτ1dθ1dθ̄1ε(τ1)∂τ1S

(
τ2, θ2, θ̄2; τ1, θ1, θ̄1

)
〉 = 0 (8.53)

⇒ 〈Sb
(
τ2, θ2, θ̄2; τ1, θ1, θ̄1

)
〉 = const , (8.54)

where

Sb
(
τ2, θ2, θ̄2; τ1, θ1, θ̄1

)
=
∫
dθdθ̄S

(
τ2, θ2, θ̄2; τ1, θ1, θ̄1

)
, (8.55)

is the N = 2 physical Schwarzian operator and the constant can be obtained from∫
dτ1〈Sb

(
τ2, θ2, θ̄2; τ1, θ1, θ̄1

)
〉 = 1

Z even/ odd∂g̃Z
even/ odd , (8.56)

whose right-hand-side can be simply evaluated by plugging in the results of (8.5) or (8.7)
and (7.30) or (7.34). We spare the readers for the detailed expressions here since it’s not
very illuminating.

Expanding (8.51) to the quadratic order, We have

g̃〈Sb(τ )Sb(τ̃ )〉+ 2〈Sb(τ )〉δ(τ − τ̃) = −3∂2
τ δ(τ − τ̃) + const , (8.57)
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where the constant term comes from the various integration by parts, and for simplicity
we have used the short hand notation Sb(τ ) = Sb

(
τ1, θ1, θ̄1; τ, θ, θ̄

)
. Like the one point

function case, we can again determine the constants from∫
dτdτ̃〈Sb(τ )Sb(τ̃ )〉 = 1

Z even/ odd∂
2
g̃Z

even/ odd , (8.58)

by plugging in the results of (8.5) or (8.7) and (7.30) or (7.34). We spare the readers for
the detailed expressions here too.

Higher point correlation functions can be obtained iteratively.
As a consistency check, we can relate this result with the previous more general dis-

cussion in (7.15). To proceed, we recall the partition function

Zo =
∑
n

∫
dEe−βE(−1)|o|nρn(E) =

∫
dEe−βE (Co1δ(E) + Co2(E)) . (8.59)

where again |o| = 0, 1 representing N being even or odd respectively. Given this, we
compute

∂2
g̃Z

o = β2

4π2∂
2
C

∫
dEe−βE (Co1δ(E) + Co2(E)) . (8.60)

As shown in (7.6), the Co1 does not depend on C or g̃, so the above expression simplifies to

∂2
g̃Z

o = β2

4π2

∫
dEe−βE∂2

CC
o
2(E) . (8.61)

However when we try to compare this result with the constant computed in (7.15), there
is a subtlety of normalization. In the approach to get (7.15) we need to include the
normalization factor N . However since (supersymmetric) JT is not UV complete, the
density ρ is only reliable at the low energy end. One explicit realization of this fact is
that the normalization factor diverges. This is a technical difficulty preventing a direct
comparison of the results in the two approaches.

9 Conclusions

In this paper we consider various properties of the contributions to the correlations func-
tions of the low energy soft modes, including the degenerate exact ground states, in the
N = 2 supersymmetric SYK model. We analyse the structure of the divergence of the 4-
point correlation functions due to the stress tensor multiplet in the infrared, and regularize
it by slightly going away from the conformal limit. We also computed the chaotic exponent
of this model away from the conformal fixed point in the large-q limit and show that this
channel gives the leading OTOC chaotic behaviour [47, 48]. In addition, we derive the ef-
fective action of the stress tensor multiplet that correctly reproduces the large-contribution
from the stress tensor multiplet to the 4-point function, and show that the resulting ef-
fective action precisely matches the previous result from the supersymmetrization of the
Schwarzian action. We further derive the correlators of the Schwarzian operators. We com-
ments on the contribution to the correlation functions from the ground states and show

– 35 –



J
H
E
P
0
1
(
2
0
2
1
)
0
8
2

that it can be negligible for a large range of temperature, so that the zero temperature
conformal solution is still useful in computations, for example to generate the conformal
solutions at finite temperature. We also show explicitly that a second multiplet whose
top component is another spin-2 operator, which could be present in the spectrum from
previous analysis, does not actually appear in the spectrum in the conformal limit, and
hence quantitatively answers the question about the existence of such a multiplet. Many of
the discussions could also be applied to other SYK type systems, for example the coupled
SYK model and its generalizations [49–56].
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A Details of the integrals to get the effective action

In the derivation of the Schwarzian effective action, we need to compute the inner prod-
ucts of some bilocal functions. In this appendix we provide some useful formulas for this
computation.

First, the integral measure can be written as∫ β

0
dτ1dτ2 =

∫ 0

−β
dx

∫ β+x
2

−x2
dy +

∫ β

0
dx

∫ β−x2
x
2

dy , (A.1)

where y = τ1+τ2
2 and x = τ1 − τ2. For a special type of function

g(x, y) = e
i 2π
β

(a−b)y
fa,b(x) , a− b ∈ Z , (A.2)

the above integral simplifies to∫ β

0
dτ1dτ2e

i 2π
β

(a−b)y
fa,b(x) =

∫ 0

−β
dx

∫ β+x
2

−x2
dye

i 2π
β

(a−b)y
fa,b(x)

+
∫ β

0
dx

∫ β−x2
x
2

dye
i 2π
β

(a−b)y
fa,b(x) . (A.3)
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If a− b 6= 0, we get∫ β

0
dτ1dτ2e

i 2π
β

(a−b)y
fa,b(x)

= 1
i2π
β (a− b)

∫ 0

−β
dx
(
e
i 2π
β

(a−b)(β+x
2 ) − e−i

2π
β

(a−b)x2
)
fa,b(x)

+ 1
i2π
β (a− b)

∫ β

0
dx
(
e
i 2π
β

(a−b)(β−x2 ) − ei
2π
β

(a−b)x2
)
fa,b(x) (A.4)

= 1
i2π
β (a− b)

∫ β

0
dx
(
e
i 2π
β

(a−b)(β−x2 ) − ei
2π
β

(a−b)x2
)
fa,b(−x)

+ 1
i2π
β (a− b)

∫ β

0
dx
(
e
i 2π
β

(a−b)(β−x2 ) − ei
2π
β

(a−b)x2
)
fa,b(x) (A.5)

= 1
i2π
β (a− b)

∫ β

0
dx
(
e
i 2π
β

(a−b)(β−x2 ) − ei
2π
β

(a−b)x2
)

(fa,b(x) + fa,b(−x)) . (A.6)

Therefore as long as fa,b(x) + fa,b(−x) 6= 0 the integral with a− b 6= 0 does not vanish.
For the other case a− b = 0, we get∫ β

0
dτ1dτ2fa,a(x) =

∫ 0

−β
dx

∫ β+x
2

−x2
dyfa,a(x) +

∫ β

0
dx

∫ β−x2
x
2

dyfa,a(x) (A.7)

=
∫ 0

−β
dx(β + x)fa,a(x) +

∫ β

0
dx(β − x)fa,a(x) (A.8)

=
∫ β

0
dx(β − x)(fa,a(x) + fa,a(−x)) . (A.9)

If we further sum over the discrete set of a, b variable, for each pair of (a, b) with
a− b 6= 0, we get∑
a 6=b

∫ β

0
dτ1dτ2e

i 2π
β

(a−b)y
fa,b(x) =

∑
a

∑
b<a

∫ β

0
dτ1dτ2

(
e
i 2π
β

(a−b)y + e
i 2π
β

(b−a)y
)
fa,b(x) (A.10)

where we have assumed fa,b(x) = fb,a(x). Using the above results, we get∑
a 6=b

∫ β

0
dτ1dτ2e

i 2π
β

(a−b)y
fa,b(x)

=
∑
a

∑
b<a

1
i2π
β (a− b)

∫ β

0
dx
(
e
i 2π
β

(a−b)(β−x2 ) − ei
2π
β

(a−b)x2 − ei
2π
β

(b−a)(β−x2 ) + e
i 2π
β

(b−a)x2
)

× (fa,b(x) + fa,b(−x)) (A.11)

Because a− b ∈ Z, we further get∑
a 6=b

∫ β

0
dτ1dτ2e

i 2π
β

(a−b)y
fa,b(x)

=
∑
a

∑
b<a

1
i2π
β (a− b)

∫ β

0
dx
(
e
i 2π
β

(b−a)x2 − ei
2π
β

(a−b)x2 − ei
2π
β

(a−b)x2 + e
i 2π
β

(b−a)x2
)

× (fa,b(x) + fa,b(−x)) (A.12)
= 0 . (A.13)
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Therefore the full summation localizes to the diagonal terms

∑
a,b

∫ β

0
dτ1dτ2e

i 2π
β

(a−b)y
fa,b(x) =

∑
a

∫ β

0
dτ1dτ2fa,a(x) (A.14)

=
∑
a

∫ β

0
dx(β − x)(fa,a(x) + fa,a(−x)) . (A.15)

The concrete computations in the main text all follow the steps here, except for possible
sign flips if necessary. The upshot of this computation is that we only need to compute the
contribution from the diagonal entries in the summation.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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