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Abstract: Building on the recent derivation of a bare factorization theorem for the b-
quark induced contribution to the h→ γγ decay amplitude based on soft-collinear effective
theory, we derive the first renormalized factorization theorem for a process described at
subleading power in scale ratios, where λ = mb/Mh � 1 in our case. We prove two
refactorization conditions for a matching coefficient and an operator matrix element in the
endpoint region, where they exhibit singularities giving rise to divergent convolution inte-
grals. The refactorization conditions ensure that the dependence of the decay amplitude
on the rapidity regulator, which regularizes the endpoint singularities, cancels out to all
orders of perturbation theory. We establish the renormalized form of the factorization for-
mula, proving that extra contributions arising from the fact that “endpoint regularization”
does not commute with renormalization can be absorbed, to all orders, by a redefinition of
one of the matching coefficients. We derive the renormalization-group evolution equation
satisfied by all quantities in the factorization formula and use them to predict the large
logarithms of order αα2

s L
k in the three-loop decay amplitude, where L = ln(−M2

h/m
2
b)

and k = 6, 5, 4, 3. We find perfect agreement with existing numerical results for the am-
plitude and analytical results for the three-loop contributions involving a massless quark
loop. On the other hand, we disagree with the results of previous attempts to predict the
series of subleading logarithms ∼ ααns L2n+1.
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1 Introduction

Soft-collinear effective theory (SCET) [1–3] provides a convenient framework for addressing
the problems of scale separation and factorization in high-energy physics using the powerful
tools of effective field theory. Much recent work has focused on exploring the structure of
factorization at subleading order in power counting — a problem that turns out to be un-
expectedly subtle and full of complexities. Specific applications discussed in the literature
include the study of power corrections to event shapes [4] and transverse-momentum distri-
butions [5, 6], the threshold factorization for the Drell-Yan process [7, 8], and the factoriza-
tion of power-suppressed contributions to Higgs-boson decays [9, 10]. One finds that such
factorization theorems contain a sum over convolutions of Wilson coefficients with operator
matrix elements, where the relevant SCET operators mix under renormalization. Several
new complications arise, which do not occur at leading power. The most puzzling one is the
appearance of endpoint-divergent convolution integrals over products of component func-
tions each depending on a single scale [6, 8–14]. In some sense, such endpoint divergences
indicate a failure of dimensional regularization and the MS subtraction scheme, because
some of the 1/εn pole terms are not removed by renormalizing the individual component
functions, and hence naive scale separation is violated. Standard tools of renormalization
theory are then insufficient to obtain well-defined, renormalized factorization theorems in-
volving convergent convolutions over renormalized functions. Indeed, for none of the above-
mentioned examples is it currently known how to formulate a theoretically consistent renor-
malized factorization theorem. This would, however, be needed in order to fully establish
SCET as a versatile tool and apply it to several observables of phenomenological interest.

In a recent paper [9], two of us have started a detailed discussion of factorization
at subleading power within the framework of SCET. As a concrete example, we have
considered the decay amplitude for the radiative Higgs-boson decay h → γγ mediated by
the Higgs coupling to bottom quarks. In the limit mb �Mh one finds for the corresponding
contribution to the decay amplitude

Mb(h→ γγ) = Ncαb
π

yb√
2
mb g

µν
⊥ ε∗µ(k1)ε∗ν(k2)

[
L2

2 −2+ CFαs
4π

(
−L

4

12 −L
3 + . . .

)
+O(α2

s)
]
,

(1.1)
where L = ln(M2

h/m
2
b) − iπ is the relevant large logarithm. Here mb, yb and αb = e2

bα

(with eb = −1
3) denote the mass, Yukawa coupling and electromagnetic coupling of the

b quark, and εµ(ki) are the polarization vectors of the two photons. At leading double-
logarithmic order, the large logarithms in this amplitude were resummed a long time ago
using conventional tools of perturbative quantum field theory [15, 16] (see [17, 18] for more
recent related work), and it was found that

MLL
b (h→ γγ) = Ncαb

π

yb√
2
mb g

µν
⊥ ε∗µ(k1) ε∗ν(k2) L

2

2

∞∑
n=0

2Γ(n+ 1)
Γ(2n+ 3)

(
−CFαs2π L2

)n
. (1.2)

However, we will see later that the sum of this series provides a poor numerical approx-
imation to the decay amplitude. In order to go beyond the leading double-logarithmic
approximation it is necessary to start from a consistent all-order factorization theorem,
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which properly separates the relevant scales in this process. In [9] we have factorized the
decay amplitude and expressed it in terms of convolutions of bare matching coefficients
with unrenormalized operator matrix elements. The convolution integrals contain end-
point divergences that require both dimensional and rapidity regulators. We have shown
that, to all orders of perturbation theory, the endpoint divergences cancel out in the sum
of all contributions to the factorization theorem, and they can be removed by suitably
rearranging the factorization formula.

Here we continue our study of the b-quark induced h → γγ decay amplitude and
derive a renormalized factorization theorem for this process. The establishment of such a
factorization formula — the first of its kind — is the main accomplishment of the present
work. In section 2 we recall the factorization theorem for the b-quark induced h→ γγ decay
amplitude as derived in [9]. A crucial step in the derivation of this formula made use of two
D-dimensional refactorization conditions, which were derived from the requirement that in
the sum of all terms the dependence on the rapidity regulator must cancel to all orders of
perturbation theory. In section 3 we prove these refactorization conditions using techniques
from SCET. The renormalized form of the factorization formula is derived in section 4.
We first discuss the renormalization of the various operators and matching coefficients
and derive their renormalization-group (RG) evolution equations using standard tools of
quantum field theory. There is one important subtlety related to the fact that the presence
of hard cutoffs on the convolution integrals, which is a consequence of the regularization of
endpoint divergences, does not commute with renormalization. In section 4.5 we show that,
to all orders of perturbation theory, the additional terms encountered when the cutoffs are
moved from the bare to the renormalized convolutions amount to an extra contribution
to one of the matching coefficients. The evolution equations satisfied by the renormalized
matching coefficients and matrix elements are derived in section 5. Using these equations,
we predict in section 6 the large logarithms of order αbα2

sL
k with k = 6, 5, 4, 3 in the

three-loop decay amplitude, finding complete agreement with existing multi-loop results
in the literature [19, 20]. However, we do not confirm previous predictions for the series
of subleading logarithms of order αbαns L2n+1 [16, 21], which were based on conventional
resummation techniques. Section 7 contains our conclusions. Several technical details are
relegated to a series of appendices. A short letter summarizing our main results has recently
appeared in [22]. There we have discussed the resummation of large logarithms at next-to-
leading logarithmic order. A complete resummation of large logarithms in RG-improved
perturbation theory is left for future work.

2 Factorization formula in terms of bare objects

As shown in (1.1), the b-quark induced contribution to the h→ γγ decay amplitude receives
large logarithms of the form αbα

n−1
s Lk with k ≤ 2n. In order to resum these logarithms

in a systematic way it is necessary to factorize the amplitude into objects depending only
on one of the three relevant scales, set by the Higgs-boson mass Mh, the mass mb of
the bottom quark, and the intermediate scale

√
Mhmb. In [9], two of us have derived a

“bare” factorization theorem, which accomplishes this. It contains three terms consisting
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H1 ·
h

h

h

H3 ·
hc

s

Figure 1. Leading regions of loop momenta (h: hard, c: n1-collinear, s: soft, hc: n1-hard-collinear,
hc: n2-hard-collinear) contributing to the decay amplitude. The convolution symbol ⊗ in the second
term means an integral over z.

of bare (i.e. unrenormalized) SCET operators O(0)
i multiplied by bare Wilson coefficients

H
(0)
i , which account for the hard matching corrections arising when the “full theory” (the

Standard Model with the top quark integrated out) is matched onto SCET. In its simplest
form, the factorization formula reads

Mb(h→ γγ) = H
(0)
1 〈γγ|O

(0)
1 |h〉+2

∫ 1

0
dz H

(0)
2 (z) 〈γγ|O(0)

2 (z) |h〉+H(0)
3 〈γγ|O

(0)
3 |h〉 . (2.1)

The three terms corresponding to different regions of loop momenta giving rise to leading
contributions to the decay amplitudeMb, as illustrated in figure 1. The operator

O
(0)
1 = mb,0

e2
b

hA⊥µn1 A⊥n2,µ (2.2)

contains a Higgs field coupled to two collinear gauge fields describing photons moving along
opposite light-like directions n1 and n2 ≡ n̄1. Here and below, fields without an argument
are located at the spacetime point x = 0. The canonical choice of the reference vectors
is nµ1 = (1, 0, 0, 1) and nµ2 = (1, 0, 0,−1). This operator descents from full-theory graphs in
which all internal momenta are hard, of order Mh. Next, the operator

O
(0)
2 (z) = h

[
X̄n1γ

µ
⊥
/̄n1
2 δ(z n̄1 · k1 + in̄1 · ∂)Xn1

]
A⊥n2,µ (2.3)

contains a Higgs field, an n2-collinear photon field and two n1-collinear b-quark fields,
which share the momentum k1 of the other photon. This operator is generated by full-
theory graphs in which a loop momentum is collinear with the photon direction n1 and

– 4 –



J
H
E
P
0
1
(
2
0
2
1
)
0
7
7

carries virtuality of order mb. The factor 2 in front of this contribution in (2.1) arises
because there is an analogous contribution with n1 and n2 interchanged. The symbols
Aµ
n1 and Xn1 in the above definitions denote effective photon and b-quark fields defined

in SCET (the so-called “gauge-invariant building blocks” [2, 23]), which differ from the
ordinary quantum fields Aµ and ψ in that they contain collinear Wilson lines in their
definition and that they obey the constraints n̄1 · An1 = 0 and /n1Xn1 = 0. Note that
the Feynman rule for the vector field Aµ contains a factor of eb, which is the reason why
we have divided by e2

b in the definition of O1. The symbol ⊥ on 4-vectors indicates the
components orthogonal to the light-cone basis vectors n1 and n2. Finally, the operator

O
(0)
3 = T

{
h X̄n1Xn2 , i

∫
dDxL(1/2)

q ξn1
(x), i

∫
dDyL(1/2)

ξn2q
(y)
}

+ h.c. (2.4)

contains the time-ordered product of the scalar Higgs current with two subleading-power
terms in the SCET Lagrangian [3], in which hard-collinear fields are coupled to a soft quark
field. It arises from full-theory graphs containing a soft quark propagator between the two
photons, with all momentum components of order mb. In terms of gauge-invariant building
blocks, the relevant subleading-power terms in the SCET Lagrangian read

L(1/2)
q ξn1

(x) = q̄s(x−)
[
/A
⊥
n1(x) + /G⊥n1(x)

]
Xn1(x) ,

L(1/2)
ξn2q

(y) = X̄n2(y)
[
/A
⊥
n2(y) + /G⊥n2(y)

]
qs(y+) ,

(2.5)

where Gµn1 is the building block for the hard-collinear gluon field. In interactions of hard-
collinear fields with soft fields the soft field operators must be multipole expanded for
consistency [3, 24], and we denote xµ− = (n̄1 · x) n

µ
1
2 and yµ+ = (n̄2 · y) n

µ
2
2 .

The h→ γγ matrix element of O3 in (2.1) can be factorized further into a convolution
of two radiative jet functions with a soft function [9], i.e. (for simplicity we use the default
choices of the reference vectors n1 and n2, such that n̄1 · k1 = n̄2 · k2 = Mh)

〈γγ|O(0)
3 |h〉 = gµν⊥

2

∫ ∞
0

d`+
`+

∫ ∞
0

d`−
`−

(2.6)

×
[
J (0)(Mh`+) J (0)(−Mh`−) + J (0)(−Mh`+) J (0)(Mh`−)

]
S(0)(`+`−) .

Contrary to the 4-vectors x− and y+ introduced above, the integration variables `+ and `−
correspond to the light-cone components n1 ·` and n2 ·` of a soft 4-momentum `µ. Here and
below we omit the photon polarization vectors when presenting expressions for operator
matrix elements. The radiative jet function J(p2) has been studied first in the calculation
of the decay amplitude for the rare exclusive decay B− → γ l−ν̄l in the context of QCD
factorization [25]. The soft function S(w) is defined in terms of the discontinuity of a soft
quark propagator dressed with soft Wilson lines oriented along the light-like directions n1
and n2. For a more detailed discussion about the derivation of the factorization theorem
and the precise definition of the various SCET fields, operators, jet and soft functions the
reader is referred to [9], where we have shown that the three operators Oi form a basis
of O(λ3) SCET operators contributing to the decay h → γγ, and that the sum of the
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three terms in (2.1) correctly reproduces the decay amplitude at two-loop order. Here
λ ∼ mb/Mh is the expansion parameter of the effective theory.

Major complications arise from endpoint-divergent convolution integrals in the second
and third term in (2.1), which need to be properly identified and regularized. The integral
over z in the second term contains singularities at z = 0 and z = 1. Likewise, the integrals
over `+ and `− in (2.6) contain singularities at `± =∞. Some of these endpoint divergences
are regularized by the dimensional regulator D = 4− 2ε, but others require an additional
rapidity regulator [26–28]. In [9] we have regularized the rapidity divergences by means
of an analytic regulator imposed on the convolution variables z and `±. The singular
contributions in the rapidity regulator cancel in the sum of the second and third term of
the factorization formula, but this requires that for z → 0 (or 1) these two terms must
have closely related structures to all orders of perturbation theory. Indeed, we have shown
that this condition gives rise to the D-dimensional “refactorization conditions”

[[H̄(0)
2 (z)]] = −H(0)

3 J (0)(zM2
h) ,

[[〈γγ|O(0)
2 (z) |h〉]] = −g

µν
⊥
2

∫ ∞
0

d`+
`+

J (0)(−Mh`+)S(0)(zMh`+) ,
(2.7)

which must hold to all orders of perturbation theory. The symbol [[f(z)]] means that one
retains only the leading terms of a function f(z) in the limit z → 0 and neglects higher
power corrections. We have rewritten the original function H(0)

2 (z) as

H
(0)
2 (z) = H̄

(0)
2 (z)

z(1− z) , (2.8)

where the new function H̄
(0)
2 (z) contains logarithmic singularities only. With the help of

the relations (2.7) one can rearrange the bare factorization formula (2.1) in such a way
that all endpoint and rapidity divergences are removed. The result is

Mb=
(
H

(0)
1 +∆H(0)

1

)
〈γγ|O(0)

1 |h〉 (2.9)

+2lim
δ→0

∫ 1−δ

δ
dz

[
H

(0)
2 (z)〈γγ|O(0)

2 (z)|h〉− [[H̄(0)
2 (z)]]
z

[[〈γγ|O(0)
2 (z)|h〉]]

− [[H̄(0)
2 (1−z)]]
1−z [[〈γγ|O(0)

2 (1−z)|h〉]]
]

+gµν⊥ lim
σ→−1

H
(0)
3

∫ Mh

0

d`−
`−

∫ σMh

0

d`+
`+

J (0)(Mh`−)J (0)(−Mh`+)S(0)(`+`−)
∣∣∣
leadingpower

.

Compared with [9] we have rewritten the second term in a different but equivalent way.
The subtraction terms involving the [[. . . ]] symbol remove the singularities at the endpoints
z = 0 and z = 1, such that the limit δ → 0 is smooth. Note that both the matching
coefficient H(0)

2 (z) and the matrix element 〈O(0)
2 (z)〉 contain terms that are singular for

z = 0, 1 and the two subtraction terms properly remove the singularities of the product of
these two quantities. This generalizes a simple “plus-type” subtraction prescription for the
bare operator proposed in [12, 29], which works only for cases where the relevant matching
coefficient approaches a constant plus power-suppressed terms as z → 0.

– 6 –
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`�

`+
n2-collinear

n1-collinear

soft

`+`� = m2
b

Figure 1: Soft and collinear regions in the `� � `+ plane. Contour of constant `+`� are hyperbolas
in this plane. The separation of the three regions must be regularized using rapidity regulators.

1

∞ bin

σMh

Mh

Figure 2. Graphical illustration of the subtractions performed in the rearrangement of the factor-
ization formula, which removes the endpoint divergences of the various contributions.

We stress that the form of (2.9) is independent of the particular rapidity regularization
scheme used to regularize the divergent convolution integrals in (2.1) and (2.6), as long
as the same regularization scheme is applied consistently to all terms in the factorization
theorem. The refactorization conditions ensure that the integrands of the second and
third term in the factorization formula are identical in the singular regions (up to power-
suppressed terms), and hence the endpoint divergences can be removed by a rearrangement
of these terms, which leads to (2.9).

Removing the endpoint divergences in the way described above comes at the price
of introducing hard upper limits on the integrals over `+ and `− in the last term of the
factorization formula (2.9), which originally have power counting `± = O(mb).1 This gives
rise to additional large rapidity logarithms in the matrix element of the operator O3. They
are a consequence of the so-called collinear anomaly, which results from the fact that a
classical symmetry of the effective theory SCETII under rescalings of the light-cone vectors
n1 and n2 is broken by quantum effects [26]. The presence of the upper limits also leads
to some power-suppressed contributions of O(m2

b/M
2
h) to the third term, which should be

dropped for consistency. Moreover, to obtain the correct result for the decay amplitude the
upper limit on the (positive) integration variable `+ must be analytically continued from
Mh to −Mh−i0 after the integral has been evaluated, as indicated by the limit σ → −1. In
figure 2 we show a graphical illustration of the rearrangement of the factorization formula
that eliminates the endpoint divergences. The subtractions performed on the second term
remove the shaded gray regions from the integrals in the third term. Note that in this
process the hard region in which |`±| ≥ Mh is subtracted twice. This over-subtraction
needs to be corrected by adding back the “infinity bin” in the form of a contribution

∆H(0)
1 = − lim

σ→−1
H

(0)
3

∫ ∞
Mh

d`−
`−

∫ ∞
σMh

d`+
`+

J (0)(Mh`−) J (0)(−Mh`+) S
(0)
∞ (`+`−)
mb,0

(2.10)

1It is an open question whether it is possible to formulate an alternative “endpoint regularization scheme”
avoiding the hard cutoffs. If it exists, such a scheme would need to commute with the operation of renor-
malization in dimensional regularization, and hence in particular it would need to respect gauge invariance.
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to the matching coefficient of the operator O(0)
1 . Here S(0)

∞ (w) denotes the soft function in
the limit where w/m2

b,0 →∞, as given in relation (4.46) below.
In [9] we have presented explicit expressions for all quantities appearing in the fac-

torization formula (2.9) at next-to-leading order (NLO) in αs, corresponding to two-loop
order for the decay amplitude. For completeness, the corresponding expressions are col-
lected in appendix A. The main goal of the present work is to turn the bare factorization
theorem into a formula involving renormalized matching coefficients and operator matrix
elements. As we shall see this is a highly non-trivial task. The resulting formula provides
the basis for a systematic resummation of the large logarithms ln(M2

h/m
2
b)−iπ to all orders

of perturbation theory.

3 SCET derivation of the refactorization conditions

In this section we derive the refactorization conditions (2.7) using methods from SCET.
This discussion is more technical than that in the remaining sections and draws heavily
on SCET jargon as well as notations introduced and results derived in [9]. Our arguments
should be relatively easy to follow for SCET practitioners. Readers not interested in a tech-
nical proof of the relations (2.7) can skip this discussion and proceed directly with section 4.

3.1 Refactorization condition for [[H̄(0)
2 (z)]]

The bare matching coefficient H(0)
2 (z) has been calculated in [9] by computing the on-shell

h→ b(z̄ k1) b̄(zk1) γ(k2) amplitude for the decay of a Higgs boson into a pair of n1-collinear
bottom quarks and an n2-collinear photon. Here and below we sometime use the symbol
z̄ ≡ 1 − z for brevity. To simplify the matching calculation one sets the b-quark mass to
zero and assigns momenta z̄k1 and zk1 to the outgoing quark and anti-quark, respectively,
where k2

1 = 0. Then the only relevant momentum invariant is hard, 2k1 · k2 = M2
h . In the

absence of any non-zero low-energy scale the matrix element of the bare operator O(0)
2 is

given by its tree-level expression. Hence, one finds that

M(0)(h→ bb̄γ) =
∫ 1

0
dz′H

(0)
2 (z′) 〈b(z̄k1) b̄(zk1) γ(k2)|O(0)

2 (z′) |h〉

= eb
Mh

H
(0)
2 (z) ū(z̄k1) /ε∗⊥(k2)

/̄n1
2 v(zk1) ,

(3.1)

where in the last step we have used that n̄1 · k1 = Mh. By calculating the same amplitude
in the full theory and comparing the answer with this expression we have derived the result
for the bare matching coefficient H(0)

2 (z) given in (A.9) of appendix A.
In SCET, the momenta of n1-collinear particles in the basis (n1 · p, n2 · p, p⊥) have the

generic scaling (λ2, 1, λ) in units of the hard scale Mh. In the case at hand the large O(1)
components of the b-quark momenta are equal to z and z̄. Now consider the limit where
z ∼ λ� 1. Then the scaling of the outgoing anti-quark momentum becomes soft, (λ2, λ, λ).
The process is now characterized by two different scales: the hard scale M2

h and the hard-
collinear scale zM2

h ∼Mhmb. In an intermediate effective theory called SCETI, the leading-

– 8 –



J
H
E
P
0
1
(
2
0
2
1
)
0
7
7

z → 0

J

n1 n1 n1 s

H3
k2

k2z

H2(z)

Figure 3. Graphical illustration of the refactorization condition for [[H̄(0)
2 (z)]].

order contribution to the decay amplitude in this limit can be written in the form

[[M(0)(h→ bb̄γ)]] = H
(0)
3 〈b(k1) b̄(zk1) γ(k2)|T

{
h X̄n1Xn2(0), i

∫
dDyL(1/2)

ξn2q
(y)
}
|h〉 . (3.2)

The first operator in the time-ordered product describes the decay of the Higgs boson into
an n1-hard-collinear quark and an n2-hard-collinear anti-quark. Hard matching corrections
to this vertex are accounted for by the coefficient H(0)

3 . The second operator is an insertion
of the subleading-power SCET Lagrangian given in (2.5), which couples a soft quark to an
n2-hard-collinear quark. There are no hard matching corrections to this Lagrangian [3].

We now decouple soft gluons from the hard-collinear fields by performing the usual field
redefinitions [1], but we do not change the names of the fields for simplicity. This leads to

[[M(0)(h→ bb̄γ)]] = H
(0)
3 〈b(k1) b̄(zk1) γ(k2)|T

{
X̄n1(0)S†n1(0)Sn2(0)Xn2(0),

i

∫
dDy X̄n2(y)

(
/A
⊥
n2(y) + /G⊥n2(y)

)
S†n2(y+) qs(y+)

}
|0〉 .

(3.3)

In this matrix element the different types of fields (n1-hard-collinear, n2-hard-collinear and
soft) no longer interact with one another. We now match this result onto the low-energy
effective theory called SCETII by integrating out the hard-collinear fields. In this step we
use the definition of the bare jet function J (0)(p2) given in appendix B to obtain (using
that n2 = n̄1 and n1 = n̄2)

[[M(0)(h→ bb̄γ)]] = ebH
(0)
3 ūn1(k1)

/̄n1
2 /ε∗⊥(k2) vs(zk1) n̄2 · (k2 + zk1−)

(k2 + zk1−)2 + i0 J
(0)((k2 + zk1−)2)

= − eb
Mh

H
(0)
3

z + i0 J
(0)(zM2

h) ū(z̄k1) /ε∗⊥(k2)
/̄n1
2 v(zk1) , (3.4)

where k1− = n̄1 · k1
nµ1
2 , and hence (k2 + zk1−)2 = z n̄1 · k1 n̄2 · k2 = zM2

h . A graphical illus-
tration of this result is shown in figure 3. Note the important fact that, since we perform
the calculation on-shell and for massless quarks, there is no soft or n1-collinear scale in the
problem, and hence the soft and n1-collinear matrix elements are equal to their tree-level
expressions. In particular, the soft Wilson lines do not give rise to any non-trivial con-
tributions, and the soft matrix element simply provides a factor eizk1·y+ v(zk1). Matching
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S
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x− t n2

0
z → 0

z

Figure 4. Graphical illustration of the refactorization condition for [[〈O(0)
2 (z)〉]].

this result with (3.1) we obtain

[[H(0)
2 (z)]] = [[H̄(0)

2 (z)]]
z

= −H
(0)
3
z

J(zM2
h) , (3.5)

where we have used (2.8) in the first step. This establishes the first relation in (2.7).

3.2 Refactorization condition for [[〈O(0)
2 (z)〉]]

The derivation of the second refactorization condition is slightly more involved. In this case
the soft contributions are non-zero, because the matrix element of the operator O(0)

2 (z)
depends on the b-quark mass. In fact, for z � 1 the two relevant scales are the soft scale
m2
b and the hard-collinear scale m2

b/z ∼ Mhmb. Our starting point is the position-space
representation of the operator O(0)

2 introduced in [9], which reads

O
(0)
2 (t) = h(0) X̄n1(0) γµ⊥

/̄n1
2 Xn1(tn̄1)A⊥n2,µ(0) . (3.6)

We now replace the n1-collinear field Xn1 by a soft quark field qs and perform the soft
decoupling transformation. This leads to (using that n̄1 = n2)

O
(0)
2 (t)→ h(0) X̄n1(0)S†n1(0)Sn2(0) γµ⊥

/n2
2 S†n2(tn2) qs(tn2)A⊥n2,µ(0) . (3.7)

The structure of the soft Wilson lines follows from the fact that the operator on the right-
hand side derives from the amplitude in (3.3) after integrating out the n2-hard-collinear
fields. We now need to evaluate the on-shell h → γγ matrix element of this operator. To
this end, we need an insertion of the subleading-power SCET Lagrangian, which turns the
soft quark field back into an n1-hard-collinear quark field. We thus obtain

[[〈γγ|O(0)
2 (t) |h〉]] = eb 〈γ(k1)|T

{
X̄n1(0)S†n1(0)Sn2(0) /ε∗⊥(k2) /

n2
2 S†n2(tn2) qs(tn2), (3.8)

i

∫
dDx q̄s(x−)Sn1(x−)

(
/A
⊥
n1(x) + /G⊥n1(x)

)
Xn1(x)

}
|0〉 .

This relation should be understood as a matching equation relating the matrix elements
of the operators on the two sides of the equation. In the next step we use the definitions
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ℓ+

S(zMhℓ+)

J(−Mhℓ+)

Figure 5. Singularities of the integral (3.9) in the complex `+ plane.

of the jet function and of the soft-quark soft function collected in appendix B. Taking into
account a minus sign from an odd number of interchanges of fermion fields, we find

[[〈γγ|O(0)
2 (t) |h〉]] = iπ tr

[
/ε∗⊥(k2) /

n2
2 /ε∗⊥(k1) /

n1
2

] ∫
dDx

∫
dD`

(2π)D
∫

dDp

(2π)D e−i`·(tn2−x−) S(0)
1 (`)

× n̄1 · p
p2 + i0 J

(0)(p2) e−i(p−k1)·x (3.9)

= − i

4π ε
∗
⊥(k1) · ε∗⊥(k2)

∫ ∞
−∞

d`− e
−it`−

∫ ∞
−∞

d`+
J (0)(Mh`+)
`+ + i0 S(0)(`+`−) ,

where `+ = n1 · ` and `− = n2 · `, and the function S(0)(`+`−) is defined as

S(0)(`+`−) =
∫

dD−2`⊥
(2π)D−2 S

(0)
1 (`) . (3.10)

Figure 4 shows a graphical representation of the result (3.9).
We now switch back to momentum space and define

[[〈γγ|O(0)
2 (z) |h〉]] =

∫
dt

2π e
−izMht [[〈γγ|O(0)

2 (t) |h〉]] . (3.11)

We then find

[[〈γγ|O(0)
2 (z) |h〉]] = i

4π ε
∗
⊥(k1) · ε∗⊥(k2)

∫ ∞
−∞

d`+
J (0)(−Mh`+)

`+ − i0
S(0)(zMh`+) , (3.12)

where we have relabeled the integration variable `+ → −`+ for later convenience. The
singularities of the integrand in the complex `+ plane are shown in figure 5. There is a
pole at `+ = i0 from the denominator, a cut infinitesimally above the real axis for negative
values of `+ from the jet function, and a cut infinitesimally below the real axis for positive
values of `+ from the soft function. The integral is thus non-zero only if `+ ≥ 0 and we can
deform the contour such that it wraps around the cut in the lower half-plane. This leads to

[[〈γγ|O(0)
2 (z) |h〉]] = −1

2 ε
∗
⊥(k1) · ε∗⊥(k2)

∫ ∞
0

d`+
`+

J (0)(−Mh`+)S(0)(zMh`+) , (3.13)
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where
S(0)(`+`−) = 1

2πi
[
S(0)(`+`− + i0)− S(0)(`+`− − i0)

]
(3.14)

is the discontinuity of the soft function S(0)(`+`−). This proves the second refactorization
condition in (2.7).

4 Renormalized factorization formula

The main goal of this work is to establish the renormalized factorization formula

Mb=H1(µ)〈O1(µ)〉 (4.1)

+2
∫ 1

0
dz

[
H2(z,µ)〈O2(z,µ)〉− [[H̄2(z,µ)]]

z
[[〈O2(z,µ)〉]]− [[H̄2(z̄,µ)]]

z̄
[[〈O2(z̄,µ)〉]]

]
+gµν⊥ lim

σ→−1
H3(µ)

∫ Mh

0

d`−
`−

∫ σMh

0

d`+
`+

J(Mh`−,µ)J(−Mh`+,µ)S(`+`−,µ)
∣∣∣
leadingpower

,

which is structurally equivalent to the bare formula (2.9). We have omitted the external
states in the matrix elements for brevity. It is not at all evident that such a formula exists,
because, as we will show, the presence of cutoffs on some of the integrals does not commute
with the operation of renormalization. We will show that this complication gives rise to
some additional contributions, which to all orders of perturbation theory can be absorbed
into the definition of the matching coefficient H1(µ).

4.1 Parameter renormalization

In a first step, we relate the bare parameters entering the decay amplitude Mb to the
corresponding renormalized parameters. These are the mass of the b quark (which enters
in the matrix elements of the operators Oi), its Yukawa coupling (which enters in the
expressions for the matching coefficients Hi), as well as the gauge couplings of QCD and
QED. We write the relevant renormalization conditions in the MS subtraction scheme as

yb,0 = µεZy yb(µ) , mb,0 = Zmmb(µ) ,
α0 = µ2εZα α , αs,0 = µ2εZαsαs(µ) .

(4.2)

The factor of µε from the renormalization of the Yukawa coupling multiplies the entire
decay amplitude. It can be ignored, since after parameter renormalization the amplitude is
finite and the limit ε→ 0 is smooth. In our analysis we consider QCD radiative corrections
only. To first order in αs ≡ αs(µ), we then have

Zy = Zm = 1− 3CF
αs
4πε +O(α2

s) , Zαs = 1− β0
αs
4πε +O(α2

s) , (4.3)

and Zα = 1. Here β0 = 11
3 CA−

4
3 TF nf is the first coefficient of the QCD β-function, with

nf = 5 being the number of active quark flavors.
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Figure 6. One-loop diagrams contributing to the calculation of the diagonal renormalization
factor Z22. In the second and third graph the gluon is emitted from the Wilson lines contained in
the definition of the collinear quark fields. These graphs must be supplemented by wave-function
renormalization.

In our analysis we will sometimes use the b-quark pole mass mb instead of the running
mass mb(µ). At NNLO the relation between the two quantities is given by [30]

mb(µ) =mb

{
1+ CFαs

4π (3Lm−4)

+CF

(
αs
4π

)2[(9
2 CF −

3
2 β0

)
L2
m+

(
−21

2 CF + 185
6 CA−

26
3 TF nf

)
Lm+ . . .

]
+O(α3

s)
}
, (4.4)

where Lm = ln(m2
b/µ

2), and for the purposes of this work we do not need the scale-
independent two-loop contribution denoted by the dots. This relation, as well as the
relations in (4.3), are known to very high orders of perturbation theory.

4.2 Operator renormalization

The matrix elements of the bare operators O(0)
1,2 as well as the bare jet and soft functions

J (0) and S(0) contain ultraviolet (UV) divergences not eliminated by the renormalization of
the bare parameters. These divergences must be removed by renormalizing the operators
themselves, allowing for the possibility of operator mixing. In recent work we have studied
the renormalization properties of the jet function [31] and the soft function [32]. We now
discuss the renormalization of the remaining operators at first order in αs. We find that
the operators O1 and O2 mix under renormalization, in such a way that

O1(µ) = Z11O
(0)
1 ,

O2(z, µ) =
∫ 1

0
dz′ Z22(z, z′)O(0)

2 (z′) + Z21(z)O(0)
1 .

(4.5)

From the definition of the operator O1 in (2.2) it follows that

Z11 = Z−1
m = 1 + 3

ε

CFαs
4π +O(α2

s) . (4.6)

The relation Z11 = Z−1
m holds to all orders of QCD perturbation theory, since the quantum

fields in the definition of O1 do not carry color. This factor is known to very high orders
of perturbation theory.
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The diagonal renormalization factor Z22 can be derived by studying the UV divergences
of the matrix element of the operator O2(z) defined in (2.3) between an initial-state Higgs
boson and a final state consisting of a photon with momentum k2 and a pair of n1-collinear
bottom quarks sharing the total momentum k1. The relevant one-loop diagrams are shown
in figure 6. From a straightforward calculation, we obtain at NLO in QCD

Z22(z, z′) =
(

1 + CFαs
4πε

)
δ(z − z′) (4.7)

− CFαs
2πε

1
z′(1− z′)

[
z(1− z′) θ(z

′ − z)
z′ − z

+ z′(1− z) θ(z − z
′)

z − z′
]

+
+O(α2

s) ,

where z, z′ ∈ [0, 1], and the plus distribution is defined in the usual way. The above result is
the well-known Brodsky-Lepage kernel [33, 34]. This is not surprising, because the colored
fields in the operator O2 in (2.3) have the same structure as the quark fields entering the
definition of the leading-twist light-cone distribution amplitude of a transversely polarized
vector meson. Before Fourier transformation, they form the non-local structure [9]

X̄n1(0) γµ⊥
/̄n1
2 Xn1(tn̄1) = ψ̄(0) γµ⊥

/̄n1
2 [0, tn̄1]ψ(tn̄1) , (4.8)

where [0, tn̄1] denotes a finite-length Wilson line along the light-like direction n̄1, and ψ(x)
is the conventional quark field in QCD. The two-loop expression for Z22 can in principle be
derived from results available in the literature [35–39], but it is not needed for our purposes
in this work. It will be useful to rewrite the above result in the equivalent form

Z22(z, z′) =
[
1− CFαs

4πε
(
2 ln z + 2 ln(1− z) + 3

)]
δ(z − z′)

− CFαs
2πε z(1− z)

[ 1
z′(1− z)

θ(z′ − z)
z′ − z

+ 1
z(1− z′)

θ(z − z′)
z − z′

]
+

+O(α2
s) .

(4.9)

The operator O2 is not only renormalized multiplicatively, but it mixes with O1 under
renormalization. The factor Z21(z) can be derived from the condition that the h→ γγ ma-
trix element of the renormalized operator O2(µ) in (4.5) be free of UV divergences. Starting
from the expression for the matrix element of the bare operator O(0)

2 (z) presented in [9]
and shown explicitly in (A.2), applying the factor Z22 to this expression and renormalizing
the bare parameters αb,0, αs,0 and mb,0, we find that some 1/ε poles remain, which must
be removed by the counterterm Z21 〈O(0)

1 〉. In this way we obtain

Z21(z) = Ncαb
2π

{
− 1
ε

+ CFαs
4π

[ ln z + ln(1− z)
ε2

(4.10)

− 1
ε

(
ln2 z + ln2(1− z)

2 − 2 ln z ln(1− z) + 11
2 −

π2

3

)]
+O(α2

s)
}
.

Given these results, the renormalized h → γγ matrix element [[〈O2(z, µ)〉]] can be
obtained in two equivalent ways: either by taking the limit z → 0 in the expression for
〈O2(z, µ)〉, or by starting from the bare matrix elements [[〈O(0)

2 (z)〉]] and 〈O(0)
1 (z)〉 and ap-

plying appropriate limiting expressions for the renormalization factors Z22 and Z21. We find

[[〈O2(z, µ)〉]] =
∫ ∞

0
dz′ [[Z22(z, z′)]] [[〈O(0)

2 (z′)〉]] + [[Z21(z)]] 〈O(0)
1 〉 . (4.11)
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The renormalization factor [[Z22(z, z′)]] can be obtained from (4.9) by taking the limit
z, z′ → 0 (with z ∼ z′), leading to

[[Z22(z,z′)]] =
[
1− CFαs4πε

(
2lnz+3

)]
δ(z−z′)− CFαs2πε z

[
θ(z′−z)
z′(z′−z) + θ(z−z′)

z(z−z′)

]
+

+O(α2
s) .

(4.12)
Likewise, taking the limit z → 0 in (4.10), we derive

[[Z21(z)]] = Ncαb
2π

{
− 1
ε

+ CFαs
4π

[ ln z
ε2
− 1
ε

(
ln2 z

2 + 11
2 −

π2

3

)]
+O(α2

s)
}
. (4.13)

Notice the important fact that, contrary to (4.5), the convolution integral now runs over
the interval z′ ∈ [0,∞). The reason is that z and z′ are treated as variables which take
infinitesimally small values.

According to (2.4) the operator O3 is defined in terms of a time-ordered product of the
scalar current JS = h X̄n1Xn2 with two subleading-power Lagrangian insertions. In this
product only the current gets renormalized. The corresponding renormalization factor is
known to three-loop order and given in eq. (A.2) of [41]. At first order in αs it reads

Z33 = ZJS = 1 + CFαs
4π

[
− 2
ε2

+ 2
ε

(
Lh −

3
2

)]
+O(α2

s) , (4.14)

where Lh = ln(−M2
h/µ

2). Here and below we use the implicit definition −M2
h ≡ −M2

h − i0
to fix the sign of the imaginary part of the logarithm. When the h → γγ matrix element
of O3 is expressed in terms of a convolution over jet and soft functions, as shown in (2.6),
relation (4.14) implies a relation between Z33 and the renormalization factors ZJ and ZS
of the jet function and the soft function, which has been given in [32]. It can be written as

ZS(w,w′) = w

w′
Z33

∫ ∞
0

dx

x
Z−1
J

(
Mhw

′

x`+
,
Mhw

`+

)
Z−1
J (−xMh`+,−Mh`+) , (4.15)

which despite appearance is independent of the choice of `+. This result implies a simple
relation between the anomalous dimensions of the matching coefficient H3 and of the jet
and soft functions, which was conjectured in [32] and will be given in relation (5.14) in
section 5.1.

In general, it is well known that time-ordered products such as in (2.4) can mix under
renormalization with local operators of the same order in power counting (see e.g. [40] for a
discussion in the context of SCET). In our case, however, the presence of the UV cutoffs on
the integrals over `+ and `− in (2.9) and (4.1) prevents such a mixing. The renormalized ma-
trix element of O3, which depends on several different physical scales, is expressed in (4.1) as
a double convolution over renormalized jet and soft functions. The calculation of the renor-
malized jet function J(p2) at two-loop order and the study of its RG evolution equation
have been discussed in [31], while the renormalization of the soft function S(w) at one-loop
order and the derivation of its two-loop RG equation have been studied in [32]. When the
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renormalized expressions are used, we find that (omitting the limit σ → −1 for brevity)

gµν⊥ H3(µ)
∫ Mh

0

d`−
`−

∫ σMh

0

d`+
`+

J(Mh`−, µ) J(−Mh`+, µ)S(`+`−, µ)
∣∣∣
leading power

= gµν⊥ H
(0)
3

∫ Mh

0

d`−
`−

∫ σMh

0

d`+
`+

J (0)(Mh`−) J (0)(−Mh`+)S(0)(`+`−)
∣∣∣
leading power

+ δH
(0)
1 〈O

(0)
1 〉 , (4.16)

where
δH

(0)
1 = Ncαb

π

yb,0√
2
CFαs

4π 8ζ3

(
−1
ε

+ Lh

)
+O(α2

s) . (4.17)

It is tempting to interpret this extra contribution as a mixing of the operator O3 with O1,
but in reality its origin lies in the fact that imposing the upper cutoffs on the convolution
integrals over `+ and `− does not commute with renormalization. It is thus more appro-
priate to treat the extra term as a contribution to the bare matching coefficient H(0)

1 . We
will come back to this issue in section 4.5.

4.3 Renormalized matrix elements

With the renormalization factors fixed, we now proceed to derive the h → γγ matrix
elements of the renormalized operators in the factorization formula (4.1). For the case of
O1 we trivially obtain

〈O1(µ)〉 = mb(µ) gµν⊥ . (4.18)

For the matrix element of O2 we find

〈O2(z, µ)〉 = Ncαb
2π mb(µ) gµν⊥

{
− Lm + CFαs

4π

[
L2
m

(
ln z + ln(1− z) + 3

)
− Lm

(
ln2 z + ln2(1− z)− 4 ln z ln(1− z) + 11− 2π2

3

)

+ F (z) + F (1− z)
]

+O(α2
s)
}
, (4.19)

where

F (z) = ln3 z

6 + z ln2 z − ln2 z ln(1− z)− ln z ln(1− z)− 1 + 3z
2 ln z

− (4 ln z + 2z)Li2(z) + 6Li3(z) + 11
2 − 4ζ3 .

(4.20)

Note that we use the running b-quark mass mb(µ) in the prefactor but the pole mass mb

in the argument of the logarithm Lm = ln(m2
b/µ

2). Besides being convenient this is not
unnatural, because the linear factor of mb(µ) in each matrix element plays the role of a
running coupling, whereas the quantity mb appearing in the arguments of the logarithm
Lm is due to phase-space effects. If desired, one can always switch back from one choice to
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the other using relation (4.4). In the limit z → 0 the above expression simplifies to

[[〈O2(z, µ)〉]] = Ncαb
2π mb(µ) gµν⊥

{
− Lm + CFαs

4π

[
L2
m

(
ln z + 3

)
− Lm

(
ln2 z + 11− 2π2

3

)

+ ln3 z

6 − ln z
2 + 11− π2

3 − 2ζ3

]
+O(α2

s)
}
. (4.21)

Note that the same result is obtained using relation in (4.11) along with the renormalization
factors given in (4.12) and (4.13).

To obtain the renormalized matrix element of O3, we start from the expressions for
the renormalized jet and soft functions. They are [25, 31]

J(p2, µ) = 1 + CFαs
4π

[
ln2
(−p2 − i0

µ2

)
− 1− π2

6

]
+O(α2

s) , (4.22)

and [32]

S(w, µ) = −Ncαb
π

mb(µ)
[
Sa(w, µ) θ(w −m2

b) + Sb(w, µ) θ(m2
b − w)

]
, (4.23)

with

Sa(w, µ) = 1 + CFαs
4π

[
− L2

w − 6Lw + 12− π2

2 + 2Li2
( 1
ŵ

)
− 4 ln

(
1− 1

ŵ

)(
Lm + 1 + ln

(
1− 1

ŵ

)
+ 3

2 ln ŵ
)]

+O(α2
s) ,

Sb(w, µ) = CFαs
π

ln(1− ŵ)
[
Lm + ln(1− ŵ)

]
+O(α2

s) . (4.24)

Here ŵ = w/m2
b and Lw = ln(w/µ2). The result for the function Sa(w, µ) takes this

relatively simple form only if one uses the pole mass in the argument of the θ(w − m2
b)

distribution in (4.23). When these expressions are used in the double convolution integral
shown in the third term of (4.1), one obtains

〈O3(µ)〉 = −Ncαb
π

mb(µ) gµν⊥
{
L2

2 + CFαs
4π

[ 5
12 L

4 − L3 +
(

5− 5π2

12

)
L2 +

(
2π2

3 + 8ζ3

)
L

− 4ζ3 −
π4

9 + 1
2 L

2
m L

2 + Lm
(
L3 − 3L2 − 8ζ3

) ]
+O(α2

s)
}
. (4.25)

Contrary to the matrix elements of O1 and O2 this expression contains the large rapidity
logarithm L = ln(−M2

h/m
2
b), which is a consequence of the collinear anomaly. The fact that

the integrals over `+ and `− in (4.1) run from the soft region (with `+`− ∼ m2
b) up to values

of O(Mh) generates up to two powers of L for each loop order in addition to the logarithms
Lm associated with the soft scale mb. In other examples where the collinear anomaly
appears, the rapidity logarithms take on a simpler form and (typically) exponentiate [26].
In the present case their structure is more complicated, because the rapidity logarithms
arise from a double integral over a rather complicated integrand. In order to resum these
logarithms it is necessary to factorize the matrix element into a convolution over jet and
soft functions, each of which depends on a different scale, and then solve the RG evolution
equations of these various functions.
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4.4 Renormalized matching coefficients

Ignoring the cutoffs on the convolutions integrals in (4.1) for a moment, one would conclude
that the UV divergences of the bare matching coefficients H(0)

i are removed by applying
the inverse matrix of renormalization factors

Z−1 =


Z−1

11 0 0 0
Z−1

21 Z−1
22 0 0

[[Z−1
21 ]] 0 [[Z−1

22 ]] 0
0 0 0 Z−1

33

 (4.26)

from the right to the row vector of bare matching coefficients (H(0)
1 , 2H(0)

2 ,−2[[H(0)
2 ]], H(0)

3 ),
where

Z−1
21 (z) = −

∫ 1

0
dz′ Z−1

22 (z, z′)Z21(z′)Z−1
11 ,

[[Z−1
21 (z)]] = −

∫ ∞
0
dz′ [[Z−1

22 (z, z′)]] [[Z21(z′)]]Z−1
11 .

(4.27)

Specifically, one would then derive

H2(z, µ) =
∫ 1

0
dz′H

(0)
2 (z′)Z−1

22 (z′, z) ,

[[H̄2(z, µ)]]
z

=
∫ ∞

0
dz′

[[H̄(0)
2 (z′)]]
z′

[[Z−1
22 (z′, z)]] ,

H3(µ) = H
(0)
3 Z−1

33 ,

(4.28)

as well as

H1(µ) =
(
H

(0)
1 + ∆H(0)

1 − δH(0)
1

)
Z−1

11 + 2
∫ 1

0
dz H

(0)
2 (z)Z−1

21 (z) (4.29)

− 2
∫ ∞

0
dz

[[H̄(0)
2 (z)]]
z

[[Z−1
21 (z)]]− 2

∫ ∞
0
dz̄

[[H̄(0)
2 (z̄)]]
z̄

[[Z−1
21 (z̄)]] . (naively)

At O(αs) most elements of the inverse matrix Z−1 can be obtained from the corresponding
renormalization factors Zij by simply changing the sign in front of αs. The only exception
are the entries Z−1

21 and [[Z−1
21 ]], for which we find

Z−1
21 (z) = Ncαb

2π

{1
ε

+ CFαs
4π

[ ln z + ln(1− z)
ε2

+ 1
ε

(
ln2 z + ln2(1− z)

2 − 2 ln z ln(1− z) + 11
2 −

π2

3

)]
+O(α2

s)
}
,

[[Z−1
21 (z)]] = Ncαb

2π

{1
ε

+ CFαs
4π

[ ln z
ε2

+ 1
ε

(
ln2 z

2 + 11
2 −

π2

3

)]
+O(α2

s)
}
. (4.30)

The three relations in (4.28) indeed provide the correct renormalization conditions
for the corresponding matching coefficients. Using the expressions for the bare matching
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coefficients derived in [9] and collected in (A.9) and (A.10), we find

H2(z,µ) = yb(µ)√
2

1
z(1−z)

{
1+CFαs

4π
[
2Lh

(
lnz+ln(1−z)

)
+ln2 z+ln2(1−z)−3

]
+O(α2

s)
}
,

[[H̄2(z,µ)]] = yb(µ)√
2

[
1+ CFαs

4π
(
2Lh lnz+ln2 z−3

)
+O(α2

s)
]
, (4.31)

H3(µ) = yb(µ)√
2

[
−1+ CFαs

4π

(
L2
h+2− π

2

6

)
+O(α2

s)
]
,

where Lh = ln(−M2
h/µ

2), and yb(µ) denotes the running b-quark Yukawa coupling. The
result for [[H̄2(z, µ)]] can be obtained in two ways: either by using the second relation
in (4.28) or by taking the limit z → 0 in the expression for H2(z, µ). Both methods lead
to the same result.

The expression for H1 shown in (4.29) is problematic, because the integrals over z
and z̄ extending up to infinity are divergent and indeed undefined. To see this, note that
at lowest order in perturbation theory [[Z−1

21 (z)]] is a constant, while [[H̄(0)
2 (z)]] = 1. In

order to obtain a well-behaved expression we need to restrict the integration to the interval
z ∈ [0, 1], like in the first term. We thus define

H1(µ) =
(
H

(0)
1 + ∆H(0)

1 − δH(0)
1 − δ′H(0)

1

)
Z−1

11 (4.32)

+ 2 lim
δ→0

∫ 1−δ

δ
dz

[
H

(0)
2 (z)Z−1

21 (z)− [[H̄(0)
2 (z)]]
z

[[Z−1
21 (z)]]− [[H̄(0)

2 (z̄)]]
z̄

[[Z−1
21 (z̄)]]

]
,

where the sum of the three terms in the second line is now well defined and free of endpoint
singularities, such that the limit δ → 0 is smooth. The quantity δ′H

(0)
1 accounts for

the mismatch of integration limits, which one encounters when equating the factorization
formula (4.1) expressed in terms of renormalized quantities with formula (2.1) expressed in
terms of bare quantities (recall that both correctly reproduce the decay amplitude). After
a straightforward calculation we find that

δ′H
(0)
1 = 4

∫ 1

0
dz

[[H̄(0)
2 (z)]]
z

[[〈O(0)
2 (z)〉]]
〈O(0)

1 〉

− 4
∫ ∞

0
dz

[[H̄(0)
2 (z)]]
z

∫ ∞
0
dz′

[[〈O(0)
2 (z′)〉]]
〈O(0)

1 〉

∫ 1

0
dz′′ [[Z−1

22 (z, z′′)]] [[Z22(z′′, z′)]]

+ 4
[∫ 1

0
dz

∫ ∞
0
dz′ −

∫ ∞
0
dz

∫ 1

0
dz′
] [[H̄(0)

2 (z)]]
z

[[Z−1
22 (z, z′)]] [[Z21(z′)]] .

(4.33)

Starting from the expressions for the bare quantities derived in [9] and given in appendix A,
and using our results for the various renormalization factors, we find that δ′H(0)

1 = O(α2
s).

It is then straightforward to obtain from (4.32)

H1(µ) = Ncαb
π

yb(µ)√
2

{
−2+ CFαs

4π

[
−π

2

3 L2
h+(12+8ζ3)Lh−36− 2π2

3 −
11π4

45

]
+O(α2

s)
}
.

(4.34)
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4.5 Higher-order analysis of cutoff effects

In our discussion so far we have glanced over an important subtlety related to the cutoffs
on the various terms in the bare and renormalized factorization theorems (2.9) and (4.1).
In (4.32) the renormalized matching coefficient H1(µ) is expressed in terms of bare quanti-
ties and renormalization factors. However, it is far from obvious that the sum of the terms
on the right-hand side is indeed only a function of the hard scale −M2

h and independent
of the soft scale set by the b-quark mass. Indeed, the definition of δ′H(0)

1 in (4.33) involves
the matrix element of the bare operator [[〈O(0)

2 〉]], which does depend on the b-quark mass,
see (A.2). Likewise, the expression for δH(0)

1 following from (4.16) contains the renor-
malized and bare soft functions, both of which depend on the b-quark mass, see (4.23)
and (A.6). However, we will now show that the sum

δH
(0), tot
1 ≡ δH(0)

1 + δ′H
(0)
1 , (4.35)

which enters in (4.32), is independent of the b-quark mass to all orders of perturbation
theory. This combined quantity is thus truly a hard subtraction term.

From the definition (4.16) it follows that

δH
(0)
1 mb,0 = H3(µ)

∫ Mh

0

d`−
`−

∫ σMh

0

d`+
`+

J(Mh`−, µ) J(−Mh`+, µ)S(`+`−, µ)
∣∣∣
leading power

−H(0)
3

∫ Mh

0

d`−
`−

∫ σMh

0

d`+
`+

J (0)(Mh`−) J (0)(−Mh`+)S(0)(`+`−)
∣∣∣
leading power

, (4.36)

where the factor mb,0 on the left-hand side stems from the matrix element 〈O(0)
1 〉. Through-

out this section we do not write out the limit σ → −1 explicitly, but it is understood in all
expressions where σ occurs. Rewriting the renormalized jet and soft functions in the first
line in terms of the corresponding bare functions, using relations derived in [31, 32] and
expressing the renormalized matching coefficient H3(µ) in terms of the bare one using the
last relation in (4.28), the right-hand side of this equation can be put in the form

H
(0)
3

∫ ∞
0

dρ−
ρ−

∫ ∞
0

dρ+
ρ+

S(0)(ρ+ρ−)
∫ ∞

0
dω−

∫ ∞
0
dω+ J

(0)(Mhω−) J (0)(−Mhω+)

×
∫ Mh

0
d`− Z

−1
J (Mhρ−,Mh`−)ZJ(Mh`−,Mhω−)

×
∫ σMh

0
d`+ Z

−1
J (−Mhρ+,−Mh`+)ZJ(−Mh`+,−Mhω+)

∣∣∣
leading power

−H(0)
3

∫ Mh

0

dρ−
ρ−

∫ σMh

0

dρ+
ρ+

S(0)(ρ+ρ−) J (0)(Mhρ−) J (0)(−Mhρ+)
∣∣∣
leading power

.

(4.37)

The quantity ZJ denotes the renormalization factor of the jet function defined as

J(±Mh`, µ) =
∫ ∞

0
d`′ ZJ(±Mh`,±Mh`

′) J (0)(±Mh`
′) . (4.38)

At one-loop order one finds [25, 31]

ZJ(±Mh`,±Mh`
′) =

[
1 + CFαs

4π

(
− 2
ε2

+ 2
ε

ln ∓Mh`

µ2

)]
δ(`− `′) + CFαs

2πε `Γ(`, `′) +O(α2
s) ,

(4.39)
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where
Γ(`, `′) =

[
θ(`− `′)
`(`− `′) + θ(`′ − `)

`′(`′ − `)

]
+

(4.40)

is the symmetric Lange-Neubert kernel [42]. Note that the quantity ZJ satisfies the sym-
metry relation

ZJ(p2, p′2) = p2

p′2
ZJ(p′2, p2) . (4.41)

As shown in (4.15), the renormalization factor of the soft function can be expressed in
terms of the same object [32]. If it was not for the cutoffs on the integrals, the quantity
in (4.37) would evaluate to zero, because the integrals over the products of ZJ factors in
the second and third lines would yield δ(ρ± − ω±).

Only the terms involving the matrix element [[〈O(0)
2 〉]] in the definition (4.33) depend

on the b-quark mass. We can use the refactorization conditions (2.7) to eliminate [[H̄(0)
2 ]]

and [[〈O(0)
2 〉]] from these expressions and rewrite them in terms of H(0)

3 and the bare jet and
soft functions. Moreover, the first refactorization condition implies a connection between
the renormalization factors Z33, [[Z22]] and ZJ , which yields the relation

Z33 [[Z−1
22 (z, z′)]] = Mh ZJ(zM2

h , z
′M2

h) = Mh
z

z′
ZJ(z′M2

h , zM
2
h) . (4.42)

This allows us to express the product of renormalization factors in the second line of (4.33)
in terms of ZJ and Z−1

J . We find

δ′H
(0)
1 mb,0

∣∣∣
[[〈O(0)

2 〉]]
=−2H(0)

3

∫ ∞
0

dρ−
ρ−

∫ ∞
0

dρ+
ρ+

S(0)(ρ+ρ−)J (0)(−Mhρ+)
∫ ∞

0
dω−J

(0)(Mhω−)

×
∫ Mh

0
d`−Z

−1
J (Mhρ−,Mh`−)ZJ(Mh`−,Mhω−) (4.43)

+2H(0)
3

∫ Mh

0

dρ−
ρ−

∫ ∞
0

dρ+
ρ+

S(0)(ρ+ρ−)J (0)(Mhρ−)J (0)(−Mhρ+).

The two terms in this result are structurally similar to those appearing in (4.37). Indeed,
it is possible to rearrange these terms in such a way that

δH
(0), tot
1 = H

(0)
3

∫ ∞
0

dρ−
ρ−

∫ ∞
0

dρ+
ρ+

S(0)(ρ+ρ−)
mb,0

∫ ∞
0
dω−

∫ ∞
0
dω+ J

(0)(Mhω−) J (0)(−Mhω+)

×
∫ ∞
Mh

d`− Z
−1
J (Mhρ−,Mh`−)ZJ(Mh`−,Mhω−)

×
∫ ∞
σMh

d`+ Z
−1
J (−Mhρ+,−Mh`+)ZJ(−Mh`+,−Mhω+)

∣∣∣
leading power

−H(0)
3

∫ ∞
Mh

dρ−
ρ−

∫ ∞
σMh

dρ+
ρ+

S(0)(ρ+ρ−)
mb,0

J (0)(Mhρ−) J (0)(−Mhρ+)
∣∣∣
leading power

+ 4
[∫ 1

0
dz

∫ ∞
0
dz′ −

∫ ∞
0
dz

∫ 1

0
dz′
] [[H̄(0)

2 (z)]]
z

[[Z−1
22 (z, z′)]] [[Z21(z′)]] . (4.44)

Details on the derivation of this result are given in appendix C. It is important to remember
that we only need the leading-power terms in this expression. In the second integral (fourth
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line) the variables ρ± are both in the hard region, and hence the arguments of the soft
and jet functions are all of order M2

h . For the first integral, the variables `± are in the
hard region, and this forces the variables ρ± and ω± to be in the hard region as well (see
appendix C for more details). In fact, we can recast relation (4.44) in the alternative form

δH
(0),tot
1 =H3(µ)

∫ ∞
Mh

dρ−
ρ−

∫ ∞
σMh

dρ+
ρ+

S(ε)(ρ+ρ−,µ)
mb,0

J (ε)(Mhρ−,µ)J (ε)(−Mhρ+,µ)
∣∣∣
leadingpower

−H(0)
3

∫ ∞
Mh

dρ−
ρ−

∫ ∞
σMh

dρ+
ρ+

S(0)(ρ+ρ−)
mb,0

J (0)(Mhρ−)J (0)(−Mhρ+)
∣∣∣
leadingpower

+4
[∫ 1

0
dz

∫ ∞
0
dz′−

∫ ∞
0
dz

∫ 1

0
dz′
] [[H̄(0)

2 (z)]]
z

[[Z−1
22 (z,z′)]][[Z21(z′)]], (4.45)

where in the first term the dimensional regulator ε = (4−D)/2 must be kept in place after
renormalization in order to regularize the divergences for ρ± → ∞, as indicated by the
superscript “(ε)”. This form makes it explicit that the quantity δH(0), tot

1 only depends on
the hard scale −M2

h . In order to obtain the leading-power terms we can therefore simply
set mb,0 = 0 in the ratio S(0)(ρ+ρ−)/mb,0 in (4.44), in which case we obtain from (A.6)
and (A.7)

S
(0)
∞ (w)
mb,0

≡ S(0)(w)
mb,0

∣∣∣∣
mb,0→0

= −Ncαb,0
π

θ(w)
[

eεγE

Γ(1− ε) w
−ε + CFαs,0

4π C1(ε)w−2ε +O(α2
s)
]
,

(4.46)
with C1(ε) given in (A.8). In order to calculate the quantity δH(0), tot

1 at leading order in αs
we use the lowest-order expressions for the bare jet and soft functions. We also note that
the integral in the last line of (4.44) vanishes at first order in αs. After a straightforward
calculation we find

δH
(0), tot
1 = yb,0√

2
Ncαb,0
π

CFαs,0
4π

(
−M2

h − i0
)−ε eεγE

Γ(1− ε)
4
ε3

[
H(ε) +H(−ε)

]
+O(α2

s) ,

(4.47)
where H(ε) = ψ(1 + ε) + γE is the harmonic-number function. This generalizes rela-
tion (4.17) to higher orders in ε.

In terms of this quantity, the correct all-order definition of the renormalized matching
coefficient H1(µ) is obtained as

H1(µ) =
(
H

(0)
1 + ∆H(0)

1 − δH(0), tot
1

)
Z−1

11 (4.48)

+ 2 lim
δ→0

∫ 1−δ

δ
dz

[
H

(0)
2 (z)Z−1

21 (z)− [[H̄(0)
2 (z)]]
z

[[Z−1
21 (z)]]− [[H̄(0)

2 (z̄)]]
z̄

[[Z−1
21 (z̄)]]

]
.

4.6 Contributions to the decay amplitude

As a cross check we evaluate the three terms Ti shown in the three lines of the renormal-
ized factorization theorem (4.1) using the results for the matrix elements and matching
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coefficients obtained above. This yields

T1 =M0

{
−2 + CFαs

4π

[
− π2

3 L2
h + (12 + 8ζ3)Lh − 36− 2π2

3 − 11π4

45

]}
,

T2 =M0
CFαs

4π

[ 2π2

3 LhLm −
π2

3 L2
m + 2π2

3 + 8ζ3 + 7π4

45

]
,

T3 =M0

{
L2

2 + CFαs
4π

[
5L4

12 + (Lm − 1)L3 +
(

4− π2

3 + L2
m

2 −
L2
h

2 − 3Lm

)
L2

+
(

2π2

3 + 8ζ3

)
L− 8ζ3Lm − 4ζ3 −

π4

9

]}
,

(4.49)

where we have defined

M0 = Ncαb
π

yb(µ)√
2
mb(µ) ε∗⊥(k1) · ε∗⊥(k2) . (4.50)

Adding up the three contributions we correctly reproduce the QCD amplitude

Mb =M0

{(
L2

2 − 2
)

+ CFαs(µ)
4π

[
− L4

12 − L
3 +

(
4− 2π2

3

)
L2 (4.51)

+
(

12 + 2π2

3 + 16ζ3

)
L− 36 + 4ζ3 −

π4

5 −
(
3L2 − 12

)
ln m

2
b

µ2

]}

up to higher-order corrections in αs and m2
b/M

2
h .

5 RG evolution equations

In the previous section we have accomplished the main goal of this work: the establishment
of the renormalized factorization formula (4.1). We have derived explicit expressions for the
renormalized matrix elements and matching coefficients to first order in αs (corresponding
to the two-loop order for the decay amplitude), and we have shown that to all orders of
perturbation theory the effects of the upper cutoffs on the convolution integrals over `+
and `− (and on the z integral over the functions inside the braces [[. . . ]]) is not in conflict
with factorization. We will now derive the RG evolution equations for the various objects
in (4.1), which set the basis for the systematic resummation of the large logarithms in the
decay amplitude.

In terms of the various renormalization factors Zij derived in section 4.2 we obtain the
corresponding anomalous dimensions γij in the usual way, i.e.

γij =
(

2αb
∂

∂αb
+ 2αs

∂

∂αs

)
Z

(1)
ij , (5.1)
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where Z(1)
ij denotes the coefficient of the single 1/ε pole in Zij . In this way, we obtain the

diagonal elements

γ11 = 3CFαs
2π +O(α2

s) ,

γ22(z, z′) = −CFαs
π

{[
ln z + ln(1− z) + 3

2

]
δ(z − z′)

+ z(1− z)
[ 1
z′(1− z)

θ(z′ − z)
z′ − z

+ 1
z(1− z′)

θ(z − z′)
z − z′

]
+

}
+O(α2

s) ,

[[γ22(z, z′)]] = −CFαs
π

{(
ln z + 3

2

)
δ(z − z′) + z

[
θ(z′ − z)
z′(z′ − z) + θ(z − z′)

z(z − z′)

]
+

}
+O(α2

s) ,

γ33 = CFαs
π

(
Lh −

3
2

)
+O(α2

s) , (5.2)

as well as the off-diagonal elements

γ21(z) =−Ncαb
π

{
1+ CFαs

4π

[
ln2 z+ln2(1−z)−4lnz ln(1−z)+11− 2π2

3

]
+O(α2

s)
}
,

[[γ21(z)]] =−Ncαb
π

{
1+ CFαs

4π

(
ln2 z+11− 2π2

3

)
+O(α2

s)
}
. (5.3)

Note that both Zij and γij are scale-dependent quantities, but we suppress this dependence
for the sake of simplicity of the notation.

The diagonal elements of the anomalous-dimension matrix are also known to higher
orders in αs. Relation (4.6) implies that γ11 = −γm is determined in terms of the anomalous
dimension of the quark mass, defined as

d

d lnµ mb(µ) = γmmb(µ) . (5.4)

The quantity γm is known to five-loop order [43]. The two-loop expression for γ22 (and
with it [[γ22]]) can in principle be derived from [35–39]. The anomalous dimension γ33,
which according to (4.14) is equal to the anomalous dimension of two-jet current operators
in SCET, can to all orders be written in the form [41]

γ33 = Γcusp(αs) ln −M
2
h

µ2 + 2γq(αs) , (5.5)

where Γcusp is the light-like cusp anomalous dimension in the fundamental representation
of SU(Nc) [44], and γq is the anomalous dimension of the quark field in light-cone gauge.
The cusp anomalous dimension has recently been calculated to four-loop order [45], while
γq is known to three loops. It can be determined from the three-loop expression for the
divergent part of the on-shell quark form factor in QCD [46, 47].
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5.1 RG equations for the operator matrix elements

From the renormalization conditions (4.5) and (4.11) it follows that the matrix elements
of the renormalized operators satisfy the RG evolution equations

d

d lnµ 〈O1(µ)〉 = −γ11 〈O1(µ)〉 ,

d

d lnµ 〈O2(z, µ)〉 = −
∫ 1

0
dz′ γ22(z, z′) 〈O2(z′, µ)〉 − γ21(z) 〈O1(µ)〉 ,

d

d lnµ [[〈O2(z, µ)〉]] = −
∫ ∞

0
dz′ [[γ22(z, z′)]] [[〈O2(z′, µ)〉]]− [[γ21(z)]] 〈O1(µ)〉 .

(5.6)

We have checked that these equations are satisfied to O(αs).
As mentioned earlier, in order to resum all large logarithms contained in the matrix

element of the operator O3 one must factorize the matrix element in the form

〈O3(µ)〉 = gµν⊥ lim
σ→−1

∫ Mh

0

d`−
`−

∫ σMh

0

d`+
`+

J(Mh`−, µ) J(−Mh`+, µ)S(`+`−, µ)
∣∣∣
leading power

(5.7)
and solve the RG equations for the jet and soft functions separately. We have derived
the corresponding evolution equations at two-loop order in two recent papers. For the jet
function one finds [25, 31]

d

d lnµ J(p2, µ) = −
∫ ∞

0
dx γJ(p2, xp2) J(xp2, µ) , (5.8)

which in this form holds for both space-like and time-like values of p2. The anomalous
dimension is given by

γJ(p2, xp2) =
[
Γcusp(αs) ln −p

2

µ2 − γ
′(αs)

]
δ(1− x) + Γcusp(αs) Γ(1, x)

+ CF

(
αs
2π

)2 θ(1− x)
1− x h(x) +O(α3

s) ,
(5.9)

where
h(x) = ln x

[
β0 + 2CF

(
ln x− 1 + x

x
ln(1− x)− 3

2

)]
. (5.10)

The local terms (with x = 1) can to all orders be expressed in terms of the cusp anomalous
dimension and an anomalous dimension γ′(αs), which was recently obtained at two-loop
order [31]. Since the plus distribution contained in Γ(1, x) is linked with the logarithmic
term, it is also multiplied by Γcusp. However, starting at two-loop order additional non-
local terms arise, whose explicit form was obtained in [31] by using the RG invariance of
the B− → γ l−ν̄ decay rate along with the calculation of the two-loop anomalous dimension
of the B-meson light-cone distribution amplitude (LCDA) performed in [48].

The RG equation for the soft function is tightly linked to that of the jet function [32].
One finds2

d

d lnµ S(w, µ) = −
∫ ∞

0
dx γS(w,w/x)S(w/x, µ) , (5.11)

2The quantity γS(w,w/x) in this relation is connected with the original definition of the anomalous
dimension γS(w,w′;µ) in [32] by γS(w,w′;µ) = (w/w′2) γS(w,w/x), where w′ = w/x.
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where

γS(w,w/x) = −
[
Γcusp(αs) ln w

µ2 − γs(αs)
]
δ(1− x)− 2Γcusp(αs) Γ(1, x)

− 2CF
(
αs
2π

)2 θ(1− x)
1− x h(x) +O(α3

s) ,
(5.12)

with
γs(αs) = 2γq(αs) + 2γ′(αs) . (5.13)

Via this relation the quantity γs is known to two-loop order. As defined above, the anoma-
lous dimensions of the matching coefficient H3 and of the jet and soft functions obey the
simple relation

γ33 = γJ

(
Mhw

`+
, x
Mhw

`+

)
+ γJ(−Mh`+,−xMh`+) + γS(w,w/x) , (5.14)

which is a consequence of relation (4.15). In this form it is easy to see that the variable `+
drops out from the result.

5.2 RG equations for the matching coefficients

The renormalized matching coefficients obey the evolution equations

d

d lnµ H1(µ) =Dcut(µ)+γ11H1(µ)

+2
∫ 1

0
dz

[
H2(z,µ)γ21(z)− [[H̄2(z,µ)]]

z
[[γ21(z)]]− [[H̄2(z̄,µ)]]

z̄
[[γ21(z̄)]]

]
,

d

d lnµ H2(z,µ) =
∫ 1

0
dz′H2(z′,µ)γ22(z′,z) ,

d

d lnµ [[H̄2(z,µ)]] =
∫ ∞

0
dz′ [[H̄2(z′,µ)]] z

z′
[[γ22(z′,z)]] ,

d

d lnµ H3(µ) = γ33H3(µ) , (5.15)

where the quantity

Dcut(µ) = −Ncαb
π

yb(µ)√
2

CFαs
4π 16ζ3 +O(α2

s) (5.16)

in the first equation results from non-trivial effects of the cutoffs on the scale evolution.
Once again, we have checked that all of these equations are satisfied to O(αs).

The evolution equation for the matching coefficient H1(µ) calls for a more careful
discussion. We have seen in section 4.5 that the definition of this coefficient in higher
orders is quite subtle and requires a careful treatment of the effects of the cutoffs on the
various convolution integrals. In this section we will derive the evolution equation for H1
beyond one-loop order using the RG invariance of the decay amplitude on the left-hand
side of (4.1). Explicitly, we evaluate

d

d lnµMb = 0 =
[(

d

d lnµ − γ11

)
H1(µ)

]
〈O1(µ)〉+ d

d lnµ T2(µ) + d

d lnµ T3(µ) , (5.17)
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where T2 and T3 denote the second and third lines in the factorization formula (4.1). The
scale dependence of the third term has been studied in our recent work [32], where we have
shown that

d

dlnµT3(µ)=gµν⊥ lim
σ→−1

H3(µ)
∫ ∞

0
dxK(x) (5.18)

×
[∫ Mh/x

Mh

d`−
`−

∫ σMh

0

d`+
`+

J(xMh`−,µ)J(−Mh`+,µ)S(`+`−,µ)

+
∫ Mh

0

d`−
`−

∫ σMh/x

σMh

d`+
`+

J(Mh`−,µ)J(−xMh`+,µ)S(`+`−,µ)
]

leadingpower

,

where the kernel K(x) is given by

K(x) = Γcusp(αs) Γ(1, x) + CF

(
αs
2π

)2 θ(1− x)
1− x h(x) +O(α3

s) . (5.19)

This quantity appears in the non-local terms of the anomalous dimensions γJ and γS
in (5.9) and (5.12). The two terms on the right-hand side of relation (5.18) are, in fact,
identical, as can be seen by redefining the integration variables according to `± → σ`∓.
Note the important fact that the result is not given by a hard function. Indeed, at leading
order in perturbation theory the last integral evaluates to∫ σMh

0

d`+
`+

J(−Mh`+, µ)S(`+`−, µ) = −Ncαb
π

mb ln σMh`−
m2
b

+O(αs) , (5.20)

which is sensitive to the low scale mb.
Using the evolution equations (5.6) and (5.15) it is straightforward to show that the

scale dependence of the second term is given by

d

dlnµT2(µ)=−2
∫ 1

0
dz

[
H2(z,µ)γ21(z)− [[H̄2(z,µ)]]

z
[[γ21(z)]]− [[H̄2(z̄,µ)]]

z̄
[[γ21(z̄)]]

]
〈O1(µ)〉

+4
[∫ 1

0
dz

∫ ∞
0
dz′−

∫ ∞
0
dz

∫ 1

0
dz′
] [[H̄2(z,µ)]]

z
[[γ22(z,z′)]][[〈O2(z′,µ)〉]]. (5.21)

The terms shown in the first line arise from the “normal” operator mixing of O2 into O1.
They account for the second line in the evolution equation for H1(µ) shown in (5.15). The
quantity in the second line is again a “left-over contribution” related to the presence of the
cutoffs in the factorization formula. Note that the local terms in [[γ22(z, z′)]] proportional
to δ(z − z′) in (5.2) give no contribution here. From (4.42) it follows that

[[γ22(z, z′)]] = − z

z′ 2
K

(
z

z′

)
+ local terms. (5.22)

Substituting x = z/z′ and using the renormalized version of the first refactorization con-
dition in (2.7),

[[H̄2(z, µ)]] = −H3(µ) J(zM2
h , µ) , (5.23)

– 27 –



J
H
E
P
0
1
(
2
0
2
1
)
0
7
7

we obtain for the left-over terms
d

d lnµ T2(µ)
∣∣∣∣
left-over

= 4H3(µ)
∫ ∞

0
dxK(x)

∫ Mh/x

Mh

d`−
`−

J(xMh`−, µ) [[〈O2(`−/Mh, µ)〉]] .

(5.24)
The refactorization theorem for the bare operator O(0)

2 in (2.7),

[[〈O(0)
2 (z)〉]] = −g

µν
⊥
2

∫ ∞
0

d`+
`+

J (0)(−Mh`+)S(0)(zMh`+) , (5.25)

suggests that this result closely resembles the structure of (5.18). We would thus like to
establish a similar relation that holds after renormalization. However, the integral on the
right-hand side contains endpoint divergences, which are regularized by the dimensional
regulator ε. In other words, the matrix element of the bare operator [[〈O(0)

2 (z)〉]] contains
some 1/ε poles not contained in the bare jet and soft functions. Their presence makes the
derivation of the renormalized relation non-trivial. After a careful analysis we find that

[[〈O2(z, µ)〉]] = −g
µν
⊥
2

∫ σMh

0

d`+
`+

J(−Mh`+, µ)S(zMh`+, µ)
∣∣∣∣
leading power

+∆21(z, µ) 〈O1(µ)〉 ,

(5.26)
where all quantities are renormalized and free of UV divergences. Our explicit result for
the quantity ∆21(z) reads

∆21(z,µ) = [[Z21(z)]]Z−1
11 −

zMh

2 Z33Z
−1
11

∫ ∞
σMh

d`+

∫ ∞
0
dω+

∫ ∞
0

dρ+
ρ+

∫ ∞
0

dρ−
ρ−

Z−1
J (Mhρ−,zM

2
h)

×Z−1
J (−Mhρ+,−Mh`+)ZJ(−Mh`+,−Mhω+)J (0)(−Mhω+)S

(0)
∞ (ρ+ρ−)
mb,0

. (5.27)

All integration variables are in the hard region, and hence the bare soft function can be
replaced by its asymptotic form S

(0)
∞ , see (4.46). The two terms on the right-hand side of

this relation are UV divergent, but by construction their sum is finite when expressed in
terms of renormalized parameters. After a somewhat cumbersome calculation, we find

∆21(z,µ) = Ncαb
π

{
− 1

2 (Lh+lnz)

+ CFαs
4π

[ (1
2 lnz+ 3

2

)
L2
h+

(
1
2 ln2 z+3lnz− 11

2 + π2

3

)
Lh (5.28)

+ 1
12 ln3 z+ 3

2 ln2 z+
(
π2

3 −
23
4

)
lnz+ 11

2 −
π2

2 −5ζ3

]
+O(α2

s)
}
.

Like the renormalized matrix element on the left-hand side of (5.26), the quantity ∆21 con-
tains single-logarithmic terms of order αbαnsLn+1

h in higher orders of perturbation theory.
Combining the results (5.18) and (5.24), and using relation (5.26), all terms involving

the soft function cancel out, and we obtain the exact formula
d

d lnµ
[
T3(µ)+T2(µ)

]
= 4H3(µ)

∫ ∞
0
dxK(x)

∫ 1/x

1

dz

z
J(xzM2

h ,µ)∆21(z,µ)〈O1(µ)〉 (5.29)

−2
∫ 1

0
dz

[
H2(z,µ)γ21(z)− [[H̄2(z,µ)]]

z
[[γ21(z)]]− [[H̄2(z̄,µ)]]

z̄
[[γ21(z̄)]]

]
〈O1(µ)〉 .
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Using this result along with (5.17), and comparing the answer with the evolution equation
for H1(µ) shown in (5.15), we find

Dcut(µ) = −4H3(µ)
∫ ∞

0
dxK(x)

∫ 1/x

1

dz

z
J(xzM2

h , µ) ∆21(z, µ)

= 4
∫ ∞

0
dxK(x)

∫ 1/x

1

dz

z
[[H̄2(xz, µ)]] ∆21(z, µ) .

(5.30)

In the second step we have used the renormalized refactorization condition (5.23). It is now
explicit that this quantity depends only on the hard scale Lh. Performing the integrals over
x and z, and using the explicit expressions for the quantities K(x) and ∆21 given above,
we can compute the first two expansion coefficients of Dcut(µ) in powers of αs. We find

Dcut(µ) = −Ncαb
π

yb(µ)√
2

[
CFαs

4π 16ζ3 +
(
αs
4π

)2
dcut,2 +O(α3

s)
]
, (5.31)

where

dcut,2 = C2
F

[
−48ζ3 L

2
h +

(
−48ζ3 + 8π4

15

)
Lh + 136ζ3 + 4π4

5 − 32ζ5 + 16π2

3 ζ3

]

+ CFCA

(
−176

3 ζ3 Lh + 1072
9 ζ3 −

44π4

45 − 16π2

3 ζ3

)

+ CFTF nf

(
64
3 ζ3 Lh −

320
9 ζ3 + 16π4

45

)
.

(5.32)

Interestingly, this result is expressed entirely in terms of ζn values. The leading-order term
agrees with (5.16). In the two-loop term nf = 5 is the number of light quark flavors in the
relevant scale interval between mb and Mh.

The quantity Dcut(µ) exhibits single-logarithmic behavior in higher orders. To see this,
note that ∆21 3 αbαnsLn+1

h , [[H̄2]] 3 αnsLnh and K = O(αs), which implies

Dcut(µ) 3 αb (αsLh)n . (5.33)

Note also that instead of calculating Dcut directly one can recast the second relation
in (5.30) in the form

Dcut(µ) =
∫ ∞

0

dz

z
[[H̄2(z, µ)]] γcut(z) , (5.34)

where

γcut(z) = Ncαb
π

CFαs
4π

{
8θ(1− z)

[
Lh ln(1− z)− Li2(z)

]
− 8θ(z − 1)

[
Lh ln

(
1− 1

z

)
+ Li2

(1
z

)]}
+O(L2

hα
2
s) .

(5.35)

The two-loop coefficient is straightforward to calculate and contains polylogarithms of
fourth order. An advantage of the form (5.34) is that it brings the evolution equation
for H1 in (5.15) to a more canonical form. However, one finds that the new anomalous
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dimension γcut 3 αb (αsLh)n contains higher powers of the logarithm Lh in higher orders
of perturbation theory, and it is therefore not of the Sudakov type.

This logarithmic behavior in higher orders has an important implication for the solution
of the RG evolution equations. As long as it is not known how to resum the logarithmic
terms in γcut or Dcut, it is impossible to systematically integrate the evolution equation for
H1(µ) from a high matching scale down to a scale µ�Mh. We are thus forced to choose
a value for the factorization scale µ that is of order the Higgs-boson mass. The challenge
is then to solve the evolution equations for the operator matrix elements in (5.6), (5.8)
and (5.11) in order to evolve these matrix elements up to the same scale µ ∼Mh.

Let us mention an interesting and indeed fortunate coincidence in this context. In [32] it
has been found that the solution of the RG evolution equation for the soft function S(w, µ)
requires that the factorization scale µ must be larger than the matching scale µs, at which
the initial condition for the soft function can be calculated in fixed-order perturbation
theory. Because of the fact that the argument w = `+`− of the soft function is integrated
from the soft region (w ∼ m2

b) up into the hard region (w ∼M2
h), it is necessary to perform

a dynamical scale setting µ2
s ∼ `+`− under the integral when solving the RG equation [22].

Hence, it is necessary, also from this point of view, that the factorization scale µ is chosen
of order the hard scale Mh, so as to ensure that µ > µs for all values of the integrand. As
a final comment, we stress that for the method of dynamical scale setting to be consistent,
it is crucially important that the renormalized soft function S(w, µ) in (4.23) does not
develop any large logarithms lnn(w/m2

b) in the limit where w � m2
b . Otherwise, it would

be necessary the refactorize the soft function in the limit where the variable w approaches
the hard region.

6 Large logarithms in the three-loop decay amplitude

The RG evolution equations established in the previous section, along with the explicit
expressions for the relevant anomalous dimensions, provide the basis for a systematic re-
summation of the large logarithms L = ln(−M2

h/m
2
b) in the b-quark induced h→ γγ decay

amplitude. In the factorization theorem (4.1) contribution from the last term is enhanced
by at least two powers of logarithms with respect to the other terms, because the inte-
grals over `+ and `− provide a logarithmic enhancement. A careful analysis reveals that,
for generic values of µ, the first two terms in the factorization formula, T1 and T2, yield
terms of O(αbαnsLn+1) to the decay amplitude, while the third term, T3, yields terms of
O(αbαnsL2n+2). In particular, starting at first order in αs the series of leading and sublead-
ing logarithms receives contributions from this last term only. For this reason, it is often
stated in the literature that the large double-logarithmic corrections arise from the region
in which the quark propagator connecting the two photons carries a soft momentum (“soft
quark contribution” [15–17]).

With the results derived in this paper it is possible to perform a resummation of
large logarithms at (almost) NLO in RG-improved perturbation theory, in which all terms
enhanced by large logarithms are exponentiated, while contributions not in the exponent
are suppressed by powers of αs. This requires the O(αs) expressions for all matching
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coefficients and matrix elements as well as for the jet and soft functions, each evaluated at
its characteristic scale. The various anomalous dimensions in the evolution equations are
needed at two-loop order in QCD, while the three-loop expressions are needed for the cusp
anomalous dimension and the β-function. With the exception of γ21, all these ingredients
are known or, in the case of γ22, can be derived from existing results.

While conceptually straightforward, performing the resummation at NLO in RG-
improved perturbation theory is technically challenging because of the complicated struc-
ture of the RG evolution equations for the soft and jet functions, the need to perform a
dynamical scale setting for which the matching scales float with the integration variables
`+ and `− [32], and the analytic continuation σ → −1 that needs to be performed in T3 and
requires extending the running coupling αs(µ) into the complex plane. We leave a detailed
discussion of these technicalities for future work, mentioning however that for the case of
T3 the resummation has been studied at LO in RG-improved perturbation theory in [22].
Instead, here we will use the RG equations derived in section 5 to predict the terms in the
three-loop h→ γγ decay amplitude that are enhanced by at least three powers of the large
logarithm L. Solving the RG evolution equations (5.6), (5.8), (5.11) and (5.15) iteratively in
perturbation theory, it is straightforward to derive the necessary higher-order logarithmic
contributions to the various operator matrix elements and matching coefficients.

6.1 Higher-order logarithms in the matrix elements

The renormalized matrix elements of the operators Oi, the jet function and the soft function
have been derived in section 4.3 at first non-trivial order in αs. The result for the matrix
element of O1 in (4.18) is exact without any higher-order corrections. For the matrix
element of O2, we extend relation (4.19) in the form

〈O2(z, µ)〉 = Ncαb
2π mb(µ) gµν⊥

{
−Lm+O(αs)−CF

(
αs
4π

)2[
L3
m

(
f3(z)+f3(1−z)

)
+O(L2

m)
]}
,

(6.1)
where the evolution equation (5.6) yields

f3(z) = CF

(2
3 ln2 z + 4 ln z + 3

)
+ β0

3

(
ln z + 3

2

)
. (6.2)

To derive the terms of O(αbα2
sL

2
m) would require knowledge of the two-loop coefficient of

the anomalous dimension γ22. The matrix element [[〈O2(z, µ)〉]] can be readily derived by
taking the limit z → 0 in the above expression.

There is no need to derive the higher-order logarithmic terms for the jet function,
because the complete two-loop expression for J(p2, µ) has been obtained in [31]. We thus
turn directly to the case of the soft function. The iterative solution of the RG equa-
tion (5.11) involves some rather complicated integrals, which need to be simplified using
various identities for polylogarithms. We present the results as higher-order contributions
to the coefficient functions Sa and Sb defined in (4.23). Recall that in this equation we
use the running b-quark mass in the prefactor but the pole mass everywhere else. We
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parameterize our results in the form

Sa(w, µ) = 1 +O(αs) + CF

(
αs
4π

)2 [ CF
2 L4

w +
(

6CF + β0
3

)
L3
w + r2L

2
w + r1Lw +O(L0

w)

+ s3a(ŵ)L3
m + s2a(ŵ)L2

m + s1a(ŵ)Lm +O(L0
m)
]
,

Sb(w, µ) = O(αs) + CF

(
αs
4π

)2 [
s3b(ŵ)L3

m + s2b(ŵ)L2
m + s1b(ŵ)Lm +O(L0

m)
]
, (6.3)

where the functions sia(ŵ) vanish in the limit ŵ → ∞, while the functions sib(ŵ) vanish
for ŵ → 0. For the coefficients ri we obtain

r2 =
(

6 + π2

2

)
CF +

(
32
9 + π2

3

)
CA −

16
9 TF nf ,

r1 =
(
−75 + 3π2

)
CF +

(
−1297

27 + 11π2

9 − 2ζ3

)
CA +

(
428
27 −

4π2

9

)
TF nf ,

(6.4)

while the functions sia(ŵ) are given by

s3a(ŵ) = 4CF ln
(

1− 1
ŵ

)
,

s2a(ŵ) = CF

[
28 ln

(
1− 1

ŵ

)
+ 20 ln2

(
1− 1

ŵ

)
+ 18 ln ŵ ln

(
1− 1

ŵ

)
+ 10Li2

( 1
ŵ

)]
+ 2β0 ln

(
1− 1

ŵ

)
,

s1a(ŵ) = CF

[(
−24 + 22π2

3

)
ln
(

1− 1
ŵ

)
+ 48 ln2

(
1− 1

ŵ

)
+ 32 ln3

(
1− 1

ŵ

)

+ 60 ln ŵ ln
(

1− 1
ŵ

)
+ 72 ln ŵ ln2

(
1− 1

ŵ

)
+ 24 ln2 ŵ ln

(
1− 1

ŵ

)

+
[
12 + 12 ln ŵ − 8 ln

(
1− 1

ŵ

)]
Li2
( 1
ŵ

)
− 48Li3

(
1− 1

ŵ

)
+ 48ζ3

]

+ CA

(
−16

3 + 4π2

3

)
ln
(

1− 1
ŵ

)
+ β0

[
−8

3 ln
(

1− 1
ŵ

)
+ 4 ln2

(
1− 1

ŵ

)
+ 6 ln ŵ ln

(
1− 1

ŵ

)
− 2Li2

( 1
ŵ

)]
. (6.5)

In the derivation of these results one needs the two-loop coefficients of the anomalous
dimensions Γcusp, γs and γm, which are collected in appendix D. Similarly, for the functions
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sib(ŵ) we find

s3b(ŵ) =−4CF ln(1− ŵ) ,

s2b(ŵ) =−CF
[
24ln(1− ŵ)+20ln(1− ŵ)2−4ln ŵ ln(1− ŵ)+4Li2(ŵ)

]
−2β0 ln(1− ŵ) ,

s1b(ŵ) =CF

[(
48− 22π2

3

)
ln(1− ŵ)−32ln2(1− ŵ)−32ln3(1− ŵ)

−12ln ŵ ln(1− ŵ)+24ln ŵ ln2(1− ŵ)+8ln2 ŵ ln(1− ŵ)

+
(
−4+8ln ŵ+8ln(1− ŵ)

)
Li2(ŵ)−8Li3(ŵ)+48Li3(1− ŵ)−48ζ3

]

+CA

(
16
3 −

4π2

3

)
ln(1− ŵ)

+β0

[20
3 ln(1− ŵ)−4ln2(1− ŵ)+4ln ŵ ln(1− ŵ)+4Li2(ŵ)

]
. (6.6)

To compute the remaining O(α2
sL

0
w,m) terms in the soft function would require a complete

two-loop calculation.

6.2 Higher-order logarithms in the matching coefficients

The renormalized matching coefficients have been discussed in section 4.4. Higher-order
corrections to the coefficients H2 and H3 can be derived straightforwardly by perturba-
tively solving the corresponding evolution equations in (5.15). We extend the first relation
in (4.31) in the form

H2(z, µ) = yb(µ)√
2

1
z(1− z)

{
1+O(αs)+CF

(
αs
4π

)2 [
L2
h

(
f2(z)+f2(1−z)

)
+O(Lh)

]}
, (6.7)

where
f2(z) = 2CF ln2 z − β0 ln z . (6.8)

To derive the terms of O(α2
sLh) would require knowledge of the two-loop coefficient of

the anomalous dimension γ22 in (5.6). The matching coefficient [[H2(z, µ)]] can be readily
derived by taking the limit z → 0 in the above expression.

The second relation in (4.31) can be extended as

H3(µ) = −yb(µ)√
2

[
1 +O(αs) + CF

(
αs
4π

)2 (CF
2 L4

h + β0
3 L3

h + c2L
2
h + c1Lh +O(L0

h)
)]

,

(6.9)
with

c2 =
(

2− π2

6

)
CF +

(
−67

9 + π2

3

)
CA + 20

9 TF nf ,

c1 =
(
−2π2 + 24ζ3

)
CF +

(
242
27 + 11π2

9 − 26ζ3

)
CA +

(
−112

27 −
4π2

9

)
TF nf .

(6.10)
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In deriving these coefficients we have used the two-loop expression for the anomalous di-
mension γ33 in (5.5), which is given in appendix D. To determine the O(α2

sL
0
h) contribution

would require a complete two-loop calculation of H3.
Given the higher-order logarithmic corrections to H2 shown in (6.7), it is straightfor-

ward to integrate the first evolution equation in (5.15) perturbatively. In this way we obtain

H1(µ) = Ncαb
π

yb(µ)√
2

[
−2 +O(αs) + CF

(
αs
4π

)2 (
k3L

3
h +O(L2

h)
)]
, (6.11)

where

k3 =
(

2π2

3 − 16
3 ζ3

)
CF + 2π2

9 β0 . (6.12)

The derivation of the O(αbα2
sL

2
h) term would require knowledge of the O(α2

sLh) contribu-
tion to H2(z, µ), which in turn needs the two-loop coefficient of the anomalous dimension
γ22.

6.3 Higher-order logarithmic contributions to the decay amplitude

Given the above higher-order results for the matrix elements and matching coefficients, it
is straightforward to derive the higher-order logarithmic corrections to the b-quark induced
h→ γγ decay amplitude at O(α2

sL
k) with k ≥ 3. We find

Mb =M0(µ)
{(

L2

2 − 2
)

+ CFαs(µ)
4π

[
− L4

12 − L
3 +

(
4− 2π2

3

)
L2

+
(

12 + 2π2

3 + 16ζ3

)
L− 36 + 4ζ3 −

π4

5 −
(
3L2 − 12

)
Lm

]

+ CF

(
αs(µ)

4π

)2 [CF
90 L6 +

(
CF
10 + β0

20

)
L5 + d4L

4 + d3L
3 (6.13)

+ Lm

[(
CF
2 + β0

12

)
L4 +

(
6CF + β0

)
L3 + d1,2L

2
]

+ L2
mL

2
(

9CF + 3
2 β0

)
+ . . .

]
+O

(
m2
b

M2
h

)}
,

where the dots refer to three-loop terms containing less than three powers of logarithms
(L or Lm). The higher-order expansion coefficients are

d4 =
(

5
6 + π2

18

)
CF +

(
8
27 + π2

36

)
CA −

4
27 TF nf ,

d3 =
(
−17

2 + 7π2

9 + 20
3 ζ3

)
CF +

(
−199

18 + 44π2

27 − 4ζ3

)
CA +

(
22
9 −

16π2

27

)
TF nf ,

d1,2 =
(
−51

2 + 4π2
)
CF +

(
−185

6 + 22π2

9

)
CA +

(
26
3 −

8π2

9

)
TF nf . (6.14)
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The amplitude is scale-independent to the order we are working, meaning that the µ

dependence of the running couplings yb(µ), mb(µ) contained in M0(µ) and of αs(µ) is
compensated by the terms containing Lm = ln(m2

b/µ
2).

As a cross check of our results, we now compare expression (6.13) for the decay ampli-
tude with the results of previous calculations. To this end we need to perform transforma-
tions to different renormalization schemes. First, we express the running parameters mb(µ)
and yb(µ) =

√
2mb(µ)/v in the prefactorM0(µ) in terms of the b-quark pole mass, using

relation (4.4). We then eliminate the remaining scale dependence by making the choice
µ2 = µ̂2

h ≡ −M2
h − i0 in the running coupling αs(µ). In this “on-shell scheme” (OS), we

find that the amplitude takes the form

Mb = Ncαb
π

m2
b

v
ε∗⊥(k1) ·ε∗⊥(k2)

×
{
L2

2 −2+ CF αs(µ̂h)
4π

[
−L

4

12 −L
3− 2π2

3 L2 +
(

12+ 2π2

3 +16ζ3

)
L−20+4ζ3−

π4

5

]

+CF

(
αs(µ̂h)

4π

)2 [CF
90 L6 +

(
CF
10 −

β0
30

)
L5 +dOS

4 L4 +dOS
3 L3 + . . .

]}
, (6.15)

where

dOS
4 =

(
3
2 + π2

18

)
CF +

(
−91

27 + π2

36

)
CA + 32

27 TF nf , (6.16)

dOS
3 =

(
−1

2 + 7π2

9 + 20
3 ζ3

)
CF +

(
−199

18 −
22π2

27 − 4ζ3

)
CA +

(
22
9 + 8π2

27

)
TF nf ,

and the dots refer to terms containing less than three powers of logarithms. The contribu-
tions to the decay amplitude of O(αbα2

snf ) have been calculated in closed analytic form
in [19], and we find full agreement with the results obtained by these authors. Moreover,
recently the entire three-loop gg → h amplitude has been calculated in numerical form [20].
The authors of this paper have kindly repeated their calculation for the case of h → γγ

and found the following numerical result for the three-loop coefficient inside the rectangular
bracket in (6.15) (to much higher accuracy than indicated here):

CF

[
CF
90 L6 + . . .

]
= 0.01975L6 − 0.31111L5 − 8.74342L4 − 68.6182L3 + . . .

+
(
0.02963L5 + 0.79012L4 + 3.57918L3 + . . .

)
nl

+
(
− 0.04444L5 − 0.09877L4 − 2.26947L3 + . . .

)
nb ,

(6.17)

where we only show the coefficients of the logarithmic terms of order L3 and higher. The
terms in the second line refer to three-loop diagrams containing a quark loop with nl
massless flavors in addition to the b-quark loop connecting to the Higgs boson; see figure 7
for some representative examples. The terms shown in the third line refer to the same
diagrams, but now with a b-quark rather than a massless quark propagating in the second
fermion loop (where nb = 1). In [20] the authors defined the running coupling in the
MS scheme with massive-quark decoupling. Its dependence on the renormalization scale
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Figure 7. Examples of three-loop Feynman diagrams containing a second quark loop in addition
to the b-quark loop connected to the Higgs boson.

is given by the β-function for nl = 4 massless quarks, i.e. α(nl)
s (µ). Since in our case the

massive b-quark is much lighter than the Higgs boson, it is more appropriate to work in
a scheme in which one uses the running coupling defined with nf = nl + 1 active quark
flavors, as we have done in (6.15). The relevant conversion relation is [49]

α(nl)
s (µ̂h) = α

(nf )
s (µ̂h)

[
1− α

(nf )
s (µ̂h)

6π L+O(α2
s)
]
. (6.18)

Performing this scheme transformation we find that relation (6.17) is replaced by

CF

[
CF
90 L6 + . . .

]
= 0.01975L6 − 0.31111L5 − 8.74342L4 − 68.6182L3 + . . . (6.19)

+
(
0.02963L5 + 0.79012L4 + 3.57918L3 + . . .

)
nf +

(
0 + . . .

)
nb ,

where nf = nl + 1 = 5. Our analytic result in (6.15) is in perfect agreement with this
expression. We emphasize that the coefficient of the L3 term is sensitive to the two-loop
anomalous dimensions of the jet and soft functions. The observed agreement thus presents
a highly non-trivial cross check of our conjecture for the two-loop anomalous dimension of
the soft function made in [32].

As a side remark, we stress that the above results indicate that the leading double
logarithms generally do not provide the dominant contributions to the decay amplitude.
Using mb = 4.8GeV for the b-quark pole mass and Mh = 125.1GeV for the mass of the
Higgs boson, and indicating powers Ln with the help of a subscript n, we find numerically

Mb≈
Ncαb
π

m2
b

v
ε∗⊥(k1) ·ε∗⊥(k2)

{[
(16.3−20.5i)2−20

]
(6.20)

+αs
[
(5.4+23.7i)4 +(−8.9+39.2i)3 +(−22.8+28.6i)2 +(26.2−12.6i)1−3.70

]
+α2

s

[
(−16.2−7.8i)6 +(12.8+16.0i)5 +(18.6+81.2i)4 +(−27.1+118.8i)3 + . . .

]}
.

Here αs ≡ αs(−M2
h−i0) ≈ 0.107+0.024i is itself a complex number. It follows that in order

to obtain reliable results it is essential to perform the resummation of logarithmic terms
beyond the leading double-logarithmic approximation using RG-improved perturbation
theory, such that all large logarithms are exponentiated.
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The above comparison provides a highly non-trivial cross check of our factorization
theorem (4.1) derived in SCET. Previous authors have analyzed the leading and sub-
leading logarithms in the h → γγ decay amplitude using more traditional resummation
techniques [15, 16]. They worked in a different renormalization scheme, in which the factor
mb(µ) in the prefactorM0(µ) is eliminated in favor of the b-quark pole mass, whereas the
Yukawa coupling yb(µ) and the running coupling αs(µ) are evaluated at µ = Mh. In this
scheme OS ′, our result for the decay amplitude assumes the form

Mb = Ncαb
π

yb(Mh)√
2

mb ε
∗
⊥(k1) · ε∗⊥(k2) (6.21)

×
{
L2

2 − 2 + CF αs(Mh)
4π

[
− L4

12 + L3

2 +
(

2− 2π2

3 + 3iπ
2

)
L2

+
(

6 + 2π2

3 + 16ζ3

)
L− 28 + 4ζ3 −

π4

5 − 6iπ
]

+ CF

(
αs(Mh)

4π

)2 [CF
90 L6 +

(
−3CF

20 −
β0
30

)
L5 + dOS′

4 L4 + dOS′
3 L3 + . . .

]}
,

where

dOS′
4 =

(
5
12 + π2

18 −
iπ

4

)
CF +

(
− 67

108 + π2

36 −
11iπ
36

)
CA +

( 5
27 + iπ

9

)
TF nf ,

dOS′
3 =

(
9
4 −

11π2

9 + 20
3 ζ3 + 3iπ

2

)
CF +

(
157
36 −

22π2

27 − 4ζ3 + 11iπ
6

)
CA

+
(
−17

9 + 8π2

27 −
2iπ
3

)
TF nf .

(6.22)

The leading double logarithms of O(αbαns L2n+2) have been correctly obtained in [15, 16].
In [16] also the next-to-leading logarithms (NLL) of O(αbαns L2n+1) were analyzed and an
all-order formula for them was proposed. The result reads

MNLL
b = Ncαb

π

yb(Mh)√
2

mb ε
∗
⊥(k1) ·ε∗⊥(k2) L

2

2

{ ∞∑
n=0

2Γ(n+1)
Γ(2n+3)

(
−CF αs(Mh)

2π L2
)n

(6.23)

− 1
L

∞∑
n=1

Γ(n+1)
Γ(2n+2)

(
−CF αs(Mh)

2π L2
)n [

3−β0
αs(Mh)

2π L2 n(n+1)
(2n+2)(2n+3)

]}
.

When expanded to O(α2
s) this formula yields

MNLL
b =Ncαb

π

yb(Mh)√
2

mbε
∗
⊥(k1)·ε∗⊥(k2) (6.24)

×
{
L2

2 +CF αs(Mh)
4π

(
−L

4

12 +L3

2

)
+CF

(
αs(Mh)

4π

)2[CF
90 L

6+
(
−
CF

10
−β0

30

)
L5
]}
.

Interestingly, the coefficient of the C2
F α

2
sL

5 term (marked in bold face) does not agree with
our result shown in (6.21). It is difficult to trace the origin of this discrepancy, given that
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in [16] the derivation of the subleading logarithmic contributions is only sketched. The
authors start from an analysis of the off-shell Sudakov form factor [50], i.e. the quark form
factor of a vector current in the limit where Q2 = |q2| � |p2

i |, and then take the limit where
the two external legs go on-shell (p2

i → 0). They also need to account for the kinematic
differences between quark scattering off a vector current and photon scattering off a scalar
(Higgs) current. In general, a consistent framework based on effective field theory, such
as the SCET approach developed here, is certainly helpful to derive consistent results for
corrections appearing beyond the leading order in both logarithmic counting and power
counting in λ = mb/Mh. In our approach, the coefficients of the leading and subleading log-
arithms in (6.21) are determined in terms of one-loop coefficients of anomalous dimensions.
We find that

CF

[
CF
90 L6 +

(
−3CF

20 −
β0
30

)
L5 + . . .

]
= Γ2

0
1440 L

6 + Γ0
120

(
2γq,0 +γ′0−

γm,0
4 −β0

)
L5 + . . . ,

(6.25)
where Γ0 = 4CF , γq,0 = −3CF , γ′0 = 0 and γm,0 = −6CF are the one-loop coefficients of
the cusp anomalous dimensions and the anomalous dimensions of the collinear quark field,
the jet function and the running quark mass, respectively, and we have used relation (5.13)
to eliminate the one-loop anomalous dimension γs,0 of the soft function. In [22] we have
extended the prediction of the NLL terms to higher orders of perturbation theory, finding
that (6.23) must be replaced by

MNLL
b = Ncαb

π

yb(Mh)√
2

mb ε
∗
⊥(k1) · ε∗⊥(k2) L

2

2

∞∑
n=0

(−ρ)n 2Γ(n+ 1)
Γ(2n+ 3)

×
[
1 + 3ρ

2L
2n+ 1
2n+ 3 −

β0
CF

ρ2

4L
(n+ 1)2

(2n+ 3)(2n+ 5)

]
,

(6.26)

where ρ = CF αs(Mh)
2π L2, and in the prefactor mb denotes the pole mass. The second term

inside the brackets in the second line is not in agreement with (6.23).
In the recent paper [21] the resummation approach of [16] was extended to predict

the leading and subleading logarithms in the gg → h amplitude. The authors showed that
in an appropriate “abelian limit” their result reproduces the formula for the subleading
logarithms shown in (6.23). We thus believe that also in this work the subleading logarithms
at three-loop order and beyond are not correctly accounted for. Matching their results with
the calculation of [20], the authors have concluded that the coefficient of the L5 term in
equation (C.1) of this paper should take the form (CA−CF )

(11
9 CA−

3
2 CF −2TF nb

)
/640 ≈

0.0017361111. Adjusting the color factors in our result (6.21) to those relevant for the
gg → h amplitude, we find instead the result

CA − CF
640

(11
9 CA − CF −

10
3 TF nb

)
≈ 0.0017361111 . (6.27)

The authors of [20] have confirmed to us in a private communication that this is indeed
the correct expression for the coefficient of the subleading logarithmic contribution.
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7 Conclusions

We have derived the first renormalized factorization theorem for an observable described
at subleading order in SCET power counting. We have focused on the contribution to
the radiative Higgs-boson decay amplitude induced by the Higgs coupling to light bottom
quarks; however, the methods we have developed are more general and can be applied
to other subleading-power factorization theorems. Endpoint-divergent convolution inte-
grals arising when the factorized decay amplitude is expressed in terms of bare matching
coefficients and bare operator matrix elements have been tamed by introducing rapidity
regulators on the convolution integrals. We have proved two D-dimensional refactorization
conditions for the bare matching coefficient H(0)

2 (z) and the matrix element 〈O(0)
2 (z)〉 in the

endpoint region z → 0, which ensure that the dependence on the rapidity regulator cancels
out to all orders of perturbation theory. With the help of these relations the factorization
formula can be recast into a form where the endpoint divergences are removed by means of
suitably chosen subtraction terms (for T2) and cutoffs on the convolution integrals (for T3).

The main accomplishment of the present work has been to show that such an endpoint-
regularized factorization theorem can be consistently formulated in terms of renormalized
matching coefficients and operator matrix elements. This is a highly non-trivial point,
because endpoint regularization and renormalization do not commute. We have derived
the RG evolution equations satisfied by the renormalized matching coefficients and operator
matrix elements and derived most of the anomalous dimensions at two-loop order (and the
remaining ones at one-loop order). We have then used our results to predict in analytic form
the logarithmically enhanced three-loop contributions to the b-quark induced h→ γγ decay
amplitude of O(αbα2

sL
k) with k = 6, 5, 4, 3, finding perfect agreement with a numerical

computation of these terms performed by the authors of [20]. On the other hand, our
findings for the structure of the coefficient of the subleading term (with k = 5) disagrees
with the predictions of previous authors [16, 21], who had attempted to study the structure
of the subleading logarithmic contribution using conventional tools. This demonstrates the
usefulness of having a fully systematic approach based on effective field theory to study
factorization beyond the leading power in scale ratios.

We are confident that the results presented in this work are a major step forward in
the quest for a consistent formulation of SCET factorization theorems at subleading power.
For the particular example considered — the b-quark induced h→ γγ decay amplitude —
they form the theoretical basis for a systematic resummation of large double and single
logarithms beyond leading order in RG-improved perturbation theory. The technical details
of this resummation will be discussed in future work. It will also be important to generalize
our analysis to the non-abelian case of the Higgs-boson production in the gluon-gluon fusion
channel gg → h, extending the approach of [17, 18] to higher logarithmic accuracy.
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A Bare matching coefficients and matrix elements

For completeness, we list here the expressions for the h→ γγ matrix elements of the bare
operators O(0)

i and the corresponding bare matching coefficients H(0)
i as derived in [9].

These expressions are needed to obtain the corresponding renormalized quantities derived
in the present work.

Bare matrix elements. Omitting the photon polarization vectors, the h → γγ matrix
element of the bare operator O(0)

1 is to all orders of perturbation theory simply given by

〈γγ|O(0)
1 |h〉 = mb,0 g

µν
⊥ , (A.1)

where mb,0 is the bare b-quark mass. The reason is that O1 does not contain any fields
with color charges, and hence there are no QCD corrections to the matrix element.

The bare matrix elements of the remaining operators are known to first order in αs
only. For the case of O(0)

2 one finds (with 0 ≤ z ≤ 1)

〈γγ|O(0)
2 (z) |h〉= Ncαb,0

2π mb,0 g
µν
⊥

[
eεγE Γ(ε)

(
m2
b,0
)−ε+ CFαs,0

4π
(
m2
b,0
)−2ε[

K(z)+K(1−z)
]]
,

(A.2)
where

K(z) = 1
ε2

(
ln z + 3

2

)
+ 1
ε

(
ln2 z

2 − ln z ln(1− z)− 1
4 −

π2

6

)

+ 6Li3(z) + (1− 2z − 2 ln z)Li2(z) + ln3 z

6 +
[
z + ln(1− z)

]
ln2 z

+
(

2Li2(1− z)− 1
2 ln(1− z)− 1 + 3z

2 − π2

6

)
ln z + 3

2 + π2

6 − 4ζ3 +O(ε) .

(A.3)

In (A.2) αs,0 and αb,0 denote the bare QCD and electromagnetic couplings, respectively.
Starting at first order in αs the matrix element contains terms that are singular for z → 0
or z → 1. The former terms are contained in K(z), while the latter ones are contained in
K(1− z). In order to compute the matrix element [[〈γγ|O(0)

2 (z) |h〉]] one needs to take the
limit z → 0 in the above expressions. In [9] this limit has been obtained in closed form in
the dimensional regulator ε. One finds

[[K(z) +K(1− z)]] = e2εγE

1− 2ε

[
2(2− 3ε+ 2ε2) Γ2(ε) + 2(1− ε) Γ(ε) Γ(2ε) Γ(−ε)

+ zε (2− 4ε− ε2) Γ(2ε) Γ2(−ε)
Γ(1− 2ε)

]
.

(A.4)
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In order to compute the matrix element of the bare operator O(0)
3 , as given in the third

line of (2.9), one needs the expressions for the bare jet and soft functions at NLO in αs.
For the bare jet function one obtains

J (0)(p2) = 1 + CFαs,0
4π

(
−p2 − i0

)−ε
eεγE

Γ(1 + ε) Γ2(−ε)
Γ(2− 2ε) (2− 4ε− ε2) . (A.5)

This function has a cut along the positive p2 axis starting at p2 = 0 and extending to
infinity. The bare soft function, which is defined in terms of the discontinuity of a soft
quark propagator dressed with Wilson lines, can be written in the form

S(0)(w) = −Ncαb,0
π

mb,0
[
S(0)
a (w) θ(w −m2

b,0) + S
(0)
b (w) θ(m2

b,0 − w)
]
. (A.6)

At first order in αs one finds

S(0)
a (w) = eεγE

Γ(1− ε)
(
w −m2

b,0
)−ε

+ CFαs,0
4π

[[
C1(ε) + 2

ε
ln(1− r)

](
w −m2

b,0
)−2ε + C2(ε)

(
m2
b,0
)1−ε(

w −m2
b,0
)−1−ε

− 2Li2(r) + 2 ln r ln(1− r)− 3 ln2(1− r) + 2 ln(1− r) + . . .

]
,

S
(0)
b (w) = CFαs,0

4π
(
m2
b,0
)−2ε

[
− 4
ε

ln(1− ŵ) + 6 ln2(1− ŵ) + . . .

]
, (A.7)

where

C1(ε) = 2e2εγE

Γ(1− 2ε)

[
(1 + ε) Γ(−ε)2

Γ(2− 2ε) + 2Γ(ε) Γ(−ε)
]
,

C2(ε) = −2e2εγE 3− 2ε
1− 2ε

Γ(ε)
Γ(−ε) ,

(A.8)

and we have defined the dimensionless ratios r = m2
b,0/w and ŵ = w/m2

b,0, both of which
live on the interval [0, 1]. In both expressions the dots refer to terms of O(ε) and higher,
which vanish for r → 0 or ŵ → 0, respectively.
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Bare matching coefficients. To first order in αs, the expressions for the bare matching
coefficients obtained in [9] read

H
(0)
1 = yb,0√

2
Ncαb,0
π

(
−M2

h − i0
)−ε

eεγE (1− 3ε) 2Γ(1 + ε) Γ2(−ε)
Γ(3− 2ε)

×
{

1− CFαs,0
4π

(
−M2

h − i0
)−ε

eεγE
Γ(1 + 2ε) Γ2(−2ε)

Γ(2− 3ε)

×
[2(1− ε)(3− 12ε+ 9ε2 − 2ε3)

1− 3ε + 8
1− 2ε

Γ(1 + ε) Γ2(2− ε) Γ(2− 3ε)
Γ(1 + 2ε) Γ3(1− 2ε)

− 4(3− 18ε+ 28ε2 − 10ε3 − 4ε4)
1− 3ε

Γ(2− ε)
Γ(1 + ε) Γ(2− 2ε)

]}
,

H
(0)
2 (z) = yb,0√

2

{
1
z

+ CFαs,0
4π

(
−M2

h − i0
)−ε

eεγE
Γ(1 + ε) Γ2(−ε)

Γ(2− 2ε)

×
[

2− 4ε− ε2

z1+ε − 2(1− ε)2

z
− 2(1− 2ε− ε2) 1− z−ε

1− z

]}
+ (z → 1− z) ,

H
(0)
3 = yb,0√

2

[
−1 + CFαs,0

4π
(
−M2

h − i0
)−ε

eεγE 2(1− ε)2 Γ(1 + ε) Γ2(−ε)
Γ(2− 2ε)

]
, (A.9)

where yb,0 is the bare b-quark Yukawa coupling. These expressions are exact to all orders
in ε. From the second relation one obtains

[[H̄(0)
2 (z)]] = yb,0√

2

{
1+ CFαs,0

4π
(
−M2

h

)−ε
eεγE

Γ(1 + ε) Γ2(−ε)
Γ(2− 2ε)

[
(2−4ε−ε2) z−ε−2(1−ε)2

]}
(A.10)

for the z → 0 limit of the function H̄(0)
2 (z) introduced in (2.8). Finally, in the rearranged

factorization formula (2.9) one needs the infinity-bin subtraction term ∆H(0)
1 , which is

given by

∆H(0)
1 = −yb,0√

2
Ncαb,0
π

(
−M2

h − i0
)−ε eεγE

ε2 Γ(1− ε)

{
1 + CFαs,0

4π
(
−M2

h − i0
)−ε

× eεγE Γ(−ε) Γ(1− ε)
Γ(2− 2ε)

[
(1− 2ε+ 3ε2) Γ(ε) + 1 + ε

2
Γ(−ε)

Γ(1− 2ε)

]}
.

(A.11)

B Definitions of the jet and soft functions

In the analysis of the refactorization conditions in section 3 we have made use of the defi-
nitions of the (bare) radiative jet function J (0)(p2) and the (bare) soft-quark soft function
S(0)(`+`−) introduced in [9]. The two jet functions needed in (3.4) and (3.9) are defined via

〈γ(k2)|T Xβkn2 (r)
[
X̄n2(y)

(
/A
⊥
n2(y) + /G⊥n2(y)

)]γl |0〉
= eb δ

kl
[
/n2
2 /ε∗⊥(k2)

]βγ ∫ dDp

(2π)D
in̄2 · p
p2 + i0 J

(0)(p2, (p+ k2)2) e−ip·(r−y)+ik2·y
(B.1)
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and

〈γ(k1)|T
[(
/A
⊥
n1(x) + /G⊥n1(x)

)
Xn1(x)

]αi
X̄βjn1(r) |0〉

= eb δ
ij
[
/ε∗⊥(k1) /

n1
2

]αβ ∫ dDp

(2π)D
in̄1 · p
p2 + i0 J

(0)(p2, (p− k1)2) e−ip·(x−r)+ik1·x .
(B.2)

We have written out color indices (roman) and spinor indices (greek) explicitly. In both
cases the second argument of the jet function vanishes, because it is equal to the square of
the light-like momentum carried by the soft quark (after the multipole expansion). In the
main text we have simply dropped this second argument.

The soft-quark soft function needed in (3.9) is defined in terms of the soft matrix
element

e2
b

π
〈0|T TrSn2(0, y+) qγs (y+) q̄αs (x−)Sn1(x−, 0) |0〉

= i

∫
dD`

(2π)D e−i`·(y+−x−)
[
S1(`) + /̀S2(`) + /n1

n1 · `
S3(`) + /n2

n2 · `
S4(`) (B.3)

+
/̀/n1
n1 · `

S5(`) + /n2/̀
n2 · `

S6(`) + /n2/n1
4 S7(`) + /n2/̀/n1

2 S8(`)
]γα

,

where the trace in the first line is over color indices, and we have introduced the finite-length
soft Wilson lines

Sn1(x−, 0) ≡ Sn1(x−)S†n1(0) = P exp
[
igs

∫ n̄1·x/2

0
dt n1 ·Gs(tn1)

]
,

Sn2(0, y+) ≡ Sn2(0)S†n2(y+) = P exp
[
igs

∫ 0

n̄2·y/2
dt n2 ·Gs(tn2)

]
,

(B.4)

Only the first structure function S1(`) contributes in (3.9) due to the presence of /n1 and
/n2 in the trace over Dirac matrices.

C Details on the derivation of the quantity δH(0), tot
1

Here we provide some technical details relevant for the derivation described in section 4.5.
Our starting point is relation (4.37). Note that the integrals over the products of ZJ factors
in the second and third lines would evaluate to δ-functions if it was not for the upper cutoffs
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on the integrals over `±. Using this fact, we can rewrite the result in the form

δH
(0)
1 mb,0 =H

(0)
3

∫ ∞
0

dρ−
ρ−

∫ ∞
0

dρ+
ρ+

S(0)(ρ+ρ−)
∫ ∞

0
dω−

∫ ∞
0
dω+J

(0)(Mhω−)J (0)(−Mhω+)

×
∫ Mh

0
d`−Z

−1
J (Mhρ−,Mh`−)ZJ(Mh`−,Mhω−)

×
∫ σMh

0
d`+Z

−1
J (−Mhρ+,−Mh`+)ZJ(−Mh`+,−Mhω+)

−H(0)
3

∫ Mh

0

dρ−
ρ−

∫ σMh

0

dρ+
ρ+

S(0)(ρ+ρ−)
∫ ∞

0
dω−

∫ ∞
0
dω+J

(0)(Mhω−)J (0)(−Mhω+)

×
∫ ∞

0
d`−Z

−1
J (Mhρ−,Mh`−)ZJ(Mh`−,Mhω−)

×
∫ ∞

0
d`+Z

−1
J (−Mhρ+,−Mh`+)ZJ(−Mh`+,−Mhω+). (C.1)

In this appendix we do not write out the limit σ → −1 explicitly, but it is understood in all
expressions where σ occurs. We now rearrange the limits of the integrals in the following
way (in obvious notation):

∫ ∞
0
dρ−

∫ ∞
0
dρ+

∫ Mh

0
d`−

∫ σMh

0
d`+ −

∫ Mh

0
dρ−

∫ σMh

0
dρ+

∫ ∞
0
d`−

∫ ∞
0
d`+

→
∫ ∞

0
dρ−

∫ ∞
0
dρ+

∫ ∞
Mh

d`−

∫ ∞
σMh

d`+ −
∫ ∞
Mh

dρ−

∫ ∞
σMh

dρ+

∫ ∞
0
d`−

∫ ∞
0
d`+

−
∫ ∞

0
dρ−

∫ ∞
0
dρ+

∫ ∞
Mh

d`−

∫ ∞
0
d`+ +

∫ ∞
Mh

dρ−

∫ ∞
0
dρ+

∫ ∞
0
d`−

∫ ∞
0
d`+

−
∫ ∞

0
dρ−

∫ ∞
0
dρ+

∫ ∞
0
d`−

∫ ∞
σMh

d`+ +
∫ ∞

0
dρ−

∫ ∞
σMh

dρ+

∫ ∞
0
d`−

∫ ∞
0
d`+ . (C.2)

In the next step we consider the contribution to the quantity δ′H
(0)
1 mb,0 involving the

matrix element [[〈O(0)
2 〉]], for which we found the expression (4.43). Manipulating this

result in a similar way as above, we find

δ′H
(0)
1 mb,0

∣∣∣
[[〈O(0)

2 〉]]

= −2H(0)
3

∫ ∞
0

dρ−
ρ−

∫ ∞
0

dρ+
ρ+

S(0)(ρ+ρ−)
∫ ∞

0
dω−

∫ ∞
0
dω+ J

(0)(Mhω−) J (0)(−Mhω+)

×
∫ Mh

0
d`− Z

−1
J (Mhρ−,Mh`−)ZJ(Mh`−,Mhω−)

×
∫ ∞

0
d`+ Z

−1
J (−Mhρ+,−Mh`+)ZJ(−Mh`+,−Mhω+) (C.3)

+ 2H(0)
3

∫ Mh

0

dρ−
ρ−

∫ ∞
0

dρ+
ρ+

S(0)(ρ+ρ−)
∫ ∞

0
dω−

∫ ∞
0
dω+ J

(0)(Mhω−) J (0)(−Mhω+)

×
∫ ∞

0
d`− Z

−1
J (Mhρ−,Mh`−)ZJ(Mh`−,Mhω−)

×
∫ ∞

0
d`+ Z

−1
J (−Mhρ+,−Mh`+)ZJ(−Mh`+,−Mhω+) .
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In analogy with (C.2) we can rearrange the limits of the integrals as follows:

− 2
∫ ∞

0
dρ−

∫ ∞
0
dρ+

∫ Mh

0
d`−

∫ ∞
0
d`+ + 2

∫ Mh

0
dρ−

∫ ∞
0
dρ+

∫ ∞
0
d`−

∫ ∞
0
d`+

→ +2
∫ ∞

0
dρ−

∫ ∞
0
dρ+

∫ ∞
Mh

d`−

∫ ∞
0
d`+ − 2

∫ ∞
Mh

dρ−

∫ ∞
0
dρ+

∫ ∞
0
d`−

∫ ∞
0
d`+ .

(C.4)

Considering now the sum of the results (C.2) and (C.4), we get∫ ∞
0
dρ−

∫ ∞
0
dρ+

∫ ∞
Mh

d`−

∫ ∞
σMh

d`+ −
∫ ∞
Mh

dρ−

∫ ∞
σMh

dρ+

∫ ∞
0
d`−

∫ ∞
0
d`+

+
∫ ∞

0
dρ−

∫ ∞
0
dρ+

∫ ∞
Mh

d`−

∫ ∞
0
d`+ −

∫ ∞
Mh

dρ−

∫ ∞
0
dρ+

∫ ∞
0
d`−

∫ ∞
0
d`+

−
∫ ∞

0
dρ−

∫ ∞
0
dρ+

∫ ∞
0
d`−

∫ ∞
σMh

d`+ +
∫ ∞

0
dρ−

∫ ∞
σMh

dρ+

∫ ∞
0
d`−

∫ ∞
0
d`+ .

(C.5)

The terms shown in the last two lines of this expression are related to each other by the
substitutions ρ± → ρ∓, `± → `∓ and Mh → σMh, under which the integrand is invariant
if we also replace ω± → ω∓. It follows that these two terms cancel each other, and hence
we end up with∫ ∞

0
dρ−

∫ ∞
0
dρ+

∫ ∞
Mh

d`−

∫ ∞
σMh

d`+ −
∫ ∞
Mh

dρ−

∫ ∞
σMh

dρ+

∫ ∞
0
d`−

∫ ∞
0
d`+ . (C.6)

This proves relation (4.44), in which the contribution in the last line is the same as in (4.33).
We still need to show that the various terms on the right-hand side of (4.44) define hard

contributions, which can be associated with the matrix element 〈O(0)
1 〉. This is obvious for

the last term, which contains no reference to the b-quark mass. It is less obvious for the
first two terms, which are given by

H
(0)
3

∫ ∞
0

dρ−
ρ−

∫ ∞
0

dρ+
ρ+

S(0)(ρ+ρ−)
∫ ∞

0
dω−

∫ ∞
0
dω+ J

(0)(Mhω−) J (0)(−Mhω+)

×
∫ ∞
Mh

d`− Z
−1
J (Mhρ−,Mh`−)ZJ(Mh`−,Mhω−)

×
∫ ∞
σMh

d`+ Z
−1
J (−Mhρ+,−Mh`+)ZJ(−Mh`+,−Mhω+)

∣∣∣
leading power

−H(0)
3

∫ ∞
Mh

dρ−
ρ−

∫ ∞
σMh

dρ+
ρ+

S(0)(ρ+ρ−) J (0)(Mhρ−) J (0)(−Mhρ+)
∣∣∣
leading power

.

(C.7)

Via the soft function, these terms are in principle sensitive to the soft scale mb,0. However,
it is important to remember that we only need the leading-power terms in this expression.
In the second integral the variables ρ± are both in the hard region, and hence the arguments
of the soft and jet functions are all of O(M2

h). For the first integral, we focus first on the
integral over the ZJ factors. Using the explicit expression in (4.39) we find∫ ∞

Mh

d`− Z
−1
J (Mhρ−,Mh`−)ZJ(Mh`−,Mhω−) = δ(ρ− − ω−) θ(ρ− −Mh)

+ CFαs
2πε

[
θ(ρ− > Mh > ω−)− θ(ω− > Mh > ρ−)

]
ρ− Γ(ρ−, ω−) +O(α2

s) .
(C.8)
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The first term restricts both ρ− and ω− to be in the hard region. For the second term
this is not obvious but still true, because the factor ρ− in front of the plus distribution
Γ(ρ−, ω−) removes the factor 1/ρ− in the measure of the integral. We thus get (focussing
only on the integrals over “minus” momenta)∫ ∞

0

dρ−
ρ−

S(0)(ρ+ρ−)
∫ ∞

0
dω−J

(0)(Mhω−)
∫ ∞
Mh

d`− Z
−1
J (Mhρ−,Mh`−)ZJ(Mh`−,Mhω−)

=
∫ ∞
Mh

dρ−
ρ−

S(0)(ρ+ρ−) J (0)(Mhρ−)

+ CFαs
2πε

∫ ∞
Mh

dρ− S
(0)(ρ+ρ−)

∫ Mh

0
dω−J

(0)(Mhω−)
[ 1
ρ−(ρ− − ω−)

]
+

(C.9)

− CFαs
2πε

∫ Mh

0
dρ− S

(0)(ρ+ρ−)
∫ ∞
Mh

dω−J
(0)(Mhω−)

[ 1
ω−(ω− − ρ−)

]
+

+O(α2
s) .

In these expressions we can drop the plus prescription, because the integrand of the integral
over ω− contains a term θ(Mh − ω−) if we write this integral as

∫∞
0 dω− · · · . The plus

prescription then gives a subtraction term involving θ(Mh − ρ−), which vanishes since the
integral over ρ− runs from Mh to infinity. The first integral on the right-hand side of (C.9)
is clearly in the hard region. For the second integral ω− must be treated as a hard variable
of O(Mh), because the jet function does not contain any reference to the mass of the b
quark and ρ− is in the hard region. In other words, the region where ω− = O(mb) gives
rise to a power-suppressed contribution and hence must be dropped. (Recall that we must
only keep the leading-power terms in the result.) Finally, for the third integral ω− is in the
hard region, and the region where ρ− = O(mb) or smaller gives rise to a power-suppressed
contribution. For this to be true, it is important that the measure is dρ− and not dρ−/ρ−.
An analogous argument holds for the second integral over ZJ factors in (C.7).

With all integration variables restricted to the hard region, we can replace the bare
soft function S(0)(w) by its asymptotic form S

(0)
∞ (w) defined in (4.46). When the dust

settles, we obtain from (C.7)

δH
(0), tot
1 = H

(0)
3

{
CFαs
2πε

∫ ∞
σMh

dρ+
ρ+

[ ∫ ∞
Mh

dρ−
S

(0)
∞ (ρ+ρ−)
mb,0

∫ Mh

0
dω−

1
ρ−(ρ− − ω−)

−
∫ Mh

0
dρ−

S
(0)
∞ (ρ+ρ−)
mb,0

∫ ∞
Mh

dω−
1

ω−(ω− − ρ−)

]

+ CFαs
2πε

∫ ∞
Mh

dρ−
ρ−

[ ∫ ∞
σMh

dρ+
S

(0)
∞ (ρ+ρ−)
mb,0

∫ σMh

0
dω+

1
ρ+(ρ+ − ω+)

−
∫ σMh

0
dρ+

S
(0)
∞ (ρ+ρ−)
mb,0

∫ ∞
σMh

dω+
1

ω+(ω+ − ρ+)

]

+O(α2
s)
}
, (C.10)

where at this order we can use the lowest-order expressions for S(0)
∞ (w) given in (4.46).

Performing the integrals then leads to (4.47).
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D Two-loop anomalous dimensions

We define the expansion coefficients of the cusp anomalous dimensions as

Γcusp(αs) = Γ0
αs
4π + Γ1

(
αs
4π

)2
+ . . . , (D.1)

and similarly for all other anomalous dimensions. Below we list relevant expansion coef-
ficients needed in section 6 in the MS renormalization scheme. The expansion coefficients
of the cusp anomalous dimension Γcusp are given by [44]

Γ0 = 4CF , Γ1 = 4CF

[
CA

(
67
9 −

π2

3

)
− 20

9 TFnf

]
. (D.2)

For the coefficients of the anomalous dimension of the running quark mass, which is related
to the anomalous dimension of the operator O1(µ) by γ11 = −γm, one finds [30]

γm,0 = −6CF , γm,1 = −3C2
F −

97
3 CFCA + 20

3 CFTFnf . (D.3)

The anomalous dimension γq of the collinear quark field entering in (5.5) has coeffi-
cients [41, 46]

γq,0 =−3CF , (D.4)

γq,1 =C2
F

(
−3

2 +2π2−24ζ3

)
+CFCA

(
−961

54 −
11π2

6 +26ζ3

)
+CFTFnf

(
130
27 + 2π2

3

)
,

while the coefficients of the anomalous dimension γ′ entering in (5.9) read [9]

γ′0 = 0 , γ′1 = CF

[
CA

(808
27 −

11π2

9 − 28ζ3

)
− TF nf

(224
27 −

4π2

9

)]
. (D.5)

The anomalous dimension γs then follows from (5.13). One finds the expansion coeffi-
cients [32]

γs,0 = −6CF , (D.6)

γs,1 = C2
F

(
− 3 + 4π2 − 48ζ3

)
+ CFCA

(
655
27 −

55π2

9 − 4ζ3

)
+ CFTF nf

(
−188

27 + 20π2

9

)
.
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