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1 Introduction

The extended-BMS symmetry algebra [1–7] appears to provide an infinite set of conserved
quantities in asymptotically flat spacetime geometries and it is of great interest to under-
stand to what extent these symmetries constrain the local dynamics and how these classical
quantities generalize to the quantum level. For example, it has been suggested in [8–10]
that such quantities give rise to an infinite amount of quantum hair on black holes, which
would be of profound importance for the information problem.

The goal of the present work is to study these quantities as a limit of asymptoti-
cally anti-de Sitter spacetimes where one may gain additional insight via the anti-de Sit-
ter/conformal field theory correspondence. Some initial works in this direction are [11, 12].
It has been shown that the BMS algebra generalizes to a Lie algebroid in asymptotically
anti-de Sitter spacetime [13, 14]. One concludes from this that in general the asymptotically
anti-de Sitter geometries of interest involve nontrivial deformations of the boundary metric
and lead to scenarios which are not well-understood from the holographic perspective.

In the present work we take a somewhat different approach to building a holographic
description of asymptotically anti-de Sitter geometries with the analog of extended-BMS
charges. We begin by considering null spherical impulsive shock waves where the metric
across the shock undergoes a superrotation. The shock reflects off the boundary of anti-
de Sitter spacetime, preserving the standard Dirichlet boundary conditions on the metric.
This induces a nontrivial boundary stress energy tensor at the point of intersection, which
is matched with the expectation value of the stress energy in the holographic dual. This
suggests the shock should be identified with a two-dimensional Euclidean defect conformal
field theory within a three-dimensional Lorentzian CFT on the boundary. In this setup,
the defect CFT allows a natural action of Virasoro charges, in addition to the usual action
associated with the global conformal symmetry of the three-dimensional CFT SO(3, 2).
The central charge of the algebra is non-zero, and is read off from the solution.

One may then take a large radius of curvature limit ` → ∞ of this setup to recover
a holographic description of gravity in asymptotically flat spacetime. The limit is taken
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so that the defect CFT lives at spacelike infinity, once conformally compactified. In this
limit the SO(3, 2) contracts to ISO(3, 1) [13, 14]. The defect CFT in a state with general
Virasoro charges induces a nontrivial BMS charge when the asymptotically flat limit is
taken. The more general supertranslation generators of the BMS algebra are not so far
manifest in this construction. We note the presence of the defect with general Virasoro
charges will break the SO(3, 2) symmetry of the vacuum of the three-dimensional CFT.
This is compatible with observations in [15] that deformations of the BMS algebra do not
contain SO(3, 2) as a subgroup.

The shock solution is based on an exact solution which introduces an analytic dif-
feomorphism on the sphere [16]. These solutions were also considered in the context of
superrotations in [17]. We promote this to an asymptotically anti-de Sitter solution. The
solution has a mild Dirac delta function curvature singularity in affine null coordinates
across the shock, but is otherwise an exact solution of the vacuum Einstein equations with
negative cosmological constant.

Much is known about the general structure of conformal field theories, and there will
be a discrete infinity of quasi-primary operators with positive conformal weights ∆. In
the limit ` to infinity, the spectrum of the asymptotically flat theory will inherit this
discrete structure. Moreover we obtain a holographic realization of asymptotically flat
spacetimes via a limit of a three-dimensional CFT with a two-dimensional defect. The
HKLL construction [18–20] should extend straightforwardly to this setup and bulk fields
receive contributions both from smeared primaries in the three-dimensional CFT as well
as operators in the two-dimensional defect CFT, which alone carry the extended-BMS
charges, though we leave the details of this to future work.

2 Calculations

The goal is to gain insight into the flat spacetime limit of holography by considering the limit
where the radius of curvature ` → ∞ from the Anti-de Sitter side, where the holographic
dual is thought to be a well-defined conformal field theory. Some discussion of the viewpoint
has appeared in [11, 12].

We will be interested in a set of spherical impulsive gravitational wave solutions as
studied in [16, 21]. These solutions were also considered in the context of superrotations
in [17]. These solutions are most naturally written in terms of Kruskal-like coordinates. A
generalization of the imploding-exploding solution studied in [16] to asymptotically anti-de
Sitter spacetime is1

ds2 = `2

(1+uv)2

(
4

(1+zz̄)2

∣∣∣(u−v)dz+2
[
uF̄ (z̄)θ(u)+vḠ(z̄)(1−θ(v))

]
(1+zz̄)2dz̄

∣∣∣2−4dudv
)

where θ(x) is the Heaviside step function and F (z), G(z) are Schwarzian derivatives of
holomorphic functions f(z), g(z) of the form

F (z) = f ′′′(z)
f ′(z) −

3
2

(
f ′′(z)
f ′(z)

)2
, (2.1)

1For convenience we have rescaled the coordinates by factors of
√

2 compared to [16].
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Figure 1. Penrose diagram showing the asymptotically anti-de Sitter imploding-exploding im-
pulsive waves. The grey interior region corresponds to a solution with superrotation charge. The
unshaded regions correspond to the anti-de Sitter vacuum with the unperturbed metric on the
boundary.

and similarly for G(z). The holomorphic functions f(z), g(z) parametrize superrotations.
This is most easily seen by noting that across the shock (say at u = 0) the metric may be ob-
tained by performing the coordinate transformation of the ordinary flat spacetime metric by

z → f(z), v → 1 + |f(z)|2

1 + |z|2
v

|f ′(z)| . (2.2)

For our purposes it will be convenient to transform by a 1/4 period in the global time
coordinate which amounts to a change of coordinates from [16] of

u→ u+ 1
u− 1 , v → v + 1

v − 1 .
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We also include the reflections of the waves off the boundary of AdS to yield a solution of
the form

ds2 = `2

(1 + uv)2

(
4

(1 + zz̄)2

∣∣∣(u− v)dz +
(
−(u+ 1)(1− v)θ(v − 1)Ḡ (2.3)

+(u+ 1)(1− v)θ(u+ 1)F̄
)

(1 + zz̄)2 dz̄
∣∣∣2 − 4dudv

)
.

The coordinates (u, v) range from −∞ to ∞ with v > u, and with the timelike boundary
uv < −1 and the spacelike coordinate patch boundary uv < 1. The figure 1 shows a
sequence of such solutions glued together along the spacelike boundaries of the coordinate
patches. These impulsive gravitational waves are solutions of the vacuum Einstein equa-
tions with Dirac delta function curvature singularities along the null lines u = −1 and
v = 1. We impose the standard Dirichlet boundary conditions with a continuous metric
at spatial infinity uv = −1 which sets F = G. As we will see, this induces a stress tensor
expectation value in the boundary CFT.

To become more familiar with these solutions, let us for the moment consider the case
F = 0 and map to embedding coordinates where (for simplicity we define our coordinates
to be dimensionless, then restore units by multiplying the metric by `2 as above)

−T 2 −X2 +R2 = −1 .

Then we can identify

T −R = u(1 +X), T +R = v(1 +X) .

The metric associated with the 2-sphere is

ds2
2 = R2dΩ2 = 4R2dzdz̄

(1 + zz̄)2 (2.4)

where
z = eiφ tan θ2 z̄ = e−iφ tan θ2 .

Combining these we obtain the metric (2.3) in the unshaded region.
The full 3-dimensional boundary at infinity corresponds to the surface uv = −1. The

induced metric is then conformal to three-dimensional de Sitter spacetime with metric

ds2 = 4
(1 + zz̄)2

∣∣∣∣(u+ 1
u

)
dz

∣∣∣∣2 − 4
u2du

2 . (2.5)

Thus the shock at u = −1 meets the boundary at infinity on a spacelike 2-sphere with
metric conformal to the standard round metric. It is interesting to note a similar dS3
geometry appears at spacelike infinity in the construction of the symmetry generators in
asymptotically flat spacetime [22–25]. In that case the goal was to blow-up the point at
spatial infinity i0 in asymptotically flat spacetime to account for the fact that the metric
has a direction-dependent limit as i0 is approached. The simplest blow-up is just to include
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the tangent space of spacelike unit vectors, which is isometric to dS3 with the hope that
fields would be smooth (or at least more smooth) on this blow-up of i0. One may view the
finite ` geometry as a more physically motivated version of this blow-up. The full answer
at finite ` can be thought of as the Fefferman-Graham expansion, as we discuss below. In
that case the behavior of the metric at spatial infinity is specified by a fixed boundary dS3
metric and a traceless boundary stress tensor in this background.

It is also of interest to examine how null infinity emerges in the asymptotically flat limit.
The solution we have presented goes over smoothly to the asymptotically flat solution [16]
as `→∞. One may then perform the usual conformal compactification which adds in the
boundary cones I±. One would obtain the same cone from the `→∞ by considering the
interior of the grey region in figure 1 viewed as an open set not including the shocks.

It will be helpful to re-express the Kruskal coordinates as Fefferman-Graham coordi-
nates with a 3-dimensional de Sitter boundary metric. To do this let us define t and ρ

t = log
(
−v
u

)
= log

(
−T +R

T −R

)
,

4ρ
(1 + ρ)2 = 1 + uv = 1 + (T +R)(T −R)

(1 +X)2

or equivalently

T = 1− ρ2

2ρ sinh t

2 , R = 1− ρ2

2ρ cosh t

2 , X = 1 + ρ2

2ρ

then the anti-de Sitter metric becomes

ds2 = `2
dρ2 + 1

16
(
1− ρ2)2 ((et/2 + e−t/2

)2
dΩ2 − dt2

)
ρ2 .

This matches the induced metric on the boundary (2.5) at ρ → 0 with the change of
variables u = −e−t/2.

3 Holographic stress tensor

In this section we study the holographic mapping of the metric near the boundary of AdS
to the stress energy tensor of the CFT. Following the procedure of [26] the g(3)

ab component
of the metric in Fefferman-Graham coordinates

ds2 =
`2dρ2 +

(
g

(0)
ab + ρ2g

(2)
ab + ρ3g

(3)
ab + · · ·

)
dxadxb

ρ2

is identified with the expectation value of the CFT stress tensor. Here xa are the transverse
coordinates, and g(0)

ab is the boundary metric. In this expansion g(2)
ab is determined in terms

of g(0)
ab , but g

(3)
ab is independent data.

In the present situation the metric involves step functions, and leads to a curvature
tensor that must be treated as a generalized function. This takes us beyond the original
considerations of [26], however the main part of the derivation will carry over. To proceed,
we continue to match g(0)

ab with the unperturbed metric (2.5). One approach would be to
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construct the Brown-York tensor [27] with the usual counter-terms at ρ = ε. However this
surface cuts the shock, and potentially introduces corner-terms that will show up in the
boundary stress energy as ε→ 0. See also [28] for an earlier review of junction conditions.
Instead it is more straightforward to carry over the derivation of [26] with the understanding
that the metric components become generalized functions in the time-direction.

In detail, we place a cutoff at ρ = ε in Fefferman-Graham coordinates and study the
metric in the interior of the gray-shaded wedge in 1. The null shell u = −1 becomes the
surface t = log v, ρ = (1−

√
v)2/(1− v) (with v ∈ (0, 1)) while the shell at v = 1 becomes

the surface t = − log (−u), ρ =
(
1−
√
−u
)2
/(1 + u) with u ∈ (−1, 0). Outside the wedge,

the holographic stress tensor [26], vanishes as ε→ 0.
Inside the wedge, Fefferman-Graham coordinates correspond to

u = −e−t/2 1− ρ
1 + ρ

, v = et/2
1− ρ
1 + ρ

where the metric is

ds2 = `2

ρ2

(
dρ2 − 1

16
(
ρ2 − 1

)2
dt2 + 1

(1 + zz̄)2

∣∣∣∣(1− ρ2
)

cosh
(
t

2

)
dz (3.1)

− (1 + zz̄)2
(

1 + ρ2 +
(
ρ2 − 1

)
cosh

(
t

2

))
dz̄F̄ (z̄)

∣∣∣∣2
)
.

The mapping between the CFT stress energy tensor and the Fefferman-Graham ex-
pansion is [26] 〈

TCFTab

〉
= 3

16πGN
g

(3)
ab . (3.2)

To be able to apply (3.2) we need to take into account the step functions which localize
the solution (3.1) to the interior of the shaded wedge, while outside we have the solution
with F̄ = 0. To do this we Taylor expand the step functions near ρ = 0 that modulate the
F̄ terms, and the FF̄ terms

θ(t+ 4 tanh−1 ρ)− θ(t− 4 tanh−1 ρ) =
(
θ(t+ 4 tanh−1 ρ)− θ(t− 4 tanh−1 ρ)

)2

= 8ρδ(t) + 64
3 ρ

3δ′′(t) + 8
3ρ

3δ(t) +O(ρ4) .

This ρ dependence induces a g(3)
ab term in the metric, and (3.2) leads to

〈
TCFTab

〉
= 3

16πGN
g

(3)
ab = − 2`2

πGN

 0 0 0
0 F (z) 0
0 0 F̄ (z̄)

 δ(t) . (3.3)

The lower order components g(0)
ab and g(2)

ab simply match the vacuum solution with F (z) = 0.
This expectation value 3.3 is exactly what one expects for the vacuum expectation

value of a two-dimensional defect CFT inserted at t = 0 after undergoing a holomorphic
coordinate transformation z′ = f(z)〈

T 2d,CFT
zz

〉
= − c

12 {f(z), z} (3.4)
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where {f(z), z} = F (z) is the Schwarzian derivative (2.1). Recall this is indeed the coor-
dinate transformation on the boundary (2.2). We therefore tentatively identify the central
charge of the 2d defect CFT with

c = 24`2

πGN
. (3.5)

Clearly the flat space limit will then correspond to a large central charge limit if GN is
held fixed.2

The one-point function (3.4) can be evaluated for a general analytic diffeomorphism
that maps the t = 0 slice to itself. One may therefore use the one-point function to itera-
tively generate insertions of the boundary stress tensor T 2d

zz on the t = 0 slice. Therefore we
expect to get a general set of n−point functions of the 2d stress tensor that are constrained
by the Virasoro algebra.

From the perspective of general 3d CFT this behavior is surprising. We expect linear
couplings between the 2d operators and the 3d operators, and at best the 3d theory will en-
joy a local SO(3, 2) symmetry, not an infinite dimensional Virasoro symmetry. We therefore
do not expect the 2d theory to have an exact Virasoro symmetry constraining its correla-
tion functions. On the other hand we can only trust the gravity results (of which (3.4) is
an example) for `2 � GN so we are necessarily working in a large central charge limit. It
is possible then for an enhanced symmetry to emerge, broken by perturbative corrections
in a 1/c expansion. One may view the 3d CFT correlators (including mixed correlators
involving insertions at t = 0) to be determined by usual holographic map from gravity
correlators to boundary correlators. It will be interesting to work out the details of this
map to see whether there is a sense Virasoro symmetry constrains the correlators of general
operators at t = 0, but we leave this for future work.

In summary, we conjecture the expectation value (3.3) is most simply explained by
the insertion of a boundary two-dimensional conformal field theory at the surface t = 0
within the three-dimensional dS3 boundary. Recall that the shock wave solutions we are
studying are constructed by gluing together two patches with the transformation z → f(z)
along the shock. The expectation values of the stress tensor on the plane vanish in the
three-dimensional vacuum state (f(z) = z), and we are left with the Schwarzian term
above when f(z) is chosen more generally. This is certainly a highly non-trivial proposal
and many more consistency checks should be made to ascertain its validity.

4 Asymptotically flat limit

To construct the asymptotically flat limit, we take the metric in the form (2.3) and define
rescaled coordinates ũ = `u, ṽ = `v. Taking the limit `→∞ with ũ, ṽ fixed, we get

ds2 = −4dũdṽ + 4
(1 + zz̄)2

∣∣∣(ũ− ṽ)dz + ˜̄F (z̄)dz̄(1 + zz̄)2
∣∣∣2

2The central charge of the 3d CFT, defined as the coefficient cT appearing in the stress tensor two-point
function is also of this order. In the conventions of [33], appendix (C.28), cT = `2

2πGN
.
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where ¯̃F = `F̄ . Next we transform to Bondi coordinates on I+ defining

ṽ = ũ+
√
ξ2 + (1 + zz̄)4

∣∣∣F̃ (z)
∣∣∣2

and replacing ũ→ u/2 and F̃ → F to give

ds2 = −du2 −
(

2− 1
ξ2 (1 + |z|2)4 |F (z)|2

)
dudξ − 1

ξ
∂z

((
1 + |z|2

)4
|F (z)|2

)
dzdu

− 1
ξ
∂z̄

((
1 + |z|2

)4
|F (z)|2

)
dz̄du− 4ξF (z)dz2 − 4ξF̄ (z̄)dz̄2

+ ξ2 4
(1 + |z|2)2dzdz̄ + 8(1 + |z|2)2 |F (z)|2 dzdz̄ + · · ·

where · · · refers to higher order terms in the 1/ξ expansion. Reading off the Bondi param-
eters following the notation of [5] we find

M = 0, NAB = 0, CAB =
(
−4F (z) 0

0 −4F̄ (z̄)

)
, DAB = 0, NA = − 3

32∂ACCDC
CD

here the indices A,B run over z, z̄. Putting these together, we compute the integrable
component of the superrotation charge [5] as

QY = 1
16πGN

∫
d2z

2
(1 + |z|2)2Y

A
(

2NA + 1
16∂ACCDC

CD
)

= 1
16πGN

∫
d2z

2
(1 + |z|2)2Y

A
(
−1

8∂ACCDC
CD
)

where Y A(z, z̄) is a vector field on the 2-sphere that can be chosen to compute the desired
moment of the integrand. The superrotation charge is therefore in general non-zero at
quadratic order in the perturbation.3

These solutions with vanishing ADM momentum and non-vanishing CAB are noted
in [8]. For example, supertranslations can be used to induce non-vanishing CAB from
the state where all Bondi parameters vanish. As in that case, there exist transformed
Poincare generators that leave the solution invariant, as is clear from the construction of
the solution as a diffeomorphism of flat spacetime [16]. These solutions are related to the
results of [29] where solutions with vanishing ADM momentum but non-vanishing ADM
angular momentum are studied (though in the present work F (z) = 0 for any globally
defined SL(2, C) transformation, so we only expect to see superangular momenta).

We note a linearized version of the Schwarzian term appears in the work of [30] when
NAB and CAB undergo a superrotation. In the present work the Bondi news NAB vanishes
except for a Dirac delta function term localized on the shock. In the limit considered
in this section the shock itself does not appear in the asymptotically flat region. However
shocks that cross the asymptotically flat region can similarly be constructed, and are briefly
commented on below.

3There are appear to be various expressions for the superrotation charges in the literature; see e.g. [8].
The different choices lead to different values of the charges we are evaluating here, so we have simply opted
to go with the definitions of [5].
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5 Discussion

In the present work, we have constructed a shock solution in asymptotically local anti-de
Sitter spacetime and found the corresponding boundary stress tensor has an interpretation
in terms of a two-dimensional Euclidean conformal field theory living on a timeslice within
a three-dimensional conformal field theory. In the limit of asymptotically flat spacetime
the shock gives a patch of spacetime with nontrivial superrotation charges. In a more
general context, one may insert 2d CFT operators and build more general Virasoro charges
along with the holomorphic coordinate transformation that appears in the shock solution.
One may follow through the usual construction of perturbative bulk fields around this
solution [18, 19] and there will be contributions from the 2d CFT and the more standard
contributions from the 3d CFT. The contributions from operators in the 2d CFT will
contain the leading order information about the BMS charges, while the 3d CFT will only
have the usual global conformal charges SO(3, 2) after explicitly breaking the symmetry
with the defect. These global charges contract to the 4d Poincare group in the flat space
limit ISO(3, 1) [13].

One might also consider shocks crossing the asymptotically flat region that can give rise
to other defect timeslices in the 3d CFT. It is possible there is some connection between this
picture and the suggestion that strings pierce I+ in the asymptotically flat limit, destroying
asymptotic flatness in general [31]. Conversely, one might rule out such additional shocks
if one insists on a well-defined asymptotically flat limit. Note there do exist Penrose shock
solutions involving more general BMS transformations [17, 32] and it would be interesting
to study these from the present perspective.

A primary motivation for the present work is to gain better insight into how the
BMS symmetries generalize to the quantum case. The proposal of the present work is
that the generalization of a class of spacetimes with nontrivial superrotation charges to
asymptotically AdS spaces are dual to a conventional 3d CFT with a 2d CFT living at
a particular timeslice. Such a system should have a self-contained quantum description.
Another approach to accommodate BMS like symmetries in AdS is to allow for more
general boundary conditions [13, 14], however this avenue appears to lead to boundary
gravity theories that seem difficult to describe.

The idea of a defect CFT living at a particular timeslice is perhaps a rather novel idea,
however in Euclidean signature this is a relatively familiar construction. In Lorentzian sig-
nature, one can view the defect as the coincident limit of a pair of local operator quenches.
This coincident limit takes one out of the realm of the 3d CFT (or equivalently involves
infinite energies in the 3d CFT) and requires the specification of the 2d CFT to make it well-
defined. It will be very interesting to further study the details of this construction to better
develop the structure of this 2d CFT and its coupling to the 3d CFT. Thus far, we have
only been able to read off the central charge and see the Schwarzian vacuum energy emerge.
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