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1 Introduction

Laboratory experiments to date have firmly established the predictive power of the Stan-
dard Model (SM). Mass generation for the weak gauge bosons and charged fermions is by
now a familiar narrative, and the only clear terrestrial measurements pointing to physics
beyond the SM are those of neutrino flavour transformations. Even here, observations
are consistent with the prevailing orthodoxy: the neutrino flavour eigenstates are unitary
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superpositions of mass eigenstates and the probability of detecting a neutrino of a given
flavour oscillates with distance. On the origin of these neutrino oscillations — and the non-
zero neutrino masses they imply — the SM has nothing to say. Oscillation experiments
have shown that the mixing in the lepton sector is of a different structure and extent to
that seen in quarks; and measurements from cosmology, neutrinoless double-beta decay
and tritium beta decay strongly constrain the absolute scale of the neutrino masses. These
facts lend themselves to the possibility that an alternate mass-generating mechanism is
operating for the uncharged leptons.

A characteristic feature of the neutrinos is that they are the only fermions in the
SM that could acquire a Majorana mass, as long as lepton number isn’t endowed with
any special significance. Many models pursue this line of reasoning, with the neutrinos
acquiring a Majorana mass through the lepton-number-violating (LNV) interactions of
heavy exotica. The most famous examples are the three canonical seesaw models [1–11]
that generate the dimension-five Weinberg operator (LiLj)HkH lεikεjl at tree-level upon
integrating out the heavy fields. Additionally, the historically important Zee [12] and Zee-
Babu [13, 14] models have come to be archetypal radiative scenarios in which interactions
violating lepton-number by two units (∆L = 2) generate a Majorana mass for the neutrinos
at loop level. Such models are economic, since they do not require the imposition of ad hoc
symmetries, and in many cases make a connection to other unsolved problems of the SM
such as the nature of dark matter or the matter-antimatter asymmetry of the Universe.
They are also elegant, since the smallness of the neutrino masses emerges as a natural
consequence, rather than through the imposed requirement of exceedingly small coupling
constants. For recent reviews of radiative models see refs. [15, 16].

Although the seesaw models are attractive solutions to the neutrino mass problem,
they are difficult to test experimentally. The region of their parameter space in which the
seesaw field’s couplings to the SM are very small can be probed at colliders [17], although
for O(1) couplings the seesaw scale is predicted to be ∼ 1012 TeV. Radiative models
are easier to probe experimentally since the additional loop suppression and products of
couplings bring down the allowed scale of the new physics, in some cases to LHC-accessible
energy ranges [18]. The two-loop Zee-Babu model, for example, is non-trivially constrained
by same-sign dilepton searches performed by ATLAS [19–21] and CMS [22–24], but it is
only one of a very large number of radiative models, none of which are a priori more likely
to be true than any other. In the context of such a large theory-space, it is useful to have
an organising principle to aid in the study and classification of these models, and beginning
with ∆L = 2 effective operators has been shown to be an effective strategy.

One approach to this model taxonomy involves studying loop-level completions of the
Weinberg operator, and its dimension-(5 + 2n) generalisations O′···′1 = (LL)HH(H†H)n.
Here, models can be systematically written down by studying the various topologies able
to be accommodated by the operator with increasing number of loops. This is done in
such a way that models implying lower-order contributions to the neutrino mass can be
discarded [25]. Such an approach has been applied to the Weinberg operator up to three
loops [26–28] and to its dimension-seven generalisation at one loop [29]. An alternative
and complementary method begins by considering all of the gauge-invariant ∆L = 2 op-
erators in the SM effective field theory (SMEFT), first listed in this context by Babu and
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Leung (BL) [30] and extended by de Gouvêa and Jenkins (dGJ) [18]. Supposing that the
tree-level coefficient of one of these is non-zero at the high scale, neutrino masses will be
generated from loop graphs contributing to the mixing of this operator and the Weinberg-
like operators O′···′1 . The process of expanding the operator into a series of UV-complete,
renormalisable models that generate the parent operator at tree-level is called opening up or
exploding the operator. The remaining external fields must be looped-off, with additional
loops of SM gauge bosons or Higgs fields added as necessary in order to obtain a neutrino
self-energy diagram. A model-building formula along these lines has been formulated in
ref. [31], and it has been used to write down all of the minimal, tree-level UV-completions
of ∆L = 2 operators at dimension seven [32] corresponding to tree-level and radiative
neutrino-mass models. The tree-level completions of the Weinberg-like operators have
been written down up to dimension eleven [32–34].

Our analysis continues in the tradition refs. [18, 30–32], but where appropriate we
make a connection to the results from loop-level matching [26–29] for completeness. We
consider that there is complementary insight to be gained from thorough and complete
analyses involving both approaches. Building models from tree-level completions of the
∆L = 2 operators allows for a direct connection to be made between the neutrino-mass
mechanism and other lepton-number-violating phenomena. The models derived in this way
are also minimal in the sense that they involve the fewest number of exotic fields required
to furnish a given loop-level topology, since the neutrino self-energy graphs always involve
some SM fields. This has a number of important implications. First, the neutrino masses
depend on SM parameters, and their rough scale can therefore be readily estimated from the
effective operator alone. Second, neutrino-mass mechanisms containing SM gauge bosons
are included automatically, and these constitute a large fraction of the models. Finally,
it also means that our approach never produces models that contain loops of only exotic
fields, although these can be added easily (see, for example, section IV.C of ref. [31]).
The appeal of these models notwithstanding, a benefit of giving up heavy loops is that the
transformation properties of the beyond-the-standard-model particle content of each model
are now uniquely determined, and therefore the total number of minimal models is finite.
Minimal exotic particle content, in the aforementioned sense, is an attractive feature of
this approach. Indeed, there are many examples of operators whose insertion and closure
lead to neutrino masses at dimension nine and higher, but for which the number of exotic
degrees of freedom introduced are not more than those of a garden-variety model generating
the Weinberg operator at the low scale. The consideration of such equally simple models in
the loop-level matching paradigm would require a detailed analysis of the dimension-seven
and dimension-nine analogues of the Weinberg operator1 up to a large number of loops.

An economic classification scheme, separate from an EFT framework, was presented
in ref. [35] based on the number of exotic degrees of freedom by which the SM is extended.
There, the method is applied to the case of radiative models with two exotics,2 and has also
been used to study minimal neutrino-mass models compatible with SU(5) unification [36].

1One can always generate the dimension-five Weinberg operator from its analogues at dimensions seven,
nine and eleven with additional Higgs loops, but these models usually contain more than three loops.

2Including models with one scalar and one Dirac fermion.
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Here, we sharpen the model building prescription developed in ref. [31] and extend it
to the case of operators involving field-strength tensors and derivatives. This procedure
is automated and applied to all ∆L = 2 operators in the SM effective field theory up to
dimension eleven. We classify the neutrino-mass topologies, completions and their exotic
fields. We also make available a database containing our main results and example code
used to generate the operators along with their completions and Lagrangians [37]. We
emphasise that the usefulness of these methods and tools extends beyond the study of neu-
trino mass and lepton-number-violating phenomena. To illustrate this point we reproduce
some recent results of work listing completions of SMEFT operators [38].

The remainder of the paper is structured as follows. Section 2.1 sets out our mathe-
matical conventions and notation. Section 3 contains a review of tree-level matching and a
description of the methods we use to find the tree-level completions of the operators. Neu-
trino mass model building is described in section 4, while section 5 presents a preliminary
analysis of the models along with some examples.

2 Conventions

In this section we establish the conventions we employ throughout the rest of the paper: the
nomenclature of fields and indices, our operational semantics and the classification of the
lepton-number-violating operators on which our analysis is based. We highlight that this
classification differs mildly from that found in earlier work, since our list includes additional
structures as well as operators containing derivatives. We find the operators containing
field-strength tensors to be uninteresting from the perspective of model building — a point
justified in detail in section 3.2.1 — and choose not to include them in our classification in
this section.

2.1 Mathematical notation

Throughout the paper we choose to label representations by their dimension, which we
typeset in bold. Multiplets are labelled by their transformation properties under the
Lorentz group and the SM gauge group SU(3)c ⊗ SU(2)L ⊗ U(1)Y , and we often refer
to them simply as fields. All spinors are treated as two-component objects transforming
as either (2,1) (left-handed) or (1,2) (right-handed) under the Lorentz group, written as
SU(2)+⊗ SU(2)−. The left-handed spinors carry undotted spinor indices α, β, . . . ∈ {1, 2},
while the right-handed spinors carry dotted indices α̇, β̇, . . . ∈ {1̇, 2̇}. Wherever possible
we attempt to conform to the conventions of ref. [39] when working with spinor fields
(see appendix G for the correspondence to four-component notation and appendix J for
SM-fermion nomenclature). For objects carrying a single spacetime index Vµ we define

Vαβ̇ = σµ
αβ̇
Vµ and V̄α̇β = σ̄µα̇βVµ. (2.1)

Note that in this notation

� = ∂µ∂
µ = 1

2Tr[∂∂̄] = 1
2Tr[∂̄∂], (2.2)
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and we will sometimes just use � to represent the contraction of two covariant derivatives
DµD

µ where this is clear from context. For field-strength tensors, generically Xµν , we work
with the irreducible representations (irreps) Xαβ and X̄α̇β̇ , where

X{αβ} = 2i[σµν ] γα εγβXµν and X̄{α̇β̇} = 2i[σ̄µν ]γ̇
β̇
εα̇γ̇Xµν , (2.3)

or the alternate forms with one raised and one lowered index.
Indices for SU(2)L (isospin) are taken from the middle of the Latin alphabet. These

are kept lowercase for the fundamental representation for which i, j, k, . . . ∈ {1, 2} and
the indices of the adjoint are capitalised I, J,K, . . . ∈ {1, 2, 3}. Colour indices are taken
from the beginning of the Latin alphabet and the same distinction between lowercase and
uppercase letters is made. For both SU(2) and SU(3), a distinction between raised and
lowered indices is maintained such that, for example, (ψi)† = (ψ†)i for an isodoublet field
ψ. However, we often specialise to the case of only raised, symmetrised indices for SU(2),
and use a tilde to denote a conjugate field whose SU(2)L indices have been raised:

ψ̃i ≡ εijψ†j . (2.4)

We adopt this notation from the usual definition of H̃, and note that throughout the
paper we freely interchange between ψ̃i and ψ†i . For the sake of tidiness, we sometimes
use parentheses (· · · ) to indicate the contraction of suppressed indices. Curly braces are
reserved to indicate symmetrised indices {· · · } and square brackets enclose antisymmetrised
indices [· · · ], but this notation is avoided when the permutation symmetry between indices
is clear. We use τ I and λA for the Pauli and Gell-Mann matrices, and normalise the
non-abelian vector potentials of the SM such that

(Wαβ̇)ij = 1
2(τ I)ijW I

αβ̇
and (Gαβ̇)ab = 1

2(λA)abGAαβ̇ . (2.5)

Flavour (or family) indices of the SM fermions are represented by the lowercase Latin
letters {r, s, t, u, v, w}.

For the non-gauge degrees of freedom in the SM we capitalise isospin doublets (Q, L,
H), while the left-handed isosinglets are written in lowercase with a bar featuring as a part
of the name of the field (ū, d̄, ē). The representations and hypercharges for the SM field
content are summarised in table 1. Our definition of the SM gauge-covariant derivative is
exemplified by

D̄α̇βQ
βai
r =

[
δab δ

i
j(∂̄α̇β + ig1YQB̄α̇β) + ig2δ

a
b (W̄α̇β)ij + ig3δ

i
j(Ḡα̇β)ab

]
Qβbjr . (2.6)

Note that the derivative implicitly carries SU(2)L and SU(3)c indices [explicit on the right-
hand side of eq. (2.6)] which are suppressed on the left-hand side to reduce clutter. Where
appropriate we show these indices explicitly.

We represent the SM quantum numbers of fields as a 3-tuple (C, I, Y )L, with C and
I the dimension of the colour and isospin representations, Y the hypercharge of the field,
and L an (often omitted) label of the Lorentz representation: S (scalar), F (fermion) or V
(vector), although sometimes we use the irrep, e.g. (2,1). We normalise the hypercharge
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Field SU(3)c ⊗ SU(2)L ⊗U(1)Y SU(2)+ ⊗ SU(2)−
Qαai (3,2, 1

6) (2,1)
Lαi (1,2,−1

2) (2,1)
ūαa (3̄,1,−2

3) (2,1)
d̄αa (3̄,1, 1

3) (2,1)
ēα (1,1, 1) (2,1)

(Gαβ)ab (8,1, 0) (3,1)
(Wαβ)ij (1,3, 0) (3,1)
Bαβ (1,1, 0) (3,1)
H i (1,2, 1

2) (1,1)

Table 1. The SM fields and their transformation properties under the SM gauge group GSM and
the Lorentz group. The final unbolded number in the 3-tuples of the GSM column represents the
U(1)Y charge of the field, normalised such that Q = I3 + Y . For the fermions a generational index
has been suppressed.

Name S S1 S2 ϕ Ξ Ξ1 Θ1 Θ3

Irrep (1,1, 0) (1,1, 1) (1,1, 2) (1,2, 1
2 ) (1,3, 0) (1,3, 1) (1,4, 1

2 ) (1,4, 3
2 )

Name ω1 ω2 ω4 Π1 Π7 ζ

Irrep (3̄,1, 1
3 ) (3,1, 2

3 ) (3̄,1, 4
3 ) (3,2, 1

6 ) (3,2, 7
6 ) (3̄,3, 1

3 )

Name Ω1 Ω2 Ω4 Υ Φ
Irrep (6,1, 1

3 ) (6̄,1, 2
3 ) (6,1, 4

3 ) (6,3, 1
3 ) (8,2, 1

2 )

Name N E ∆1 ∆3 Σ Σ1

Irrep (1,1, 0) (1,1, 1) (1,2, 1
2 ) (1,2, 3

2 ) (1,3, 0) (1,3, 1)

Name U D Q1 Q5 Q7 T1 T2

Irrep (3,1, 2
3 ), (3̄,1, 1

3 ) (3,2, 1
6 ) (3,2,− 5

6 ) (3,2, 7
6 ) (3̄,3, 1

3 ) (3,3, 2
3 )

Table 2. The table shows the exotic scalars (top) and vectorlike or Majorana fermions (bottom)
contributing to the dimension-six SMEFT at tree-level [38]. We sometimes use the label of a field
as presented in the table to represent its conjugate, although we always define the transformation
properties each time a field is mentioned to avoid confusion. For the leptoquarks (second row), we
add a prime to the field name presented here if the baryon-number assignment is such that only
the diquark couplings are allowed.

such that Q = I3 + Y . Finally, for exotic fields that contribute to dimension-six operators
at tree-level, we try and adopt names consistent with tables 1 and 2 of ref. [38], which we
reproduce here in table 2.
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2.2 On operators and tree-level completions

Below we discuss our use of the terms operator and completion. We establish naming
conventions of types of operators that we use throughout the paper, and illustrate the
sense in which we talk about models as completions of operators with the use of a simple
example from the dimension-six SMEFT.

The term operator is used in the literature to loosely denote one of three3 things:

1. A gauge- and Lorentz-invariant product of fields of specified flavour and their deriva-
tives. Understood in this sense, the Weinberg ‘operator’ O{rs}1 = (LirLjs)HkH lεikεjl
is really nf (nf + 1)/2 complex operators for nf SM-fermion generations.

2. A gauge- and Lorentz-invariant product of fields of unspecified flavour and their
derivatives. According to this definition, O{rs}1 is counted as a single operator.

3. A collection of fields and their derivatives whose product contains a Lorentz- and
gauge-singlet part. In this sense, the string of fields LLHH could be called an
operator. In this category we also include operators of an intermediate type for which
some gauge or Lorentz structure is specified but the rest is implied. For example,
a term like4 O3a = LiLjQkd̄H lεijεkl, for which colour and Lorentz structure are
implicit.

The catalogues of ∆L = 2 operators are lists of operators of type 3 in the above sense,
since they are only distinguished on the basis of field content and SU(2)L structure. Thus,
the operators O3a and O3b = LiLjQkd̄H lεikεjl, for example, are understood to stand in for
a large family of operators of types 1 and 2. In this case these differ in Lorentz structure
(since the colour contraction is unique), and almost all of them are linearly dependent.
They are related to each other by Fierz and SU(2)-Schouten identities, and can in general
be related to other dimension-seven operators such as (d̄L)(LDū†) and (LL)H�H through
field redefinitions involving the classical equations of motion (EOM) of SM-fermion and
Higgs fields. (Operators related by these kinds of field redefinitions lead to identical S-
matrix elements [41].) The total number of independent operators of type 1 can be found
using Hilbert-series techniques [42–46], which give 2n4

f independent operators with field
content L2Qd̄H with the methods of ref. [45]. These can be arranged into two terms with
the Lorentz structure of the operators chosen such that the flavour indices don’t have any
permutation symmetries [47]:

O(LQ)(Ld)
3a
rstu

= (LirQkt )(Ljsd̄u)H lεijεkl, (2.7a)

O(LQ)(Ld)
3b
rstu

= (LirQkt )(Ljsd̄u)H lεikεjl. (2.7b)

From the perspective of ∆L = 2 phenomenology, the SU(2)L structure of the operators
is most important. This can be seen in the following way: given a non-zero value for the

3These correspond to operators, terms and (roughly) types of operators in the convention of ref. [40].
4Although the colour structure is unique here, this is not true of the Lorentz structure.
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coefficient of such an operator, the SU(2)L structure is sufficient to tell at how many loops
the neutrino self-energy or neutrinoless-double-beta-decay diagrams will arise, and what
they will look like. Considering the example of operators O3a and O3b introduced above,
it is clear that no component of O3a contains two neutrino fields. Therefore, the Weinberg
operator will be generated by one-loop graphs involving W bosons, which are additionally
suppressed by powers of the weak coupling g. This coupling and loop suppression leads
to inferred values of the new-physics scale characterising the operators O3a and O3b that
differ by three orders of magnitude. On the other hand, predictions for the neutrino-mass
scale from operators with different Lorentz structures differ only by O(1) factors [18].

Thus, our main goal is to find particle content in the UV that generates particular
SU(2)L structures of ∆L = 2 operators at the low scale through tree graphs. In this way, we
organise the catalogue of radiative neutrino-mass models by the number of loops in the neu-
trino self-energy diagram, or equivalently, by the implied scale of the new physics. In this
sense, exploding the operator O3a, for instance, means finding the combinations of heavy
field content that generate an operator of type 2 with SU(2)L structure 3a. This generated
operator will not in general be O(LQ)(Ld)

3a of eq. (2.7), but will be expressible as a linear
combination of O(LQ)(Ld)

3a and O(LQ)(Ld)
3b , or any other chosen spanning set of operators.

This last point highlights the importance of the operator basis in talking about the
completions of operators. A completion of an operator O is a model generating a non-zero
value for the operator coefficient CO at the high scale. Even a change of basis that leaves
O unchanged will in general change CO, so one cannot talk about the completions of O
in vacuo, apart from the other operators which together constitute the EFT. Restricting
to the case of tree-level matching, after eliminating the heavy fields through their EOM,
a UV model will generate some structure organically, which we call the organic operator,
and this must then be matched onto the operator basis to extract coefficients. Our goal
here is not to perform this matching onto a complete set of operators. Instead, we work
with an implicitly overcomplete set of operators and define a convention that allows us to
speak unambiguously about the UV models that might give rise to an operator in the set.

The existing catalogues of ∆L = 2 operators enumerate operators of type 3 with def-
inite SU(2)L-structure. The different isospin contractions are constructed by contracting
indices in all possible ways with the invariant ε tensor. Operators with symmetric combina-
tions of indices [which come about from non-trivial exotic irreps of SU(2)L] generate organic
operators in general expressible as many linear combinations of different operators in the
spanning set. One such combination is sufficient for our purposes, and we choose the one
implied by the convention that non-trivial irreps never give rise to fields contracted with an
ε symbol. We now illustrate this with an example from the dimension-six SMEFT below.

An overcomplete spanning set of two-Higgs-two-derivative operators is

O(1)
H2D2 = H̃ iH̃j�HkH lεikεjl, (2.8a)

O(2)
H2D2 = H̃ iHj�H̃kH lεijεkl, (2.8b)

O(3)
H2D2 = H̃ iHj�H̃kH lεikεjl, (2.8c)

O(4)
H2D2 = H̃ iHj�H̃kH lεilεjk. (2.8d)
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The renormalisable UV models of interest are a scalar SU(2)L triplet with unit hypercharge
Ξ1 ∼ (1,3, 1)S , as well as a triplet and a singlet with vanishing hypercharge: Ξ ∼ (1,3, 0)S
and S ∼ (1,1, 0)S . We envisage integrating these out from an interaction Lagrangian like

−L ⊃ H̃ iHj(xSεij + yΞ{kl}εikεjl) + (zH iHjΞ̃{kl}1 εikεjl + h.c.), (2.9)

with couplings x, y, z ∈ C. They will generate organic operators that can be written as
linear combinations of the operators listed above

S : x2

M2
S
O(2)
H2D2 , (2.10a)

Ξ : y2

M2
Ξ

[
O(3)
H2D2 +O(4)

H2D2

]
, (2.10b)

Ξ1 : |z|2

M2
Ξ1

O(1)
H2D2 , (2.10c)

up to O(1) factors. Of course, these can then be matched onto a genuine basis of operators
like

Oφ� = O(2)
H2D2 = H̃ iHj�H̃kH lεijεkl, (2.11a)

OφD
IBP∼ O(3)

H2D2 = H̃ iHj�H̃kH lεikεjl, (2.11b)

but this is unnecessary for our purposes. (Note here that IBP stands for integration by
parts.) The construction of the organic operator is in general not unique, since we work with
an overcomplete set of operators. Here, for example, O(3)

H2D2 +O(4)
H2D2 = 2O(3)

H2D2 −O(2)
H2D2 ,

indicating clearly the redundancy of one of the operators. The convention that non-trivial
representations never give rise to fields contracted with an ε symbol implies O(2)

H2D2 should
not be chosen to feature in eq. (2.10b). Thus, we call Ξ a completion of operatorsO(3)

H2D2 and
O(4)
H2D2 , even though the operator it generates can also be expressed as a linear combination

of O(2)
H2D2 and O(3)

H2D2 . This convention allows us to talk unambiguously about completions
of the ∆L = 2 operators in a way that makes their implications for neutrino mass most
clear, while avoiding constructing a complete basis all the way up to dimension eleven.

We remark that this discussion can be extended to operators of type 3 with explicit
SU(3)c-structure with minor modifications. Here, irreducible representations are furnished
by traceless tensors with raised and lowered symmetrised indices, which can be written as
sums of operators in which contractions between raised and lowered indices are written with
the δ symbol. The tracelessness condition can be enforced by additionally allowing contrac-
tions with the three-index ε symbol, and choosing that non-trivial representations never
give rise to fields contracted with a δ, i.e. always choosing [λA]ac [λA]bd = 4

3δ
a
dδ
b
c − 2

3εcdeε
abe

over [λA]ac [λA]bd = 2δadδbc − 2
3δ
a
c δ
b
d. Explicit examples involving non-trivial colour contrac-

tions are presented in section 3.1.1 and in the publicly available notebook we introduce in
section 3.3, which contains complete matching calculations for some of the dimension-six
operators in the SMEFT.
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2.3 Operator taxonomy

The list of gauge-invariant, ∆L = 2 operators first provided by BL runs from O1 to O60 [30].
Each numbered operator is distinguished on the basis of field content, although each in
general corresponds to a family of operators differing in SU(2)L-, Lorentz-, and flavour-
structure. The operators are constructed from SM fermion fields and Higgs fields only and
no internal global symmetries are imposed on the operators aside from baryon number. To
violate lepton number by two units, each operator must contain at least one ∆L = 2 fermion
bilinear: one of {LL,Lē†, ē†ē†}. The operators enter the list at odd mass dimension [48]
and only up to dimension eleven, since it was thought that higher dimensional operators
generally imply neutrinos insufficiently heavy to meet the atmospheric lower bound. (It
seems that a truly exhaustive treatment requires operators of higher mass-dimension [49],
and this is discussed in detail in section 4.1.) An additional 15 operators (acknowledged
by BL, but left implicit) of mass dimension nine and eleven were added to the list by
dGJ, increasing the total number to 75. These are constructed as products of lower-
dimensional operators with the dimension-four Yukawa operators of the SM. Thus, they
have the same field content as other operators in the list but carry different numerical
labels. Latin subscripts were introduced by the same authors to distinguish different SU(2)L
contractions. The number of type-3 operators counted in this way is 129. Inclusion of
the all-singlets operator ē†ē†ū†ū†d̄d̄, whose tree-level completions were recently written
down [50], brings the tally to 130. Even in the extended dGJ scheme, product operators
of the form O ·H†iH i are left implicit.

Here we work with a modified classification scheme which differs mildly from those
used in the previous analyses. We list all operators explicitly, including product operators
built from lower-dimensional ones and SM Yukawas or H†H, and enforce that operators
with the same field content carry the same numerical labels. We adopt the convention of
labelling SU(2)L-structures with an additional Latin subscript.5 We have a greater number
of such structures for each numbered operator than the other catalogues because we include
product-type operators and new structures which may have been missed previously. We
attempt to ensure that these new operators have labels that do not break compatibility
with these and other previous works using lepton-number violating operators. A small
exception is the case where only one structure is listed by BL and dGJ. In such situations
this corresponds to operator a in our classification.

We find some new non-product operators not appearing in previous classifications
even implicitly. These include new SU(2)L-structures but also new numbered operators.
Dimension-eleven product-type operators built from a lower-dimensional operator and fac-
tors of H†H that are not given numerical labels in the previous catalogues are given primed
labels here, a common convention in the literature. In cases where a number of such op-
erators carry the same field content, we prefer to use a new numerical label. For example,
operators O′5a = O5a(H†H) and O′′3a = O3a(H†H)2 have the same field content. They
appear in our list as different SU(2)L-structures of the new numbered operator O80.

5We note that this introduces a notational ambiguity with colour indices, the resolution of which must
be based on context.
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This means that the 75 numbered type-3 operator classes presented by dGJ now cor-
respond to 82 classes and additional SU(2)L-structures {a, b, c, . . .}. We present our list of
∆L = 2 operators containing SM fermion and Higgs fields in table 8. Product operators
as presented in our tables must be read with care. This is just a convenient shorthand to
represent the field-content of an operator and illustrate that isospin indices are internally
contracted. For example, by writing O5b = O1Q

id̄H̃jεij , we do not mean to suggest that
Lorentz indices must be contracted internally to O1 and the down-type Yukawa. We discuss
the additional information presented in table 8 as it is introduced throughout the paper.

The table also includes a list of ∆L = 2 operators involving derivatives up to dimension
nine. The pertinent operators at dimension seven were mentioned in ref. [30] and listed in
the context of a complete basis of operators for the dimension-seven SMEFT in ref. [47].
The operators of higher dimension were excluded from the earlier catalogues of ∆L = 2
operators on the basis that they may be less important for neutrino-mass model building,
although they have appeared recently [51]. We find that opening up these operators does
yield novel neutrino-mass models, although this is not clear at dimension seven. The
derivative operators are also interesting from a broader phenomenological perspective, for
example in the study of lepton-number-violating hadron decays, see e.g. ref. [52]. The
procedure we use for identifying these operators draws from the earlier ∆L = 2 catalogues,
Hilbert series techniques [42–46] as well as more recent automated approaches [40, 53–57].

Although operators related by field redefinitions through the classical EOM lead to
identical S-matrix elements, we do not account for these redundancies in our catalogue of
operators containing derivatives. This is done for two reasons: (1) we are ultimately inter-
ested in comparing Green’s functions in the effective theory to those in various compatible
UV theories; and (2) we are only interested in tree-level completions of effective operators,
and EOM redundancies may relate operators generated from tree graphs to those gener-
ated by loops [58, 59]. Redundancies arising from integration by parts (IBP) are also not
accounted for, and it should be understood that derivatives act on the operators listed in
table 8 in all possible ways. In our listing, we prefer to act them in whichever way max-
imises the number of non-vanishing SU(2)L structures, so that they can all be labelled.
Often this means that derivatives will be carried by Higgs fields.

3 Tree-level matching forwards and backwards

In this section we outline the procedure we use for opening up operators of the sort intro-
duced in section 2.2 and section 2.3 for the purpose of exploratory model building. It also
includes prefatory comments on tree-level matching for scalars and fermions, and a dis-
cussion of the tree-level completions of operators containing derivatives and field-strength
tensors. We highlight that the results of this section are not specific to ∆L = 2 physics,
and the model-building prescription can be applied (high-dimensional) operators in other
EFTs. To illustrate the point, we apply the methods to an EFT unrelated to neutrino
masses: the SMEFT at dimension-six.

The model-building framework introduced and used in ref. [60] assumes that the new
heavy fields introduced in the UV completions are only scalars, vector-like Dirac fermions

– 11 –



J
H
E
P
0
1
(
2
0
2
1
)
0
7
4

or Majorana fermions. This particle content ensures the models are genuinely UV complete
in the sense that their predictions can be extrapolated to arbitrarily high energies. Chiral
fermions will in general introduce gauge anomalies, and the generation of their masses may
introduce unnecessary complications. This treatment of exotic fermion fields is also used in
ref. [38], where a tree-level dictionary of the dimension-six SMEFT is written down. Exotic
Proca fields will still need to be interpreted in the context of some larger UV framework
(e.g. an extended gauge group), and so these are not introduced in our approach. Thus
for the remainder of the paper we limit the discussion of building UV-complete models to
those containing only scalars and non-chiral fermions.

3.1 Effective Lagrangians and tree-level completions

Suppose one has a theory with light particle states described by fields πi and heavy states
described by Πi with a Lagrangian of the form

LUV[π,Π] = Lkin[π,Π] + Lint[π,Π], with
Lint[π,Π] = L l[π] + L h[Π] + L lh[π,Π].

(3.1)

Below the threshold for Πi production, an effective description of the theory can be used
that involves interactions only between the light fields. This effective theory is described
by a Lagrangian Leff[π] involving interactions between the πi that correspond to diagrams
in the full theory containing only heavy internal propagators and light external states. At
the classical level, Leff can be written down by integrating out the Πi. Perturbatively this
corresponds to expanding the heavy propagators ∆ in powers of momenta on the heavy
mass scale6 Λ, such that

∆ =



− 1
Λ2

(
1 + p2

Λ2 + · · ·
)

for

−δ
β
α

Λ

(
1 + p2

Λ2 + · · ·
)

for β α

− ip · σ̄
α̇β

Λ2

(
1 + p2

Λ2 + · · ·
)

for β α̇

. (3.2)

In this notation, the arrow-preserving propagator corresponds to the part of the regular
four-component fermion propagator proportional to momentum, while the arrow-violating
one is the part proportional to the fermion mass. Expressions for the fermion propagators
with reversed arrows follow from σ̄µ → σµ and interchanging dotted and undotted indices
(see ref. [39] section 4.2 for the Lorentz structure).

Equivalently, the integration can be performed using the classical EOM of the Πi. For
some heavy field Π, the linearised solution to its classical EOM can be used to remove it
from the Lagrangian completely. This procedure is mildly different for scalars and fermions,
and we briefly outline these separately below. In both cases, we begin with a Lagrangian

6We note that some UV scenarios may have more than one characteristic scale. In this case Λ can be
understood as an effective scale which may not necessarily correspond to the mass of a specific particle.
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LUV for which we imagine that kinetic and mass mixing terms between heavy and light
fields have been removed.

There are tree-level contributions to L eff as long as there are interaction terms linear
in Π. For scalar Π, the UV Lagrangian contains the terms

LUV[Π, π] ⊃ Π†(−D2 −m2
Π)Π +

(
Π∂L lh

∂Π + h.c.
)
, (3.3)

where ∂L lh/∂Π is a function only of light fields, and we are neglecting interactions of the
form Π†Πf(π) for the sake of conciseness. The EOM are

(−D2 −m2
Π)Π = −∂L lh

∂Π† +O(Π2) , (3.4)

which can be solved for Πcl, the classical field configuration, by inverting the differential
operator on the l.h.s. of eq. (3.4) and expanding in D2/m2

Π:

Πcl = − 1
m2

Π

(
1− D2

m2
Π

+ · · ·
)
∂L lh

∂Π† . (3.5)

This solution can be substituted back into eq. (3.3) to give interactions between light fields
in the tree-level effective Lagrangian:

Leff[π] ⊃ −∂L lh

∂Π
1
m2

Π

(
1− D2

m2
Π

+ · · ·
)
∂L lh

∂Π† . (3.6)

Many concrete examples of this procedure can be found in the literature, see e.g. ref. [61].
The expansion in D2/m2

Π corresponds to the expansion in p2/Λ2 in the first case of eq. (3.2),
showing the expansion of the scalar propagator.

Next we sketch out the procedure for a Dirac fermion Π + Π̄†, where Π and Π̄ are
separate two-component spin- 1

2 fields transforming oppositely under GSM. In this case, the
UV theory is described by a Lagrangian like

LUV[Π, π] ⊃ iΠ†σ̄µDµΠ + iΠ̄†σ̄µDµΠ̄ +
(

Π∂L lh

∂Π + Π̄∂L lh

∂Π̄
−mΠΠ̄Π + h.c.

)
(3.7)

Varying the action with respect to the heavy fields gives two coupled EOM:

iσ̄µDµΠ−mΠ̄† + ∂L lh

∂Π† = 0 , (3.8)

iσ̄µDµΠ̄−mΠ† + ∂L lh

∂Π̄†
= 0 . (3.9)

Substituting eq. (3.8) into eq. (3.9) gives a second-order partial differential equation in Π,
analogous to eq. (3.4). Inverting the differential operator in a similar way gives

Πcl
β = 1

m2
Π

(
εαβ +

1
2Xαβ −D2εαβ

m2
Π

+ · · ·
)iDαα̇∂L lh

∂Π†
β̇

εα̇β̇ +mΠ
∂L lh

∂Π̄α

 , (3.10)
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where the field-strength tensor comes about from a structure like

[σµσ̄ν ] βα DµDν = ηµνDµDνδ
β
α − 2i[σµν ] βα DµDν (3.11)

= D2δ β
α −

1
2X

β
α . (3.12)

Here, and later in this section, the replacement Π̄→ Π should be understood for Majorana
Π. Each contribution corresponds to a particular kind of propagator in the perturba-
tive picture. The first term in the last parenthesis of eq. (3.10) results from the fermion
propagator proportional to momentum: the arrow-preserving fermion propagator shown
as the last case of eq. (3.2). The second term in the same parentheses stems from the
fermion propagator proportional to the mass, corresponding to the arrow-violating prop-
agator shown in the middle case of eq. (3.2). Replacing Π in eq. (3.7) gives the tree-level
effective Lagrangian with the heavy fermion integrated out:

Leff[π] ⊃ ∂L lh

∂Πβ

1
m2

Π

(
εαβ +

1
2Xαβ −D2εαβ

m2
Π

+ · · ·
)
iDαα̇∂L lh

∂Π†
β̇

εα̇β̇

+ ∂L lh

∂Πβ

1
m2

Π

(
εαβ +

1
2Xαβ −D2εαβ

m2
Π

+ · · ·
)
∂L lh

∂Π̄α

.

(3.13)

As shown in eqs. (3.6) and (3.13), expanding in powers of derivatives on heavy masses
leads to a tower of local operators of increasing mass dimension di organised as a power
series in the inverse heavy scale:

Leff[π] = L l[π] +
∑
i

Ci
Λdi−4Oi[π]. (3.14)

The Ci are dimensionless coefficients which are in general calculable if one knows the high-
energy theory. We are interested in the case where the UV theory is unknown. Here, the
EFT is a useful way to encapsulate the effects of the entire class of possible UV theories
in a model-agnostic way. We advocate that it is also a practical model-building tool,
since the operators provide information about the types of UV models from which the
EFT may arise. Subject to a number of assumptions, the possible UV models implied
by an effective operator can be enumerated by building all possible tree graphs with an
external-leg structure reflecting that of the operator. The quantum numbers of the heavy
propagators can then be read off by imposing Lorentz- and gauge-invariance at every vertex,
starting with vertices with two or three (for scalars) external edges. This is equivalent to
exploring all of the possible ways the light fields may have been grouped into terms in
L [π,Π] and distributed in the products of eqs. (3.6) and (3.13). In the following we
develop this picture into a precise algorithm.

3.1.1 Exploding operators

As an introductory example we use the Weinberg operator O1 = (LiLj)HkH lεikεjl, whose
minimal tree-level completions are the canonical seesaw models: N ∼ (1,1, 0)(2,1), Ξ1 ∼
(1,3, 1)S and Σ ∼ (1,3, 0)(2,1). These can be derived by considering the allowed ways of
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decorating the two tree-level two-scalar-two-fermion topologies with the field content of the
operator. These topologies are shown in figure 1 along with the possible ways of furnishing
the topologies into Feynman diagrams, each corresponding to a seesaw model. As discussed
above, this is equivalent to grouping fields together as they may have arisen in the partial
derivatives of eqs. (3.6) and (3.13). For the Weinberg operator, these groupings are:

LiLjHkH lεikεjl ⇒ ∂L lh

∂Nα
⊇ xrLαir Hkεik ∼ N, (3.15a)

LiLjHkH lεikεjl ⇒ ∂L lh

∂Ξkl1α
⊇ [yrs(L{ir Lj}s ) + κH̃ iH̃j ]εikεjl ∼ Ξ†1, (3.15b)

LiLjHkH lεikεjl ⇒ ∂L lh

∂Σkj
α

⊇ zrLα{ir H l}εikεjl ∼ Σ, (3.15c)

where we use ∼ to mean ‘transforms as’ under SU(2)+ ⊗ SU(2)− ⊗GSM. Each pattern of
contractions corresponds to a topology, with each individual grouping of the fields corre-
sponding to a vertex, or equivalently, a term in the ∆L = 2 UV Lagrangian. The explicit
form of these terms can be written down by keeping track of the isospin indices as in
eq. (3.15), and expanding implicit index structures in all possible ways (i.e. decomposing
products of fields into irreducible representations), consistent with our model building as-
sumptions. (In our case this means keeping only scalar and fermion Lorentz irreps.) In
eq. (3.15c), the indices i, l are symmetrised since this is the only way the component LiH l

(with i, l not antisymmetric under exchange) can appear in the Yukawa interaction LΣH.
Note that we adopt the convention that the conjugate exotic field couples to the contracted
fields in the operator. This means that Ξ†1 transforms like L{iLj}, as implied in eq. (3.15b),
but the renormalisable term in the UV theory which corresponds to the vertex is LΞ1L.
For Majorana fermions there is only one state which can couple in both cases, while for a
Dirac fermion ψ + ψ̄† we arbitrarily choose ψ̄ to couple to the contracted fields.

This process of grouping fields into renormalisable interaction terms can be conve-
niently expressed with the following replacement rules:

ψα1ψ2α → Φ†, φ1φ2 → Φ†, φ1φ2φ3 → Φ†, φψα → Ψ̄α, ψα1ψ
†α̇
2 → 7, (3.16)

with free raised or lowered gauge-indices (suppressed above) of the same type always sym-
metrised on the right-hand side. We are using Φ and Ψ̄ to represent a heavy scalar and
fermion; while the lowercase φi and ψi represent scalar and fermion fields that may be light
or heavy. Note that Ψ̄ = Ψ for a Majorana fermion. The mark 7 signals that the completion
should be discarded, in this case because it represents a model involving a heavy vector
field. The repeated application of these rules allows us to build explicit computational
representations of the ∆L = 2 Lagrangian and diagram topology for a completion.

We move on with a more involved example that also involves colour structure: a
completion of O12 = LLQ†Q†ū†ū†. According to table 8 there are two SU(2) structures.
Both of these structures need to be opened up to enumerate all of the completions, and
models will in general generate sums of these with a specific Lorentz structure, as per the
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φ

ψ2

ψ1

φ1

φ2

ψ

ψ1

φ1

ψ2

φ2

N

Li

εik
Hk

εjl

Lj

H l

Ξ
{kl}
1

Li

εikεjl

Lj

Hk

H l

Σ{kj}

Li

εikεjl

H l

Lj

Hk

Figure 1. Above: scalar-only and fermion-only topologies which complete dimension-five two-
scalar-two-fermion operators, like the Weinberg operator O1. Below: the three minimal tree-level
completions of O1, each corresponding to a different permutation of the fields on the external lines
of the topologies. These are traditionally called (read from left to right) the type-I, type-II and type-
III seesaw models. The SU(2)L indices are included explicitly to distinguish type-I and type-III,
while making a more clear connection to eq. (3.15). The exotic propagators are shown in bold.

discussion in section 2.2. We choose to look at

O12a
rstuvw

= L
r

iL
s

jQ̃
t

k
Q̃
u

l
ū
v

†ū
w

†εikεjl (3.17)

and begin with some preliminary comments. There are only two topologies that accom-
modate tree-level completions for six-fermion operators. A scalar-only topology (shown in
figure 2a), where pairs of fermions are contracted into scalars which meet at a trilinear
vertex, and a scalar-plus-fermion topology (shown in figure 2b) in which two exotic scalars
come about by fermion contractions and each meets another SM fermion. Since we are
not interested in introducing exotic vector fields, contractions between fermions must come
about by grouping only fields with dotted or undotted indices, i.e. from (2,1) ⊗ (2,1) or
(1,2)⊗ (1,2) contracted into a SU(2)±-scalar representation with an epsilon tensor. These
contractions fix the Lorentz-structure of the generated type-2 operator. For O12a it is clear
that all scalar-only completions will contain the triplet scalar Ξ1, since the two L fields in
the operator are the only fermions carrying undotted indices, making the contraction

Ξ†1∼(1,3,−1)

LiLjQ̃kQ̃lū†ū†εikεjl (3.18)

unique. For the quark fields there are a number of choices to be made. First, the choice
of grouping. There are only two choices for how to group the quark fields: as (Q̃Q̃)(ū†ū†)

– 16 –



J
H
E
P
0
1
(
2
0
2
1
)
0
7
4

ψ2

ψ1

ψ3

ψ4

ψ5 ψ6

(a)

ψ2

ψ1

ψ5

ψ6

ψ3 ψ4

(b)

Figure 2. The two tree-level topologies relevant to six-fermion operators. For some operators, some
fermion arrows may be reversed. The exotic propagators are shown in bold. (a) The scalar-only
topology. (b) The scalar-plus-fermion or central-fermion topology.

or (Q̃ū†)2. The second choice is of the colour representations. These can be explored
recursively, or all invariants can be constructed and each opened up separately, following
the conventions of section 2.2. We opt for the latter case, and enumerate the colour
contractions

O12aε = LiLjQ̃kaQ̃
l
bū
†cū†dεikεjlε

abeεcde, (3.19a)
O12aδ = LiLjQ̃kaQ̃

l
bū
†cū†dεikεjlδ

a
c δ
b
d. (3.19b)

The colour sextet combinations Q†{aQ
†
b}ū
†aū†b come about as a sum of flavour permutations

of the left-handed quark doublets in O12aδ, and the octet combinations (Q†λAū†)2 as a
linear combination of O12aδ and O12aε. Thus, we understand contractions like Q†aQ

†
bδ
a
c δ
b
d as

coming about from colour-sextet scalars, and Q†aū†bδac δdb or Q†aū†bεbceεade as coming about
from octets.

Finding all of the completions of O12a involves contracting all fields in all possible
ways for each colour contraction. We work through the example of a particular scalar-only
completion of O12aδ in figure 3. Each step follows the grouping of fields into a vertex, the
Lagrangian term this grouping corresponds to, and the evolving topology of the completion
under the replacement rules of eq. (3.16). At intermediate stages in the explosion of the
operator, the theory described is still effective because some vertices still correspond to
irrelevant operators.7 The procedure stops once all vertices have mass-dimension d ≤ 4.
We replace the contracted fields in the operator with the irreducible representation that,
following the restrictions described in section 2.2, could give rise to the contraction. This
will in general require the addition of other structures,8 although this is not the case here.

7We note that one can make a connection here to the framework of ref. [62], where neutrino-mass
models are classified and studied in the context of single-field extensions of the SM, corresponding to the
first intermediate step in our completions procedure. Similar approaches to SMEFT extensions have also
been considered elsewhere in the literature, e.g. [63].

8The organic operator of the model can be written as a linear combination of these other operators and
the operator being opened up, and all of these share the model as a completion in our sense.
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The operator generated by the model highlighted in figure 3 is

(L
r

{iL
s

j})(Q†ia
t
Q†jb
u

)(ū
v

†{aū
w

†b}) = O12aδ
rstuvw

+ O12aδ
srtuvw

+ O12aδ
rsutvw

+ O12aδ
srutvw

, (3.20)

with the same Lorentz structure carried through O12aδ. The relevant part of the ∆L = 2
Lagrangian of the model can be read directly off each contraction

−L∆L=2 ⊇ x{rs}(Lir L
j

s
)Ξ1{ij} + y{tu}(Q̃ka

t
Q̃lb
u

)Υ{ab}{kl} + z[vw](ūv
†aū
w

†b)Ω4{ab}

+ κΞ1{ij}Υ
{ab}
{kl}Ω4{ab}εikεjl + h.c.,

(3.21)

although the generation of the entire Lagrangian implied by the field content requires
a program implementing group-theory methods, spin-statistics and tensor algebra (see
section 3.3). This particular model inherits the high level of symmetry in the effective
operator. This introduces symmetries in the Yukawa couplings of the model, reducing the
total number of free parameters.

Given an effective operator, we have established a simple rule for reducing it to a
renormalisable interaction through a processes of contracting fields into each other, cor-
responding diagrammatically to pairing the fields off into Yukawa or scalar interaction
vertices according to a system of rewrite rules. Applying these groupings in all possible
ways and following quantum numbers through index structure allows one to efficiently
write down not only the particle content generating the operator at tree-level, but also
the pertinent interaction terms in the Lagrangian. In the next section, we discuss how to
expand this rule to reducing operators containing derivatives.

3.2 Tree-level completions of derivative operators

In the following we broaden the discussion to exploratory model building through effective
operators containing (covariant) derivatives and field-strength tensors. We begin by sum-
marising the main results of this section. We argue that (if only scalars and fermions are
introduced) a large class of such operators do not contribute new completions to the pool
of models. That is, models derived from these operators could be found by opening up
operators without derivatives and field strengths. With notable exceptions, it is usually
sufficient to study only single-derivative operators. Some of the derivative operators also
admit fermion-only completions, which are otherwise only found for the Weinberg-like op-
erators [34]. The completion of operators containing derivatives has been studied before in
the context of ∆L = 2 physics [64–66], and our work expands on this.

3.2.1 Exploding derivative operators

In our setup, derivatives in effective operators arise at tree-level by the expansions given in
eqs. (3.13) and (3.6). It is clear that derivatives occur in one of two ways: (1) in pairs as D2

or X from next-to-leading order terms in the EFT expansion, or (2) as single derivatives
contracted with fermions ( /D in traditional notation) coming about from arrow-preserving
fermion propagators. The job of finding the completions of operators containing derivatives
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ū

L ⊃ x(LiLj)Ξ1{ij} + y(Q̃k
aQ̃

l
b)Υ

{ab}
{kl}
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Figure 3. The graph visualises our completion procedure by showing some of the possible ways
to explode the operator O12aδ = LiLjQ†iaQ

†
jbū
†aū†b. The options are only followed to a fully UV-

complete model on one branch, shown in bold with yellow edge labels. In each step groups of fields
are contracted at a vertex, fixing the properties of the exotic field as well as the structure of the
term describing the interaction, shown alongside each diagram. The effective operator is gradually
opened up until each vertex in the diagram corresponds to a term with mass-dimension d ≤ 4.
Opening up the operator fully requires repeating this procedure for all possible contractions. In
this case this includes other scalar-only completions and scalar-plus-fermion models. We also show
steps that we choose to forbid in our approach in red, like the vector contraction giving rise to the
vector leptoquark U2 in the figure. Flavour indices have been suppressed.
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is therefore equivalent to enumerating all possible tree graphs with the appropriate external-
leg structure including arrow-preserving propagators proportional to momentum for heavy
fermion fields and taking powers of momentum from past the leading order in the expansion
of all propagators. As in the non-derivative case, the quantum numbers of the heavy fields
can then be deduced by imposing Lorentz and gauge invariance at each vertex.

It is not always guaranteed that a tree-level topology with internal fermion and scalar
lines exists for an effective operator containing derivatives. This is in contrast to the
non-derivative case, where this is guaranteed for all operators of mass dimension larger
than four. For example, at dimension seven there are ∆L = 2 effective operators like
d̄αū

†
α̇L

iβDαα̇Liβεij containing four fermions: three with undotted indices and one with a
dotted index. In this case there is no tree-level topology that allows a arrow-preserving
fermion propagator to give rise to the derivative, and so the operator can only be generated
with loops. We call such operators non-explosive. This distinction between tree and loop
operators has been discussed in the literature in the context of the dimension-six operators
of the SMEFT, see e.g. [38, 58, 59], and more recently for the dimension-eight operators [67].

The derivatives originating from arrow-preserving fermion propagators in the UV the-
ory enter the effective Lagrangian through the first term in eq. (3.13). Here, the deriva-
tive acts on an object with which it shares a contracted index, i.e. it is contracted as
(2,2)⊗ (1,2) = (2,1) with the object carrying the index β̇. This object must be a (1,2)-
fermion if it comes from a renormalisable interaction, which in our case is uniquely a
Yukawa interaction. Thus,

∂L lh

∂Π†
β̇

=
∑
i

ψ†β̇i φi, (3.22)

with ψi and φi defined as in eq. (3.16). For example, a structure like Dαα̇ψ†β̇1 φ1εα̇β̇ could
enter an effective operator by integrating out a heavy fermion Π that couples through
L ⊃ Π†ψ†1φ1. For clarity, the effective Lagrangian looks like

Leff[π] ⊃ ∂L lh

∂Πβ

1
m2

Π
Dαα̇∂L lh

∂Π†
β̇

εαβεα̇β̇ + · · · (3.23)

= ∂L lh

∂Πβ

1
m2

Π
Dαα̇

(
ψ†β̇1 φ1 + · · ·

)
εαβεα̇β̇ (3.24)

in this case. The fields φi and ψi need not be light, and could have arisen from the
contraction of fields in a complicated way. For example, φ1 may have come from the
contraction of two light fermions φ1 ∼ ξ1ξ2. This situation is visualised diagrammatically
in figure 4a. The figure shows the ξi fermions coupling to the heavy φ propagator, which
in turn couples to ψ†1 leading to the arrow-preserving fermion propagator for the heavy Π
carrying momentum kαα̇. It is clear from eq. (3.24) that the derivative acts on both the
fermion and the scalar, reflecting the fact that in the diagram k is the sum of the ψ and φ
momenta. So, derivatives acting on fermions or scalars can be grouped off into a Yukawa
interaction in this way, leaving a arrow-preserving fermion propagator in their wake. This
corresponds to the replacement rules

Dαα̇(ψ†α̇)φ→ Πα, Dαα̇(ψ†α̇φ)→ Πα, Dαα̇(φ)ψ†α̇ → Πα. (3.25)
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φ1

kαα̇

Π

ξ1

ξ2

ψ1α̇

∂L lh

∂Πα

(a)

φ1

pβα̇
ψ1

k̄α̇α

Π

ξ1

ξ2

ψβ
2

φ2

∂L lh

∂Πα

(b)

Figure 4. (a) The diagram shows an example opening of an operator containing at least one
derivative. The derivative can be understood as arising from the leading-order term in the expansion
of the arrow-preserving fermion propagator, emphasised in the diagram. As shown, the fields ξi
and ψ1 are external and therefore light, but in general they could themselves be heavy propagators.
(b) The case where the fermion ψ1 is heavy, coupling to the light fields ψ2 and φ2. The σ-matrix
structure of the propagators is in accordance with the conventions of ref. [39]. Here, the Lorentz
structure is such that the momenta are contracted, which arises from contractions of derivatives
which share one contracted index.

We highlight that the arrow-preserving propagator implies that only one chirality of the
Dirac fermion Π is necessary for LNV in these models. However, we still only work with
vector-like fermions in our completions to guarantee anomaly cancellation and straightfor-
wardly give them large masses.

In an effective operator the derivative may act on a fermion with which it does not
share a contracted index. For example, in the model shown in figure 4a, the effective
operator at the low scale looks something like

Dββ̇(ξα1 ξ2αψ
†
1β̇)∂L lh

∂Πβ
= Dββ̇(ξα1 )ξ2αψ

†
1β̇
∂L lh

∂Πβ
+ · · · (3.26)

although as long as the operator is generated at tree-level, the term with the derivative
acting on ψ† will always also be present as long as it is not removed by a field redefinition
involving its classical EOM. Our approach is the following: act the derivative in all possible
ways on the fields constituting the effective operator and discard the topologies in which
a contraction like (Dαα̇ψβ1 )φ is made. After a UV-complete model is derived, the operator
it implies will still have the form of the one on the left-hand side of eq. (3.26), so no
information is lost. This implies the rules

(Dαα̇ψβ)φ→ 7, (Dαα̇ψβφ)→ 7, (Dαα̇φ)ψβ → 7, (Dαα̇φ1)φ2 → 7 . (3.27)
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The first parentheses of eqs. (3.13) and (3.6) contribute powers of D2 or X to operators
in the effective Lagrangian. They contribute the rules

(Dαα̇ψβ1 )(Dαα̇ψ2β)→ Φ†, (Dαα̇φ1)(Dαα̇φ2)→ Φ†

(Dαα̇ψβ)(Dαα̇φ)→ Ψ̄β , (Dαα̇φ1)(Dαα̇φ2)φ3 → Φ†
(3.28)

to those discussed previously. We intend these to stand in for similar rules like e.g. φ1�φ2
as well. For the field-strength contractions, there is the additional requirement that one or
both of the fields in the contraction be charged under the corresponding gauge interaction,
but these cannot be contracted into a gauge singlet, since the field-strength tensor comes
about from the anticommutator of the covariant derivatives acting on the exotic fermion.
These rules are

ψαi X
iβ
αjφ→ Ψ̄β

j , φXβ
αφ→ 7, ψαi X

iβ
αjφ

j → 7, (3.29)

where i and j stand in for fundamental indices of SU(2)L, SU(3)c, or no indices at all for
the field-strength tensor of U(1)Y .

Operators with derivatives coming about as this way, i.e. as D2 or X, are often redun-
dant from the perspective of model discovery, since they imply the existence of the leading-
order operator in which these derivatives do not appear. Thus, the tree-level completions
of these operators can be found by studying the lower-dimensional operators without those
derivatives or field-strength tensors. It may however be the case that the leading-order op-
erator is absent, in which case these operators may be important. For the nf = 3 SMEFT
with one Higgs doublet, we conjecture this can only come about from operators with a
structure like

OµH i∂µH
jεij , (3.30)

which vanishes when the derivative is removed. (Similar structures like LirLjsεij are non-
vanishing since there is an additional space of flavour indices to carry the antisymmetry.)
This exception does not apply to the case of field-strength tensors, since [Xµν , H] = 0
for all field strengths X. This is the justification for our earlier comments that operators
containing field-strength tensors are not interesting from the perspective of model discovery.

The replacement rules given in eq. (3.28) do not exhaust the possible Lorentz-structures
for two derivatives, scalars and fermions. The additional structures involve single indices
contracted between the derivatives, and others contracted into fermions. Diagrammatically,
we find that these combinations come about from fermion lines containing two arrow-
preserving propagators, each contributing a factor of momentum. This would be the case,
for example, if ψ in figure 4 were a heavy arrow-preserving propagator, as shown in figure 4b.
Here the rules are

(Dαα̇ψ1α)(Dββ̇ψ2β)εα̇β̇ → Φ†, (Dαα̇ψ)(Dββ̇φ)εα̇β̇ → Ψ̄β , other combinations→ 7.

(3.31)
In summary, exploding derivative operators can lead to novel models that would not

be found by exploding non-derivative operators. We have already seen that this happens
when a structure such as eq. (3.30) is present in the operator. It can also happen when
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the presence of an odd number of derivatives allows new topologies with novel chirality
structures. The presence of an even number of derivatives implies either that the derivatives
arose as D2 orX, which usually do not contribute new models, or else from the contractions
of structures like those in eq. (3.31). It is clear from figure 4b that in such cases, the two
arrow-preserving fermion propagators can be replaced with arrow-violating propagators,
and indeed these will generically be present since we work with vector-like fermions. So,
with the exception of operators with structures like eq. (3.30), studying single derivative
operators is sufficient for model discovery.

3.2.2 Derivative operator examples

Among the simplest derivative operators in the ∆L = 2 SMEFT is the dimension seven
operator

OD3 = Liαē
†
β̇
Hj(DH)αβ̇kH lεijεkl (3.32)

which we use as a paradigm for showing how single-derivative operators can be opened up.
We note that the operator’s tree-level completions have also been discussed in ref. [65]. The
placement of the derivative on the Higgs field is enforced by the unique SU(2)L contraction.
This is not generally true, and the derivative should be acted in all possible ways if it can
be. The contraction of (DH) into another Higgs is forbidden by eq. (3.27). Thus, the
(DH) must be contracted into a fermion. The options are

Liα(DH)αβ̇kεijεkl ∼ Σ†β̇jl and ē†
β̇
(DH)αβ̇k ∼ ∆̄αk

1 (3.33)

with the Dirac fermion ∆1 +∆̄†1 ∼ (1,2,−1
2) transforming like L under GSM. The field Σ is

the protagonist in the type-III seesaw model, and further contractions on the resulting oper-
ator Σ†jlē†HjH l lead to the models {Σ,∆1+∆̄†1} (from ē†H) and {Σ,Ξ1} (fromHH) in that
case. The second option in eq. (3.33) leads to the operator Li∆k

1H
jH lεijεjl, which is the

Weinberg operator with the second L replaced with the exotic vector-like lepton. This con-
traction is illustrated diagrammatically in figure 5a. It thus implies the same completions9

as O1, each along with ∆1+∆̄†1. This is expected since ē†(DH) transforms like L. There are
then a total of five completions, but four models, since two have the same particle content:
{Σ,∆1+∆̄†1}. In figure 5b we show how this can be seen as coming about from the fact that
the chirality structure of the diagram allows two positions for the arrow-preserving fermion
propagator. Note that this is not the case for the completion with the singlet fermion N .
Interestingly, there are two fermion-only models found: {N,∆1 + ∆̄†1} and {Σ,∆1 + ∆̄†1}.
Both of them contain seesaw fields, which is consistent with the proof of ref. [35] that mod-
els containing two exotic fermion fields must contain one of N or Σ if they violate lepton-
number by two units. Since the structure of the operator OD3 is unique, there is no work to
be done in writing down the organic operator generated by these models at the low scale.

We move on to a two-derivative operator example by studying a completion of

O18d = LiLjHkH l(DµH)m(DµH̃)nεijεkmεln, (3.34)
9This phenomenon is discussed in more detail in section 4.2.2.
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H
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Figure 5. (a) An intermediate topology representing the operator OD3 with all heavy fields except
∆1 integrated out. The contraction ē†H ∼ ∆†1 gives rise to an effective operator similar to the
Weinberg operator O1, shown in blue. This branch of the completion tree therefore involves models
featuring ∆1 along with one of the seesaw fields. (b) The model with field content {Σ,∆1+∆̄†} arises
from two similar diagrams, shown here. These correspond to the two ways the arrow-preserving and
arrow-violating fermion propagators can be placed in the graphs for this furnishing of the topology.

which has the property that it vanishes when the derivatives are removed. (Note that,
comparing to the operator in table 8, the first derivative has been moved onto a Higgs
field.) Applying the only allowed replacement rule on the derivatives first implies the
presence of the real triplet scalar10 Ξ ∼ (1,3, 0)S in the theory

LiLjHkH l(DµH)m(DµH̃)nεijεkmεln → LiLjHkH lΞmnεijεkmεln. (3.35)

From here there are a number of choices. We choose to look at a particular scalar-only
completion involving the unit-hypercharge isosinglet scalar present in the Zee model S1 ∼
(1,1, 1):

LiLjHkH lΞmnεijεkmεln → S†1HkH lΞ†kl, (3.36)

implying the interaction Lagrangian

Lint ⊃ x[rs]LrLsS1 + κH iH̃jΞ{ij} + λS1ΞijH†iH
†
j + h.c. (3.37)

10We remind the reader that this is not the seesaw field present in the type-II scenario, which has unit
hypercharge.
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This model was studied in ref. [68] and identified as the simplest neutrino mass model
according to their assumptions. It has remarkably few free parameters since the scalar Ξ
does not have Yukawa couplings to SM fermions, and the couplings of S1 to leptons are an-
tisymmetric in flavour. As in the minimal Zee-Wolfenstein scenario [69], this model implies
a neutrino-mass matrix with zeros down the diagonal and is therefore incompatible with
neutrino oscillation data [70]. It is, however, a good example of how interesting models can
be missed when overlooking operators with derivatives in this model-building framework.
The model generates the following combination of basis operators at the low scale

O[rs]
S1+Ξ = (LirLjs)HkH l�(HmH̃n)εijεkmεln. (3.38)

Note that the operator is already symmetric under the interchage m ↔ n, so another
structure need not be added.

3.3 An algorithm for model building

With our basic completion recipe established, in the following we outline the procedures
we use to build the UV models that generate the operators listed in table 8, along with
relevant metadata: the tree-level diagrams and the models’ Lagrangians. The methods are
presented as they are implemented in our example code [37].

We use a computational representation for tensors representing fields transforming as
irreducible representations of SU(2)+ ⊗ SU(2)− ⊗ GSM built on top of the SymPy pack-
age [71] for symbolic computation in Python, as well as BasisGen [54] for group-theory
functionality. The code implements the Butler-Portugal algorithm [72, 73] for obtaining
the canonical form of tensorial expressions, which we use to simplify operators and compare
them for equality. Strings of fields and their derivatives representing gauge- and Lorentz-
invariant effective operators are dressed with ε and δ tensors to form all possible invariants.
In our specific case, the content of these operators is constructed directly by taking the
product of all field combinations and keeping only those that contain a singlet part in the
decomposition. We checked this against results from the Hilbert series, projecting out the
∆L = 2 component for the pertinent operators, and removing the spurions accounting for
redundancies from field redefinitions involving the classical EOM and IBP. For our study
of the ∆L = 2 operators, since we are interested in model discovery, we excluded derivative
operators that are non-explosive along with those that contain field-strength tensors and
contracted pairs of derivatives that do not lead to a vanishing structure upon removal.

In practice we start with a template pattern of contractions corresponding to the
topologies that can accommodate the field content of the operators at tree-level. These
are generated using FeynArts [74] through Mathematica, and filtered for isomorphism with
graph-theory tools [75–78]. These templates provide the order and pattern of contractions
for classes of operators based on the number of scalars and fermions they contain. Since
no distinction is made at this level between (2,1)- and (1,2)-fermions, for some operators
only a subset of these templates will be relevant for our purposes, since some contractions
may always imply Proca fields. These templates are used to open up the operator with
the assumptions and methods presented in section 3. Every time a replacement rule is
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applied, the Feynman graph information is updated and a Lagrangian term is generated
as described in section 3.1.1. After the procedure is finished, the full Lagrangian of the
model can be generated in the same way as the input effective operators, described above.

We keep track of the quantum numbers of the heavy fields so as to be economic with
exotic degrees of freedom, while still providing some flexibility in the model database. Con-
cretely, if a field arises from a contraction whose corresponding term has already appeared
in the Lagrangian, the two associated exotic fields are identified. If two fields come about
from different contractions but share the same quantum numbers they are distinguished,
since it may be possible that some symmetry would forbid one term but not the other.
The choice to identify fields not only reduces the number of fields in each model, but may
also reduce the total number of completions for a given operator. This is due to couplings
between exotic fields that vanish in the absence of some exotic generational structure. For
example, φiφjεij = 0 for some exotic isodoublet φ, or ηaηbηcεabc = 0 for a colour-triplet η.

We have attempted to validate our example code against many results in the literature.
We have been able to reproduce the results of refs. [32, 38, 50, 65, 66], which give systematic
listings of models that generate effective operators at tree-level. Ref. [38] provides a UV
dictionary for the dimension-six SMEFT. Validation of these results first required the
adaptation of the dimension-six operators to something analogous to the overcomplete
spanning set of type-3 operators used here. The entire process in this case — including
generating the set of operators, finding the completions and matching examples back onto
the Warsaw basis — is provided as an interactive notebook accompanying our example
code. We note that such matching calculations can also be automated with the help of
automated tools [79, 80]. For the other studies mentioned, we provide our validation of
their results along with our example code.

4 Neutrino mass model building

Up until now we have tried to keep the discussion of exploding operators general, but
in this and following sections we specialise to the case of opening up operators to build
radiative models of Majorana neutrino mass. We discuss the process of turning ∆L = 2
operators into neutrino self-energy graphs, the tree-level topologies of the operators, and
the methods we use to ensure a given model’s contribution to the neutrino mass is the
dominant one.

4.1 Operator closures and neutrino-mass estimates

For operators other than the Weinberg-like ones, neutrino masses are necessarily generated
at loop level. The fields of the ∆L = 2 operator need to be looped off using SM interactions
in such a way that a Weinberg-like operator is generated after the SM fields are integrated
out. We call this the operator closure and it represents the mixing between the ∆L = 2
operator and the Weinberg-like ones. Examples of ∆L = 2 operator closures are given in
table 3, and these are referred to throughout this section. The closure provides enough
information to know the number of loops in the neutrino self-energy graph (since the ∆L =
2 operator is generated at tree level) and to estimate the scale of the new physics underlying
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the operator. We automate the operator-closure process by applying the methods discussed
below through a pattern-matching algorithm [81, 82]. The program is a part of our public
example-code repository.

Current neutrino oscillation data provide a lower bound on the mass of the heav-
iest neutrino, coming from the measured atmospheric mass-squared difference ∆m2

atm ≈
(0.05 eV)2 [83, 84]. We take the neutrino-mass scale mν ≈ 0.05 eV, so that the new-physics
scale is bounded above by the implied scale we estimate for each operator. This is derived
by estimating the loop-level operator closure diagrams. In our case we are interested in
estimating the scale of the neutrino mass in the UV models generating the operator, rather
than the calculable loop-level contributions to the neutrino mass in the EFT. We associate
a factor of (16π2)−1 ≈ 6.3 · 10−3 with each loop and assume unit operator coefficients
for the non-renormalisable ∆L = 2 vertices. We take the SM Yukawa couplings to be
diagonal and include factors of g ≈ 0.63 appropriately for interaction vertices involving W
bosons. Neutrino-mass matrices proportional to Yukawa couplings will be dominated by
the contributions from the third generation of SM fermions in the absence of any special
flavour hierarchy in the new-physics couplings. For this reason, we consider only the effects
of third-generation SM fermions in our estimates, but mention that our program can be
straightforwardly extended to accommodate the general case where light-fermion Yukawas
and off-diagonal CKM matrix elements appear in the neutrino-mass matrix. For derivative-
operator closures, we can include the W boson from the covariant derivative if it is present
and necessary to correctly close off the diagram. Otherwise, the vertex should come with
an additional factor of momentum. We work in the Feynman gauge to avoid spurious fac-
tors of Λ in the neutrino-mass estimates [65]. The overall scale-suppression of the neutrino
mass is determined by the Weinberg-like operator generated at the low scale. In most cases,
this is the dimension-five operator O1, which implies mO1

ν ∼ v2/Λ. Closures leading to the
loop-level generation of O′1 and O′′1 can also be found, and these naively imply a significant
suppression of the neutrino mass compared to the O1 case: m

O′1
ν ∼ v4/Λ3 andmO

′′
1

ν ∼ v6/Λ5.
However, a diagram with additional Higgs loops can always be drawn to recover the Wein-
berg operator at the low scale. Despite the additional loop suppression, these diagrams
will dominate over those generating O′1 and O′′1 as long as Λ & 4πv ≈ 2.2 TeV [18, 30].

It is still true that higher-dimensional operators typically imply smaller neutrino
masses. There are two main reasons for this. First, the number of loops required for
the closure of the operator generally increases with increasing mass dimension. Second,
operators containing more fields imply neutrino self-energy diagrams containing more cou-
plings. Many of these are SM Yukawas which (with the exception of yt) are small and tend
to suppress the neutrino mass, despite the contributions being dominated by the third
generation. Non-minimal choices such as small exotic Yukawa couplings or hierarchical
flavour structures in the operator coefficients can also lead to additional suppression of the
neutrino mass, and in turn of the implied scale of the new physics.

In figure 6 we show the new-physics scales Λ associated with neutrino-mass generation
from the ∆L = 2 operators in the SMEFT up to dimension 13, assuming unit operator
coefficients and the dominance of third-generation couplings. We separate single-derivative
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operators from those that contain no derivatives, and choose not to include operators
containing more than one derivative in the figure. This is because these operators most
often arise at next-to-leading order in the EFT expansion, and therefore usually imply a
neutrino-mass scale identical to that of lower-dimensional operators. The dimension-eleven
operators with derivatives as well as the dimension-13 operators are constructed only as
products of lower-dimensional ones, making the set of operators incomplete. We highlight
that similar kinds of product operators at dimensions eleven and nine do not imply special
values for the estimated neutrino-mass scale or Λ, and therefore we expect the results to be
representative of the situation up to dimension 13. From the figure, it is clear that there is
a trend towards smaller values of Λ with increasing mass dimension. By dimension 13, the
implied new-physics scale is between 1 and 100 TeV for most operators. It seems to be the
case that the most constrained closures are generally those of non-derivative operators.
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Wē

ū
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Λ
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ē
d̄ Q
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ey

t
d

(16π2)3
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Table 3: The table shows an assortment of ∆L = 2 operator closures, displaying a number of
paradigmatic motifs. We represent flavour indices in a sans-serif typeface here to avoid confusion
with subscripts labelling the Yukawa couplings. The expressions given for mrs

ν needs to be sym-
metrised in rs, something we do not explicitly indicate in the table. These expressions carry flavour
indices in alphabetical order on the fields as they appear in table 8. Here κ represents the opera-
tor coefficient, V is the CKM matrix and yr

e,u,d are the diagonal electron, up-type and down-type
Yukawa couplings in the SM. A number of operators require an external electron to be converted
into a neutrino. This often necessitates the introduction of a W boson or an unphysical charged
Higgs H+. Operator O8 generates the dimension-seven analogue of the Weinberg operator with
the two-loop diagram shown. (There is a lower order diagram with an H+ in place of the W that
happens to vanish [85].) A three-loop diagram in which two of the external Higgs lines are looped off
leads to mixing with the Weinberg operator. Operator O76 generates the dimension-nine operator
LLHH(H†H)2, and hence five- and six-loop diagrams are also implied. There is usually more than
one choice about where to attach the W boson if one is present in a diagram, and the additional
diagrams with the W connecting in other possible ways are left implicit.

We note that at dimension eleven it begins to become clear that the neutrino-mass
estimates associated with a category of operators remain large. These operators include
O47a, whose closure is shown in table 3, and 44 others like it which have loops that contain
no connecting Higgs, and therefore no additional suppression from SM Yukawa couplings.11

These operators have the form

O1 ·
n∏
i=1

ψ†iψi, (4.1)

11A UV example of such a model was presented and studied in ref. [49] for O47j . A number of other
examples were also mentioned in ref. [86], including a two-loop model generating a dimension-13 operator
at tree level.
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where ψi are SM fermion fields, and imply

mν ∼ κ
1

(16π2)n
v2

Λ , (4.2)

with κ the operator coefficient. The loop suppression becomes too great to meet the at-
mospheric bound at n = 6. Although five loops are viable in the absence of any other
suppression, the operators O1 ·

∏5
i=1(ψ†iψi) cannot form a Lorentz-singlet without a deriva-

tive. This suggests that dimension-21 operators of the form

LLH(∂µH) · (ψ0σµψ
†
0)

4∏
i=1

ψ†iψi (4.3)

are the highest-dimensional operators leading to phenomenologically viable neutrino
masses. They require new physics below ∼ 6 TeV. All of the tree-level topologies associ-
ated with the structure in eq. (4.3) imply that the neutrino mass depends on the product
of nine or more dimensionless couplings. It is clear from figure 6 that these operators are
outliers, and the associated new-physics scale is already heavily constrained by dimension
13 for most.

Estimates for the neutrino mass for the majority of the ∆L = 2 operators without
derivatives have been given previously in ref. [18]. Those that we present here differ in two
ways:

1. We aim to estimate the contribution to the neutrino mass implied by the completions
of the operator, not the operator alone. This means, for example, that we do not need
more loops of gauge bosons to provide additional factors of momentum on fermion
loops with no mass insertions, since it is implicit that the appropriate factors of
momentum will arise at higher orders in the EFT expansion. Such arrow-preserving
loops, as shown in the closures of O47a and O56 in table 3, vanish by even-odd parity
arguments absent these higher-order contributions [18]. Indeed, in UV models built
from these operators the additional gauge-boson loops are not necessary [49, 60].
This means that for operators such as O47a and O56, our neutrino-mass estimates are
enhanced with respect to those presented in ref. [18] by 16π2/g2.

2. In some cases, operators containing a factor of ū†d̄ require a closure with W bosons
rather than H+, since the sum of the diagrams with the unphysical Higgs fields
vanishes [85]. The situation is shown in figure 7 for a general one-loop case of this
phenomenon. Ultimately this comes from the relative negative sign in the Lagrangian
between the up- and down-type Yukawa interactions:

LYuk ⊃ yruVrtdtūrH+ − yrdVtrd̄†ru
†
tH

+ . (4.4)

As shown in the figure 7, the fermion loop requires a mass insertion on the quark
line to which the H+ does not connect, making both loops proportional to yuyd but
with differing signs. Care must be taken to ensure that the loop functions are also
necessarily the same in cases where this property is used.
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Mass dimension

−5

0

5

10

15

lo
g 1

0
Λ
/T

eV

O8 O76 O47a
Only products

No derivatives

Derivatives

Figure 6. The figure shows smoothed histograms of the number of operators that have an estimated
upper bound of Λ on the new-physics scale. Black dots generally represent more than one operator.
The strips are broken up by mass dimension and whether the operators contain derivatives or
not. We assume unit operator coefficients and the dominance of third-generation SM-fermion
contributions in the closure diagrams. Operators containing no derivatives (blue) are separated
from those containing one derivative (orange). Those containing more than one derivative are
not included in the figure, since in most cases these come about at next-to-leading order in the
EFT expansion, and therefore imply the same Λ values as the lower-dimensional operator with
two fewer derivatives. The dimension-eleven operators containing one derivative and all of the
dimension-13 operators shown are constructed from the lower-dimensional operators in our listing
only as products. This means that the set of operators plotted above that do not feature in table 8
are incomplete. However, we do not find that similar product-type operators at dimensions nine
and eleven give special estimates for the neutrino mass or Λ, and so we expect these results to
be representative of the true situation up to mass-dimension 13. The general decrease in Λ with
increasing operator mass dimension is evident in the figure. The most suppressed closures tend to
be of non-derivative operators. By mass-dimension eleven it becomes clear that a class of operators,
those with the structure shown in eq. (4.1), are less suppressed than the rest.

It might be possible that, in a similar way to (2) above, the sum of diagrams with dif-
ferent W placements or of the neutrino-flavour-symmetrised diagrams might also lead to
additional cancellations which further decrease the upper bound on the new-physics scale.
This not a possibility we explore in detail here, but note that similar cancellations have
been noted in the literature [49].

Our estimates for the neutrino mass are provided as symbolic mathematical expres-
sions in our model database. Where possible these been checked against more detailed
calculations and UV models in the literature generating the operators to ensure acceptable
agreement [13, 14, 32, 49, 65, 85, 87–89]. The predictions for the new-physics scale asso-
ciated with each operator are provided in table 8, along with the number of loops in the
closure. Operators for which a range is given for the number of loops are those that gener-
ate the dimension-seven or dimension-nine analogues of the Weinberg operator. As touched
on above, the additional Higgs fields in these closures can always be closed off, adding more
loops to the neutrino self-energy diagram while reducing the overall scale suppression. The
contribution with the highest number of loops will dominate for scales Λ & 4πv.
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H0

d̄

Q

ū

H+

Figure 7. For some operators containing d̄ū† the operator closure involves a motif like that shown
in the figure. There is always an additional diagram with the roles of the unphysical Higgs and H0

interchanged. Both diagrams are proportional to yuyd but related by a negative sign coming from the
couplings ofH+ to up- and down-type quarks as shown in eq. (4.4), and therefore their sum vanishes.

We note that in some cases, more insights can be made about the structure of the
neutrino-mass matrix from the nature of the operator, even in the general form with which
they appear in our classification. For example, there is only one independent Lorentz-
structure associated with O4b: κO4b

rstt(LirLjsεij)(Q
†
tkū
†
t)Hk, from which it can be seen that the

operator coefficient must be antisymmetric in rs from Fermi-Dirac statistics. It is clear from
the diagram associated with the operator in table 3 that the loop integral will depend on an
external lepton flavour, and this dependence can only come from charged-lepton masses, i.e.
I(mr

e). Then the complete expression for the estimated neutrino mass will be something like

m{rs}ν ∼
∑
t

g2
2y
t
u

(16π2)2
v2

Λ [κ[rs]ttI(mr
e) + κ[sr]ttI(ms

e)] (4.5)

=
∑
t

g2
2y
t
u

(16π2)2
v2

Λ κ[rs]tt[I(mr
e)− I(ms

e)], (4.6)

which implies a neutrino-mass matrix with zeros down the diagonal, similar to that
following from the Lagrangian in eq. (3.37). Such a texture is disfavoured by neutrino
oscillation data. Studying the structure of the neutrino-mass matrices implied by a
complete basis of ∆L = 2 operators would allow more, similar conclusions to be drawn
in a model-independent way. Recently, a complete basis of operators in the SMEFT at
dimension nine has been written down [51], and this could facilitate such an effort.

4.2 UV considerations

We now turn to the UV structure of the operators: their completion topologies, the asso-
ciated neutrino self-energy graphs, and the nature of the exotic fields that feature therein.
Central to our study of neutrino mass is the requirement that a model represent the lead-
ing contribution to the neutrino mass, a condition we impose through a process of model
filtering, also discussed in the present section.

4.2.1 Tree-level completion topologies

The tree-level UV topologies depend on the number of fermions and scalars in the operator,
and this is how we choose to label them. Thus, a dimension-eleven operator with two
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Topology type Operators Topologies Propagators Figure
0s4f 2 1 1 ↪→
0s6f 16 2 3 2
1s4f 16 2 2 8b
2s2f 7 1 1 1
2s4f 29 8 2,3 9b
2s6f 137 35 4,5 11
3s2f 3 4 1,2 10b
3s4f 15 23 3,4 9a
4s2f 8 10 2,3 8a
5s2f 1 24 2,3,4 10a
5s4f 15 264 4,5,6 ↪→
6s2f 1 66 3,4,5 ↪→

Table 4. The table shows the topology classes encountered in our operator listing along with related
information: the number of pertinent operators, the number of tree-level topologies associated with
each topology type, the number of internal lines featuring in the diagrams (given as a range), and
the appropriate figure reference in the text. Although there is one 0s4f topology, all of the pertinent
operators in our listing are non-explosive because they contain derivatives. The symbol ↪→ indicates
that we do not present these topologies in this paper; instead, we point the interested reader to
our online database and example code for the relevant diagrams. We highlight that although the
topologies are labelled only by their field content, the pertinent operators may include one or more
derivatives. We point the reader to the main text for a detailed breakdown by mass-dimension of
the topologies that are relevant to each operator.

scalars and six fermions has topologies labelled 2s6fi. We do not distinguish between
(2,1)- and (1,2)-fermions in this classification, and some of these topologies will therefore
always imply the existence of heavy vector particles in the completions. In our analysis
these models are not considered, but the topologies are still presented here in general.
Each topology corresponds to a pattern of contractions in the language of section 3, and
sometimes we use this perspective.

We present the different topology types in table 4 along with peripheral information
relating to these. The number of propagators in the diagrams represents an inclusive upper
bound on the number of exotic fields allowed in the completions of the associated operators,
counting Dirac fermions as one exotic field. In many cases, repetition in the operator’s field
content can lead to fewer fields furnishing the internal lines of the diagram, since we identify
fields with the same quantum numbers. To avoid clutter we keep the complete gallery of
tree-level diagrams in our online example-code repository, and instead only show some of
the graphs here. For some topology types the relevant diagrams have already appeared in
earlier parts of the paper, and these figures are referenced in the table. We make more
specific comments about the topology types by operator mass dimension below.
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(a)

(b)

Figure 8. (a) The tree-level topologies relevant for the completions of the four-scalar-two-fermion
operator O′1. Only topology 4s2f3 leads to a novel completion that does not feature a seesaw field.
We point out that topology 4s2f8 permits fermion-only completions, which are expected only for the
Weinberg-like operators in the absence of derivatives. (b) The two tree-level topologies relevant for
the completions of the one-scalar-four-fermion dimension-seven operators in table 8. The internal
fermion line on 1s4f2 must be arrow-violating for all of the operators we consider.

Dimension seven. At dimension seven there are three broad classes of ∆L = 2 operators
by field-content: 0s4f , 1s4f and 4s2f in our classification scheme. Operator OD1 is one
of only two 0s4f operators in the entire listing, both of which are non-explosive.12 The
Weinberg-like O′1 is the only 4s2f operator at dimension seven, while there are six 4s2f
operators: O2, O3a,b, O4a,b and O8. The UV topologies relevant for the dimension-seven
operators are presented in figure 8. There are only two tree-level topologies associated
with the 1s4f operators. One involves two exotic scalars, the other an exotic scalar and a
heavy fermion with an arrow-violating propagator line. There are ten topologies associated
with the 4s2f class, for which the only pertinent operator is O′1. Only topology 4s2f3 is
associated with a model that does not contain seesaw fields. Topology 4s2f6 accommodates
up to three exotic scalars and 4s2f8 allows up to three exotic fermions. Such fermion-only
models are expected only for the Weinberg-like operators, in the absence of derivatives.
The remaining topologies allow all other combinations up to three fields for the number of
exotic scalars and fermions introduced. Radiative neutrino mass from the dimension-seven
operators without derivatives was also studied in ref. [32].

Dimension nine. At dimension nine there are 79 operators in our catalogue. There are
16 operators containing six fermions, these are O9 through to O20 as well as O76. The
relevant tree-level topologies are presented in figure 2. There are 15 3s4f operators, most
of which have the form O1 · OSM Yukawa or H†H times a 1s4f dimension-seven operator.
These are operators O5 through to O7 as well as O61, O71, O77, O78 and O′8. These

12We note that although OD1 is non-explosive, one-loop completions exist that lead to three-loop neutrino
mass models.
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topologies are shown in figure 9a. There is a single 6s2f operator: the Weinberg-like
O′′1 . The remaining 47 operators contain derivatives. Those that contain an even number
share topologies with dimension-five or dimension-seven operators. These include OD19,
a 2s2f operator, OD18 and OD22 which are 4s2f operators with associated topologies
shown in figure 8a, as well as OD4, OD7, OD13 and OD15 for which the 1s4f topologies of
figure 8b are relevant. The remaining operators contain an odd number of derivatives. The
operators OD5, OD6, OD8 – OD10, OD12, OD14, OD16 and OD17 are of type 2s4f , implying
entirely new topologies, shown in figure 9b. To these we add the 5s2f operator OD20 and
the 3s2f operator OD21, which also have novel structure. Figure 10a and figure 10b are
relevant in this case. For the operators that contain an odd number of derivatives, only
the topologies allowing at least one arrow-preserving fermion propagator do not contain
exotic Proca fields. Some 3s4f and 5s2f topologies have the interesting property that they
involve exotic fields that couple only to other exotic fields in the diagram. These are the
lowest-dimensional operators in our listing having this feature, although this becomes more
common at dimension eleven.

We note that the tree-level topologies can also be important in telling which derivative
operators might provide novel completions. As discussed in section 3.2.1, many operators
containing more than one derivative have no model-discovery utility. These are operators
generated past the leading order in the expansion of the heavy propagators in the UV the-
ory, and their completions are always found by exploding the lower-dimensional operators
with an even number of fewer derivatives. One way to diagnose such a situation is to check
how many arrow-preserving fermion lines are present in the tree-level topologies associated
with an operator. If all of the graphs contain fewer such propagators than the number of
derivatives in the operator, then any model generating this operator will also generate the
corresponding lower-dimensional one. At dimension nine there are seven operator classes
that fall into this category. The four operator families OD4, OD7, OD13 and OD15 each
contain two derivatives. These operators are identified above as fitting into the 1s4f topol-
ogy class. It is clear from figure 8b that no two-fermion completions are relevant to this
class, and the Lorentz structure of these operators is such that the internal fermion can
only by arrow-violating. This suggests that models generating these operators at tree-level
will always also generate the derivative-free dimension-seven operators O2, O3, O4 and O8,
respectively. There are two three-derivative operators: OD21, of topology class 3s2f , and
OD11, a 0s4f operator. The latter is non-explosive and therefore not relevant to a discus-
sion of tree-level model building. The 3s2f class admits completions that contain one and
two fermions: those associated with topologies 3s2f4 and 3s2f2, respectively. In both cases
we find that the operator’s structure allows for only a single arrow-preserving propagator in
each diagram. As before, this suggests that OD21 is not interesting for model discovery, and
its completions will be found by studying OD3. Finally, there is also one four-derivative op-
erator at dimension nine: the 2s2f operator OD19 whose completions coincide with those of
the Weinberg operator O1. This means that the only two-derivative operators in our listing
that could contribute new completions to the pool of neutrino-mass models are OD18 and
OD22. Operator OD22 has the feature that the removal of the derivatives causes the oper-
ator to vanish, while this is not true for all of the SU(2)L structures associated with OD18.
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(a)

(b)

Figure 9. (a) The figure shows the tree-level topologies relevant to 3s4f operators. Topolo-
gies 3s4f3, 3s4f13, 3s4f20 and 3s4f23 imply one exotic field that couples only to other exotics in
the diagram. This topology class is relevant to a large number of dimension-nine operators, and
these are the lowest-dimensional examples of operators containing this property in our listing. (b)
The two-scalar-four-fermion topologies associated with dimension-nine single-derivative operators
in our catalogue. Since only single-derivative operators furnish these graphs, only those topologies
containing at least one arrow-preserving internal fermion line are relevant. These are topologies
2s4f4–2s4f8; the other fermion propagator in 2s4f4 and 2s4f5 must be arrow violating. Topologies
2s4f1–2s4f3 each give rise to completions involving exotic Proca fields.
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(a)

(b)

Figure 10. (a) The 5s2f topologies relevant only to the single-derivative operator OD20. Only
those topologies allowing one arrow-preserving internal fermion line give completions allowed in
our framework. Topologies 5s2f4, 5s2f7 and 5s2f10 contain heavy fields that couple only to other
exotics in the diagram. (b) The UV diagrams associated with the 3s2f operator OD21. Only the
last two diagrams can generate the operator under our model-building assumptions.

Dimension eleven. By far the largest class of operators at dimension eleven is the
2s6f topology type, for which the topologies are presented in figure 11. These opera-
tors are mostly formed as products of 0s6f dimension-nine operators with H†H, or 1s4f
dimension-seven operators with SM Yukawa couplings. They are operators O21 through
to O65, excluding the structures associated with O61, as well as O75, O′76 and O82. The
only other major class relevant to the derivative-free dimension-eleven operators is 5s4f for
which there are 264 tree-level topologies. These are presented with our example code, along
with the topologies relevant to the single 6s2f operator O′′′1 . This dimension-eleven gener-
alisation of the Weinberg operator has already received some attention in the literature [34].
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Figure 11. The tree-level topologies associated with the large class of 2s6f dimension-eleven
operators in our listing. A number of graphs display the feature — less common at dimension nine
— that an exotic field in the diagram couples only to other internal lines.

4.2.2 Model filtering

The completions constructed by exploding the ∆L = 2 operators are not all automati-
cally guaranteed to provide the leading-order contribution to the neutrino mass. The same
∆L = 2 Lagrangian may, for example, inevitably imply another, larger contribution. Alter-
natively, the dominant contribution may come from other LNV combinations of couplings
in the model’s full Lagrangian. The relative importance of different mechanisms may also
depend on the assumptions of the model builder. Some neutrino-mass diagrams will dom-
inate over others only in certain regions of parameter space. Are these regions accessible
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without large hierarchies in exotic couplings? Are such hierarchies acceptable, if necessary
to render a mechanism dominant? What about exotic flavours or additional symmetries?
Model filtering is the process of removing those models that, under some set of assump-
tions, do not provide the leading-order contribution to the neutrino mass. Our approach to
filtering neutrino mass models is contrasted against other possible approaches below, and
we also make more general comments about model filtering in other contexts. We mention
that the following discussion of filtering is similar in intent to that of ‘genuineness’ in the
loop-level matching paradigm [25–28]. We sometimes adopt this notation as well, and call
models ‘genuine’ if they represent the dominant contribution to the neutrino mass.

Filtering criterion. We begin by noting that model filtering is ubiquitous when con-
sidering tree-level effects. Here, the filtering criterion is unambiguously the operator di-
mension, since higher-dimensional operators are inevitably suppressed compared to lower-
dimensional ones. With regard to the ∆L = 2 EFT, such a dimension-focused criterion is
useful for thinking about LNV scattering events, for example. As discussed in section 4.1,
the operator dimension is also a rough indication of the predicted neutrino-mass scale, and
therefore has some utility in anticipating which models will dominate the neutrino mass.

We point out that this approach to model filtering allows for the immediate rejection
of some models, already during the process of opening up the operator. This can happen,
for example, when a contraction introduces an exotic particle transforming like a SM field.
Taking O2 as an example, contractions like

ϕ†∼(1,2, 1
2 )

LiLjLkēH lεijεkl → LiLkϕ̃jH lεijεkl, (4.7)

with ϕ̃ a second Higgs doublet, always imply that further contractions will produce seesaw
fields, since the r.h.s. of eq. (4.7) has the same structure as the Weinberg operator. We note
that for fermions the situation is more subtle because of the Lorentz structure. Specifically,
although Hū transforms like Q† under GSM, the Lorentz transformation properties are
different. The derivative contraction (Dαα̇H)ūα does transform like Q under SU(2)+ ⊗
SU(2)−⊗GSM and that makes a number of such contractions forbidden if one is interested
in only dominant contributions according to the mass-dimension criterion. This is the same
phenomenon as that seen in the paradigmatic opening of the derivative operator OD3 given
in section 3.2.2, where an exotic field transforming like L [see eq. (3.33)] lead to a similar
Weinberg-like operator at an intermediate stage in the completion procedure. We note that
this does not completely rule out exotic copies of SM fields featuring in radiative neutrino
mass models. Using O2 again as an example:

ϕ†∼(1,2, 1
2 )

LiLjLkēH lεijεkl → LiLjϕ̃kH lεijεkl (4.8)

is allowed, since the SU(2)L structure of this operator differs to that of the Weinberg
operator. Similarly, vector-like quarks and leptons are extensively found in completions
of both derivative and non-derivative operators after the filtering procedure, but their SM
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and Lorentz quantum numbers are interchanged with respect to their SM counterparts.
For example, a particular completion of O3a is

U∼(3,1, 2
3 )

LiLjQkd̄H lεijεkl →
S†1∼(1,1,−1)

LiLjUd̄εijεkl → S†1Ud̄ , (4.9)

which contains the vector-like quark U+ Ū †. Note however that U transforms like ū† under
GSM, but oppositely under the Lorentz group. It is true that Ū , the vector-like partner of
U , does transform like ū, but this plays no role in the operator.

Since we are most interested in radiative neutrino mass, a more direct and relevant
filtering criterion in our case is the neutrino-mass estimate from the closure graph of the
operator. This is the metric we use to compare and filter models in the results we present
in section 5. Whichever filtering criterion is chosen, the conditions for generating the
lower-dimensional operator or the dominant neutrino self-energy graph still depend on the
filtering philosophy.

Filtering philosophy. The filtering criterion defines a hierarchy among the effective
operators. If one is interested in tree-level effects, then operators of low dimension have
a high priority in the sense that their effects are dominant over those of high-dimensional
operators, whose influence is suppressed by additional powers of Λ. Similarly, the operators
whose closure graphs imply large contributions to the neutrino mass have a higher priority
than those implying small contributions.

One could take the view that it is sufficient for a subset of the field content associated
with a completion of a high-priority operator to be present in that of a lower-priority one
for it to be filtered out, even if the relevant diagrams depend on entirely different couplings
and interactions. We call this perspective democratic, in the sense that it treats all allowed
couplings and interactions fairly and ignores possible hierarchies in free parameters. A
democratic approach would then filter out all completions of ∆L = 2 operators of mass
dimension larger than five containing one of the seesaw fields, for example, since these
always imply a dominant contribution from the dimension-five Weinberg operator. Even if
the same couplings are not present in both diagrams, there is no reason, on this view, for one
coupling to be very much larger than another, making the tree-level contribution dominant.

An alternative approach might be to filter out only those completions that necessarily
lead to subdominant contributions to the neutrino mass in all regions of parameter space.
Naively it seems that neutrino-mass mechanisms involving different couplings would all
survive the filtering process in this case, since the relative ordering of the contributions
from each diagram depends on the chosen values of the coupling constants. This is in
general only guaranteed if a symmetry is recovered in the Lagrangian when one coupling
is turned off, so that the forbidden coupling is not generated at some higher order in
perturbation theory. We call this approach stringent filtering, since the conditions for
removing a model are more difficult to satisfy.

For our results in section 5 we take an intermediate view, leaning more towards the
democratic side. We filter on the basis of particle content, but always keep track of the
baryon-number assignment of the field. We then keep models with identical SM quantum

– 40 –



J
H
E
P
0
1
(
2
0
2
1
)
0
7
4

numbers if the baryon-number assignments of the fields differ. With a concrete example,
we treat ζ(′) ∼ (3̄,1, 1

3) in x(LiQj)ζ{kl}εikεjl and y(QiQj)ζ ′{kl}εikεjl as different fields.
In practice, we enumerate the completions of the operators in order of their estimated

contribution to the neutrino mass. We associate a prime number with each exotic field
encountered, including baryon-number as a distinguishing property. Models then corre-
spond to products of prime numbers. As we explode each operator in order, we remove
models from the list of completions if their characteristic number is divisible by that of
any models already seen. In this way, we remove those mechanisms that are subdominant
contributions to the neutrino mass in the democratic sense.

We emphasise that this procedure is not sufficient to fully ensure that the remaining
models are genuinely dominant contributions to the neutrino mass. For example, it may be
the case that the Weinberg operator is generated by loops of a subset of the exotic particles
in one of our models. We are not sensitive to these models since we are concerned only with
tree-level completions of the operators. One-loop contributions to the neutrino mass from
heavy loops can be diagnosed easily on topological grounds. For example, topology T-3 of
ref. [33] will come about whenever the neutrinos in the diagram are connected by a single
exotic fermion [60]. At two-loops, one could check the full gauge- and Lorentz-invariant
Lagrangian for each model against table 1 of ref. [27], for example. We do not include this
in our default filtering procedure, since it would require generating the full Lagrangian of
each model. This is a computationally prohibitive task, especially since table 4 suggests
that the completions of some operators can contain up to six exotic fields. Should any
model from our database be chosen for further study, the full Lagrangian can be generated
with the functions in our example code and studied for the presence such heavy loops.
We note that sometimes the presence of a heavy loop can be diagnosed from the neutrino
self-energy graph, or even the tree-level topology, and we give a detailed example of such
a case in section 5.2.1. An additional filter on the models that goes beyond our initial
tree-level filtering analysis is the possibility of exotic fields gaining vacuum expectation
values. In this case, diagrams may exist that imply larger contributions to the neutrino
mass than that suggested by our approach, and we are not sensitive to these since they
generate exotic operators other than the Weinberg operator at the low scale. Examples
are presented in refs. [90, 91], where in both cases a two-loop completion of the Weinberg
operator also generates the exotic operator LLH†Θ3, where Θ3 ∼ (1,4, 3

2)S .
We note that our model database [92] contains both the unfiltered completions of the

operators in table 8, as well as the models filtered according to the above method. Our
example code also includes functions for filtering on interactions rather than fields, and
finding U(1) symmetries present in models’ Lagrangians. Thus, the results presented in
section 5 and table 8 can be readily reproduced with alternative filtering criteria, philoso-
phies or approaches.

5 Models

In this section we present the radiative models derived by exploding the ∆L = 2 operators
catalogued in table 8. We give an overview of the models, and explore their particle content
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and the effects of the partial model-filtering method we present in section 4.2.2. We do not
provide the entire listing of models here because there are very many, but instead give some
examples. We point the interested reader to our database for the full searchable listing.

We distinguish the terms ‘model’ and ‘neutrino-mass mechanism’ or ‘∆L = 2 La-
grangian’ in this section. By model we mean a collection of particle content. Those same
multiplets may have many combinations of couplings that violate lepton-number by two
units, leading to meany neutrino-mass mechanisms, or ∆L = 2 Lagrangians. We use the
word ‘completion’ here to mean a neutrino-mass mechanism derived from a particular ef-
fective operator. Used in this way, the same ∆L = 2 Lagrangian may be shared by two
completions, but they correspond to the same model. We also remind the reader that we
use the words ‘field’ and ‘multiplet’ interchangeably.

We note here that the following analysis does not include the dimension-eleven general-
isation of the Weinberg operator O′′′1 , since the operator has an unwieldy number of topolo-
gies and the relevant tree-level completions have already been studied in the literature [34].

5.1 Overview

The models are generated by running the algorithm summarised in section 3.3, as found in
our example code, on our catalogue of the ∆L = 2 operators. The results for the number
of completions before and after filtering are presented in table 8. In the language of
section 4.2.2, we use the democratic filtering procedure with the neutrino-mass scale as the
filtering criterion for these data. We note again that this leaves us with an overestimate
of the actual number of genuine neutrino-mass models. Even so, one can see that 54
operators end up with no completions after filtering, ruling them out as possibly playing a
dominant role in generating the neutrino masses, at least according to our model-building
assumptions. The complete list of unfiltered ∆L = 2 Lagrangians and tree-level completion
diagrams is compiled in our database, and the documentation provides information for how
to perform different kinds of filtering on the models.

The database contains 430,810 inequivalent ∆L = 2 Lagrangians before filtering.
Counted democratically (i.e. by particle content) these correspond to 141,989 unfiltered
models. Of the distinct Lagrangians, only around 3% (11,483) survive democratic filtering
with the neutrino-mass criterion. This corresponds to 11,216 distinct models. In our fil-
tering analysis we also incorporate information from the one-loop study of the Weinberg
operator13 done in ref. [26]. We generate a listing of the models from tables 2 and 3 of
ref. [26] with hypercharges that are multiples of 1/6 in the range [−3, 3] and ranges for the
SU(3)c and SU(2)L representations that cover those of the exotic fields featuring in our
models. We remove the completions in our listing that contain a subset of these fields and
imply neutrino masses suppressed by more than one loop factor, since the models presented
in ref. [26] generate the Weinberg operator at one loop.

We visualise the number of models with democratic and no filtering in figure 12 broken
down by mass dimension. After filtering there are three models at dimension five, 16

13We anticipate the number of models in our database generating the Weinberg operator with exotic
loops at higher-loop order to be small. Such models would need to contain upwards of four exotic fields,
and it becomes increasingly less likely that a model will contain a subset of these fields to be filtered out.
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Figure 12. The bar chart shows the number of distinct Lagrangians derived from operators of
different mass dimension. The orange bars show the number of distinct unfiltered models. The blue
bars show the number after democratic filtering. The number of filtered completions grows with
mass dimension.

models at dimension seven, 244 models at dimension nine and 10,969 models at dimension
eleven.14 It is clear that the number of filtered neutrino-mass models grows with operator
dimension, which is perhaps unintuitive. For any high dimensional operator, there are
competing effects influencing the number of viable completions. First, the large number
of models derived already from lower-dimensional operators means that the chances some
model will be filtered out are larger. Second, high dimensional operators involve more
fields, meaning that there are more combinations of contractions that can be made, and
therefore more completions expected. Despite the increased filtering odds, evidently the
combinatorial explosion of different models wins.

In figure 13 we present data relevant to the number of fields present in the models.
Figure 13a shows the number of exotic scalars and fermions present in the completions.
Despite the fact that the UV topologies associated with some derivative operators allow
completions containing no scalars, we find that only the Weinberg-like operators keep their
fermion-only models after the democratic filtering procedure. By far the most common
kinds of models contain five heavy fields, especially three fermions and two scalars, or two
fermions and three scalars. This is due to the fact that, as is clear from figure 12, most of
the models generate dimension-eleven operators. In figure 13b we show the estimated new-
physics scale Λ against the number of fields featuring in the models. With the exception
of one model with two fields, those required to lie at collider-accessible energies contain
three or more fields. Models with few fields that imply suppressed neutrino masses, or
equivalently a low new-physics scale, have a kind of selection pressure acting against them:
since there are few fields, it is likely they will arise in the completion of other operators, that
generally will filter out the former and imply a larger value of Λ. At dimension-seven, for
example, O8 is generated by models featuring two fields and predicts that these should not

14We note that the sum of these numbers is not 11,216 since one model can generate multiple operators
of different mass dimension in a way consistent with our neutrino-mass filtering criterion.
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Figure 13. (a) The number of filtered models containing different numbers of exotic scalar and
fermion fields. Most models contain five fields, with the most common combination being three
fermions and two scalars. The fermion-only models are associated only with Weinberg-like opera-
tors. (b) The rough upper bound on the new-physics scale Λ shown against the number of exotic
fields introduced in the models. The black dots show the upper bound on the scale of the new physics
for each model. A given black dot generally denotes more than one model. Each strip is a smoothed
histogram of the number of models having a given Λ as the new-physics upper bound for the specified
number of fields. A sizeable class of models are testable at current or future collider experiments.

be heavier than about 15 TeV. However, of its four tree-level completions, only one survives
the filtering procedure. This is the outlier two-field model evident in the figure. It was first
derived15 in ref. [32] and later in ref. [35]. The model contains the fields Π1 ∼ (3,1, 1

6)S
and Q7 ∼ (3,2, 7

6)F . We list the models containing three exotic fields that are required to
lie below 100 TeV in section 5.2.

Of the unfiltered 430,810 models, close to 67% (290,492) contain at least one of the
seesaw fields: N ∼ (1,1, 0)F , Ξ1 ∼ (1,3, 1)S or Σ ∼ (1,3, 0)F . We present the exact
breakdown by the interactions involved in the models in table 5. These are by far the

15We note that the other completion of O8 listed in ref. [32] also generates O50a through a diagram which
dominates the neutrino mass.
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Field Interactions ∆L = 2 Lagrangians Models

N ∼ (1,1, 0)F
LHN 51,245 (11.9%)

17,139 (17.1%)
Other 12,433 (2.9%)

Σ ∼ (1,3, 0)F
LHΣ 87,535 (20.3%)

31,629 (31.5%)
Other 28,157 (6.5%)

Ξ1 ∼ (1,3, 1)S

LLΞ1 59,791 (13.0%)

51,576 (51.4%)
HHΞ†1 95,410 (22.1%)
Both 10,323 (2.4%)
Other 30,761 (7.1%)

Table 5. The table shows the number of unfiltered models in which the seesaw fields appear. The
category ‘other’ includes interactions such as LϕN , where one of the SM fields in the interaction has
been replaced with an exotic copy, as well as couplings involving other exotic fields whose quantum
numbers are unrelated to those of SM fields.

most common fields appearing in the list of unfiltered models. Since our default filtering
philosophy in this analysis is democratic, all of these are absent from the filtered list of
models, and they only appear in completions of the Weinberg operator and OD2.

The distinct exotic fields appearing in the completions number 171, although five fields
are completely removed following filtering. These are (6̄,1, 7

6)1/3
S , (6̄,3, 5

3)1/3
S , (1,3, 3)0

S ,
(1,5, 2)0

F and (6̄,1, 5
3)1/3
S , where the superscript represents the B assignment of the field.

There are 83 different scalar fields and 83 different fermion species. We distinguish three
broad classes of scalars on the basis of their interaction with the SM fermions: leptoquarks,
diquarks and dileptons. For exotic fermions we differentiate between those arising from con-
tractions between the Higgs and a SM quark (vectorlike quarks), and the Higgs and a SM
lepton (vectorlike leptons). The relative frequencies with which these field classes appear
in the filtered completions are shown in figure 14 as pie charts. The wedges represent the
number of Lagrangians in which the field couples as a leptoquark, diquark, dilepton, vec-
torlike quark or vectorlike lepton. We label fields coupling in all other ways as ‘other’ in the
figure. The most represented family of scalars are leptoquarks, with the most common field
being Π7 ∼ (3,2, 7

6)S , commonly called R2 in the literature [93]. This leptoquark appears
in simplified models of RD(∗) and the neutral-current flavour anomalies like RK(∗) , see e.g.
refs. [90, 94–97]. It was recently shown to be able to reconcile the discrepant measurements
in the anomalous magnetic moments of both the muon and the electron [98, 99]. The second
most common scalar appearing in our neutrino-mass models is ζ ∼ (3̄,3, 1

3)S , frequently
referred to as S3. This leptoquark is a popular explanation of the neutral-current b → s

anomalies such as RK(∗) , see e.g. [95, 100–103]. The most frequently encountered fermions
are vectorlike quarks, with the most common being T2 ∼ (3,3, 2

3)F . It contains components
that mix with both the up- and down-type SM quarks. We emphasise that the plots and
numbers presented here are directly related to our filtering and model-counting conven-
tions. In figure 14 for example, we do not count fields just by their quantum numbers, but
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Rank Edge
1 (3,3, 2

3)F , (3,4, 1
6)S

2 (3,2, 1
6)S , (3,2, 1

6)F
3 (3,3, 2

3)S , (3,2, 7
6)S

4 (3,2, 7
6)F , (3,2, 1

6)S
5 (3,3, 2

3)F , (3,4, 7
6)F

6 (3̄,3, 1
3)S , (3,4, 1

6)S
7 (3,2, 1

6)F , (3,3, 2
3)S

8 (3̄,3, 4
3)F , (3̄,2, 5

6)F
9 (3,2, 1

6)S , (3,3, 2
3)S

10 (3,2, 7
6)S , (3̄,2, 5

6)F

Table 6. The table shows the pairs of fields that most often appear together in the filtered
completions of the ∆L = 2 operators we consider. In the context of the graph of field connections
introduced in the main text, these are the top ten edges by edge weight. Many of the connections
can be understood on the basis of common couplings to SM fields, especially L and H. For example,
(3,3, 2

3 )F ⊗L ∼ (3,4, 1
6 )S and (3,3, 2

3 )S⊗H ∼ (3,2, 7
6 )S . All of the fields in the table have |B| = 1

3 .

also include coupling information as discussed above. Additionally, we count independent
Lagrangians as different models rather than just counting distinct sets of fields, which is
perhaps more in line with our ‘democratic’ approach to filtering. We note that the qual-
itative features discussed here are all relatively robust against these different conventions.
We encourage the interested reader to explore our model database to see how different ap-
proaches to filtering and counting can answer specific questions they may have of the data.

We are also interested in the connectivity between fields as they feature in the models.
To explore this we study a graph in which each vertex represents one of the 163 exotic fields
introduced in the completions that contain at least two fields, and an edge is drawn between
fields featuring together in a model. The graph is shown figure 15. The exterior sectors at
each node represent the number of degree of the node. The edges in the graph are weighted
by the number of times the corresponding pair of fields appears in the models; this is shown
with a linear colour scaling in the figure. There are 3036 edges in the graph, and the average
node degree is approximately 37. About a fifth of all possible connections in the graph are
realised. The ten most heavily weighted edges, representing the ten most common pairs
of fields appearing in the models, are shown in table 6. Many of these correlations can be
understood on the basis of common contractions in the derivation of the models, especially
those involving H or L. There is a propensity for scalars and fermions with the same gauge
quantum numbers to appear in models together. This seems to come about from the fact
that H ⊗ L is a gauge singlet but transforms like (2,1) under SU(2)+ ⊗ SU(2)−. We note
that all of the fields in the table have |B| = 1

3 , and so this edge cannot come about from
(3̄,2, 5

6)F ⊗ d̄ ∼ (3,2, 7
6)S .
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Figure 14. The number of models in which each field appears in the completions shown as a
pie chart for scalars and fermions separately. The exotics are distinguished by their couplings to
SM fields. (a) The pie chart of scalar fields appearing in the completions. Primed fields represent
leptoquarks whose baryon-number assignment allows only the diquark couplings. (b) The pie chart
of fermion fields appearing in the completions. See table 2 or ref. [38] for the convention used for
the field names.
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Figure 15. The graph is a representation of the connectivity between exotic fields in the neutrino-
mass models. Each node represents an exotic field and edges connect fields featuring together in a
neutrino-mass model. The colour is an indication of the weight of the edge, i.e. the number of times
the two nodes appear in models together. The graph is clustered into roughly five communities
within which there are many mutual connections. Only a handful of node labels are shown.

5.2 Example models

In this section we present some example neutrino-mass models, illustrating use cases of the
model database, aspects to be careful of in its use, and representative features of the novel
models derived from dimension-eleven and dimension-nine operators.

5.2.1 Simple models at the TeV scale

We are particularly interested in models that are simple, in the sense that they involve few
exotic fields, and testable, in that they predict new physics at currently or nearly accessible
energy ranges. We query our model database to return models featuring three fields or
fewer with the estimated upper bound on the new-physics scale required to be between
700GeV and 100TeV. The results of the query are presented in table 7. There are twelve16

models listed, only one of which has explicitly appeared before in the literature to our
knowledge: the completion of O8 discussed in section 5.1. It is interesting to note that the

16We note that there are technically more models: those for which the colour-sextet fields in table 7
are replaced with colour triplets, with a corresponding baryon-number assignment such that the same
interactions as the sextet are picked out.
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scalar leptoquark17 Π1 ∼ (3,2, 1
6)S appears in almost every model listed in the table. This

suggests that our general analysis of the frequency of fields appearing in the completions
in section 5.1 may look different if specific selection criteria are placed on the data. We
have checked the full Lagrangians implied by the field content of each model and found
that seven of the models listed in the table imply the generation of the Weinberg operator
through heavy loops. We emphasise that these non-genuine completions are potentially
interesting and new radiative models, although the neutrino self-energy diagram will look
different to that implied by the closure of the tree-level graph from which the model was
derived. This means that the bound on the implied new-physics scale is in general higher
than that suggested by the closure of the original operator. In this class are all of the
models for which the upper bound on the new-physics scale is larger than 15TeV. This
means that there are only five models in our database with fewer than four fields for which
the upper bound on Λ is between 700GeV and 100TeV, and they all predict new physics
below 15TeV. In the following we present two example models from the table:

1. We look at one of the models — the one derived from O62b — that generates the
Weinberg operator through a heavy loop. We intend this to be an example of how
this phenomenon can appear and how it is easy to diagnose in some cases.

2. We present a brief study of the implications for neutrino mass implied by the model
given in the last row.

Model derived from O62b. The model derived from O62b is especially simple since it
does not require the imposition of U(1)B. The exotic fields introduced are ∆1 ∼ (1,2, 1

2)F ,
S1 ∼ (1,1, 1)S and χ ∼ (1,2, 3

2)S . The additional interaction Lagrangian necessary to
generate O62b at tree level is ∆L = LY − V , with

−LY = m∆1∆̄1∆1 + x[rs]L
i
rL

j
sS1εij + yrēr∆̄i

1H̃
jεij + zrērχ̃

i∆j
1εij , (5.1)

V = m2
S1S

†
1S1 +m2

χχ
†χ+ wH iχjS†1S

†
1εij . (5.2)

This implies that the neutrino-mass mechanism depends on 13 new parameters: nine
Yukawa couplings, w and the three masses; although there are a much larger number of
terms present in the full Lagrangian of the model. Importantly, one of these is x′rLir∆̄

j
1S1εij ,

which we now show is sufficient to generate the Weinberg operator through a two-loop di-
agram containing one heavy loop.

The tree-level completion diagram and the neutrino-mass diagram relevant to the
model are shown in figure 16. There are two- and three-loop neutrino self-energies, where
the three-loop models arise by connecting the H and H† lines in figure 16b in all possible
ways. In this case, the first part of the fermion line (highlighted in figure 16b) can be
replaced with the aforementioned L∆̄1S1 vertex so that the left loop contains only S1, χ
and the Dirac fermion ∆1 + ∆̄†1. (It can also be noticed from the tree-level opening in
figure 16a that the ∆1 line can be connected directly to one of the LLS1 vertices, giving

17We mention parenthetically that although this leptoquark does not possess diquark couplings, baryon-
number violation does occur through a term in the scalar potential. The leading-order contribution is
through a dimension-ten operator mediating p→ π+π+e−νν [104].
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Field content Operators Λ [TeV] Dominant?
(3,2, 1

6)S , (3,2, 7
6)F 8, D15 15 Y

(1,2, 1
2)F , (1,1, 1)S , (1,2, 3

2)S 62b 16 N
(3̄,2, 5

6)S , (3,2, 1
6)F , (3,2, 1

6)S 8′ 1 N
(3̄,1, 1

3)S , (6̄,2, 1
6)S , (3,2, 1

6)F 24f 89 N
(3̄,3, 1

3)F , (6̄,2, 1
6)S , (3,2, 1

6)S 24d 89 N
(3̄,2, 5

6)S , (1,2, 3
2)F , (3,2, 1

6)S 8′ 1 N
(3̄,3, 1

3)F , (6̄,4, 1
6)S , (3,2, 1

6)S 24f 89 N
(3̄,1, 1

3)F , (6̄,2, 1
6)S , (3,2, 1

6)S 24d 89 N
(6̄,2, 7

6)F , (8,2, 1
2)S , (3,2, 1

6)S 20 0.8 Y
(6,1, 4

3)S , (6,1, 1
3)F , (3,2, 1

6)S 20 0.8 Y
(6,2, 5

6)S , (3,2, 1
6)F , (3,2, 1

6)S 50a, b 10 Y
(6̄,2, 1

6)S , (3̄,2, 5
6)F , (3,2, 1

6)S 50a, b 10 Y

Table 7. The table shows the models in our filtered list that contain fewer than four fields with
the estimate of the upper-bound on the new-physics scale Λ in the range 700 GeV < Λ < 100 TeV.
Models containing colour sextet fields can be replaced with the corresponding colour-triplet fields
with a different baryon-number assignment. The fields and models are listed in no special order.
The scalar leptoquark Π1 ∼ (3,2, 1

6 ) appears in almost all of the models listed. Completions marked
as non-dominant may be viable and interesting neutrino-mass models, but the main contribution to
the neutrino mass does not come from the closure of the tree-level diagram from which the particle
content was derived. This means, among other things, that the upper bound on the scale of the
new physics associated with the model will differ to that presented here.

rise to a loop-level completion of O2.) This heavy-loop neutrino-mass diagram, although
interesting in its own right, predicts a different mass-scale for the exotic fields (roughly
106TeV), and a different structure for the neutrino-mass matrix.

A genuine low-scale model. Below we present a brief exploration of the model de-
rived from O50 that contains the exotic fields φ ∼ (6,2,−1

6)F , Π1 ∼ (3,2, 1
6)S and

Q5 ∼ (3,2,−5
6)F . The estimate for the neutrino mass derived from the operator clo-

sure suggests this model’s exotic particle content should live roughly below 10TeV. The
corresponding ∆L = 2 Lagrangian we write again as ∆L = LY − V , with

−LY = xrsL
i
rd̄saΠ

aj
1 εij + yrφ

{ab}iūraQ̄
j
5bεij + zrd̄raH

iQaj5 εij + h.c. (5.3)

V = λΠ̃i
1aΠ̃

j
1bφ
{ab}kH l(εikεjl + εilεjk) . (5.4)

We note that U(1)B must be imposed on the Lagrangian to prevent terms like Π3
1H
†,

|φ|2φ†Π1 and |Π1|2Π1φ that destabilise the proton in the presence of the Yukawa interac-
tions of eq. (5.3). The field φ only couples to SM fermions together with Q5 in this model,
and so it generates no dimension-six operators at tree level. The completion graph and one
of the neutrino self-energy diagrams are shown in figure 17. The tree-level topology is again
2s6f4, and the neutrino masses are realised at three and four loops, with the additional
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Figure 16. (a) The furnishing of the tree-level topology, labelled 2s6f4 in our scheme, that
generates O62b at tree level. The interactions allowed in the theory are such that the ∆1 line can be
connected straight into one of the LLS1 vertices in place of an L, leading to a loop-level completion
of O2. (b) The neutrino self-energy diagram relevant to the non-genuine completion of O62b. It is
clear that this diagram does not represent the dominant contribution to the neutrino mass, since
the highlighted collection of fields can be replaced with the interaction ∆̄1LS1. This leads to a
diagram with heavy loop involving ∆1, χ and S1, which dominates the neutrino masses. In both
cases, the relevant topology is CLBZ-7 in the classification of ref. [27].

loop arising from the connection of an H and H†. One of the loops involves a W boson,
and so the diagram does not fit into existing topological classifications. The three-loop
diagram is similar to the topology DM

9 of ref. [28], with one of the scalar lines replaced
with a vector boson. The W boson line must connect to Q in the diagram, but could end
on any field with non-trivial SU(2)L charge. The connection to the L line is shown, since
the loop integral then depends on leptonic flavour indices, which can change the structure
of the neutrino-mass matrix. There are also several ways of connecting the Higgs lines and
only one combination is shown in the figure. The four-loop diagrams will be the dominant
contribution to the neutrino masses for exotic fields above 4πv ≈ 2 TeV.

The neutrino-mass matrix in this model can be estimated as

[mν ]rs = λg2

(16π2)3

(
v2

Λ2 + 1
16π2

)
1
Λ
∑
t,u,v

xrtz
∗
t y
∗
u[mu]uVuv[md]vxsvIrstuv + (r ↔ s) , (5.5)

where the Vrs are CKM matrix elements, Λ is the generic UV scale, and Irstuv is the loop
function. The dependence on the masses of the up- and down-type quarks implies that
the largest contributions to the neutrino masses will come from loops containing top and
bottom quarks. If the parameters y1,2, xr1 and xr2 play no significant role in the physics
of neutrino mass, then the matrix will have rank 1 if the loop function carries no leptonic
flavour indices. It may be the case that an additional generation of Q5, φ or Π7 is therefore
required for the model to successfully reproduce the measured pattern of neutrino masses
and mixings.
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Q5

L

d̄

H
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d̄

H

ū

d̄

(a)

L L

H H

d̄ Q5 ū Q d̄

Π1

H

φ Π1

W

(b)

Figure 17. (a) The tree-level completion diagram for the model derived from exploding O50 and
discussed in the main text. The topology is 2s6f4 in our classification scheme. The closure involves
an arrow-preserving loop connecting the d̄† to one of the d̄ lines, and the W -boson closure motif
discussed in section 4.1. (b) One of the neutrino-mass diagrams relevant to the model derived from
O50. There is a three-loop diagram with the H line broken into an H†, H pair that generates the
dimension-seven generalised Weinberg operator. The four-loop diagrams all involve connecting the
H† to each of the three H legs in the diagram. There are also multiple places the W could end
in the diagram, although it must couple to the Q line. The four-loop diagrams will give larger
contributions to the neutrino mass than the three-loop diagrams for Λ & 2 TeV.

5.2.2 A model derived from a derivative operator

We move on to discuss a model generating the single-derivative dimension-nine operators
OD10a,b,c. The estimated upper-bound on the exotic scale is close to 1.5 × 103TeV in this
case. The model contains the fields ρ ∼ (1,2, 3

2)S , Q5 ∼ (3,2, 5
6)F and Σ1 ∼ (1,3, 1)F .

Such two-fermion-one-scalar models are unique to completions of single-derivative operators
at dimension nine.

The part of the Lagrangian relevant to lepton-number violation is

−∆L = xrL
i
rΣ
{jk}
1 H†kεij +yrL

i
rρ
jΣ̄{kl}1 εikεjl+zrd̄raH

iQaj5 εij +wrūraρ
iQaj5 εij +h.c. (5.6)

The only additions to the scalar potential are the expected |ρ|2|H|2 and |ρ|4 terms, and
these play no role in the lepton-number violation. Notably, there are no Yukawa couplings
involving Q̄5, and the field ρ generates no dimension-six operators at tree-level, since the
naively expected coupling H iHjHkρkεij vanishes. The model also has the nice feature that
no baryon-number violating interactions are present.

The tree-level completion diagram and one of the neutrino-mass diagrams are shown
in figure 18. The completion diagram has topology 2s4f8, which requires one of the heavy
fermions to have an arrow-preserving propagator. The neutrino-mass diagram shown is
cocktail-like [105], although there are also two-loop diagrams generating O′1 at the low
scale, as well as other diagrams with the W and H lines in different places. The topology
of the neutrino self-energy diagram is similar to DM

15 in ref. [28].
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Σ1

ρ
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H

L ū
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H
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L L

H H

Σ1 L

ρ W

Q5 d̄ Q

H

ū Q
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Figure 18. (a) The tree-level completion diagram for the model that generates the single-derivative
operators OD10,a,b,c and discussed in the main text. The topology is 2s4f8 in our classification
scheme. This class of topologies is only relevant to single-derivative operators, and contains an
arrow-preserving fermion propagator, that of Q5 in the diagram. The closure of the diagram involves
aW -boson loop, similar to that required in figure 17. (b) One of the neutrino-mass diagrams relevant
to the model generating OD10a,b,c. The diagram generates the Weinberg operator as drawn, but
additional diagrams exist with the central H line cut into an H,H† pair that generate O′1 instead.
These diagrams will only be relevant for exotic masses less than about 2 TeV. Additional three-loop
diagrams exist in which the Higgs coming from the Σ1LH

† interaction loops into any of the other
external H fields. The W boson must connect to the Q line, but could end on any other field with
non-trivial SU(2)L charge. The topology is cocktail-like [105], and resembles DM

15 in ref. [28].

The flavour structure of the neutrino-mass matrix has the approximate form

[mν ]rs = g2

(16π2)3
1
Λ
∑
t,u

yrxsw
∗
t zt[md]tVut[mu]uIrstu + (r ↔ s) . (5.7)

The dependence on the up- and down-type mass matrices, as in the example presented in
section 5.2.1, means that the couplings w1,2 and z1,2 will not play an important role in
generating the observed pattern of neutrino masses and mixings. In this case the matrix
has at least rank 2, even if the leptonic-flavour structure of the loop integrals Irstu is flat.
Thus, the structure of the neutrino masses and mixing parameters emerges mostly from
the six parameters xr and yr.

5.2.3 A model of neutrino mass and the flavour anomalies

Here we present a model designed specifically to generate a particular set of dimension-six
operators. The example is motivated by the recent flavour anomalies: deviations from the
SM seen in charged- and neutral-current B-meson decays. Key examples are the lepton-
flavour-universality (LFU) ratios [106–112]

RD(∗) = Γ(B → D(∗)τν)
Γ(B → D(∗)`ν)

with ` ∈ {e, µ} , (5.8)

for which the combined significance of the deviation from the SM is 3.1σ [113], and

RK(∗) = Γ(B → K(∗)µµ)
Γ(B → K(∗)ee)

, (5.9)
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both measured to be about 2.5σ away from RK(∗) ≈ 1 [114, 115]. Along with the ratios
RK(∗) sit a large class of discrepant measurements in b → s`` processes. These include
differences from the SM expectation of angular observables in B → K∗µµ [116–119] and
suppressed branching ratios measured for B → K(∗)µµ [120] and Bs → φµµ [121]. The
LFU ratios given in eqs. (5.8) and (5.9) are theoretically very clean, since a large part of
the theory uncertainty cancels in the ratio.

In the following we adhere to the conventions18 of ref. [122] relevant to the Warsaw
basis for the SMEFT and the flavio basis [123] for the Weak Effective Theory (WET).
The leptoquarks ω1 ∼ (3̄,1, 1

3)S and Π7 ∼ (3,2, 7
6)S can provide an explanation of the

anomalies in RD(∗) with contributions to the SMEFT operators

[C(1)
lequ]3332 =

−4[C(3)
lequ]3332 for ω1

4[C(3)
lequ]3332 for Π7

, (5.10)

since they have Yukawa couplings to left- and right-handed SM fields. [We note that
eq. (5.10) holds at the high scale, and the relation between the operators is altered by
running.] The Yukawa terms are

−Lω1 = frsLrQsω1 + grsē
†
rū
†
sω1 + h.c. (5.11)

−LΠ7 = xrsLrūsΠ7 + yrsē
†
rQ
†
sΠ7 + h.c. (5.12)

and these imply

[C(1)
lequ]3332 =


f33g

∗
32

2m2
ω1

for ω1

x∗32y33
2m2

Π7

for Π7
(5.13)

at tree level. A satisfactory explanation of RD(∗) requires O(1) couplings, e.g. [90, 124],
and for Π7 fits are consistent with the operator coefficient being purely imaginary, e.g. [95].

The b → s data can be explained by the tree-level exchange of the leptoquark ζ ∼
(3̄,3, 1

3)S , which generates
[C(1)
lq ]2223 = 3[C(3)

lq ]2223 , (5.14)

relevant for the neutral-current anomalies. Fits are usually performed to four-fermion
operators in the WET, defined below the electroweak scale. For the b→ s`` data, a good
fit is given for [125]

Cbsµµ9 = −Cbsµµ10 = 1
2

(
VtbV

∗
ts

e2

16π2
4GF√

2

)−1 [
C

(1)
lq + C

(3)
lq

]
2232
≈ −0.5 . (5.15)

It was pointed out in ref. [125] that there exists a mild tension between the fit to RK(∗)

and the other anomalous b → s data, which can be reconciled with an additional LFU
contribution to Cbs``9 such that

Cbsµµ9 ≈ −0.44 and Cbs``9 ≈ −0.5 , (5.16)
18These can be accessed easily at https://flav-io.github.io/docs/operators.html.
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for ` ∈ {e, µ, τ}. A potential source of this universal contribution to C9 is new physics in
four-quark operators like [125]

[O(1)
qu ]2322 = (Q̄2γµQ3)(ū2γ

µū2) , (5.17)

which can be generated, for example, by Φ ∼ (8,2, 1
2)S . The relevant Yukawa terms are

−LΦ = wrsQ
ai
r ūsbΦbj

aεij + h.c. (5.18)

and a contribution of about the right size to Cbs``9 can be generated while avoiding dijet
exclusion bounds from the LHC for mΦ ∼ 2 TeV and |w22|, |w32| ∼ 1 [125].

We construct a UV model that contains ζ and Φ as well as one of ω1 or Π7 in an
attempt to incorporate this explanation into a model of neutrino mass. We emphasise
that our goal here is not to present the most elegant or motivated model of neutrino mass
and the flavour anomalies, but rather to show that our database can be used to motivate
complex models with a specific structure.

We query the filtered model database for neutrino-mass models that contain the inter-
actionsQūΦ, needed to generate O(1)

qu ; LQζ, needed to generate Cbsµµ9 = −Cbsµµ10 ; and one of
ω1 or Π7, required to explain RD(∗) . Our query returns a number of models, and we choose
one to study briefly below. We note that none of the models involve the leptoquark ω1, and
none feature the interaction ē†Q†Π7, implying some freedom in the explanation of RD(∗)

since the couplings yrs of eqs. (5.12) and (5.13) will be unrelated19 to the neutrino mass.
The model contains the additional fields Φ, ζ, Π7 and η ∼ (8,1, 1)S , necessary for

lepton-number violation. It generates O29b, which implies an upper bound on the new-
physics scale of roughly 107 TeV. The additional piece of the Lagrangian is ∆L = LY −V ,
with

−LY = xrsL
i
rūsaΠ

ja
7 εij + yrsē

†
rQ
†
saiΠ

ai
7 + zrsL

i
rQ

ja
s ζ
{kl}
a εikεjl + wrsQ

ai
r ūsbΦbj

aεij

+ h.c. (5.19)

V = κH iΦaj
b η
†b
aεij + λH iηabΠ̃

j
7aζ̃

b{kl}εikεjl + h.c. + · · · , (5.20)

where we have only shown the part of the scalar potential relevant to lepton-number vio-
lation in this model, since the full expression contains a large number of terms. The lep-
toquark ζ has a diquark coupling which we forbid by imposing U(1)B on the Lagrangian,
assigning baryon numbers of −1

3 and 1
3 to ζ and Π7, respectively. (All other exotic fields

have B = 0.) The model contains 33 free parameters, although not all of them are necessary
to address the flavour anomalies and generate viable neutrino masses.

19Expanding our search criteria, we find no viable models in the database in which both sets of couplings
presented in eqs. (5.11) and (5.12) feature. This can be understood in the following way. Any neutrino self-
energy diagram containing both couplings will also imply another where ē†ū†ω1 or ē†Q†Π7 is replaced with
the corresponding coupling to L, which contains a neutrino field. This generally gives a larger contribution
to the neutrino mass, since the closure of the diagram containing the ē will involve an additional loop with a
W boson. Thus, diagrams with both sets of Yukawa interactions to SM fermions relevant to ω1 and Π7 are
likely to be removed by our filtering procedure. We note that, after studying the unfiltered list of models, we
find that some models can be engineered so that a sizeable (but not dominant) contribution to the neutrino
masses does come from such diagrams involving both sets of leptoquark-fermion Yukawa couplings.
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The tree-level completion diagram and the neutrino self-energy diagram are shown in
figure 19. The neutrino mass arises at two loops, and the topology has the feature that
no fermion propagators are arrow-violating. This implies that the neutrino masses are
not proportional to any SM-fermion masses. This feature has been studied before in the
context of a specific UV model in ref. [49]. The phenomenon is particular to models derived
from operators whose closures feature arrow-preserving loops, as discussed in section 4.1.
From a model-building perspective, one consequence is that the neutrino masses need
not be dominated by Yukawa couplings to SM fermions of the third generation. Indeed,
motivated by the pattern of operators required to explain the flavour anomalies, we adopt
textures for the Yukawa couplings of eq. (5.19) that imply dominance of the bottom-quark
couplings for ζ, but the charm-quark couplings for Π7:

x =


0 x12 0
0 x22 0
0 x32 0

 , z =


0 0 z13

0 z22 z23

0 0 z33

 , (5.21)

where the additional coupling z22 is required to generate the relevant dimension-six opera-
tors [O(1,3)

lq ]2232. Interestingly, the minimal set of couplings wrs that gives viable neutrino
masses while incorporating the key ingredients required to generate both [O(1,3)

lq ]2232 and
[O(1,3)

lequ ]3332 is

w =


0 0 0
0 w22 0
0 w32 0

 , (5.22)

which is exactly the correct set required to also generate the operator given in eq. (5.17).
Thus, there is a natural connection in this model between the explanation of the charged-
and neutral-current anomalies through the neutrino masses. With the exception of y33, all
of the couplings featuring in the explanation of the flavour anomalies also play a role in
the generation of the neutrino masses. The structure of the neutrino-mass matrix is

[mν ]rs '
λκ

(16π2)2
v2

Λ2

∑
t,u

[zrtwtuxsu + (r ↔ s)]

= λκ

(16π2)2
v2

Λ2 [zr2w22xs2 + zr3w32xs2 + (r ↔ s)] .
(5.23)

The matrix is rank 2, and so implies an almost massless neutrino. Since there is no
suppression of the neutrino-mass scale by SM Yukawa couplings, we distinguish the UV
scales Λ and κ so that

Λ ' max (mζ ,mΦ,mη,mΠ7) (5.24)

and consider the region of parameter space in which λκ� Λ.
An explanation of the flavour anomalies in this picture can be achieved with O(1)

couplings for Π7 and Φ at a few TeV, and ζ at tens of TeV. We take η slightly heavier at
∼ 50 TeV to decouple its phenomenology and aid in suppressing the neutrino mass. This
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implies λκ ∼ 0.05 GeV for neutrino masses saturating the atmospheric bound. This choice
is technically natural, since in the limit of vanishing λ or κ the Lagrangian regains U(1)L.
We rewrite eq. (5.23) as

[mν ]rs = m0[xs2(zr2w22 + zr3w32) + (r ↔ s)] , (5.25)

where m0 ≈ λκv2(16π2)−2m−2
η . This allows for the adoption of a Casas-Ibarra-like

parametrisation of the vectors xs2 and

Z =


z13w32

z22w22 + z23w32

z33w32

 , (5.26)

so that [32]

xr2 = ξ√
2m0

(
√
m2u

∗
2 + i

√
m3u

∗
3) , (5.27)

Zr = 1
ξ
√

2m0
(
√
m2u

∗
2 − i

√
m3u

∗
3) , (5.28)

where the ui are the ith columns of the PMNS matrix; mi are the neutrino masses, fixed
by the measured squared mass differences and the choice of normal ordering; and ξ is a
free complex parameter. We find, for example, that the choices mΦ = 2 TeV, mΠ7 = 1 TeV,
mζ = 15 TeV, mη = 50 TeV, λκ = 0.05 GeV, ξ = e3i/2, z23 = 1, w22 = −w32 = 1 and
y33 = 2e2i give approximately the right values to generate the pattern of dimension-six
operators discussed and explain the flavour anomalies. This includes the additional lepton-
flavour universal contribution to Cbs``9 , discussed in ref. [125]. Although a more detailed
study of the phenomenological implications of the model is beyond the scope of this simple
example, we have shown how a specific UV scenario can be embedded into a radiative
model in a way consistent with the measured neutrino masses and mixing parameters.

6 Conclusions

We have described a procedure for building UV-complete models from effective operators
in a way amenable to automation. We have applied the algorithm, as found in our publicly
available example code [37], to the ∆L = 2 operators in the SMEFT up to and including
dimension eleven, producing just over 11,000 minimal and predictive models of radiative
Majorana neutrino mass. We share our complete listing of models, as well as the set
reduced by model filtering, in our searchable model database [92].

Our analysis includes new operators that have not appeared in previous catalogues,
along with updated estimates for the upper bounds on the new-physics scales associated
with these. We performed a preliminary study of the UV models, showing that the most
represented exotic fields featuring in the completions are leptoquarks. We find that a
number of simple models predict new physics that must live below 100TeV. Adding the
additional requirements that the models contain fewer than four exotic fields and that
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Figure 19. (a) The figure shows the tree-level completion diagram for the model constructed to
address the flavour anomalies and neutrino masses. The topology is labelled 2s6f2 in our scheme.
The closure contains two arrow-preserving loops, which arise by looping the ū into the ū† and
the Q into the Q†. (b) The self-energy diagram for the same model. The diagram has a CLBZ-10
topology in the language of ref. [27]. The neutrino masses are not suppressed by SM-fermion masses
on account of the arrow-preserving fermion lines. This feature raises the bound on the new-physics
scale relevant to the model, but also allows couplings to the second generation of fermions to play
a role in the physics of neutrino mass. This is beneficial in our case since many of these couplings
are involved in generating the pattern of dimension-six operators that motivates this example, and
so provides for a more intimate connection between the flavour anomalies and neutrino masses.

the new-physics scale should be larger than 700GeV gives at most five models fitting this
description, all of which predict new fields below 15TeV. One of these models was studied
briefly, along with a model derived from a derivative operator, and one that addresses the
flavour anomalies.

Our model database is perhaps a good laboratory for experiments in automated phe-
nomenological analysis. Now that the models have been written down and compiled into
this computationally accessible format, our hope is that a large number of them can be
ruled out in a systematic way through improved model filtering, neutrino oscillation data,
or collider constraints. Our results also pave the way for more detailed studies of the mod-
els that are currently accessible to experiments. As each model is tested, we will either
get very lucky and discover the origin of neutrino masses at low energies, or else falsify
these scenarios and build a stronger circumstantial case for those that cannot be tested at
collider experiments.
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A Table of operators

Below we present the catalogue of ∆L = 2 operators we use in our study. The operators
are listed and labelled in a way consistent with the previous catalogues [18, 30], although
we enforce that operators with the same field content carry the same numerical labels.
This means that our listing may contain more SU(2)L structures for any numbered family
of operators. Product operators as presented in the table must be read with care. This
is just a convenient shorthand to represent the field-content of an operator and illustrate
that isospin indices are internally contracted. For example, by writing O5b = O1Q

id̄H̃jεij ,
we do not mean to suggest that Lorentz indices must be contracted internally to O1 and
the down-type Yukawa.

In each row we also provide information relevant to the number of completions. The
number of unfiltered models (sets of field content) derived from the operator using our
techniques is presented, along with the number that survive the democratic filtering pro-
cedure with the neutrino-mass filtering criterion. A sizeable number of operators end up
with no completions that can play a dominant role in the physics of neutrino mass.

Other information relevant to the operators is also shown, including the number of
loops required for the operator closure (the same as the number of loops appearing in
the associated neutrino self-energy diagram) and the upper-bound on the scale of the new
physics generating the operator at tree level, derived from the atmospheric lower bound
on the mass of the heaviest neutrino. Operators for which a range is given for the number
of loops are those that generate the dimension-seven or dimension-nine analogues of the
Weinberg operator. The additional Higgs fields in these diagrams can always be closed off,
adding more loops to the neutrino self-energy while reducing the overall scale suppression.
The contribution with the highest number of loops will dominate for scales Λ & 4πv.

We remind the reader that our analysis does not include the number of unfiltered
completions of O′′′1 . In this case, the number of filtered models comes from ref. [34]. Other
operators featuring a ‘—’ are non-explosive, i.e. they do not support tree-level topologies
containing only scalars and fermions.

Labels Operator Models Filtered Loops Λ [TeV]
1 LiLjHkH l · εikεjl 3 3 0 6 · 1011

2 LiLjLkēH l · εikεjl 8 2 1 4 · 107

3a LiLjQkd̄H l · εijεkl 9 2 2 2 · 105

3b LiLjQkd̄H l · εikεjl 14 5 1 9 · 107

4a LiLjQ̃kū†H l · εikεjl 5 0 1 4 · 109

4b LiLjQ̃kū†H l · εijεkl 4 2 2 10 · 106

5a LiLjQkd̄H lHmH̃n · εilεjnεkm 790 36 2 6 · 105
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Labels Operator Models Filtered Loops Λ [TeV]
5b O1 ·Qid̄H̃j · εij 492 14 1,2 6 · 105

5c O3a ·HiH̃j · εij 509 0 2,3 1 · 103

5d O3b ·HiH̃j · εij 799 16 1,2 6 · 105

6a LiLjQ̃kū†H lHmH̃n · εilεjnεkm 289 14 2 2 · 107

6b O1 · Q̃iū†H̃j · εij 177 0 1,2 2 · 107

6c O4a ·HiH̃j · εij 262 0 1,2 2 · 107

6d O4b ·HiH̃j · εij 208 0 2,3 6 · 104

7 Liē†QjQ̃kH lHmHn · εilεjmεkn 240 15 2 2 · 105

8 Liē†ū†d̄Hj · εij 5 1 2,3 2 · 101

9 LiLjLkLlēē · εikεjl 14 1 2 3 · 103

10 LiLjLkēQld̄ · εikεjl 50 1 2 6 · 103

11a LiLjQkQld̄d̄ · εijεkl 48 0 3 4 · 101

11b LiLjQkQld̄d̄ · εikεjl 72 16 2 1 · 104

12a LiLjQ̃kQ̃lū†ū† · εikεjl 19 0 2 2 · 107

12b LiLjQ̃kQ̃lū†ū† · εijεkl 17 4 3 6 · 104

13 LiLjLkēQ̃lū† · εikεjl 12 0 2 2 · 105

14a LiLjQkQ̃lū†d̄ · εijεkl 29 1 3 1 · 103

14b LiLjQkQ̃lū†d̄ · εikεjl 43 1 2 6 · 105

15 LiLjLkL̃lū†d̄ · εikεjl 12 1 3 1 · 103

16 LiLj ēē†ū†d̄ · εij 13 1 3 1 · 103

17 LiLj ū†d̄d̄d̄† · εij 18 12 3 1 · 103

18 LiLj ūū†ū†d̄ · εij 22 8 3 1 · 103

19 Liē†Qj ū†d̄d̄ · εij 27 0 3,4 2 · 10−1

20 Liē†Q̃j ū†ū†d̄ · εij 27 3 3,4 8 · 10−1

21a LiLjLkēQlūHmHn · εilεjmεkn 3943 1 2,3 2 · 103

21b LiLjLkēQlūHmHn · εikεjmεln 4080 4 3 2 · 103

22a LiLjLkL̃lēē†HmHn · εilεjmεkn 726 0 2 2 · 107

22b O2 · L̃iē†Hjεij 931 0 2 2 · 107

23a LiLjLkēQ̃ld̄†HmHn · εilεjmεkn 780 0 2,3 4 · 101

23b O2 · Q̃id̄†Hj · εij 969 0 2,3 4 · 101

24a LiLjQkQld̄d̄HmH̃n · εilεjnεkm 9613 193 3 9 · 101

24b LiLjQkQld̄d̄HmH̃n · εimεjnεkl 6058 110 3 9 · 101

24c O3a ·Qid̄H̃j · εij 6022 34 3,4 1
24d O3b ·Qid̄H̃j · εij 9616 211 2,3 9 · 101

24e O11a ·HiH̃j · εij 3834 18 3,4 1
24f O11b ·HiH̃j · εij 5915 131 2,3 9 · 101

25a LiLjQkQlūd̄HmHn · εimεjnεkl 5960 151 2,3 4 · 103

25b O3a ·QiūHj · εij 5913 9 3,4 10
25c O3b ·QiūHj · εij 14036 470 2,3 4 · 103
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26a LiLjL̃kē†Qld̄HmHn · εikεjmεln 1600 0 3 4 · 101

26b LiLjL̃kē†Qld̄HmHn · εimεjnεkl 1040 0 2,3 4 · 101

26c O3a · L̃iē†Hj · εij 1149 0 3 4 · 101

26d O3b · L̃iē†Hj · εij 1797 0 2,3 4 · 101

27a LiLjQkQ̃ld̄d̄†HmHn · εikεjmεln 3851 164 2 2 · 107

27b LiLjQkQ̃ld̄d̄†HmHn · εimεjnεkl 2226 74 2 2 · 107

27c O3a · Q̃id̄†Hj · εij 2469 33 3 6 · 104

27d O3b · Q̃id̄†Hj · εij 3443 165 2 2 · 107

28a LiLjQkQ̃lū†d̄HmH̃n · εilεjnεkm 4038 64 3 4 · 103

28b LiLjQkQ̃lū†d̄HmH̃n · εimεjnεkl 4103 0 3,4 10
28c LiLjQkQ̃lū†d̄HmH̃n · εikεjnεlm 4305 123 3 4 · 103

28d O3a · Q̃iū†H̃j · εij 2749 7 3,4 10
28e O3b · Q̃iū†H̃j · εij 4304 90 2,3 4 · 103

28f O4a ·Qid̄H̃j · εij 4039 74 2,3 4 · 103

28g O4b ·Qid̄H̃j · εij 2748 14 3,4 10
28h O14a ·HiH̃j · εij 2701 10 3,4 10
28i O14b ·HiH̃j · εij 4177 90 3 4 · 103

29a LiLjQkQ̃lūū†HmHn · εimεjnεkl 2226 267 2 2 · 107

29b LiLjQkQ̃lūū†HmHn · εikεjmεln 3846 498 2 2 · 107

29c O4a ·QiūHj · εij 3444 422 2 2 · 107

29d O4b ·QiūHj · εij 2468 64 3 6 · 104

30a LiLjL̃kē†Q̃lū†HmHn · εikεjmεln 1772 0 3 2 · 103

30b LiLjL̃kē†Q̃lū†HmHn · εimεjnεkl 1140 2 3 2 · 103

30c O4a · L̃iē†Hj · εij 1776 2 2,3 2 · 103

30d O4b · L̃iē†Hj · εij 1398 11 3 2 · 103

31a O4a · Q̃id̄†Hj · εij 3107 10 2,3 4 · 103

31b LiLjQ̃kQ̃lū†d̄†HmHn · εimεjnεkl 1404 4 2,3 4 · 103

31c O4b · Q̃id̄†Hj · εij 1654 8 3,4 10
32a LiLjQ̃kQ̃lū†ū†HmH̃n · εilεjnεkm 2103 157 3 2 · 105

32b LiLjQ̃kQ̃lū†ū†HmH̃n · εimεjnεkl 1493 151 3 2 · 105

32c O4a · Q̃iū†H̃j · εij 2100 56 3 2 · 105

32d O4b · Q̃iū†H̃j · εij 1747 26 3,4 4 · 102

32e O12a ·HiH̃j 1250 36 3 2 · 105

32f O12b ·HiH̃j 1143 24 3,4 4 · 102

33 O1 · ēēē†ē† 451 5 2 2 · 107

34 Liēē†ē†Qj d̄HkH l · εikεjl 1377 231 3 4 · 101

35 Liēē†ē†Q̃j ū†HkH l · εikεjl 1126 15 3 2 · 103

36 ē†ē†QiQj d̄d̄HkH l · εikεjl 970 208 4 6 · 10−5

37 ē†ē†QiQ̃j ū†d̄HkH l · εikεjl 2470 58 4,5,6,7 4 · 10−2
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38 ē†ē†Q̃iQ̃j ū†ū†HkH l · εikεjl 3358 451 4 1 · 10−1

39a O1 · LiLjL̃kL̃l · εikεjl 296 0 2 2 · 107

39b LiLjLkLlL̃mL̃nHpHq · εikεjlεmpεnq 220 6 2 2 · 107

39c LiLjLkLlL̃mL̃nHpHq · εilεjnεkpεmq 588 0 2 2 · 107

39d O1 · LiLjL̃kL̃l · εijεkl 324 0 2 2 · 107

40a LiLjLkL̃lQmQ̃nHpHq · εilεjnεkpεmq 963 22 2 2 · 107

40b LiLjLkL̃lQmQ̃nHpHq · εilεjpεkqεmn 729 25 2 2 · 107

40c LiLjLkL̃lQmQ̃nHpHq · εinεjpεkqεlm 759 25 2 2 · 107

40d LiLjLkL̃lQmQ̃nHpHq · εikεjlεmpεnq 953 0 3 6 · 104

40e LiLjLkL̃lQmQ̃nHpHq · εilεjmεkpεnq 1321 31 2 2 · 107

40f LiLjLkL̃lQmQ̃nHpHq · εikεjnεlpεmq 963 100 2 2 · 107

40g LiLjLkL̃lQmQ̃nHpHq · εimεjnεkpεlq 1339 30 2 2 · 107

40h LiLjLkL̃lQmQ̃nHpHq · εikεjmεlpεnq 820 56 2 2 · 107

40i LiLjLkL̃lQmQ̃nHpHq · εimεjpεkqεln 844 9 2 2 · 107

40j LiLjLkL̃lQmQ̃nHpHq · εikεjpεlnεmq 908 60 2 2 · 107

40k LiLjLkL̃lQmQ̃nHpHq · εikεjpεlmεnq 970 98 2 2 · 107

40l LiLjLkL̃lQmQ̃nHpHq · εikεjpεlqεmn 933 87 2 2 · 107

41a LiLjLkL̃ld̄d̄†HmHn · εilεjmεkn 729 6 2 2 · 107

41b LiLjLkL̃ld̄d̄†HmHn · εikεjmεln 933 71 2 2 · 107

42a LiLjLkL̃lūū†HmHn · εilεjmεkn 729 21 2 2 · 107

42b LiLjLkL̃lūū†HmHn · εikεjmεln 933 120 2 2 · 107

43a LiLjLkL̃lū†d̄HmH̃n · εikεjnεlm 1068 7 3,4 10
43b LiLjLkL̃lū†d̄HmH̃n · εilεjmεkn 1438 7 3,4 10
43c LiLjLkL̃lū†d̄HmH̃n · εikεjmεln 1068 8 3,4 10
43d LiLjLkL̃lū†d̄HmH̃n · εikεjlεmn 1068 8 3,4 10
44a LiLj ēē†QkQ̃lHmHn · εilεjmεkn 1571 155 2 2 · 107

44b LiLj ēē†QkQ̃lHmHn · εimεjnεkl 1016 91 2 2 · 107

44c LiLj ēē†QkQ̃lHmHn · εijεkmεln 1137 2 3 6 · 104

44d LiLj ēē†QkQ̃lHmHn · εikεjmεln 1765 133 2 2 · 107

45 LiLj ēē†d̄d̄†HkH l · εikεjl 1016 81 2 2 · 107

46 LiLj ēē†ūū†HkH l · εikεjl 1016 49 2 2 · 107

47a LiLjQkQlQ̃mQ̃nHpHq · εimεjnεkpεlq 1013 236 2 2 · 107

47b LiLjQkQlQ̃mQ̃nHpHq · εimεjpεknεlq 2253 423 2 2 · 107

47c LiLjQkQlQ̃mQ̃nHpHq · εipεjqεkmεln 1007 200 2 2 · 107

47d LiLjQkQlQ̃mQ̃nHpHq · εilεjnεkpεmq 2838 690 2 2 · 107

47e LiLjQkQlQ̃mQ̃nHpHq · εinεjpεklεmq 1730 387 2 2 · 107

47f LiLjQkQlQ̃mQ̃nHpHq · εijεknεlpεmq 1702 60 3 6 · 104

47g LiLjQkQlQ̃mQ̃nHpHq · εilεjpεknεmq 2796 530 2 2 · 107

47h LiLjQkQlQ̃mQ̃nHpHq · εijεkpεlqεmn 924 46 3 6 · 104
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47i LiLjQkQlQ̃mQ̃nHpHq · εilεjpεkqεmn 2078 369 2 2 · 107

47j LiLjQkQlQ̃mQ̃nHpHq · εipεjqεklεmn 902 183 2 2 · 107

47k LiLjQkQlQ̃mQ̃nHpHq · εikεjlεmpεnq 1203 258 2 2 · 107

47l LiLjQkQlQ̃mQ̃nHpHq · εijεklεmpεnq 814 46 3 6 · 104

48 LiLj d̄d̄d̄†d̄†HkH l · εikεjl 921 125 2 2 · 107

49 LiLj ūū†d̄d̄†HkH l · εikεjl 2086 384 2 2 · 107

50a LiLj ū†d̄d̄d̄†HkH̃ l · εikεjl 2285 68 3,4 10
50b O17 ·HiH̃j · εij 1523 52 3,4 10
51 LiLj ūūū†ū†HkH l · εikεjl 921 225 2 2 · 107

52a LiLj ūū†ū†d̄HkH̃ l · εikεjl 2896 170 3,4 10
52b O18 ·HiH̃j · εij 1872 94 3,4 10
53 LiLj ū†ū†d̄d̄H̃kH̃ l · εikεjl 939 162 4,5,6 2 · 10−1

54a Liē†QjQkQ̃ld̄HmHn · εilεjmεkn 2203 92 3 4 · 101

54b Liē†QjQkQ̃ld̄HmHn · εimεjlεkn 3393 89 3 4 · 101

54c Liē†QjQkQ̃ld̄HmHn · εimεjkεln 2456 30 3 4 · 101

54d Liē†QjQkQ̃ld̄HmHn · εikεjmεln 3835 100 3 4 · 101

55a Liē†QjQ̃kQ̃lū†HmHn · εilεjmεkn 3478 143 3 2 · 103

55b Liē†QjQ̃kQ̃lū†HmHn · εimεjlεkn 3493 144 3 2 · 103

55c Liē†QjQ̃kQ̃lū†HmHn · εimεjnεkl 2049 86 3 2 · 103

55d Liē†QjQ̃kQ̃lū†HmHn · εijεkmεln 2156 106 3 2 · 103

56 Liē†Qj d̄d̄d̄†HkH l · εikεjl 2273 252 3 4 · 101

57 Liē†Q̃j ū†d̄d̄†HkH l · εikεjl 4251 481 3 2 · 103

58 Liē†Q̃j ūū†ū†HkH l · εikεjl 2408 183 3 2 · 103

59a Liē†Qj ū†d̄d̄HkH̃ l · εikεjl 2638 65 3,4,5 2 · 10−1

59b O19 ·HiH̃j · εij 2583 65 3,4,5 2 · 10−1

59c O8 ·Qid̄H̃j · εij 2639 42 4,5,6 6 · 10−2

60a Liē†Q̃j ū†ū†d̄HkH̃ l · εilεjk 2687 35 4,5 1 · 10−1

60b O8 · Q̃iū†H̃j · εij 2687 121 3,4,5 4 · 10−1

60c O20 ·HiH̃j · εij 2687 104 3,4,5 4 · 10−1

61a O1 · LiēH̃j · εij 382 0 1,2 2 · 105

61b O2 ·HiH̃j · εij 408 0 1,2 2 · 105

62a LiLjLkLlēēHmH̃n · εilεjmεkn 1820 0 2,3 2 · 101

62b O9 ·HiH̃j · εij 830 1 2,3 2 · 101

63a LiLjLkēQld̄HmH̃n · εikεjnεlm 4619 12 3 4 · 101

63b LiLjLkēQld̄HmH̃n · εilεjmεkn 7216 77 2,3 4 · 101

63c O2 ·Qid̄H̃j · εij 4621 49 2,3 4 · 101

63d O10 ·HiH̃j · εij 4590 45 2,3 4 · 101

64a LiLjLkēQ̃lū†HmH̃n · εilεjmεkn 1370 0 3 2 · 103

64b LiLjLkēQ̃lū†HmH̃n · εikεjnεlm 1050 0 3 2 · 103
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64c O2 · Q̃iū†H̃j · εij 1049 0 2,3 2 · 103

64d O13 ·HiH̃j · εij 1008 0 3 2 · 103

65a LiLj ēē†ū†d̄HkH̃ l · εikεjl 1925 17 3,4 10
65b O16 ·HiH̃j · εij 1259 11 3,4 10
71 O1 ·QiūHj · εij 396 9 2 2 · 107

75 O8 ·QiūHj · εij 3951 84 3 4 · 101

76 ē†ē†ū†ū†d̄d̄ 16 4 4,5,6 2 · 10−2

77 O1 · L̃iē†Hj · εij 156 0 2 2 · 105

78 O1 · Q̃id̄†Hj · εij 156 0 2 6 · 105

1′ O1 · H̃iHj · εij 53 1 0,1 4 · 109

8′ O8 · H̃iHj · εij 301 4 2,3,4 1
1′′ O1 · H̃iHjH̃kH l · εijεkl 1893 6 0,1,2 2 · 107

1′′′ O1 · H̃iHjH̃kH lH̃mHn · εijεklεmn — 2 0,1,2 2 · 107

7′ O7 · H̃iHj · εij 24951 374 2,3 2 · 103

8′′ O8 · H̃iHjH̃kH l · εijεkl 19229 197 2,3,4,5 7 · 10−1

71′ O71 · H̃iHj · εij 39331 446 2,3 2 · 105

76′ O76 · H̃iHj · εij 679 209 4,5,6,7 4 · 10−2

77′ O77 · H̃iHj · εij 14598 0 1,2,3 2 · 103

78′ O78 · H̃iHj · εij 14644 1 2,3 4 · 103

79a O61a · H̃iHj · εij 31791 14 1,2,3 2 · 103

79b O2 · H̃iHjH̃kH l · εijεkl 23931 14 1,2,3 2 · 103

80a O5a · H̃iHj · εij 72694 154 2,3 4 · 103

80b O5b · H̃iHj · εij 49108 371 1,2,3 4 · 103

80c O3a · H̃iHjH̃kH l · εijεkl 31569 16 2,3,4 1 · 101

80d O3b · H̃iHjH̃kH l · εijεkl 49505 367 1,2,3 4 · 103

81a O6a · H̃iHj · εij 26174 95 2,3 2 · 105

81b O6b · H̃iHj · εij 17298 18 1,2,3 2 · 105

81c O4a · H̃iHjH̃kH l · εijεkl 15575 18 1,2,3 2 · 105

81d O4b · H̃iHjH̃kH l · εijεkl 12400 41 2,3,4 4 · 102

82 LiL̃j ē†ē†ū†d̄HkH l · εikεjl 1151 56 3,4,5 2 · 10−1

D1 (DL)iLj ū†d̄ · εij — — 3,4,5 2 · 10−1

D2a (DL)iLj(DH)kH l · εijεkl 1 0 1 2 · 109

D2b (DL)iLj(DH)kH l · εilεjk 3 3 0 6 · 1011

D2c (DL)iLj(DH)kH l · εikεjl 3 3 0 6 · 1011

D3 Liē†HjHk(DH)l · εikεjl 4 0 1 4 · 107

D4a LiLj(DL)k(Dē)H l · εikεjl 8 2 1 4 · 107

D4b LiLj(DL)k(Dē)H l · εijεkl 8 2 1 4 · 107

D5a LiLj(DL)kL̃lHmHn · εilεjmεkn 21 0 1 4 · 109

D5b LiLj(DL)kL̃lHmHn · εikεjmεln 30 4 1 4 · 109
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D5c LiLj(DL)kL̃lHmHn · εijεkmεln 30 4 1 4 · 109

D5d LiLj(DL)kL̃lHmHn · εimεjnεkl 21 0 1 4 · 109

D6a LiLj ēē†(DH)kH l · εikεjl 30 2 1 4 · 109

D6b LiLj ēē†(DH)kH l · εijεkl 16 0 2 10 · 106

D7a (DL)iLjQk(Dd̄)H l · εijεkl 9 2 2 2 · 105

D7b (DL)iLjQk(Dd̄)H l · εikεjl 14 5 1 9 · 107

D7c (DL)iLjQk(Dd̄)H l · εilεjk 14 5 1 9 · 107

D8a LiLjQkQ̃l(DH)mHn · εinεjkεlm 53 11 1 4 · 109

D8b LiLjQkQ̃l(DH)mHn · εinεjlεkm 44 6 1 4 · 109

D8c LiLjQkQ̃l(DH)mHn · εikεjlεmn 25 0 2 10 · 106

D8d LiLjQkQ̃l(DH)mHn · εimεjkεln 53 11 1 4 · 109

D8e LiLjQkQ̃l(DH)mHn · εimεjlεkn 44 6 1 4 · 109

D8f LiLjQkQ̃l(DH)mHn · εimεjnεkl 30 5 1 4 · 109

D8g LiLjQkQ̃l(DH)mHn · εijεkmεln 35 7 2 10 · 106

D8h LiLjQkQ̃l(DH)mHn · εijεknεlm 35 7 2 10 · 106

D8i LiLjQkQ̃l(DH)mHn · εijεklεmn 16 3 2 10 · 106

D9a LiLj d̄d̄†(DH)kH l · εikεjl 30 5 1 4 · 109

D9b LiLj d̄d̄†(DH)kH l · εijεkl 16 4 2 10 · 106

D10a (DL)iLj ū†d̄HkH̃ l · εilεjk 56 13 2,3 1 · 103

D10b (DL)iLj ū†d̄HkH̃ l · εijεkl 36 7 2,3 1 · 103

D10c (DL)iLj ū†d̄HkH̃ l · εikεjl 56 13 2,3 1 · 103

D11 (DL)iLj(Dū†)(Dd̄) · εij — — 2,3 1 · 103

D12a LiLj ūū†(DH)kH l · εikεjl 30 5 1 4 · 109

D12b LiLj ūū†(DH)kH l · εijεkl 16 4 2 10 · 106

D13a (DL)iLjQ̃k(Dū†)H l · εijεkl 4 2 2 10 · 106

D13b (DL)iLjQ̃k(Dū†)H l · εikεjl 5 0 1 4 · 109

D14a Liē†Qj d̄(DH)kH l · εikεjl 53 0 2 6 · 103

D14b Liē†Qj d̄(DH)kH l · εilεjk 53 0 2 6 · 103

D14c Liē†Qj d̄(DH)kH l · εijεkl 27 0 2 6 · 103

D15 (DL)iē†(Dū†)d̄Hj · εij 5 1 2,3 2 · 101

D16a Liē†Q̃j ū†(DH)kH l · εikεjl 58 8 2 2 · 105

D16b Liē†Q̃j ū†(DH)kH l · εilεjk 58 8 2 2 · 105

D16c Liē†Q̃j ū†(DH)kH l · εijεkl 27 4 2 2 · 105

D17 ē†ē†ū†d̄(DH)iHj · εij 16 7 3,4 2 · 10−1

D18a (DL)iLjHkH l(DH)mH̃n · εikεjmεln 53 1 0,1 4 · 109

D18b (DL)iLjHkH l(DH)mH̃n · εikεjlεmn 53 1 0,1 4 · 109

D18c (DL)iLjHkH l(DH)mH̃n · εimεjlεkn 53 1 0,1 4 · 109

D18d (DL)iLjHkH l(DH)mH̃n · εijεkmεln 24 1 1,2 10 · 106

D18e (DL)iLjHkH l(DH)mH̃n · εinεjlεkm 34 0 1 4 · 109
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D18f (DL)iLjHkH l(DH)mH̃n · εilεjnεkm 34 0 1 4 · 109

D19a (D2L)iLj(D2H)kH l · εijεkl 1 0 1 2 · 109

D19b (D2L)iLj(D2H)kH l · εilεjk 3 3 0 6 · 1011

D19c (D2L)iLj(D2H)kH l · εikεjl 3 3 0 6 · 1011

D20 Liē†HjHkH l(DH)mH̃n · εilεjmεkn 129 0 1,2 2 · 105

D21 (DL)i(Dē†)HjHk(DH)l · εikεjl 2 0 1 4 · 107

D22 ē†ē†(DH)i(DH)jHkH l · εikεjl 9 0 2 3 · 103

Table 8: The table displays our listing of the ∆L = 2 operators along with the number of comple-
tions before and after our model-filtering procedure, the number of loops in the neutrino self-energy
diagram, and the upper bound on the new-physics scale associated with each operator. See the
main text of the appendix for more information.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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