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1 Introduction

The study of conformal field theories plays an important role in the study of quantum field

theory in general. These type of theories usually appear at the end points of RG flows

and have a larger group of spacetime symmetries, the conformal group rather than the
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Poincare group. One can also enlarge the symmetry further by adding supersymmetry,

leading to superconformal field theories (SCFTs). The largest amount of supersymmetry

one can have without introducing gravity is sixteen supercharges, corresponding to N = 4

supersymmetry in four dimensions. This class of theories appears to posses the largest

amount of spacetime symmetry making it an interesting and active research ground.

While the constraints on the dynamics imposed by the large amount of supersymmetry

help in the study of such theories, they also make the behavior of these theories less rich.

This in turn motivates the study of theories with less supersymmetry. In that spirit, N = 2

theories and SCFTs were, and still are, studied extensively. These present richer dynamics

than that present in N = 4 theories, yet the supersymmetry is still sufficient to make

significant progress.

This present the question of the place of N = 3 theories. Despite being an intermediate

case, with potentially richer dynamics than N = 4 theories, but with more supersymmetry

than N = 2 theories, these theories are not as widely studied as their counterparts. A large

part of this is due to the fact that these were only recently discovered, as it was suspected for

a long time that these may not exist. This follows from the observation that any Lagrangian

theory possessing N = 3 supersymmetry, actually possesses N = 4 supersymmetry, and

so there are no purely N = 3 supersymmetric Lagrangian theories. The curious thing

is that while no purely N = 3 supersymmetric Lagrangian theory exists, ones with no

Lagrangian manifesting the N = 3 supersymmetry exist. Notably, N = 3 SCFTs can be

constructed in string theory as the theories living on D3-branes in the presence of S-folds,

which can be thought of as generalizations of orientifolds to also include an action of the

SL(2,Z) symmetry of type IIB string theory. These were first considered in [1], with the

construction being later generalized in [2, 3].

The non-Lagrangian1 nature of these theories seemingly adds to the complexity of

dealing with these types of theories, though that is not the whole story. After all, there

are numerous known non-Lagrangian N = 2 SCFTs, see for instance [4–8], and many of

them have been well studied. However, most of these non-Lagrangian N = 2 SCFTs can

be related to Lagrangian theories, either by gauging part of their global symmetries [9], or

by going to special points on the Coulomb branch [10, 11]. The N = 3 SCFTs appear not

to posses such relations, at least if one insists on maintaining N = 2 supersymmetry. This

leads them to be somewhat isolated compared to many N = 2 non-Lagrangian theories,

which adds to their inaccessibility. Note though, that N = 3 SCFTs can be reached, for

instance, by mass deformations of non-Lagrangian N = 2 SCFTs [12, 13], so they are not

completely isolated.

While it seems difficult to access these theories using N = 2 Lagrangian theories, it

might be possible to access them viaN = 1 Lagrangian theories. Here the idea is to consider

an N = 1 Lagrangian theories, and deform it by an operator such that it goes to the N = 3

SCFT. The deformation may be either marginal or relevant. The former case corresponds

to the situation where the N = 3 SCFT and a certain N = 1 Lagrangian theory share the

1Here, we use the nomenclature ‘non-Lagrangian’ for theories with no known Lagrangian manifesting all

their supersymmetry.
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same conformal manifold. That is there is an underlying N = 1 SCFT with a conformal

manifold, that at one point becomes the N = 1 Lagrangian theory at zero coupling and

at another one becomes the N = 3 SCFT. This is similar to the relation between the

USp(2N) and SO(2N + 1) N = 4 super Yang-Mills theories, but now applied to a case

where only N = 1 supersymmetry is preserved generally. The existence of such N = 1

SCFTs, that are built from Lagrangian theories with a conformal manifold containing the

free point, was first considered in [14], and further also in [15]. The classification of such

N = 1 SCFTs, where the gauge content of the Lagrangian theory at the free point consists

of a simple Lie group, was carried out in [16]. These types of relations but between these

types of N = 1 SCFTs and N = 2 non-Lagrangian theories were studied in [17].

An alternative case is when the deformation is relevant. In these cases, we consider an

N = 1 Lagrangian theory that flows in the IR to the N = 3 SCFT, potentially with the

addition of decouped free fields. Various examples of such flows, involving an N = 2 non-

Lagrangian theory as the end point, are known [18–26]. The purpose of this article is to

study these types of relations for N = 3 SCFTs. Specifically, we shall employ the strategy

of [26], and use the anomalies of an N = 3 SCFT to conjecture an N = 1 asymptotically

free SU(2) × SU(2) gauge theory that we postulate flows in the IR to the N = 3 SCFT

plus a free decoupled chiral field. To be precise, the N = 3 SCFT possesses a conformal

manifold on which only N = 1 SUSY is preserved, and we expect the N = 1 Lagrangian

theory to flow to a generic point on this conformal manifold.

The specific N = 3 SCFT in question is the one with the moduli space C3/Z3, con-

sidered in [27]. This theory seems to be the simplest non-trivial purely N = 3 SCFT, on

account of having the smallest central charges. The structure of the moduli space suggests

that it has both a dimension three Coulomb and Higgs branch operators, and so we expect

from the reasoning of [17], that it also has an N = 1 only preserving conformal manifold.

This can indeed be confirmed as we shall show in this article.

An interesting question then is how can we test this conjecture, as it involves strong

coupling dynamics. A standard way to test such relations is using various RG invariant

quantities, like anomalies or the superconformal index, that can be evaluated from the

Lagrangian. However, these will be needed to be compared against those of the N = 3

SCFT. Unfortunately, the superconformal index for the N = 3 SCFT in question is not

known.2 To tackle this, we shall use the power of N = 3 supersymmetry. Specifically, N =

3 supersymmetry places some restrictions on the form of the superconformal index [30], and

we can check that the resulting index is consistent with N = 3 superconformal symmetry.

In fact, for the case we consider, we can do better. This comes about as the moduli

space of this N = 3 SCFT is known, and imply the presence of various operator that span

it. These are analogues of Higgs and Coulomb branch operators in N = 2 SCFTs. We can

then form a guess for the superconformal index of this SCFT by taking the contributions

of these multiplets. We shall see that the resulting index matches remarkably well with the

index of the gauge theory, after the removal of the decoupled chiral. This not only gives

2The superconformal index for N = 3 SCFTs engineered using S-folds was considered in [28, 29] using

their gravity dual. However, the cases we consider here all have low rank so it is not clear how helpful the

gravity dual is for these cases.

– 3 –



J
H
E
P
0
1
(
2
0
2
1
)
0
6
2

evidence that the index can be that of an N = 3 SCFT, but also that it can be the index

of this specific N = 3 SCFT.

Finally, we consider generalizations to other models. These considerations shall lead us

to an additionalN = 1 model with a conformal manifold, which we conjecture it shares with

an N = 3 SCFT. The N = 3 SCFT in question is the one with moduli space C9/G(3, 3, 3)

introduced in [2], where we use the notation used in the reference. This proposal can

again be checked by comparing various RG invariant quantities, like anomalies and the

superconformal index. For the latter we again compare against the index expected based on

the spectrum of operators spanning the moduli space. Additionally, we also find a related

N = 1 model, again with a conformal manifold, whose anomalies and superconformal

index appear consistent with that of N = 3 SCFTs, but whose properties do not match

any known N = 3 SCFT. It is not clear whether a relation to an N = 3 SCFT, like the

ones considered here, also holds for this case.

The structure of this article is as follows. We begin in section 2 with some preliminaries

on some of the properties of N = 3 SCFTs, and how these can be used to help conjecture

and test N = 1 models related to N = 3 SCFTs. These considerations will lead us to

conjecture an N = 1 SU(2)× SU(2) gauge theory that we postulate flows in the IR to an

N = 3 SCFT plus a free decoupled chiral field. We then move on to section 3 to study

this model in detail. This allows us to uncover evidence in support of this conjecture.

In section 4 we consider generalizations, where we present another N = 1 model that we

conjecture is dual to an N = 3 SCFT. This conjecture is then tested using similar methods.

Finally, the appendix collects many properties of 4d superconformal theories. Specifically,

the relation between their symmetries, anomalies and the decomposition of superconformal

multiplets. These are then used in the course of this article.

2 Preliminaries

The first thing we would like to consider is the implications of N = 3 supersymmery on

various RG invariant quantities. The purpose here is two fold. First, it can be used as

a tool to help build N = 1 Lagrangian models that might be related to N = 3 theories.

Second, it provides us with a method to test whether a given N = 1 Lagrangian model can

be related to an N = 3 theory.

We will be particularly interested in two types of RG invariant quantities. The first

is the superconformal index, while the second are the ’t Hooft anomalies, particularly the

central charges. We shall keep with the general strategy of [17, 26], and use the anomalies

as a tool to help conjecture models and the index to test them. When we discuss the index,

it will also be important to consider the structure of the moduli space of N = 3 theories.

This is because the index of N = 3 theories is in general not known, and so we don’t

immediately have anything to compare with. However, the structure of the moduli space

implies the existence of certain multiplets that can be used to formulate a conjecture for

the superconformal index.

This section, as well as the proceeding ones, rely on various properties of N = 3

theories. For convenience, these are summarized in the appendix.
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2.1 Index and the moduli space

We will want to test our proposals by matching the superconformal index. However, the

superconformal index of N = 3 SCFTs is generally unknown. However, we do know

the structure of the moduli space of many of these theories. From this, we can infer of

the existence of various operators that are related to the moduli space. This allows us

to determine some properties of these theories, and formulate a minimal conjecture for

their superconformal indices by taking the contributions of only these multiplets. We shall

consider the structure of the moduli space, and its implication on the spectrum of operators

in this section.

We begin by considering the structure of the moduli space of N = 3 SCFTs. Here we

shall concentrate only on a specific family of N = 3 SCFTs, that can be realized in string

theory by D3-branes probing the so-called S-folds [1]. The moduli space of such theories

have a special structure given by (C3)n/Γ, where Γ is a complex reflection group. As

the name suggests, complex reflection groups are groups generated by complex reflections.

These are the transformations of Cn, spanned by the coordinates zi, acting as zi → γzi,

for some i with γ being a complex number obeying |γ| = 1. In the special case where

γ is real, the groups are known as real reflections groups, and include the Weyl groups

of Lie groups. For more information on complex reflection groups, oriented towards their

application to the moduli space of N = 3 SCFTs, see [2, 31–33] and references therein.

Here we will be interested in a specific family of complex reflection groups usually denoted

as G(k, p, n). These are defined by their action on Cn, and generated by the permutations

of the zi coordinates, which are real reflections, and the transformations:

(z1, z2, . . . , zn)→
(
e

2πa1i
k z1, e

2πa2i
k z2, . . . , e

2πani
k zn

)
, (2.1)

for all ai’s obeying a1 + a2 + . . . + an = mp, for some integer m. For the N = 3 SCFTs

we considered here, Γ is known to be of type G(k, p, n) with some restrictions. Notably,

we must have that k = 1, 2, 3, 4 or 6, with k = 1, 2 leading to N = 4 SCFTs. These

are necessary so that G(k, p, n) is crystallographic, that is it preserves a lattice, which we

can identify with the electric-magnetic charge lattice that this theory has on the Coulomb

branch. Additionally, there are some restrictions on p, see [2] for the details. It should also

be noted that the structure of the moduli space of N = 3 SCFTs might be more varied,

see [34, 35] for some examples and discussions.

Let us consider the operators spanning the moduli space. For this it is convenient

to introduce complex coordinates zi and z̄i for i = 1, . . . , n, where each pair of zi and

its conjugate span a C3. The zi coordinates are taken to transform in the fundamental

of the SU(3) part of the N = 3 R-symmetry and with U(1) charge 2. The N = 3 R-

symmetry then acts on the moduli space through this action on the coordinates. The

group G(k, p, n), which we orbifold by, acts on the n zi coordinates in the same manner

as previously discussed, though now each zi is a triplet of complex numbers. In the field

theory, these coordinates represent scalar fields whose vevs parametrize the moduli space,

and for the special case of N = 4 are just the six real scalars in the vector multiplet.
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These sit in the short multiplets B1B̄1[0, 0]
(1,0;2)
1 , and B1B̄1[0, 0]

(0,1;−2)
1 for the complex

conjugate [35]. Here we use the notations of [36]. The two letters represent the shortening

conditions obeyed by the operator with respect to Q and Q̄. The remaining terms represent

the charges of the ground state under the Lorentz group, dilatation symmetry and R-

symmetry, see the appendix for details. Together these form the N = 3 vector multiplet,

which is the same as the N = 4 vector multiplet.

While the basic coordinates are given by zi and z̄i, generically these are not ‘gauge’

invariant under the modded group Γ and need to be combined to form invariants. To

illustrate this, it is convenient to consider the example of N = 4 super-YM. Here the

scalars in z and z̄ combine to form the six scalars in the N = 4 vector multiplets, whose

vevs span the moduli space. The structure of the moduli space then, for an N = 4 gauge

theory with gauge group G, is very familiar. The six scalars are in the adjoint of G, but

can be simultaneously diagonalized in the vacuum and so the latter is parametrized by a

rank(G) collection of six scalars. These span the space (C3)rank(G) playing the role of zi
and z̄i. However, not all choices are distinct. This comes about as we still need to take

into account the actions of the gauge symmetry on these fields that maintain the diagonal

choice. The latter are known to be just the Weyl group of the gauge group G, WG. This

gives the moduli space (C3)rank(G)/WG, which is a special case of (C3)n/Γ when Γ is a

crystallographic real reflection group.

The fields spanning the moduli space are then given by combinations invariant under

WG. This reflects the fact that the diagonal entries in the adjonit scalar fields in the vector

multiplets are not gauge invariant. The operators that actually span the moduli space then

are various gauge invarint combinations of the scalars in the vector multiplets. When the

latter are written in terms of their diagonal entries, they precisely provide a combination

of zi and z̄i that are invariant under WG. A similar story happens also for the N = 3

SCFTs we consider here, but with the modded group not necessary a Weyl group. We

shall next illustrate this with some specific examples. We shall concentrate here only on

moduli spanning operators of the shortest type, B1B̄1.

N = 4 U(N) theory. Let us begin by considering the case when Γ = G(1, 1, N) = SN ,

that is the symmetric group. The most well known case featuring this space is the N = 4

U(N) super Yang-Mills theory. The coordinates of the moduli space are given by zi and z̄i
for i = 1 . . . , N , and the group G(1, 1, N) acts by permutations of the zi coordinates.

The function parametrizing the moduli space are then given by combinations of zi and

z̄i invariant under permutations. To consider this, it is convenient to look for invariants

made from increasing number of fields. First, we can consider invariants made from a single

coordinate. There are precisely two of these, given by:

z1 + z2 + . . .+ zN , z̄1 + z̄2 + . . .+ z̄N .

The first gives the multiplet B1B̄1[0, 0]
(1,0;2)
1 , and the second the multiplet

B1B̄1[0, 0]
(0,1;−2)
1 . Together they form the N = 4 multiplet B1B̄1[0, 0]

(0,1,0)
1 . In the La-

grangian description, this describes the field given by Tr(φ), where we use φ for the three

adjoint chiral fields in the theory.
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Next, we can consider invariants made from two coordinates. There are six of these,

given by:

z2
1 + z2

2 + . . .+ z2
N , z1z̄1 + z2z̄2 + . . . zN z̄N , z̄2

1 + z̄2
2 + . . .+ z̄2

N ,

z1z2 + z1z3 + . . .+ zN−1zN , z1z̄2 + z1z̄3 + . . . zN z̄N−1 , z̄1z̄2 + z̄1z̄3 + . . .+ z̄N−1z̄N .

Here the first three terms exist for every N , while the last three exist only if

N > 1. These terms gives two copies of the multiplets3 B1B̄1[0, 0]
(2,0;4)
2 , B1B̄1[0, 0]

(1,1;0)
2 ,

B1B̄1[0, 0]
(0,2;−4)
2 and together form two copies of the N = 4 multiplets B1B̄1[0, 0]

(0,2,0)
2 . In

the Lagrangian description these describe the fields given by Tr(φ)2 and Tr(φ2).

Next, we can consider invariants made from three coordinates. There are fourteen of

these, given by:

z3
1 + z3

2 + . . .+ z3
N , z2

1 z̄1 + z2
2 z̄2 + . . . z2

N z̄N , z1z̄
2
1 + z2z̄

2
2 + . . . zN z̄

2
N , z̄3

1 + z̄3
2 + . . .+ z̄3

N ,

z2
1z2 + z2

1z3 + . . .+ z2
NzN−1 , z

2
1 z̄2 + z2

1 z̄3 + . . . z2
N z̄N−1 , z1z̄1z2 + z1z̄1z3 + . . . zN z̄NzN−1 ,

z1z̄
2
2 + z1z̄

2
3 +. . . zN z̄

2
N−1, z̄1z̄2z2 + z̄1z̄3z3 + . . . z̄N z̄N−1zN−1, z̄

2
1 z̄2 + z̄2

1 z̄3 + . . .+ z̄2
N z̄N−1 ,

z1z2z3 + z1z2z4 + . . .+ zN−2zN−1zN , z1z2z̄3 + z1z2z̄4 + . . . zN−1zN z̄N−2 ,

z1z̄2z̄3 + z1z̄2z̄4 + . . .+ zN z̄N−1z̄N−2 , z̄1z̄2z̄3 + z̄1z̄2z̄3 + . . .+ z̄N−2z̄N−1z̄N .

Here the first four terms exist for every N , the next six exist only if N > 1, and the last

four exist only if N > 2. These terms give three copies of the multiplets B1B̄1[0, 0]
(3,0;6)
3 ,

B1B̄1[0, 0]
(0,3;−6)
3 and four copies of the multiplets B1B̄1[0, 0]

(2,1;2)
3 , B1B̄1[0, 0]

(1,2;−2)
3 . To-

gether these form three copies of the N = 4 multiplets B1B̄1[0, 0]
(0,3,0)
3 , and one copy of

the N = 4 multiplet B1B̄1[0, 0]
(1,1,1)
3 . The last multiplet also requires other N = 3 multi-

plets longer than of type B1B̄1, and so would not be considered here. In the Lagrangian

description these describe the fields given by Tr(φ)3, Tr(φ2)Tr(φ) and Tr(φ3). For the

second case we have that (0, 2, 0)SU(4) ⊗ (0, 1, 0)SU(4) → (0, 3, 0)SU(4) ⊕ (1, 1, 1)SU(4) ⊕ . . .,
with the second term in the decomposition leading to the presence of the B1B̄1[0, 0]

(1,1,1)
3

multiplet.

The general structure now becomes apparent. The N = 3 multiplets are given by

a choice of a combination of k zi coordinates and l z̄i coordinates, and give the N = 3

multiplet B1B̄1[0, 0]
(k,l;2(k−l))
k+l . Combinations differing by changing some of the zi coordi-

nates to their conjugates combine to form the N = 4 multiplet B1B̄1[0, 0]
(0,k+l,0)
k+l , with the

remaining ones forming more general N = 4 B1B̄1 multiplets. Multipets are differentiated

by the number of coordinates sharing the same index. In the Lagrangian theory, we can

3We expect the combination of coordinates made from the product of k zi coordinates and l z̄i coordinates

to be associated with the multiplet B1B̄1[0, 0]
(k,l;2(k−l))
k+l . This comes as we expect this combination to be

the ground state of a superconformal multiplet obeying the same shortening conditions. As it is a product

of scalar fields, it should itself be a scalar with dimension and U(1) R-charge given by the sum of those of

its constitutes. Furthermore, since the basic coordinates are scalars, the SU(3) representations needs to be

multiplied symmetrically, and we do not contact SU(3) indices between zi and z̄i. These leads to the SU(3)

representation of the product being [k, l]. However, we do note that it might be possible to achieve the

symmetric product by using a mixed product in both the i and SU(3) indices of the zi coordinates. These

should then give multiplets of type longer than B1B̄1, and we will not consider these here.

– 7 –
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order the invariants by the number of traces they use, and there are precisely N basic

single trace combinations. This is mapped to the fact that there are only N combinations

of fields one can build without repeating the index of the coordinates.

N = 4 USp(2N) theory. As the next example, we consider the case when Γ =

G(2, 1, N), which is the Weyl group of USp(2N) and SO(2N + 1). Naturally, this case

is featured by the corresponding N = 4 super Yang-Mills theories. This group is generated

by permutations of the N coordinates, as well as by a reflection on any of them. The

latter imply that only the combinations z2
i , ziz̄i and z̄2

i can be used to build invariants.

The invariants then follow the same pattern as in the U(N) case, as permutation invariant

combinations of these. For example, with two fields we have the following combinations:

z2
1 + z2

2 + . . .+ z2
N , z1z̄1 + z2z̄2 + . . .+ zN z̄N , z̄2

1 + z̄2
2 + . . .+ z̄2

N .

These give the multiplets B1B̄1[0, 0]
(2,0;4)
2 , B1B̄1[0, 0]

(1,1;0)
2 , B1B̄1[0, 0]

(0,2;−4)
2 and to-

gether form the N = 4 multiplet B1B̄1[0, 0]
(0,2,0)
2 . In the Lagrangian description this

describes the field given by Tr(φ2).

Likewise, with four fields we have the combinations:

z4
1 + z4

2 + . . .+ z4
N , z3

1 z̄1 + z3
2 z̄2 + . . .+ z3

N z̄N , z2
1 z̄

2
1 + z2

2 z̄
2
2 + . . .+ z2

N z̄
2
N ,

z1z̄
3
1 + z2z̄

3
2 + . . .+ zN z̄

3
N , z̄4

1 + z̄4
2 + . . .+ z̄4

N , z2
1z

2
2 + z2

1z
2
3 + . . .+ z2

N−1z
2
N ,

z2
1z2z̄2 + z2

1z3z̄3 + . . .+ z2
NzN−1z̄N−1 , z1z2z̄1z̄2 + z1z3z̄1z̄3 + . . .+ zN−1zN z̄N−1z̄N ,

z2
1 z̄

2
2 + z2

1 z̄
2
3 + . . .+ z2

N z̄
2
N−1 , z1z̄1z̄

2
2 + z1z̄1z̄

2
3 + . . .+ zN z̄N z̄

2
N−1 ,

z̄2
1 z̄

2
2 + z̄2

1 z̄
2
3 + . . .+ z̄2

N−1z̄
2
N .

Here the last six only exist if N > 1. These give two copies of the multiplets

B1B̄1[0, 0]
(4,0;8)
4 , B1B̄1[0, 0]

(3,1;4)
4 , B1B̄1[0, 0]

(1,3;−4)
4 , B1B̄1[0, 0]

(0,4;−8)
4 , and three copies of

the multiplet B1B̄1[0, 0]
(2,2;0)
4 . Together these form two copies of the N = 4 multiplet

B1B̄1[0, 0]
(0,4,0)
4 , and one copy of the N = 4 multiplet B1B̄1[0, 0]

(2,0,2)
4 . The last mul-

tiplet also requires other N = 3 multiplets longer than of type B1B̄1, and so would

not be considered here. In the Lagrangian description these describe the fields given by

Tr(φ2)2 and Tr(φ4). For the first case we have that (0, 2, 0)SU(4)⊗symmetric (0, 2, 0)SU(4) →
(0, 4, 0)SU(4)⊕ (2, 0, 2)SU(4)⊕ . . ., with the second term in the decomposition leading to the

presence of the B1B̄1[0, 0]
(2,0,2)
4 multiplet.

We can again continue to go to higher orders, though the structure should now be

apparent.

N = 3 SCFT with Γ = G(3, 1, 1). As the next example, we consider the case when

Γ = G(3, 1, 1) = Z3. This case corresponds to a genuine N = 3 SCFT. Here the moduli

space has a single coordinate z1 on which Γ acts as z1 → e
2πi
3 z1. It is straightforward to

see that there are three basic invariants we can build:

z3
1 , z1z̄1 , z̄

3
1 .
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These give the N =3 multiplets B1B̄1[0, 0]
(3,0;6)
3 , B1B̄1[0, 0]

(1,1;0)
2 , and B1B̄1[0, 0]

(0,3;−6)
3 .

All other invariant can be written as products of these basic combinations and so correspond

to products of the three basic multiplets. It should be noted, though, that each combination

appears only once, which implies relations between the various multiplets. For instance,

there is only one z3
1 z̄

3
1 operators implying that the product of the B1B̄1[0, 0]

(3,0;6)
3 and

B1B̄1[0, 0]
(0,3;−6)
3 multiplets should be equal to the cubic product of the B1B̄1[0, 0]

(1,1;0)
2

multiplet [27, 37, 38].

N = 3 SCFT with Γ = G(3, 3, 3). As our final example, we consider the case of

Γ = G(3, 3, 3). This case corresponds to a genuine N = 3 SCFT. The group structure here

is more complicated, consisting of permutations of the three coordinates, (z1, z2, z3), as

well as the transformation (z1, z2, z3)→ (e
2πik

3 z1, e
2πil

3 z2, e
2πim

3 z3), where l+k+m = 3n for

some integer n. In this case the spectrum of invariants is much richer. The first invariant

is made of two fields:

z1z̄1 + z2z̄2 + z3z̄3.

This gives the multiplet B1B̄1[0, 0]
(1,1;0)
2 , which corresponds to the energy-momentum

tensor of the N = 3 SCFT.

At the three field level we have four different invariants:

z3
1 + z3

2 + z3
3 , z1z2z3 , z̄

3
1 + z̄3

2 + z̄3
3 , z̄1z̄2z̄3.

These give two copies of the multiplets B1B̄1[0, 0]
(3,0;6)
3 and B1B̄1[0, 0]

(0,3;−6)
3 .

At the four fields level we again have four different invariants:

z2
1 z̄

2
1 + z2

2 z̄
2
2 + z2

3 z̄
2
3 , z1z2z̄1z̄2 + z1z3z̄1z̄3 + z2z3z̄2z̄3 , z

2
1 z̄2z̄3 + z2

2 z̄1z̄3 + z2
3 z̄1z̄2 ,

z̄2
1z2z3 + z̄2

2z1z3 + z̄2
3z1z2 .

These give four copies of the multiplet B1B̄1[0, 0]
(2,2;0)
4 . Note that one copy can be

identified with the square of the energy-momentum tensor multiplet, but the rest are

additional multiplets.

We can continue and consider multiplets made from more fields, but we will not need

that in this article.

2.2 Anomalies

Next, we consider the ’t Hooft anomalies of N = 3 SCFTs. First, there are the a and

c central charges, which for N = 3 SCFTs must be equal [39]. It is convenient to write

these as:

a = c =
nv
4
. (2.2)

For Lagrangian theories, like N = 4 theories, nv is the number of vector multiplets.

For non-Lagrangian N = 2 theories, nv can in many cases be obtained from the dimensions

of the independent Coulomb branch operators, ∆i, using [40]:

nv = 4(2a− c) =
∑
i

(2∆i − 1), (2.3)
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where the sums runs over all the independent Coulomb branch operators. This relation is

known to hold for many N = 2 SCFTs, though it is not clear whether the assumption used

in [40] to derive it are satisfied for the N = 3 SCFTs we consider here, see the discussion

in [27]. It should be noted that this relation is known to fail when the gauge group has

disconnected components. For instance, it is possible to engineer N = 3 SCFTs by gauging

a discrete symmetry of N = 4 SCFTs, see [38, 41, 42]. In these cases, (2.3) will not be

obeyed, and instead a and c will be equal to those of the underlying N = 4 SCFT. We

shall for the most part not consider these types of N = 3 SCFTs here.

Instead, we will mostly concentrate on the N = 3 SCFTs that can be build using

S-folds. These were originally introduced in [1], and further studied in [2]. For the rank

1 case, the central charges were originally evaluated using (2.3) in [27], and the results

obtained there match the results obtained from other methods, notably the detailed study

of the Coulomb branch geometry of rank 1 N = 2 theories performed in [12, 43–45]. As

the higher rank cases can be thought of as generalizations of the rank 1 theories, we shall

assume that this relation indeed holds also for them.

The structure of the moduli space, and therefore the dimensions of the independent

Coulomb branch operators, are known for this class of N = 3 SCFTs, allowing us to

determine the central charges for these cases using (2.3). We can then use the anomalies

as a tool to look for models that can flow to N = 3 SCFTs. The idea is that we seek an

N = 1 Lagrangian model made from n
(1)
v vector multiplets and n

( 2
3)

c + n
( 1

3)
c chiral fields.

We further demand that there is a non-anomalous U(1)R symmetry such that n
( 2

3)
c of the

chirals have R-charge of 2
3 and n

( 1
3)

c of them have R-charge of 1
3 . We take this specific

choice as we wish to maintain the possibility that the R-charges of all gauge invariant

BPS operators be a multiplet of 2
3 , which can be achieved if the gauge symmetry is such

that invariants can only be made from a pair of fields with R-charge of 1
3 . We could take

n
( 1

3)
c = 0 in which case it is guaranteed that the R-charges of all gauge invariant BPS

operators be a multiplet of 2
3 , but in that case the theory must be conformal at weak

coupling.4 By allowing fields with R-charge 1
3 we are extending our possible models to

include RG flows.

It should be noted that naively it is possible to have BPS operators with non-integer

dimension in N = 3 SCFTs, so these restrictions may not be necessary. This can be

seen, for instance, in the structure of short representations of the N = 3 superconformal

summarized in the appendix. However, we are not aware of any example of an N = 3

SCFT containing a BPS operator with non-integer dimension. As was discussed in the

previous subsection, the dimension of the BPS operators spanning the moduli space of

N = 3 SCFTs appear to be mostly integer, see [34, 35, 39] for some discussions on these

issues. As a result, it is sensible to try to limit our search space by insisting on this.

We can constrain the values of n
(1)
v , n

( 2
3)

c and n
( 1

3)
c by demanding that the resulting

anomalies of the N = 1 R-symmetry match the anomalies of the target N = 3 SCFT. In

4This follows as in that case the condition for the U(1) R-symmetry to be non-anomalous is equal to

the condition that 1-loop beta function vanishes at zero coupling.

– 10 –



J
H
E
P
0
1
(
2
0
2
1
)
0
6
2

general there might be some gauge invariants with R-charge of 2
3 . These give free chiral

fields that are expected to decouple. Say that the number of these fields is nfree. Then we

must demand that the anomalies are consistent with those of the N = 3 SCFT plus the

free fields. This gives the constraints:

nv
4

+
nfree

48
=

1

48
(n

( 2
3)

c − n( 1
3)

c + 9n(1)
v ) ,

nv
4

+
nfree

24
=

1

48
(2n

( 2
3)

c + n
( 1

3)
c + 6n(1)

v ). (2.4)

We can then search for a solution to these constraints obeying several restrictions,

notably, that the theory is non-anomalous and further that the R-symmetry giving these

charges is anomaly free. Once such a solution is found, it can be subjected to more

intricate tests. First, we must actually verify that the R-symmetry we found can be the

superconformal R-symmetry. This may necessitates the introduction of superpotential

terms so as to break other possible R-symmetries, essentially forcing the found R-symmetry

to be the superconformal one. If this is indeed possible, we shall want to subject the

proposed model to further tests, usually by comparing other RG invariant quantities.

Before giving an example, we note that if we consider the N = 3 SCFT as an N = 1

SCFT, then from the N = 1 viewpoint, there is an SU(2)×U(1) global symmetry which is

the commutant of the N = 1 U(1)R R-symmetry in the N = 3 U(1)R×SU(3) R-symmetry.

The N = 3 supersymmetry also constrains the anomalies involving this SU(2) × U(1)

global symmetry, which in turn are also expressible in terms of nv. In theories where

these symmetries are manifest then we can also use these anomalies to test potential flows.

However, in the cases we consider here, these will not be manifest in the Lagrangian theory

so we will not consider these anomalies further here.

Finally, we want to illustrate the search strategy, and the discussion done so far, with

an example. This in fact is the main case that is studied in this article. For this, we

consider one of the simplest non-trivial N = 3 SCFT, the one with rank 1 and dimension

three Coulomb branch operator. This N = 3 SCFT is relatively well studied, having been

considered in [12, 27]. Since it has a one dimensional Coulomb branch spanned by an

operator with dimension three, we see from (2.3) that nv = 2∆ − 1 = 5 for this N = 3

SCFT. The moduli space in turn is known to be C3/Z3, and is one of the examples we did

in the previous subsection.

We want to search for an N = 1 Lagrangian model that can flow to this N = 3 SCFT,

employing the search strategy discussed here. For this we use (2.4) to constrain the values

of n
( 2

3)
c , n

( 1
3)

c and n
(1)
v , where we note that as nfree is the number of gauge invariants with

R-charge 2
3 , it is not an independent parameter. These lead to the two constrains:

n
( 2

3)
c − nfree = 5(8− n(1)

v ) , n
( 1

3)
c = 4(n(1)

v − 5). (2.5)

All that is left now is to go over all possibilities, and see if we can find a consistent

solution to (2.5). Indeed, going over the possible cases, we find the following solution:

n(1)
v = 6 , n

( 1
3)

c = 4 , n
( 2

3)
c = 11 , nfree = 1. (2.6)

The specific realization of this solution involves an SU(2)×SU(2) gauge theory, which

gives six vector multiplets. The matter content includes a bifundamental chiral of R-charge
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1
3 , which gives the four chiral fields with that R-charge. We also note that there is a single

quadratic gauge invariant one can build from it, giving the correct nfree. Finally, we also

have an adjoint chiral under one of the SU(2) groups, let us call it SU(2)1, a chiral in

the doublet of SU(2)1 and a chiral field in the (2,3) of SU(2)1 × SU(2)2. We note that

the resulting theory is non-anomalous and that the R-symmetry providing the assigned

charges is anomaly free. This then gives a consistent solution to (2.4), which ensures that

the central charges of the theory be equal to those of the N = 3 SCFT plus a free chiral

field, if the R-symmetry we used is the superconformal R-symmetry. We next study this

model in greather detail to see whether this can be enforced.

Before that, we want to note that the bifundamental is the only field sensitive to the

Z2 center of SU(2)2. As a result, all gauge invariants must be made from an even number of

bifundamentals. As this is the only field with R-charge of 1
3 , this ensures that the R-charges

of all gauge invariants be multiples of 2
3 .

3 The model

Let us analyze in detail the proposed dual of the rank 1 N = 3 SCFT with dimension three

Coulomb branch operator. The matter content consists of an SU(2)× SU(2) gauge theory

with chiral fields in various representations. The list of chiral fields, with their charges

under the gauge and flavor symmetries can be seen in table 1. This is also summarized in

the quiver description in figure 1. This theory has non-anomalous global symmetry given

by U(1)b ×U(1)x ×U(1)R. Particularly, it has a non-anomalous R-symmetry under which

the bifundamental chiral field, B, has R-charge 1
3 , while the rest have free R-charge 2

3 .

Without a superpotential this R-charge is not the superconformal one. This occurs

due to mixing with U(1)b and U(1)x. We can determine the mixing using the technique

of a maximization [46]. Specifically, we define the trial R-symmetry U(1)trial
R = U(1)R +

γbU(1)b + γxU(1)x and compute:

Tr
(

(U(1)trial
R )3

)
= 6 + 3

(
−1

3
+ γb − 2γx

)3

+ 6

(
−1

3
+ γx

)3

+2

(
−1

3
− 4γb + 13γx

)3

+ 4

(
−2

3
− 4γx

)3

,

T r
(

U(1)trial
R

)
= 6 + 3

(
−1

3
+ γb − 2γx

)
+ 6

(
−1

3
+ γx

)
+2

(
−1

3
− 4γb + 13γx

)
+ 4

(
−2

3
− 4γx

)
. (3.1)

We then use

a =
3

32

(
3Tr(U(1)3

R)− Tr(U(1)R)
)
, c =

1

32

(
9Tr(U(1)3

R)− 5Tr(U(1)R)
)

(3.2)

to compute the central charges, notably a. The statement of a maximization is that

the superconformal R-symmetry is the one that maximizes a. We can use this to fix the

coefficients γb and γx that determines the mixing between U(1)R, U(1)b and U(1)x. We

find that γb ≈ −0.224, γx ≈ −0.071.
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Field SU(2)1 SU(2)2 U(1)b U(1)x U(1)R

A 3 1 1 −2 2
3

C 2 3 0 1 2
3

F 2 1 −4 13 2
3

B 2 2 0 −4 1
3

Table 1. The gauge and matter content of the proposed dual of the rank 1 N = 3 SCFT with

dimension three Coulomb branch operator. The field entry stands for the symbol we used for that

chiral field, where the rest of the entries give the charges of that chiral fields under the gauge and

flavor symmetries.

Figure 1. The quiver diagram of the proposed N = 1 model. As usual in quiver diagrams, circles

represent gauge symmetries while boxes represent flavor ones. Next to each matter field is written

its symbol as well as its charges under the global non-R symmetries. Finally we note that the (2,3)

below the line associated with the field C gives it representations under the two SU(2) groups.

This result should give the superconformal R-symmetry in the IR. However, this may

fail if there are accidental U(1) symmetries arising in the IR, that can then mix with

the R-symmetry [47]. It is generally very difficult to completely rule this out, but one

consistency check one can do is to verify that all BPS operator dimensions, expected

from their superconformal R-charge, are above the unitarity bound. Operators below the

unitarity bound are inconsistent in SCFTs suggesting that the IR theory cannot be an

SCFT with that superconformal R-symmetry. It is generally thought that in these cases

the violating operators decouple, and become free fields along the flow. This leads to

additional symmetries that then mix with the R-symmetry. Returning to the case at hand,

with the R-symmetry we found all gauge invariant operators are above the unitarity bound

and so it seems plausible that this theory flows to an interacting SCFT. Specifically, the

gauge invariant B2 has dimension bigger than 1.

The resulting superconformal R-charges differ from those of the N = 3 theory we

seek, as U(1)R is not the superconformal R-symmetry. We can try to force U(1)R to be the

superconformal R-symmetry by introducing superpotentials that break the additional U(1)

groups that mixed with it. As we do not want U(1)R to be broken, these superpotentials
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Operator U(1)b U(1)x U(1)R U(1)spcrR

AC2 1 0 2 ≈ 1.776

AF 2 −7 24 2 ≈ 1.864

B2CF −4 6 2 ≈ 2.47

Table 2. Possible superpotential terms with U(1)R charge 2. The last entry, U(1)spcrR , stands for

the approximate R-charge under the U(1)R symmetry expected to be the superconformal one in

the IR when there is no superpotential.

must have R-charge 2. It is also important that the superpotentials be relevant with respect

to the fixed point we found previously, as if these are irrelevant we expect the theory to

flow back to the same fixed point. In that case the superpotential interaction should flow

to zero in the IR, leading to the symmetry broken by the superpotential reemerging at

low-energies. Therefore we next consider the possible superpotentials terms with charge 2

under U(1)R.

Looking at the quiver, we find three possible terms: AC2, AF 2, and B2CF . In the first

term, two C fields are contracted symmetrically so that the triplet indices under SU(2)2 are

contracted to form a singlet, while the doublet indices under SU(2)1 are contracted so as

to form an SU(2)1 triplet. This can them be contracted with the SU(2)1 triplet indices in

A to form a singlet. Similarly, in the second term, the doublet indices of F are contracted

so as to form a triplet, that is then cotracted with the triplet index in A to form a singlet.

Finally, in the third term, we contract B symmetrically so as to form a bi-triplet under the

two SU(2) groups, and similarly contract the SU(2)1 doublet indices of F with the SU(2)1

doublet indices of C to form a bi-triplet. These are then contracted together to form a

gauge invariant.

We next need to consider whether these are relevant or irrelevant at the IR fixed point,

by looking at their R-charges. This follows as in N = 1 SCFTs, the dimension of chiral

operators, like superpotential terms, is determined by their R-charge. Specifically, chi-

ral operators with R-charge less than 2 correspond to relevant operators, while ones with

R-charge greather than 2 correspond to irrelevant ones. The results for the charge are sum-

marized in table 2. We thus see that AC2 and AF 2 are relevant, while B2CF is irrelevant.

We can then consider deforming the fixed point by turning on the relevant superpotential

deformations. To mitigate potential problems due to changes in the relevancy of operators

during the flow, it is convenient to introduce them in steps. This is done by first turning

on only the most relevant one, performing a maximization and checking whether the other

remains relevant also with respect to the new superconformal R-symmetry, and if so, then

we can continue and introduce also the second term.

Therefore, we consider deforming the fixed point corresponding to the theory with

matter content as in figure 1, by the superpotential AC2. This breaks U(1)b, and as it is

relevant, we expect a flow to a new IR theory. We can determine its superconformal R-

symmetry using a maximization. We again define a trial R-symmetry U(1)trial
R = U(1)R +

γxU(1)x, and using a maximization we find: γx = 121−
√

27001
3090 ≈ −0.014.
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We can now repeat the analysis we did previously on this new putative fixed point.

First, we confirm that there are no operators going below the unitarity bound. As a result,

there is no contradiction with this theory being an SCFT with the found R-symmetry as

the superconformal one, again up to the usual caveats regarding accidental symmetries.

Next, we examine the other two superpotential terms with R-charge 2, and find that they

are now both relevant with respect to this fixed point. we can then turn any one of these

on, and expect a flow to a new IR theory. This breaks U(1)x, and as there are no other U(1)

groups remaining, U(1)R must be the superconformal R-symmetry at the IR, again baring

the possibility of accidental symmetries. However, here we do have one field, B2, that hits

the unitarity bound, and so we expect it to decouple becoming a free chiral field. Note

that this also implies an accidental symmetry acting only on it. However, as the R-charge

of this field is locked to 2
3 , this additional symmetry will not mix with the R-symmetry.

We are therefore lead to conclude that the resulting IR theory contains a decoupled

free chiral field plus a potential interacting part. We can evaluate the a and c central

charges of this additional part finding a = c = 5
4 , as previously shown. We claim that

this remaining fixed point is the rank 1 N = 3 SCFT with dimension 3 Coulomb branch

operator. To be precise, our claim is that the interacting part of the end point of the flow

we mentioned is said N = 3 SCFT on a generic point on its one dimensional N = 1 only

preserving conformal manifold. Regarding the latter, as the SCFT has a dimension three

Coulomb branch operator, it has marginal operators preserving only N = 1 supersymmetry,

associated with this operator, as well as ones related to it by N = 3 SUSY. As shown

in A.3.3, by decomposing the N = 3 multiplets containing these operators to N = 2

multiplets, one finds that these give a one dimensional N = 1 only preserving conformal

manifold on a generic point of which the SU(2)×U(1), which is the global symmetry from

the N = 1 viewpoint, is completely broken. The expected flow pattern is summerized in

figure 2. We next present evidence for this claim.

3.1 Index

As a first test we consider the superconformal index of the theory [48]. As the index is

invariant under RG flows, the index of the IR and UV theories should be equal, up to

the proper identification of symmetries, notably the superconformal R-symmetry. As a

result we should be able to evaluate the superconformal index of the end point of the flow

from the UV Lagrangian evaluated using the R-symmetry that we expect should be the

IR superconformal R-symmetry. This can be compared against the expected index of the

N = 3 SCFT, and so constitutes an important test for our conjecture.

We expect the end point of the flow to be the N = 3 SCFT plus a free chiral field,

so in order to evaluate the index of the former, we need to remove the contribution of

the latter. A convenient way to do this is through the procedure of flipping [49]. In this

method we introduce an additional singlet field M and couple it to the gauge invariant

B2, which we expect to decouple in the IR, through the superpotential W = MB2. Here

M has charge 4
3 under U(1)R, which is the only global symmetry that remains unbroken.

The idea here is that the F term relation of the field M eliminates the gauge invariant

B2 from the chiral ring, and thus it should no longer be present in the IR. This can
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Figure 2. A pictorial summary of the proposed relation between the Lagrangian gauge theory

studied in this section and the N = 3 SCFT. Here the arrows represent RG flows, with the initial

one being triggered by the asymptotically free gauge couplings, and the others by superpotential

terms. Here at the end point of the flow there is also a decoupled free chiral field, as indicated by

the text there.

also be seen physically as the superpotential becomes a mass term for the fields M and

B2, once the latter decouples. This makes the index computation easier, and is also

conceptually convenient as it circumvents having free fields in the IR and the additional

global symmetries associated to them.

We can then evaluate the index with the flip fields finding:

I = 1 + 2(pq)
2
3 − (pq)

1
3 (p+ q) + pq + (pq)

2
3 (p+ q)− (pq)

1
3 (p2 + q2) (3.3)

+(pq)
2
3 (p2 + q2)− (pq)

1
3 (p3 + q3) + (pq)

4
3 (p+ q)− pq(4p2 + 5pq + 4q2) + . . . ,

where we use the standard notations [50, 51] for the index.

We next wish to compare this against the index expected from the N = 3 SCFT.

While the full superconformal index of this theory is unknown,5 the fact that it has N = 3

supersymmetry put stringent limitations on the form the superconformal index can have,

especially for the first few terms in the expansion in terms of p and q. Additionally, as

analyzed in the previous section, the knowledge of the moduli space of the theory also

allows us to infer various multiplets expected in the theory, which can be used to form a

minimal guess for the superconformal index.

We are then lead to the following strategy to check whether the terms in the index

are consistent with N = 3 supersymmetry. From our knowledge of this N = 3 SCFT

5This theory can be thought of as a rank 1 case in a family of N = 3 SCFTs, of rank N , whose

superconformal index was evaluated in the large N limit in [28, 29], using the gravity dual. In the notation

used in these papers, this theory is called S(3, 1, 1). We note that the index we find from the gauge theory

matches the expression found from the gravity dual, up to the term of order (pq)
1
3 (p2 + q2), deviating

after it.
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we can identify three operators that must be present. The first is the N = 3 energy-

momentum tensor, B1B̄1[0; 0]
(1,1;0)
2 . The other two contain the dimension three Coulomb

and Higgs branch operators and so their vevs generate the moduli space. These are the

B1B̄1[0; 0]
(3,0;6)
3 type multiplet and its complex conjugate, B1B̄1[0; 0]

(0,3;−6)
3 , that must also

be present. We can use the decompositions of these multiplets into N = 1 superconformal

multiplets given in section (A.3.3), together with the contributions of the various N = 1

superconformal multiplets to the index given in section (A.4), to determine the expected

contributions of these multiplets to the index. These are given by:

I
B1B̄1[0;0]

(1,1;0)
2

(p, q) =
1

(1−p)(1−q)

(
1

v
χ[2]SU(2)(pq)

2
3 − pq(1+χ[3]SU(2))−

1

v2
(pq)

1
3 (p+ q)

+
1

v
χ[2]SU(2)(pq)

2
3 (p+ q) + vχ[2]SU(2)(pq)

4
3 − pq(p+ q)

)
, (3.4)

I
B1B̄1[0;0]

(3,0;6)
3

(p, q) =
1

(1− p)(1− q)

(
v3χ[4]SU(2)pq − v2χ[3]SU(2)(pq)

2
3 (p+ q) (3.5)

− (pq)
4
3 (v4χ[3]SU(2)−vχ[2]SU(2)) + v3χ[2]SU(2)pq(p+ q)− v2(pq)

5
3

)
,

I
B1B̄1[0;0]

(0,3;−6)
3

(p, q) =
1

(1− p)(1− q)

(
1

v6
pq − 1

v5
χ[2]SU(2)(pq)

4
3 +

1

v4
(pq)

5
3

)
. (3.6)

Here for completeness we have specified their U(1)×SU(2) charges, which is the flavor

symmetry from the N = 1 viewpoint, where we use the fugacity v for the U(1) and the

notation χ[d]SU(2) for the d-dimensional representation under the SU(2). Nevertheless,

when evaluating the contributions here we shall unrefine with respect to these symmetries

as these are not seen in the Lagrangian theories, presumably since these are broken on the

conformal manifold.

Additionally, we also expect to have operators of the form B1B̄1[0; 0]
(3a+b,3c+b;6(a−c))
3(a+c)+2b ,

that are generated from products of the three operators. These can be taken into account

by taking the plethystic exponent6 of the contribution of the three operators:

PE[I
B1B̄1[0;0]

(1,1;0)
2

(p, q) + I
B1B̄1[0;0]

(3,0;6)
3

(p, q) + I
B1B̄1[0;0]

(0,3;−6)
3

(p, q)]. (3.7)

We note that this takes into account all possible symmetric products of the

three operators. While we expect the highest component, corresponding to the

B1B̄1[0; 0]
(3a+b,3c+b;6(a−c))
3(a+c)+2b type operators, of each product to be present, there are other

type of multiplets that can appear in these products. These may or may not be present,

which is something that we may need to account for later.

We can next compare the two expressions finding:

∆I = −3(pq)
5
3 + . . . . (3.8)

6The plethystic exponent is defined as:

PE[f(x)] = e
∑∞

k=1
1
k
f(xk) .
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We then see that the index is consistent with that expected from the three N = 3

basic multiplets up to order of (pq)
5
3 . The deviation at this order has a straightforward

interpretation as due to the plethystic exponent taking all possible symmetric products.

Notably, order (pq)
5
3 receives contributions from the product of the energy-momentum

tensor multiplet B1B̄1[0; 0]
(1,1;0)
2 with either B1B̄1[0; 0]

(3,0;6)
3 or B1B̄1[0; 0]

(0,3;−6)
3 multiplets.

For simplicity we consider only the product with B1B̄1[0; 0]
(3,0;6)
3 , as the other one can then

be recovered by complex conjugation. Consider taking the product of the ground state of

each. This gives a dimension 5 scalar operator with charge 6 under the N = 3 U(1)R
symmetry, and in the representation 8SU(3)R ⊗ 10SU(3)R of SU(3)R. As the latter is a

reducible representation, it in fact gives four different ground stats with SU(3)R charges:

8SU(3)R ⊗ 10SU(3)R = 35SU(3)R ⊕ 27SU(3)R ⊕ 8SU(3)R ⊕ 10SU(3)R . Going over the shortening

conditions in [36], we see we must have that:7

B1B̄1[0; 0]
(1,1;0)
2 ⊗B1B̄1[0; 0]

(3,0;6)
3 (3.9)

= B1B̄1[0; 0]
(4,1;6)
5 ⊕A2B̄1[0; 0]

(2,2;6)
5 ⊕ LĀ2̄[0; 0]

(1,1;6)
5 ⊕ LĀ2̄[0; 0]

(3,0;6)
5 ⊕ . . . .

We can next consider the contribution of each one of these to the index. Considering

that these contain operators of dimension ∆ ≥ 5, and using the contribution to the index

of the various N = 1 multiplets, summarized in appendix A.4, we see that the only N = 1

multiplets that can both appear in the above N = 3 multiplets and contribute to the index

at order (pq)
5
3 are the LB̄1[0; 0]

( 10
3

)

5 and L̄B1[0; 0]
(− 10

3
)

5 multiplets. The latter can contribute

to the product with B1B̄1[0; 0]
(0,3;−6)
3 , which is the complex conjugate of the above product.

Performing the decomposition into N = 1 multiplets, as explained in the appendix,

we find that the B1B̄1[0; 0]
(4,1;6)
5 type multiplet contains the operators LB̄1[0; 0]

( 10
3

),(4;2)

5 ⊕
L̄B1[0; 0]

(− 10
3

),(1;7)

5 plus shorter representations that contribute at higher orders. The

A2B̄1[0; 0]
(2,2;6)
5 type multiplet contains the operator LB̄1[0; 0]

( 10
3

),(2;2)

5 plus shorter represen-

tations that contribute at higher orders. The rest only contain multiplets that contribute

at higher orders. As previously stated, we expect the multiplet B1B̄1[0; 0]
(4,1;6)
5 and its

complex conjugate to appear in the index as some of the products of the three basic N = 3

multiplets expected in the N = 3 SCFT. However, the A2B̄1[0; 0]
(2,2;6)
5 may or may not

appear, and the deviation in the index can be interpreted as pointing out that it does not

appear. This comes about as it precisely contributes 3(pq)
5
3 plus higher order terms, and

so its absence will exactly account for the difference observed in the index to that order.

To summarize, we have shown that the superconformal index of the SU(2) × SU(2)

gauge theory we introduced, after the removal of the free field, is consistent with being equal

to the index of the rank 1 N = 3 SCFT with dimension three Coulomb branch operator,

at least to order (pq)
5
3 . Specifically, the consistency refers to both the constraints placed

by N = 3 supersymmetry on the index, as well as containing operators expected of the

7The full representation is generated by acting on the ground state with the supercharges Q, Q̄ and the

translation generators P . As the latter are bosonic, the dimension of each representation is infinite, and

when taking products we need to also consider the higher order states. As a result there are additional

terms in the product coming from these. However, as these contribute to the index only at higher orders,

we need not consider these here.
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specific SCFT. As previously stated, we expect the SU(2) × SU(2) gauge theory, with the

appropriate superpotential, to flow in the IR to the N = 3 SCFT deformed by an N = 1

only preserving marginal deformation. This is also consistent with the fact that we do not

observe the SU(2) × U(1) symmetry that is the commutant of the N = 1 U(1)R in the

N = 3 R-symmetry. Since the index is invariant under continuous deformations, the index

must be equal to that of the N = 3 SCFT, unrefined with respect to the SU(2) × U(1)

symmetry. However, this does allow various recombinations that would otherwise won’t

occur. For instance, the SU(2) × U(1) conserved currents recombine with some of the

marginal operators.

We can in principle continue to compare the indices to higher orders However, this

becomes increasingly complicated due to the need to evaluate the contribution of various

multiplets that can appear in the product of the basic multiplets, but may not be present

in the N = 3 SCFT. Here we shall content ourselves with going up to order (pq)
5
3 , reserving

a study to higher orders for future work.

3.1.1 Schur index

We can consider an interesting limit of the superconformal index called the Schur index.

This limit was introduced in [52] as one of several limits of the index for N = 2 SCFTs.

As the superconfomal index we consider here should be equal to that of an N = 3 SCFT,

these limits could also be considered for it. However, most of the limits considered in [52],

requires specialization of fugacities associated with the N = 2 R-symmetry. Since we see

only the U(1) subgroup, which is the N = 1 R-symmetry, most of these limits cannot

be taken for the unrefined index we have. Nevertheless, as first pointed out in [17] (see

also [53]), it is actually possible to take the Schur limit even for theories only manifesting

the U(1) subgroup associated with the N = 1 R-symmetry, and that limit should equal

the Schur index of the N = 2 SCFT.

This limit is taken by setting q = p2. We can next evaluate this limit for the gauge

theory considered here, and if our conjecture is correct, it should be equal to the Schur

limit of the index of the N = 3 SCFT. Evaluating the Schur index for the case at hand

we find:8

ISchur = 1 + p2 + p4 + 2p6 − 2p7 + 3p8 − 2p9 + 4p10 − 4p11 + 6p12 + . . . . (3.10)

There are several reasons why to consider this limit. One is that this limit leads to

a simplification of the resulting expression, and as such is easier to compute and present.

Another reason is the relation between the Schur limit of the index and the chiral algebra

associated with an N = 2 SCFT that was introduced in [54]. The chiral algebras associated

with N = 3 SCFTs were examined in [27, 32, 37]. It would be interesting if such studies

of the chiral algebra can be used to perform futher checks on our proposal.

3.2 Mass deformations

There is one additional piece of information known about the rank 1 N = 3 SCFT with

dimension three Coulomb branch operator which we can use to test our proposal. Specifi-

8Here p is equal to the fugacity ρ used in [52] for the Schur index.
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cally, this piece of information is the behavior of the theory under SUSY preserving mass

deformations. It was determined in [12] that this N = 3 SCFT has a mass deformation

sending it to the N = 2 IR free gauge theory given by an N = 2 SU(2) vector multiplet

with a half-hyper in the 4 dimensional representation of the SU(2) (see also [13]).

We next want to use this to test our proposal. We do this by studying SUSY preserving

mass deformations of the Lagrangian theory and matching them against those expected

from the N = 3 SCFT. Before looking at the mass deformations of the Lagrangian theory,

we should consider our expectations from the N = 3 SCFT. Notably, we need to consider

the fact that the Lagrangian theory is claimed to flow to the N = 3 SCFT deformed by

an N = 1 only preserving marginal deformation, and so we need to consider its effect on

the flow caused by the mass deformation.

For this it is convenient to study this flow in the limit where the marginal deformation

is taken to be very small, but non-zero. In that limit we expect its effect to be minute and

the flow to proceed as if it was not turned on at least until energies much smaller than

the scale set by the mass deformation. At that point the effect of the marginal coupling

may become important due to potential changes in its marginality property that can occur

during the flow. Therefore, we expect in this limit to get the N = 2 IR free gauge theory

given by an SU(2) gauge theory with a half-hyper in the 4 of SU(2), deformed by an N = 1

only preserving superpotential. This superpotential should implement the effect caused by

the presence of a non-trivial N = 1 only preserving marginal deformation at the UV.

Here we note that the marginal deformation broke all the flavor symmetries at the UV,

besides the N = 1 U(1) R-symmetry that is in turn broken by the mass deformation. As

such there is no symmetry that can restrict what superpotential terms can appear in the

low-energy N = 2 SU(2) gauge theory, and we would expect all to be generated. However,

almost all of these are irrelevant and so won’t change the IR behavior. The only one that

is relevant, and so changes the IR behavior, is the dimension two Coulomb branch operator

of the SU(2) gauge theory. Also we note that the original marginal deformation we turned

on contained the dimension three Coulomb branch operator of the rank 1 N = 3 SCFT,

and so it is reasonable to expect it to descend to a deformation by the Coulomb branch

operator of the low-energy theory. As a result, we expect the flow to lead to the N = 2

SU(2) gauge theory with a half-hyper in the 4 of SU(2), deformed by the dimension two

Coulomb branch operator. The latter is just a mass term for the adjoint chiral in the N = 2

SU(2) vector multiplet. Therefore, we expect the low-energy theory to be just an N = 1

SU(2) vector multiplet with a chiral field in the 4 of the SU(2). The latter is expected to

flow to an interacting N = 1 SCFT.9

We can use the unique anomaly free R-symmetry, again under the assumption of no

accidental symmetries, to show that there are no relevant operators in this N = 1 SCFT,

and so it should be the end of the flow. To summarize the discussion so far, we determined

that it is reasonable that the N = 3 SCFT in question, deformed by a combination of

a relevant and a marginal deformation, flows to the N = 1 SCFT describing the low-

9This theory has a rather interesting history, with the result stated here being arrived at by the results

of [55–58], see also ([59], section 7.5) for a summary of the historical development.
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Figure 3. The effect of the mass deformation given by the flip field M . On the left we have the

initial quiver with the flip field M flipping B2, here represented by the X on the field B. The mass

deformation causes the field B2 to acquire an expectation value, leading to the Higgsing of the two

SU(2) groups down to the diagonal SU(2). This leads to the quiver on the right. The fields A and

F there come from the same ones on the right side, while the fields CQ and CF come from the field

C. Here the field CQ is in the 4 of the SU(2).

energy dynamics of an SU(2) gauge theory with a single chiral field in its 4 dimensional

representation.

So far we have not specified the relevant deformation we used, but next we turn to

consider this. Looking at the index of the N = 3 SCFT, we see that there are two

possible relevant deformations, which forms a doublet of the SU(2) subgroup of the SU(3)

R-symmetry group, which is a global symmetry from the N = 1 viewpoint. This implies

that these should give equivalent deformations, and so we can consider either of them.

Both of them preserve N = 2 supersymmetry, but embedded differently in the N = 3

supersymmetry so together they preserve only N = 1 supersymmetry.

The two mass deformations can be represented by the operators Tr(A2) and M . Next

we consider the effect of each of these in turn.

M . We first consider the effect of the mass deformation represented by the operator

M , that is we consider adding to the superpotential a term linear in M . The resulting

theory still has the matter content shown in figure 1, with the flip field M , but with the

superpotential:

W = AF 2 +AC2 + CFB2 +MB2 +M. (3.11)

Here the first three terms are necessary for the gauge theory to flow to the N = 3

SCFT on its conformal manifold, the fourth one is the term flipping B2 and the fifth is

the added mass deformation. The F-term relation of M now forces the gauge invariant

B2 to acquire an expectation value. This causes the two SU(2) groups to be identified

leading to the theory shown on the right of figure 3. The theory also inherits the following

superpotential from the original superpotential (3.11):

W = AF 2 +AC2
F +AC2

Q + CFF. (3.12)

The gauge theory itself is IR free so the only source of interesting IR behavior can

come from the superpotential. The first three terms are marginal, so by themselves cannot
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generate interesting IR behavior, but the last term is relevant. We note that it is a mass

term for the two fundamental fields, leading to them being integrated out in the IR. After

that we get the matter content of an N = 2 SU(2) gauge theory with a half-hyper in

the 4 of SU(2), and furthermore the third term in the superpotential is precisely the

N = 2 preserving superpotential. However, we must also consider the effect of the first

two superpotentials coupling the adjoint and fundamental chirals. After the fundamental

chirals are integrated out, it should lead to effective interactions of A with itself, mediated

through the massive fundamental fields. As there is no symmetry forbidding them, we

expect all possible such terms to be generated, specifically the mass term Tr(A2). This

should lead to it being integrated out at low energies. We then end up with an N = 1

SU(2) gauge theory with a chiral field in the 4 of the SU(2), which is expected to flow

to an N = 1 SCFT at low energies. Overall, we see that this flow indeed gives a result

consistent with our proposal.

Tr(A2). We next consider the effect of the mass deformation represented by the operator

Tr(A2), that is we consider changing the superpotential by adding the term Tr(A2). The

new superpotential can now be written schematically as:

W = AF 2 +AC2 + CFB2 +MB2 +A2. (3.13)

The added term makes the fields associated with the adjoint chiral massive and we

expect to flow to the same theory, but without it, and with a modified superpotntial:

W = F 2C2 + C4 + CFB2 +MB2, (3.14)

which can be generated by inserting the F-term relation imposed by the field A, 2A =

−F 2−C2 , into the superpotential (3.13). Here the F 4 term was dropped as it is impossible

to make it gauge invariant, due to symmetrization requirements.

After integrating out the adjoint, the left SU(2) gauge group in figure 1 now see only

six fundamental chirals. This combination is known to be Seiberg dual to free fields, given

by the 15 gauge invariants one can build from the six fundamental chirals [60]. As a result

we expect the theory to flow to the one after the duality. The additional 15 gauge invariants

are the singlet B2, the two adjoints FC and C2, the fundamental FB, and the fundamental

and 4 coming from BC. We note that the suerpotential (3.14), gives all of them a mass,

save for the chiral in the 4.10 Overall, we expect to end up with an SU(2) gauge theory

with a single chiral field in the 4, which is expected to flow to an N = 1 SCFT at low

energies. Like in the previous case, there may be additional superpotential terms generated

along the flow, but these will all be irrelevant from the viewpoint of the low energy N = 1

SCFT. Therefore, we see that the result of this flow is also consistent with our proposal.

10There are also superpotential terms coming from the Seiberg duality, but these will not be important

here.
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Figure 4. A modification of the in figure 1 by the addition of an extra bifundamentl.

4 Generalizations

There are several interesting questions that arise from the model we presented. Specifically,

whether it can be generalized to other N = 3 SCFTs, and whether it can be explained, for

instance, by a string theory model. We next consider these two questions, and while we will

not provide a satisfactory answer to these questions, we will see that these considerations

will lead us to an N = 1 model that has the correct characteristics to be dual to a certain

N = 3 SCFT.

We begin by trying to cast the previous model in a manner that looks like something

that may come from a string theory constructions. For that it is convenient to introduce

an additional bifundamental between the two SU(2) gauge groups, leading to the model

depicted in figure 4. In this model the beta function for both SU(2) groups vanishes at

zero coupling. We can then get back to the previous model by integrating out one of the

bifundamentals and introduce the superpotentials necessary for the flow.

The curious thing about the model in figure 1 is that it can be cast as being made

of class S components. Specifically, the model can be recast as two SU(2) groups, one

with an adjoint chiral and one without, gauging two T2 theories. The T2 theory is just a

chiral field in the trifundamental of its SU(2)3 global symmetry. One of them gives the two

bifundamentals, corresponding to gauging two of its SU(2) global symmetry groups by the

two SU(2) gauge groups. The second T2 gives rise to the C and F fields, where here we

gauge all three of te SU(2) global symmetry groups by the two SU(2) gauge groups lading

to: (2,2,2)→ (21,22 ⊗ 22)→ (21,12)⊕ (21,32).

This model can now be immediately generalized to arbitrary N , given by changing

SU(2) to SU(N), one T2 to TN , and the other one to the SU(N) × SU(N) bifundmental

hyper.11 Like the N = 2 case, the model has the property that the beta functions of the

two SU(N) groups vanish.

We next want to consider the mass deformation we used in the N = 2 case, that

is a mass to one of the bifundamental chirals in the hyper. However, such a mass term

is not possible for N > 2. This ends the possibility of a straightforward generalization.

11Here we have a choice regarding the generalization of the ungauged puncture. The simplest generaliza-

tion is to a minimal puncture, which is the one we consider here. It will be interesting to also consider the

other possibilities, though we will not do so here.
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Nevertheless, a curious thing happens for N = 3. In that case the central charges turn up

to be:

a = c =
21

4
. (4.1)

This raises the possibility that this theory is dual to an N = 3 SCFT. Specifically,

there is the N = 3 SCFT with moduli space (C3)3/G(3, 3, 3) discovered in [2]. This

SCFT is known to be of rank 3 with Coulomb branch operators of dimensions: 3, 3 and 6.

Using (2.3), this indeed gives (4.1). The moduli space of this N = 3 SCFT was discussed in

section 2.1. As it possesses dimension three Coulomb branch operators, from our previous

observations it also has an N = 1 only preserving conformal manifold. From the results

in A.3.3, we conclude that the conformal manifold is six dimensional.

It is then possible that this N = 3 SCFT and the model presented here for N = 3 sit

on the same conformal manifold. As we shall see next, this proposal passes some non-trivial

tests, although not as strongly as the previous case, partially due to our lack of knowledge

regarding that specific N = 3 SCFT.

Before turning out to analyze the model, we want to make a few comments:

1. The remaining cases do not appear to be dual to N = 3 SCFTs. Furthermore, it is

still not clear why the theories presented here should be related to N = 3 SCFTs. We

do note the role played in these construction by the simultaneous gauging of three

maximal punctures of class S theories. It is interesting if this has an interpretation

in class S. We postpone further dealing with these issues to future study.

2. The dual we consider here contain the T3 theory as a building block. As such, it is not

actually a Lagrangian dual. However, while the T3 theory has no Lagrangian descrip-

tion manifesting the N = 2 supersymmetry, it does have at least two Lagrangians

manifesting N = 1 supersymmetry. The first, given in [24], based on the results

in [61], involves a gauging of a symmetry that only emerges at strong coupling. The

second one, given in [26] involves a Lagrangian gauge theory flowing in the IR to the

T3 theory. However, both of these Lagrangians do not manifest the full E6 symmetry,

and also not its SU(3)3 subgroup, at the UV, where the Lagrangian is valid. As a

result we can not use these to turn the construction to a fully Lagrangian one, but

rather we end up with a Lagrangian in the sense of [24] (see also [25, 62]). These can

still be used to compute RG invariant quantities allowing us to perform all of these

computations as if the theory was completely Lagrangian.

4.1 The model

We begin with some general considerations regarding the model. The first thing to note is

that the construction we gave previously does not uniquely fixes the model, and in fact there

are two distinct models sharing the same matter content. The difference is in how one per-

forms the gaugings inside the T3 theory. Specifically, when we gauge an SU(3) global sym-

metry we have the choice of whether the gauging is done such that 3→ 3 or 3→ 3. This

is not important in an individual gauging as one can change between the two by redefining

the SU(3) generators, but is when there are multiple gaugings using the same groups.

– 24 –



J
H
E
P
0
1
(
2
0
2
1
)
0
6
2

For the case at hand there are two distinct possibilities, which can be seen as follows.

We can represent this theory as an SU(3) gauge group gauging the SU(3)3 subgroup of the

4d SCFT represented by the compactification of the 6d A2 (2, 0) theory on a sphere with

three maximal punctures and one minimal puncture. The possibilities are then manifested

by the choice of embedding for each of the three gauging modulo two symmetries. One is

global charge conjugation while the other is the symmetry related to the exchange of the

three punctures implied by the class S construction. Taking these into account, we find two

distinct possibilities: one given by taking 3→ 3 for all three embeddings (or the complex

conjugate), while for the other we take one 3→ 3 embedding and the rest are taken to be

3→ 3 (or ones reated to them by permutations or complex conjugation).

While the matter content for both cases is similar, as we shall soon see, the two

models have different indices. In fact they also have different global symmetries. This

comes about by considering the gauge group of the model as a group rather than just as

an algebra. Specifically, consider the representations we have under the two SU(3) gauge

groups. First we have an adjoint, which is invariant under the center of SU(3). Second

we have the bifundamental fields which are invariant under the diagonal center, so has

far as the perturbative states are concerned, the gauge group is consistent with being
SU(3)×SU(3)

Z3
. Finally we need to consider the T3 theory. The basic operators in it charged

under the global symmetry are the moment maps of its E6 global symmetry. These are in

the adjoint of E6, and when the E6 is decomposed to its SU(3)3 subgroup, they give an

operator in the adjoint of each SU(3) group, and an operator in the trifundamental plus

its complex conjugate. The latter are sensitive to the center if we use the non-symmetric

embedding, but are invariant if the symmetric embedding is used. Therefore we see that

for the case with the symmetric embedding, the matter spectrum is invariant under the

diagonal Z3 center, and we expect there to be an additional Z3 1-form symmetry acting on

the line operators charged in the fundamental of each group.12 In the case using the non-

symmetric embedding, however, there are operator charged under the entire SU(3)×SU(3)

gauge group and we do not expect such 1-form symmetries. Additionally, both models

have a U(1)2 zero-form global symmetry.13

Our claim is that the model with the symmetric embedding might be dual to a specific

N = 3 SCFT. The duality implies the following:

1. Matching of symmetries generically preserved on the conformal manifold, and their

anomalies. As almost all symmetries can be broken on the conformal manifold, we

are mostly left with the N = 1 superconformal symmetry. This still leaves two non-

trivial tests. One is that anomalies of these symmetries, which reduce to the a and

c central charges, matches the values expected for the N = 3 SCFT. The second

is that the model indeed possesses N = 1 superconformal symmetry, which is not

12This corresponds to choosing the gauge group to be SU(3) × SU(3). In this case it is also possible to

choose it to be SU(3)×SU(3)
Z3

instead. In that case, we still have a Z3 1-form symmetry, but now acting on

the magnetic ’t Hooft line operators that exist in the theory. The two choices are related by gauging the

1-form symmetry [63].
13The models may also have various discrete zero-form symmetries, but we shall not consider this in

detail here.
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Figure 5. The model proposed to be dual to the N = 3 SCFT with moduli space (C3)3/G(3, 3, 3)

with the charges under the gobal symmetries written in terms of fugacities. We also note that U(1)x
acts on the T3 theory, where it acts as U(1)g.

guaranteed for N = 1 theories with vanishing beta function at the free point [14, 15].

We already noted the matching of the central charges, and would consider the second

point in the next subsection. Additionally, as it is hard to break 1-form symmetries,

our proposal also suggests that the N = 3 SCFT should have a Z3 1-form symmetry.

It will be interesting to check this prediction, though we shall not do so here.

2. The superconformal indices, refined only with respect to symmetries generically pre-

served on the conformal manifold, must agree. In the next subsection, we shall show

that the index is consistent with our proposal, where for the N = 3 SCFT we use a

minimal guess of the index based on the operator spectrum expected from the moduli

space of the theory. We shall also show that the dimension of the conformal manifold

agrees between the two theories. This is the major evidence motivating our proposal.

4.2 The index

Here we shall study the index of the model presented previously. First we consider the index

refined by the U(1)2 continuous global symmetry of the model at the ‘free’ point. We have

written the charges under the two U(1) groups using fugacities in figure 5. One of the

symmetries, U(1)y, is the one acting on the two bifundamentals, and can be identified with

the U(1) associated with the minimal puncture in the class S construction. Additionally,

we have U(1)x which is the remaining anomaly free combination of the symmetries acting

on the perturbative fields and U(1)g, the commutant of the N = 1 R-symmetry in the

N = 2 R-symmetry, of the T3 theory. The combination is given such that the charge of

the dimension 3 Coulomb branch operator under U(1)x is 6.

Evaluating the superconformal index, we find:

I=1+(pq)
2
3

(
x4 +

1

x2

)
− 1

x
(pq)

1
3 (p+q)+pq

(
x6 + x3 +

2

x3
+ x6y3 +

x6

y3
+ y +

1

y
− 2

)
+ . . . .

(4.2)

We will be mostly interested here in the terms at order pq. The reason for this is

that the theory is an N = 1 gauge theory with vanishing 1-loop beta function at weak

coupling, where we regard the T3 as exotic matter for the gauge theory, and for these types
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of theories to actually be SCFTs there are must be a conformal manifold. The condition for

the existence of the latter is that there will be marginal operators with a non-trivial Kahler

quotient under the global symmetry of the theory [15]. To determine this we need to know

the marginal operators in the theory and their charges under the global symmetries.

This brings us back to the pq order terms in the index. The positive terms in the

expression are the marginal operators, while the negative ones are the conserved currents

of the global symmetry [64]. Indeed, the negative terms in the pq order of (4.2) are just

the conserved currents of the U(1)2 global symmetry. Looking at the positive terms, we

see that there are eight marginal operators, and their charges are such that there is Kahler

quotient. As there are operators charged under both U(1) groups, on a generic point of

the expected conformal manifold all continuous global symmetries should be broken. This

gives a six dimensional conformal manifold, where two of the eight marginal operators

combine with the broken currents and become marginally irrelevant.

On the N = 3 SCFT side, we expect to have marginal operators coming from the

multiplets containing the dimension three moduli space spanning operators. For the SCFT

at hand, we actually have two of these. As noted in the appendix, each of them contains 5

N = 1 SUSY preserving marginal operators that have a non-trivial Kahler quotient under

the SU(2) × U(1) symmetry, which is the commutant of the N = 1 R-symmetry in the

N = 3 R-symmetry. This gives a six dimensional conformal manifold on a generic point

of which no symmetry is preserved. Therefore, we see that the conformal manifolds of the

two theories have similar properties and it is possible that the two theories are different

special points on the same conformal manifold.

To further check this we need to compare the indices of the two theories. If the

theories indeed share the same conformal manifold, then they must have the same indices,

as it should be possible to move from one theory to the other by turning on marginal

operators. However, as the marginal operators break symmetries, only the unrefined index

must match. As a result, and to save computational power we shall unrefine with respect

to the U(1)2 global symmetry. We next consider this index for the N = 1 model, finding:

I = 1 + 2(pq)
2
3 − (pq)

1
3 (p+ q) + 6pq − 2(pq)

2
3 (p+ q) + 6(pq)

4
3 − (pq)

1
3 (p2 + q2)

+pq(p+ q) + 8(pq)
5
3 − 2(pq)

2
3 (p2 + q2)− 9(pq)

4
3 (p+ q)− (pq)

1
3 (p3 + q3) + . . . . (4.3)

We next want to compare the index against that expected from the N = 3 SCFT.

As we do not know the index of this theory we cannot make a precise comparison. One

possibility is to compare it against the expectation from the gravity dual, despite the low

rank. Specifically, in [28, 29] the superconformal index of a family of N = 3 SCFTs of

rank N was evaluated in the large N limit using the gravity dual. Our theory here is the

case of N = 3, and was denoted as S(3, 3, 0) in those papers. We note that the index given

in (4.3) indeed matches the expression found from the gravity dual at least up to the order

written.14

Furthermore, we can compare the index against the expression expected from the

moduli space. Specifically, from the structure of the moduli space we do know some of

14We are grateful to Reona Arai and Yosuke Imamura for pointing this out to us.
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the operators that are expected to be present, which we can use to formulate a conjecture

for the index. The simplest such conjecture is to take the contributions of the energy-

momentum tensor multiplet, the two dimension three Coulomb branch operators and their

complex conjugate. This leads to:

PE[I
B1B̄1[0;0]

(1,1;0)
2

(p, q) + 2I
B1B̄1[0;0]

(3,0;6)
3

(p, q) + 2I
B1B̄1[0;0]

(0,3;−6)
3

(p, q)]. (4.4)

Comparing the resulting expression with (4.3), we see that:

∆I = 9(pq)
4
3 + . . . . (4.5)

This is expected as we noted in section 2.1, when we examined the moduli space

of the expected N = 3 SCFT, that there should also be three additional B1B̄1[0, 0]
(2,2;0)
4

multiplets that we did not include in (4.4). Using the decomposition into N = 1 multiplets,

as explained in the appendix, we find that the B1B̄1[0, 0]
(2,2;0)
4 type multiplet contains

the operators LB̄1[0; 0]
( 8

3
),(2;−2)

4 plus multiplet that contribute to the index only at higher

orders. These give the precise index contribution necessary to match the indices also to

order (pq)
4
3 .

It is possible to continue and check the indices to higher orders, but this becomes in-

creasingly complicated as new operators keep appearing. We receive this to future research.

4.2.1 The Schur index

Finally, we can consider the Schur limit of the index, taken by setting q = p2. This limit

should be equal to the Schur limit of the N = 3 SCFT. In this limit the contribution of the

T3 theory reduces to its Schur index, which can be computed from its class S description

using the results of [65]. In this limit we find:

ISchur = 1 + p2 + 2p3 + 2p4 + 2p5 + 3p6 + 4p7 + 5p8 + . . . . (4.6)

It would be interesting if it is possible to check15 this against the expression expected

from the 2d chiral algebra of this theory conjectured in [32].

4.3 The other model

Finally, we return to the second model given by the asymmetric embedding. Particularly,

we can consider its superconformal index. For the case refined by the fugacities for the two

U(1) global symmetries we find:

I = 1+(pq)
2
3

(
x4 +

1

x2

)
− 1

x
(pq)

1
3 (p+q)+pq

(
x6 + x3 +

2

x3
+ x6y3 +

x6

y3
− 2

)
+. . . , (4.7)

Which is similar to (4.2) save for two marginal operators. The difference in the index

again heightens the fact that it defines a different theory. Despite the lack of the two

marginal operators, there is still a Kahler quotient under the remaining marginal operators,

15We again note that the index matches the expression for the Schur index of this theory found in [28, 29]

from the gravity dual, at least to the order it was evaluated there.
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suggesting that this model as well gives an SCFT. Here, however, the conformal manifold

is only four dimensional, where again on a generic point of which all the continuous global

symmetry is broken. We can evaluate the index on the conformal manifold finding:

I = 1 + 2(pq)
2
3 − (pq)

1
3 (p+ q) + 4pq − 2(pq)

2
3 (p+ q) + 6(pq)

4
3 − (pq)

1
3 (p2 + q2)

+3pq(p+ q)− 2(pq)
2
3 (p2 + pq + q2)− 7(pq)

4
3 (p+ q)− (pq)

1
3 (p3 + q3) + . . . . (4.8)

We can also consider the schur limit, finding:

ISchur = 1 + p2 + 4p4 − 4p5 + 13p6 − 20p7 + 45p8 + . . . . (4.9)

This model also possess some of the properties expected from a model sharing the same

conformal manifold as an N = 3 SCFT. Notably, its a and c central charges are equal, and

the first few terms in the index match the contribution expected from the N = 3 energy-

momentum tensor. The conformal manifold, though, cannot be reproduces by an N = 3

SCFT using only the dimension three moduli space spanning operator. Furthermore, we

are not aware of any known N = 3 SCFT that can match these properties. It remains an

interesting question then whether this model is related to an N = 3 SCFT or not.
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A Relations between 4d SUSY

In this appendix we consider some of the relations between 4d SUSY theories. Specifically,

theories with extended supersymmetry can be regarded as theories with less SUSY, but

then the presence of the extra supersymmetry has some implications for various properties

of the theory. Here, we wish to consider some of these implications. Specifically, the

implications of N = 3 SUSY are of great use to us in this article. Many of the results here

have appeared before in the literature, notably [27, 30, 34, 35, 37–39, 42].

A.1 Relations between symmetries of different SUSY theories

We begin by considering the global symmetries of theories with a given amount of super-

symmetry, when these are viewed as theories with less supersymmetry.

A.1.1 Relations between N = 2 and N = 1

In N = 1 we have a single supercharge Q. The R-symmetry is U(1) and it is convenient to

normalize it such that Q has charge −1. In N = 2 we have two supercharge Q1 and Q2.

The R-symmetry is U(1)× SU(2) and it is convenient to normalize it such that Q1 and Q2

form a doublet under the SU(2) and have charge −1 under the U(1). This confirms with
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the notations in [36]. We can consider an N = 2 SCFT has an N = 1 SCFT, and we want

to consider how the N = 1 U(1) R-symmetry is embedded in the N = 2 U(1)×SU(2). This

was done for instance in [66], but for latter convenience we shall repeat the analysis here.

First we need to choose which of the two supercharges is the N = 1 supercharge. We

shall take that to be Q2, which we take to also be the lowest component of the SU(2)R
doublet. We do not explicitly see the SU(2)R symmetry in the N = 1 viewpoint, but

we do explicitly see its Cartan element. We shall refer to that element, defined so that

the states in the doublet have charges ±1, as U(1)SU(2)R . The group U(1)N=1
R , which

is the superconformal R-symmetry from the N = 1 viewpoint, is then given by some

linear combination of U(1)SU(2)R and U(1)N=2
R , the abelian component in the N = 2

superconformal R-symmetry.

The exact combination can be determined as follows. First, we know that under

U(1)N=1
R , Q2 must have charge −1. To fully fix the relation, we need one additional

constraint. For this, it is useful to consider the N = 2 vector multiplet. This multiplet

contains a scalar as its ground state, with the gaugino and the vector given by acting

on it once or twice with the Q’s, respectively [36]. The vector must be uncharged under

the R-symmetry, as it should be related to the connection of a gauge symmetry. These

considerations force the scalar in the vector multiplet to have U(1)N=2
R charge 2, and

be neutral under SU(2)R. Alternatively, from the N = 1 viewpoint, it is just part of a

free chiral field, and so should have U(1)N=1
R charge of 2

3 . These two constraints fix the

relation to be:

U(1)N=1
R =

1

3
U(1)N=2

R +
2

3
U(1)SU(2)R , (A.1)

which is also the one found in [66]. The other combination of U(1)N=2
R and U(1)SU(2)R

becomes a standard global symmetry from the U(1)N=1
R viewpoint. In Lagrangian theories,

it can be defined as the one that acts on chiral fields in hypermultiplets with charge −1

and on chiral fields in vector multiplets with charge 2. From a Lagrangian independent

viewpoint, the important thing about the symmetry is that the supercharge be uncharged

under it. Therefore, calling that symmetry U(1)g, it must be given by the combination of

U(1)N=2
R and U(1)SU(2)R such that Q2 has charge 0 under it. This fixes:

U(1)g = α(U(1)N=2
R −U(1)SU(2)R), (A.2)

where α is a normalization dependent constant. The U(1)g that we defined previously from

a Lagrangian viewpoint use α = 1, which is also the choice used in [66]. However, here we

will use the choice α = 1
2 .

A.1.2 Relations between N = 3, N = 2 and N = 1

Next we wish to consider an N = 3 SCFT. We can think of such a theory also as an N = 2

or an N = 1 SCFT. We next determine the relations between the R-symmetries of the

different descriptions.

An N = 3 SCFT has three supercharges: Q1, Q2 and Q3. It also has a U(1) × SU(3)

R-symmetry, under which the three supercharges transform in the fundamental of SU(3)

and with charge −1 under the U(1). Let us treat this theory as an N = 2 SCFT with
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supercharges Q1 and Q2. From this viewpoint a U(1)×SU(2) subgroup of U(1)×SU(3) is

the superconformal R-symmetry, while the commutant, which is U(1), is seen as a global

symmetry. To find the relation, it is convenient to decompose the SU(3) to U(1)SU(3)R ×
SU(2) such that: 3SU(3)R → 2−1

SU(2) + 12
SU(2). The SU(2) then is the non-abelian part in

the N = 2 superconformal R-symmetry. The abelian part, U(1)N=2
R , should then be a

linear combination of U(1)SU(3)R and U(1)N=3
R . To determine it we again consider two

constraints. One is that Q1 and Q2 must have charge −1 under it.

For the second, we again consider the vector multiplet. Like in the previous case, its

ground state is given by scalars. The rest of the multiplet is build by acting on it with

the Q’s and Q̄’s, where the vector is given by acting with two Q operators on the ground

state16 [36]. As the vector needs to be an R-symmetry singlet, we see that the scalars

need to be in the fundamental of the SU(3) and with charge 2 under U(1)N=3
R . When

decomposed in terms of U(1)SU(3)R × SU(2) representations, these give a doublet and a

singlet of the SU(2). From the N = 2 viewpoint, the former corresponds to the scalars in

the hypermultiplets while the latter corresponds to the scalar in the vector multiplet. The

former must be neutral under U(1)N=2
R , which provides the additional constraint, while

the latter must have charge 2, which in turn already follows from the previous constraint.

These two constraints fix the relation to be:

U(1)N=2
R =

1

3
U(1)N=3

R +
2

3
U(1)SU(3)R . (A.3)

Additionally, there is a U(1) global symmetry from the N = 2 viewpoint that we

shall call U(1)G. Again, it is given by a different combination of U(1)N=3
R and U(1)SU(3)R ,

defined by the requirement that the supercharges, Q1 and Q2, are uncharged under it.

This gives:

U(1)G = α(U(1)N=3
R −U(1)SU(3)R), (A.4)

where α is again a normalization dependent constant. Here we shall usually take α = 1
3 .

Finally, we can consider the theory as an N = 1 SCFT with supercharge Q1. From

this viewpoint, we have a U(1) R-symmetry, and its commutant in U(1)× SU(3), which in

this case is U(1)× SU(2), is seen as a global symmetry. We again seek to find the relation

between the N = 1 U(1) R-symmetry, the U(1)× SU(2) global symmetry from the N = 1

viewpoint and the N = 3 U(1) × SU(3) R-symmetry. For this we again decompose the

SU(3) to U(1)×SU(2) as done previously, but now the SU(2) singlet in the decomposition

of the SU(3) fundamental acts on Q1, while the doublet acts on Q2 and Q3. This implies

that the SU(2) in the decomposition is a global symmetry from the N = 1 viewpoint. The

abelian part of the global symmetry, which we denote as U(1)v, is again expressible as a

combination of U(1)N=3
R and U(1)SU(3)R , defined by the requirement that the supercharge

Q1 is uncharged under it. This gives:

U(1)v = α(2U(1)N=3
R + U(1)SU(3)R), (A.5)

where α is again a normalization dependent constant, which we shall take to be α = 1
3 .

16To be precise, this gives the self-dual part of the field strength associated with the vector. The multiplet

itself is not CPT invariant and so we must include also the conjugate which contains the anti self-dual part.
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To find the expression for U(1)N=1
R , we again use the constraint that under it Q1 must

have charge 1, supplemented by the constraint that the scalars in the hyper and vector

multiplets, that we previously determined, have R-charge ±2
3 . The demand that all three

will be obeyed for some sign fixes:

U(1)N=1
R =

1

9
U(1)N=3

R − 4

9
U(1)SU(3)R . (A.6)

A.1.3 Relations between N = 4, N = 3, N = 2 and N = 1

Finally, we consider the case of N = 4 SCFTs. Like the previous cases we can consider

them as N = 3, N = 2 or N = 1 SCFTs, and we inquire as to the mapping of the

symmetries. For N = 4 SCFTs the R-symmetry is SU(4), and there is no abelian part.17

This makes determining the mapping of the symmetries easier. The four supercharges, Qi,

transform in the fundamental representation of the SU(4).

First, we consider the theory as an N = 3 SCFT, with the supercharges being Q1−3.

In that case, it is convenient to decompose the SU(4) R-symmetry group to U(1) × SU(3)

such that 4SU(4) → 3−1
SU(3) + 13

SU(3). These then become the N = 3 R-symmetry. Next,

we can consider the theory as an N = 2 SCFT, with the supercharges being Q1,2. In that

case, it is convenient to decompose the SU(4) R-symmetry group to U(1) × SU(2)2 such

that 4SU(4) → 2−1
SU(2)1

+ 21
SU(2)2

. The U(1) and one of the SU(2) groups become the N = 2

R-symmetry. The other SU(2) then becomes a global symmetry from the N = 2 viewpoint.

In Lagrangian N = 4 SCFTs, this is the symmetry rotating the adjoint hyper.

Finally, we consider the theory as an N = 1 SCFT, with the supercharge being Q1.

In that case, it is again convenient to decompose the SU(4) R-symmetry group to U(1) ×
SU(3), but now we define the U(1) such that 4SU(4) → 3

1
3

SU(3) + 1−1
SU(3). The U(1) then

becomes the N = 1 R-symmetry, while the SU(3) is seen as a global symmetry from the

N = 1 viewpoint. In Lagrangian N = 4 SCFTs, this is the symmetry rotating the three

adjoint chirals.

A.2 Anomaly polynomials of 4d SCFTs

Next, we consider the form of the anomaly polynomial for 4d SCFTs.

A.2.1 N = 4

We begin with the case of N = 4 SCFTs. These are known to have only an SU(4) R-

symmetry as their global symmetry. As a result, there is only one non-trivial anomaly,

Tr(SU(4)3), and correspondingly only one possible term in the anomaly polynomial,

C3(SU(4)). These anomalies in turn are proportional to the conformal central charges,

which for N = 4 SCFTs obey a = c. The anomaly polynomial of N = 4 SCFTs then takes

the form:

IN=4 = 2aC3(SU(4))4. (A.7)

This in turn implies that: Tr(SU(4)3) = 4a, where we use the normalization such that

the fundamental contributes 1.
17This follows as the superconformal algebra in this case is psu(2, 2|4) rather then su(2, 2|4). It appears

that the later cannot actually be the superconformal algebra of an SCFT [36].
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A.2.2 N = 3

We next consider the case of N = 3 SCFTs. As previously stated, these have a U(1)×SU(3)

R-symmetry, and no other global symmetries. As a result, there are naively four non-trivial

anomalies and correspondingly four possible terms in the anomaly polynomial. However,

it turns out that these are not all independent, with one vanishing and with the remaining

three all being related to one another and to the conformal central charges, which again

obey a = c [39]. We next wish to determine how the anomaly polynomial looks like for

generic N = 3 SCFTs. The simplest way to do that is to use the fact that all N = 4 SCFTs

are also N = 3 SCFTs, and that in both cases there is only one independent anomaly. As a

result, we can determine the general form of the anomaly polynomial by starting with the

anomaly polynomial of N = 4 SCFTs, and decompose the SU(4) to U(1)× SU(3) as done

in the previous sections.18 We then find that the anomaly polynomial of N = 3 SCFTs

takes the form:

IN=3 = 2aC3(SU(3))3 − 4aC1(U(1)R)C2(SU(3))3 − 16aC3
1 (U(1)R). (A.8)

This in turn implies that: Tr(SU(3)3) = 4a, Tr(U(1)R × SU(3)2) = 4a and

Tr(U(1)3
R) = −96a.

A.2.3 N = 2

We next consider the case of N = 2 SCFTs. As previously stated, these have a U(1)×SU(2)

R-symmetry, but unlike the previous cases, may have additional global symmetries. The

major constraint on the anomaly polynomial is that all non-trivial anomalies must be

quadratic in all symmetries save for U(1)R. The general form of the anomaly polynomial

for an N = 2 SCFT with global symmetry G is:19

IN=2 = −8(c− a)C3
1 (U(1)R) + 2(c− a)p1(T )C1(U(1)R)

−4(2a− c)C1(U(1)R)C2(R) +
kG
2
C1(U(1)R)C2(G). (A.9)

Here the number kG is usually refereed to as the central charge associated with the

flavor symmetry G.

A.3 Operator structure of 4d SCFTs

In this section we consider the spectrum of protected operators of 4d SCFTs. Specifically,

say we have a 4d SCFT, then the operators in it must be in unitary representations of the

corresponding superconformal group. This in turn limit the possible operators that can

appear in the theory. Of specific importance are short multiplets as these obey various

restrictions that can prove useful in the study of SCFTs. Notably, these are counted by

the superconformal index which is an RG invariant.

18One might worry that this method will miss the potential linear anomaly of U(1)R. However, such

anomaly does not exist as it is inconsistent with the anomaly polynomial of generic N = 2 SCFTs.
19The constraint on the anomalies for N = 2 SCFTs was first derived in [67]. This was then used to

constrain the anomaly polynomial in many cases, for instance [66, 68].
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A.3.1 N = 1

We begin with the case of N = 1 SCFTs. Here we use the conventions of [36], so we take

Q to have charges [1; 0]
(−1)
1
2

, where following [36], we use the notation [j1; j2]
(r)
∆ to signal

an operator with in the representation [j1; j2] under the Lorentz group, charge r under

U(1)R and dimension ∆. The multiplets are denoted based on the shortening conditions

obeyed by them with respect to Q and Q̄, where B is the shortest and L the longest. In

addition the charges of the ground state are given, so for instance, LL̄[j1; j2]
(r)
∆ denote the

long multiplet whose ground state is in the [j1; j2] representation under the Lorentz group,

has U(1)R charge r and dimension ∆. Some N = 1 superconformal multiplets of special

interest are:

AlB̄1[j; 0]
(r)
∆ . For these multiplets we have that l = 1 if j ≥ 1 and l = 2 if j = 0, and

∆ = 3r
2 , r = 1

3(j + 2). This type of multiplets are related to free fields. Specifically, j = 0

are free chiral fields while j = 1 are free vector fields. The cases j > 1 describe higher spin

free fields.

LB̄1[j; 0]
(r)
∆ . These obey ∆ = 3r

2 , r > 1
3(j + 2). This type of multiplets describe chiral

fields with R-charge r and spin j.

AlĀl̄[j; j̄]
(r)
∆ . For these multiplets we have that l = 1 if j ≥ 1 and l = 2 if j = 0, and

similarly for l̄ and j̄. Also ∆ = 2+ 1
2(j+ j̄), r = 1

3(j− j̄). This type of multiplets are related

to various conserved currents. Specifically, the case of j = j̄ = 0 gives flavor conserved

currents, the cases j̄ = 0, j = 1 and j̄ = 1, j = 0 describe extra SUSY currents, and the

case j = j̄ = 1 describes a stress tensor multiplet. The other cases describe higher spin

currents.

A.3.2 N = 2

We next consider the case of N = 2 SCFTs. We again use the conventions of [36], so we

take Q to have charges [1; 0]
(1;−1)
1
2

, where now the charges in the superscript, (R; r), refer

to the representation under SU(2)R and the charge under the N = 2 U(1) R-symmetry.

We shall decompose Q to two components, where we shall take the lower SU(2) component

to be the N = 1 supercharge so as to confirm with equations (A.1), (A.2). We then have

the N = 1 supercharge, Q2, with charges [1; 0]
(−1),0
1
2

and the other one, Q1, with charges

[1; 0]
( 1

3),−1
1
2

, where the second superscript denotes the U(1)g charge (here we use α = 1
2).

Like in the previous case, there are two types of shortening conditions, where both can

apply to either Q or Q̄. The first, denoted as B, imply that the ground state is killed by

acing with Q if one forms the fully symmetric product in SU(2)R. The second, denoted as

A, is a bit more involve and we refer to [36] for the details regarding it.

To understand how the N = 2 multiplets decompose in terms of N = 1 multiplets,

we consider how the various states decompose. First, consider the case with ground state

[j; j̄]
(R;r)
∆ , then due to the SU(2)R charge, this single ground state becomes R+ 1 different

N = 1 ground states. Second, Q decomposes to two supercharges, one of which builds the

N = 1 multiplet. The other generates new ground states that can then build new N = 1
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multiplets by applying the N = 1 supercharge. As a result, the N = 2 LL̄ multiplet,

which is just the standard long multiplet, with ground state [j; j̄]
(R;r)
∆ (j, j̄ ≥ 1) gives

16(R+ 1) N = 1 LL̄ multiplets, coming from acing with Q1 on the R+ 1 different SU(2)R
components.

The heart of determining the different decompositions is understanding how the short-

ening conditions transform between the different amounts of supersymmetry. Let us first

consider the B type condition. First, this implies that the fully symmetrized product of

Q and the ground state vanishes, which in turn implies that we can relate the acting with

Q1 on the ground state to acting with Q2 instead. As a result, we can ignore the action

of Q1, and only need to consider the different SU(2)R components of the ground state. In

addition the bottom SU(2)R component is killed by Q2, as that would lower the SU(2)R
Cartan charge, and likewise for the top component with Q̄2 in B̄ type conditions. Simi-

larly, the next-to-bottom component will be killed by Q2
2 and likewise for the next-to-top

component with Q̄2
2, in B̄ type conditions. The remaining components are unrestricted.

As a result, in B type conditions the bottom and next-to-bottom components acquire the

B and A shortening conditions, the top and next-to-top components acquire the B̄ and Ā

shortening conditions in B̄ type conditions, and all the rest get L and L̄.

In the same vein, for A type conditions, the bottom component acquires the A short-

ening condition, and the top component acquires the Ā shortening condition for Ā type

conditions. All other components get the L and L̄ conditions. Finally, like in B type

conditions, for A type conditions we can relate the application of some combination of

Q1’s to applications involving Q2 instead, implying that we need not consider all possible

applications of Q2. The structure generated by the independent application of Q1 then

looks like the N = 1 multiplet obeying the same shortening conditions.

Next, we present the decomposition rules for selected N = 2 multiplets:

B1B̄1. The shortest multiplet type is the B1B̄1, whose ground state carry the charges

[0; 0]
(R;0)
R . This type of BPS operators are also known as the Higgs branch chiral ring

operators of dimension R. The R = 0 case describes the vacuum state, while the R = 1

case describes the free hyper. The case of R = 2 describes the flavor conserved current

multiplet, and decomposes as:

B1B̄1[0; 0]
(2;0)
2 → B1L̄[0; 0]

(− 4
3),1

2 +A2Ā2̄[0; 0]
(0),0
2 + LB̄1[0; 0]

( 4
3),−1

2 .

Here, the two chiral fields are the moment map operators, while the A2Ā2̄ is the N = 1

conserved current multiplet. The term in the superscript after the N = 1 R-charge denotes

the U(1)g charge. The remaining B1B̄1 multiplets decompose as:

B1B̄1[0; 0]
(R;0)
R →B1L̄[0; 0]

(− 2
3
R),R2

R + LB̄1[0; 0]
( 2

3
R),−R2

R +A2L̄[0; 0]

(
− (2R−4)

3

)
,R−2

2

R

+ LĀ2̄[0; 0]

(
(2R−4)

3

)
,− (R−2)

2

R +

R−2∑
i=2

LL̄[0; 0]
( 2

3
(R−2i)),− (R−2i)

2

R .

In Lagrangian theories, these type of multiplets describe operators made from R hy-

permultiplets.
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AlB̄1. The next type of short multiplets is AlB̄1, whose ground state carry the charges

[j; 0]
(R;j+2)

1+R+ j
2

. There are also the B1Āl̄ multiplet, which can be generated by taking the

complex conjugate. When R = 0, these describe free fields. Notably, the case of j = 0 is

the free vector while j > 0 is associated with free higher-spin fields. The case of R = 1 and

j = 0 describes extra SUSY currents and decomposes as:

A2B̄1[0; 0]
(1;2)
2 → A2Ā2̄[0; 0]

(0), 3
2

2 + LB̄1[0; 0]
( 4

3), 12
2 +A1Ā2̄[1; 0]

( 1
3), 12

5
2

+ LB̄1[1; 0]
( 5

3),− 1
2

5
2

.

Here, the first term is the extra conserved current associated with the larger R-

symmetry, while the second one is a relevant operator, which in Lagrangian theories is

given by the product of a chiral in an hypermultiplet with the adjoint chiral in the vector

multiplet. The third term is the N = 1 extra SUSY current multiplet. Cases with j > 0

describe higher-spin conserved currents. The remaining AlB̄1 multiplets decompose as:

AlB̄1[j; 0]
(R;j+2)

1+R+ j
2

→

LB̄1[j; 0]
( j+2+2R

3
), j−R+2

2

1+R+ j
2

+A1L̄[j; 0]
( j+2−2R

3
), j+R+2

2

1+R+ j
2

+ LĀ2̄[j; 0]
( j+2R−2

3
), j−R+4

2

1+R+ j
2

+
R−1∑
i=2

LL̄[j; 0]
( j+2R+2−4i

3
), j−R+2+2i

2

1+R+ j
2

+ LB̄1[j + 1; 0]
( j+3+2R

3
), j−R

2

1+R+ j+1
2

+A1L̄[j + 1; 0]
( j+3−2R

3
), j+R

2

1+R+ j+1
2

+ LĀ2̄[j + 1; 0]
( j+2R−1

3
), j−R+2

2

1+R+ j+1
2

+

R−1∑
i=2

LL̄[j + 1; 0]
( j+2R+3−4i

3
), j−R+2i

2

1+R+ j+1
2

.

In Lagrangian theories, the cases with j = 0 correspond to operators made from R

chirals in the hypermultiplets and one chiral in the vector multiplet.

LB̄1. The next type of short multiplets is LB̄1, whose ground state carry the charges

[j; 0]
(R;r)
R+ r

2
. Here, r is not fixed but must obey r > j + 2. For R = j = 0, these are the so

called Coulomb branch chiral ring operators of dimension r
2 , and decompose as:

LB̄1[0; 0]
(0;r)
r
2
→ LB̄1[0; 0]

( r
3

), r
2

r
2

+ LB̄1[1; 0]
( r+1

3
), r−2

2
r+1

2

+ LB̄1[0; 0]
( r+2

3
), r−4

2
r+2

2

.

In Lagrangian theories, r must be even, and the first term is the chiral operator

associated with the r
2 product of the chiral fields in the vector multiplet.

For generic values, we have the decomposition:

LB̄1[j; 0]
(R;r)
R+ r

2
→

LB̄1[j; 0]
( r+2R

3
), r−R

2

R+ r
2

+ LĀ2̄[j; 0]
( r+2R−4

3
), r−R+2

2

R+ r
2

+

R∑
i=2

LL̄[j; 0]
( r+2R−4i

3
), r−R+2i

2

R+ r
2

+LB̄1[j±1; 0]
( r+1+2R

3
), r−R−2

2

R+ r+1
2

+LĀ2̄[j±1; 0]
( r+2R−3

3
), r−R

2

R+ r+1
2

+

R∑
i=2

LL̄[j±1; 0]
( r+2R+1−4i

3
), r−R+2i−2

2

R+ r+1
2

+LB̄1[j; 0]
( r+2R+2

3
), r−R−4

2

R+ r+2
2

+ LĀ2̄[j; 0]
( r+2R−2

3
), r−R−2

2

R+ r+2
2

+
R∑
i=2

LL̄[j; 0]
( r+2R+2−4i

3
), r−R−4+2i

2

R+ r+2
2

,

where r > j + 2, but otherwise unconstrained.
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AlĀl̄. The next type of short multiplets is AlĀl̄, whose ground state carry the charges

[j; j̄]
(R;j−j̄)
2+R+ 1

2
(j+j̄)

. The case of R = j = j̄ = 0 contains a conserved symmetric tensor and so

corresponds to the energy-momentum tensor multiplet. It decomposes as:

A2Ā2̄[0; 0]
(0;0)
2 → A2Ā2̄[0; 0]

(0),0
2 +A1Ā2̄[1; 0]

( 1
3

),−1
5
2

+A2Ā1̄[0; 1]
(− 1

3
),1

5
2

+A1Ā1̄[1; 1]
(0),0
3 .

Other cases with R = 0 contain higher-spin conserved currents.

For generic values, we have the decomposition:

AlĀl̄[j; j̄]
(R;j−j̄)
2+R+ 1

2
(j+j̄)

→

LĀl̄[j; j̄]
( j−j̄+2R

3
), j−j̄−R

2

2+R+ 1
2

(j+j̄)
+AlL̄[j; j̄]

( j−j̄−2R
3

), j−j̄+R
2

2+R+ 1
2

(j+j̄)
+

R−1∑
i=1

LL̄[j; j̄]
( j−j̄+2R−4i

3
), j−j̄−R+2i

2

2+R+ 1
2

(j+j̄)

+ LĀl̄[j + 1; j̄]
( j−j̄+2R+1

3
), j−j̄−R−2

2

2+R+ 1
2

(1+j+j̄)
+AlL̄[j + 1; j̄]

( j−j̄−2R+1
3

), j−j̄+R−2
2

2+R+ 1
2

(1+j+j̄)

+
R−1∑
i=1

LL̄[j + 1; j̄]
( j−j̄+2R+1−4i

3
), j−j̄−R−2+2i

2

2+R+ 1
2

(1+j+j̄)
+ LĀl̄[j; j̄ + 1]

( j−j̄+2R−1
3

), j−j̄−R+2
2

2+R+ 1
2

(1+j+j̄)

+AlL̄[j; j̄ + 1]
( j−j̄−2R−1

3
), j−j̄+R+2

2

2+R+ 1
2

(1+j+j̄)
+

R−1∑
i=1

LL̄[j; j̄ + 1]
( j−j̄+2R−1−4i

3
), j−j̄−R+2+2i

2

2+R+ 1
2

(1+j+j̄)

+ LĀl̄[j + 1; j̄ + 1]
( j−j̄+2R

3
), j−j̄−R

2

3+R+ 1
2

(j+j̄)
+AlL̄[j + 1; j̄ + 1]

( j−j̄−2R
3

), j−j̄+R
2

3+R+ 1
2

(j+j̄)

+

R−1∑
i=1

LL̄[j + 1; j̄ + 1]
( j−j̄+2R−4i

3
), j−j̄−R+2i

2

3+R+ 1
2

(j+j̄)
.

Additionally, there are also the LĀl̄ type of short multiplets. It is not difficult to work

out their decomposition, though we won’t write it explicitly here.

Applications. So far we have worked out the decomposition of N = 2 superconformal

multiplets into N = 1 ones. We next want to use this to say something about the spectrum

of SUSY preserving relevant and marginal operators. If one wish to maintain the full N = 2

SUSY, then this was already considered in [69]. Here, however, we will be more interested in

deformations preserving also N = 1 supersymmetry. The only N = 1 relevant or marginal

deformations preserving N = 1 SUSY reside in LB̄1[0; 0]
(r)
3
2
r

type multiplets, for r ≤ 2. As

a result, by using the decompositions above, we can determine which multiplets contain

N = 1 SUSY preserving relevant or marginal deformations. Also, from the results of [64],

the resulting relevant deformations are absolutely protected, while the marginal ones can

only fail to be protected through recombination with a conserved current multiplet [15].

Relevant operators with dimension 1 < ∆ < 2. The only N = 2 multiplets containing

LB̄1[0; 0]
(r)
3
2
r

type multiplets with 2
3 < r < 4

3 are the LB̄1[0; 0]
(0;r′)
r′
2

type ones, for 2 < r′ < 4.

These describe Coulomb branch operators of dimension r′

2 , and carry U(1)g charge r′

2 . Due

to the results of [70], these operators cannot be charged under any flavor symmetries.
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Relevant operators with dimension ∆ = 2. There are several types of N = 2 multiplets

containing LB̄1[0; 0]
( 4

3
)

2 type multiplets. First there are the LB̄1[0; 0]
(0;4)
2 type multiplets,

corresponding to dimension 2 Coulomb branch operators. These carry U(1)g charge 2, and

cannot be charged under any N = 2 flavor symmetry. Second, there are the A2B̄1[0; 0]
(1;2)
2

type multiplets, corresponding to extra SUSY currents. These carry U(1)g charge 1
2 . Fi-

nally, there are B1B̄1[0; 0]
(2;0)
2 type multiplets, corresponding to dimension 2 Higgs branch

operators. These carry U(1)g charge −1, and must be in the adjoint representation of the

N = 2 flavor symmetry group.

We note that the LB̄1[0; 0]
(0;4)
2 type multiplets also contain LB̄1[0; 0]

(2)
3 type multiplets,

which are in fact the only possible N = 2 preserving marginal deformations. We also note

that A2B̄1[0; 0]
(1;2)
2 type multiplets contain extra SUSY currents, while the B1B̄1[0; 0]

(2;0)
2

type multiplets contain flavor conserved currents. As a result, we have that

n∆=2 = dGF + dCMN=2
+NSUSY − 2,

where n∆=2 is the number of SUSY preserving dimension two operators, dGF is the di-

mension of the N = 2 global symmetry, dCMN=2
is the dimension of the N = 2 preserving

conformal manifold and NSUSY is the number of supercharges, assumed to be at least two.

Relevant operators with dimension 2 < ∆ < 3. There are several N = 2 multiplets

containing LB̄1[0; 0]
(r)
3
2
r

type multiplets with 4
3 < r < 2. First, there are the LB̄1[0; 0]

(0;r′)
r′
2

type ones, for 4 < r′ < 6 or 2 < r′ < 4. These describe Coulomb branch operators of

dimension r′

2 . For 4 < r′ < 6, the required LB̄1[0; 0]
(r)
3
2
r

type multiplet is in the ground

state and directly corresponds to the Coulomb branch operator. The operator carry U(1)g

charge r′

2 . When 2 < r′ < 4, however, the required LB̄1[0; 0]
(r)
3
2
r

type multiplet is not the

Coulomb branch spanning operator itself, but rather one related to it by the N = 2 SUSY.

These are U(1)g singlets. Both operators must also be singlets under the N = 2 global

symmetry.

Additionally, the LB̄1[1; 0]
(0;r′)
r′
2

and LB̄1[0; 0]
(1;r′)
r′
2

type multiplets contain such opera-

tors, with 3 < r′ < 5 for the first case and 2 < r′ < 4 for the second one. The former

are the so called spinning Coulomb branch operators, which can not appear in physical

theories [71], and thus need not be considered here. For the LB̄1[0; 0]
(1;r′)
r′
2

type operator,

the relevant operator is the ground state. It carries U(1)g charge r′−1
2 . It can also be

charged under flavor symmetries. The simplest example of such operators is the product

of a Coulomb branch operator of dimension less than two and a free hyper.

Marginal operators. Finally we consider marginal operators. By going over the list, we

find that there are precisely four types of possible N = 1 preserving marginal operators,

differing by their U(1)g charge. These are:

1. LB̄1[0; 0]
(2),− 3

2
3 : this type of multiplets can only come from the B1B̄1[0; 0]

(3;0)
3 type

multiplets, and as such are always associated with dimension 3 Higgs branch oper-

– 38 –



J
H
E
P
0
1
(
2
0
2
1
)
0
6
2

ators. These can also be charged under flavor symmetries, and as they also contain

B1L̄[0; 0]
(−2), 3

2
3 type multiplets, must be charged in a real (potentially reducable) rep-

resentation of the N = 2 flavor symmetry. In Lagrangian theories, these are given

by gauge invariant combinations of three scalars in hypermultiplets.

2. LB̄1[0, 0]
(2),3
3 : this type of multiplets can only come from the LB̄1[0, 0]

(0;6)
3 type multi-

plets, and as such are always associated with dimension 3 Coulomb branch operators.

These can not be charged under N = 2 flavor symmetries. In Lagrangian theories,

these are given by gauge invariant combinations of three scalars in vector multiplets.

3. LB̄1[0; 0]
(2), 3

2
3 : this type of multiplets can in principle come from two types of

N = 2 multiplets. One are the LB̄1[0; 0]
(1;4)
3 type multiplets, and the other are

the LB̄1[1; 0]
(0;5)
5
2

type multiplets. The latter are spinning Coulomb branch operators,

and so cannot appear in unitary N = 2 SCFTs [71]. This means that in physical

theories the only source of these operators is LB̄1[0; 0]
(1;4)
3 type multiplets, which

correspond to mixed branch operators. These can also be charged under flavor sym-

metries. In Lagrangian theories, these are given by gauge invariant combinations of

a scalar in a hypermultiplet and two scalars in vector multiplets.

4. LB̄1[0; 0]
(2),0
3 : this type of multiplets can come from two types of N = 2 multiplets.

One are the LB̄1[0; 0]
(0;4)
2 type multiplets, and the other are the A2B̄1[0; 0]

(2;2)
3 type

multiplets. Both can appear in N = 2 SCFTs. While, both give the same N = 1

marginal operator, they differ by their effect on the N = 2 supersymmetry. The

marginal operator in the LB̄1[0; 0]
(0;4)
2 type multiplets comes from the top compo-

nent of the multiplets and as such preserves the full N = 2 supersymmetry. Also

these cannot be charged under flavor symmetries. In contrary, the marginal operator

in the A2B̄1[0; 0]
(2;2)
3 type multiplets comes from the ground state and so preserves

only N = 1 supersymmetry. These can also be charged under flavor symmetries. The

LB̄1[0; 0]
(0;4)
2 type multiplets correspond to dimension two Coulomb branch opera-

tors, and the associated marginal operator is given by the gauge coupling constant.

The A2B̄1[0; 0]
(2;2)
3 type multiplets correspond to mixed branch operators. In La-

grangian theories, these are given by gauge invariant combinations of two scalars in

a hypermultiplet and a scalar in a vector multiplet.

These lead to the following observations regarding conformal manifolds of N = 2

SCFTs. These statements mirror similar ones made in [17], which are based on analysis

of Lagrangian theories. The discussion here extends many of these statements to general

N = 2 SCFTs. We first note that it is possible to have an N = 2 preserving conformal

manifold whose complex dimension must be equal to the number of dimension two Coulomb
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branch operators. In addition to the N = 2 SUSY, also the N = 2 flavor symmetry must

be preserved on the conformal manifold.20

Additionally, it is possible to have an N = 1 only preserving conformal manifold as

there are several multiplets containing N = 1 only preserving marginal operators. However,

in order to have such conformal manifolds it is necessary that there is a Kahler quotient

under the N = 1 flavor symmetry. This includes both the N = 2 flavor symmetry as well as

U(1)g. Going over the list of operators we see that to get a U(1)g quotient requires either the

A2B̄1[0; 0]
(2;2)
3 mixed branch operators or a combination of the B1B̄1[0; 0]

(3;0)
3 Higgs branch

operators and either the LB̄1[0; 0]
(0;6)
3 Coulomb branch operators or the LB̄1[0; 0]

(1;4)
3 mixed

branch operators. The former allows N = 1 only preserving conformal manifolds that

preserve U(1)g, while the latter option gives ones that break this symmetry, assuming they

can form a quotient under the N = 2 flavor symmetry.

A.3.3 N = 3

We next consider the case of N = 3 SCFTs. We again use the conventions of [36], so we

take Q to have charges [1; 0]
(1,0;−1)
1
2

, where the superscript now denoting the representation

under the SU(3)R, followed by the charge under the U(1) R-symmetry. We shall consider

here the decomposition into both N = 2 and N = 1 superconformal multiplets. For the

former, we shall decompose the SU(3) such that 3→ 2−1 + 12, where the doublet becomes

the N = 2 supercharges. In this way equation (A.3) holds. For the decomposition into

N = 1 superconformal multiplets, we shall instead use the singlet in the decomposition to

be the N = 1 supercharge. In this way equation (A.6) holds. The global U(1) we take to

be defined by (A.4) for N = 2 and (A.5) for N = 1 with α = 1
3 for both.

Like in the previous cases, there are two types of shortening conditions, where both

can apply to either Q or Q̄. The first, denoted as B, implies that the ground state is killed

by acing with Q if one forms the fully symmetric product in SU(3)R. The second, denoted

as A, is a bit more involved and we again refer to [36] for the details. The decomposition

to N = 2 multiplets can be analyzed in a similar manner to as done in the previous case.

Like there, the ground state of the N = 3 multiplet splits into ground states of multiple

20The N = 2 flavor symmetry comes from B1B̄1[0; 0]
(2;0)
2 type multiplets, whose ground state is an

SU(2)R triplet of scalar fields. When we refer to the global symmetry of an N = 2 SCFT, we mean global

symmetries whose currents come from such multiplets. Nevertheless, there are other sources of conserved

flavor currents in N = 2 SCFTs. Notably, the energy-momentum tensor multiplet, A2Ā2̄[0; 0]
(0;0)
2 , also

contains a conserved flavor current. In interacting SCFTs, this is the U(1)g current, which is part of the

N = 2 R-symmetry. However, there can be cases with additional such multiplets when free fields are

involved. This follows from the following recombination rule of the N = 2 superconformal algebra:

LL̄[0; 0]
(0;0)
∆→2 → A2Ā2̄[0; 0]

(0;0)
2 ⊕A2B̄1[0; 0]

(2;2)
3 ⊕B1Ā2̄[0; 0]

(2;−2)
3 ⊕B1B̄1[0; 0]

(4;0)
4 .

As a result, it is possible for long multiplets to decompose in such a way at special points on the conformal

manifold. This is common in N = 2 Lagrangian SCFTs in the weak coupling limit, which develop additional

N = 1 global symmetries due to the vanishing of the N = 2 preserving superpotential, which are precisely

the A2B̄1[0; 0]
(2;2)
3 type multiplets that appear in the decomposition. As a result, while the N = 2 flavor

symmetry does not change on the N = 2 preserving conformal manifold, the N = 1 flavor symmetry can

enhance at special points on it, see for instance [24, 25].
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N = 2 multiplets governed by the decomposition of the SU(3) R-symmetry. Additionally,

we need to take into account the action of the remaining N = 3 supercharge that is not

part of the N = 2 SUSY we are considering. Application of it on the ground states leads

to additional N = 2 multiplets. Similarly to the previous cases, these form the structure

of an N = 1 multiplet obeying the same shortening conditions.

Once the decomposition into N = 2 multiplets is determined, it is straightforward to

workout the decomposition to N = 1 multiplets by using the N = 2→ N = 1 decomposi-

tion we determined previously.

Next, we present the decomposition rules for selected N = 3 multiplets:

B1B̄1. The shortest multiplet type is the B1B̄1, whose ground state carry the charges

[0; 0]
(R1,R2;2(R1−R2))
R1+R2

. Like the previous case, the R1 = R2 = 0 case describes the vacuum

state, while the R1 = 1, R2 = 0 case, and its complex conjugate, is the N = 3 free vector.

The case of R1 = 2, R2 = 0, and its complex conjugate, describes the extra SUSY current

multiplet, and the case of R1 = R2 = 1 describes the energy-momentum tensor multiplet.

Additional cases of special physical interest are the R1 = 3, R2 = 0 case, R1 = 2, R2 = 1

case and their complex conjugates, which contain SUSY preserving marginal operators.

We next consider the decomposition of these multiplets under the N = 2 subgroup:

B1B̄1[0; 0]
(2,0;4)
2 → B1B̄1[0; 0]

(2;0),2
2 +A2B̄1[0; 0]

(1;2),1
2 + LB̄1[0; 0]

(0;4),0
2 .

Here, the number following the N = 2 R-symmetry charges is the U(1)G charge. The

first term is the dimension two Higgs branch chiral ring operator, the second is the N = 2

extra SUSY current operator, while the third is the dimension two Coulomb branch chiral

ring operator. In terms of N = 1 multiplets, it decomposes as:

B1B̄1[0; 0]
(2,0;4)
2 →LB̄1[0; 0]

( 4
3

),(2;2)

2 +B1L̄[0; 0]
(− 4

3
),(0;4)

2 +A2Ā2[0; 0]
(0),(1;3)
2

+A1Ā2̄[1; 0]
( 1

3
),(0;2)

5
2

+ LB̄1[1; 0]
( 5

3
),(1;1)

5
2

+ LB̄1[0; 0]
(2),(0;0)
3 ,

where the numbers following the N = 1 R-symmetry charge denote the representation

under the SU(2) followed by the U(1)v charge, both being the commutant of the N = 1

R-symmetry in the N = 3 R-symmetry.

Next we consider the EM tensor multiplet:

B1B̄1[0; 0]
(1,1;0)
2 → B1B̄1[0; 0]

(2;0),0
2 +A2B̄1[0; 0]

(1;2),−1
2 +B1Ā2̄[0; 0]

(1;−2),1
2 +A2Ā2̄[0; 0]

(0;0),0
2 .

These are, in the order listed, the conserved current of the global U(1)G, the two N = 2

extra SUSY currents and the N = 2 EM tensor multiplet. In terms of N = 1 multiplets,

it decomposes as:

B1B̄1[0; 0]
(1,1;0)
2 →LB̄1[0; 0]

( 4
3

),(1;−1)

2 +B1L̄[0; 0]
(− 4

3
),(1;1)

2 +A2Ā2[0; 0]
(0),(2;0)
2

+A2Ā2[0; 0]
(0),(0;0)
2 + LB̄1[1; 0]

( 5
3

),(0;−2)
5
2

+B1L̄[0; 1]
(− 5

3
),(0;2)

5
2

+A1Ā2̄[1; 0]
( 1

3
),(1;−1)

5
2

+A2Ā1̄[0; 1]
(− 1

3
),(1;1)

5
2

+A1Ā1[1; 1]
(0),(0;0)
3 .
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We next consider the B1B̄1[0; 0]
(3,0;6)
3 multiplet:

B1B̄1[0; 0]
(3,0;6)
3 → B1B̄1[0; 0]

(3;0),3
3 +A2B̄1[0; 0]

(2;2),2
3 + LB̄1[0; 0]

(1;4),1
3 + LB̄1[0; 0]

(0;6),0
3 .

In terms of N = 1 multiplets, it decomposes as:

B1B̄1[0; 0]
(3,0;6)
3 →LB̄1[0; 0]

(2),(3;3)
3 + LĀ2̄[0; 0]

( 2
3

),(2;4)

3 +A2L̄[0; 0]
(− 2

3
),(1;5)

3

+B1L̄[0; 0]
(−2),(0;6)
3 + LB̄1[1; 0]

( 7
3

),(2;2)
7
2

+ LĀ2̄[1; 0]
(1),(1;3)
7
2

+A1L̄[1; 0]
(− 1

3
),(0;4)

7
2

+ LB̄1[0; 0]
( 8

3
),(1;1)

4 + LĀ2̄[0; 0]
( 4

3
),(0;2)

4 .

We next consider the B1B̄1[0; 0]
(2,1;2)
3 multiplet:

B1B̄1[0; 0]
(2,1;2)
3 →B1B̄1[0; 0]

(3;0),1
3 +A2B̄1[0; 0]

(2;2),0
3 +B1Ā2̄[0; 0]

(2;−2),2
3

+A2Ā2̄[0; 0]
(1;0),1
3 + LB̄1[0; 0]

(1;4),−1
3 + LĀ2̄[0; 0]

(0;2),0
3 .

In terms of N = 1 multiplets, it decomposes as:

B1B̄1[0; 0]
(2,1;2)
3 →LB̄1[0; 0]

(2),(2;0)
3 + LĀ2̄[0; 0]

( 2
3

),(3;1)

3 + LĀ2̄[0; 0]
( 2

3
),(1;1)

3 +A2L̄[0; 0]
(− 2

3
),(2;2)

3

+A2L̄[0; 0]
(− 2

3
),(0;2)

3 +B1L̄[0; 0]
(−2),(1;3)
3 + LB̄1[1; 0]

( 7
3

),(1;−1)
7
2

+ LĀ2̄[1; 0]
(1),(2;0)
7
2

+ LĀ2̄[1; 0]
(1),(0;0)
7
2

+A1L̄[1; 0]
(− 1

3
),(1;1)

7
2

+B1L̄[0; 1]
(− 7

3
),(0;4)

7
2

+ LĀ1̄[0; 1]
( 1

3
),(2;2)

7
2

+A2L̄[0; 1]
(−1),(1;3)
7
2

+ LB̄1[0; 0]
( 8

3
),(0;−2)

4 + LĀ2̄[0; 0]
( 4

3
),(1;−1)

4

+ LĀ1̄[1; 1]
( 2

3
),(1;1)

4 +A1L̄[1; 1]
(− 2

3
),(0;2)

4 .

AlB̄1. The next type of short multiplets is AlB̄1, whose ground state carry the charges

[j; 0]
(R1,R2;6+3j+2(R1−R2))

1+R1+R2+ j
2

. When R1 = R2 = 0, these multiplets contain free higher-spin

fields. The cases of R1 = 1, R2 = 0 and R1 = 0, R2 = 1 contains higher-spin conserved

currents. The decompsitions into N = 2 multiplets for all three cases are:

AlB̄1[j; 0]
(0,0;3j+6)

1+ j
2

→AlB̄1[j; 0]
(0;j+2),j+2

1+ j
2

+A1B̄1[j + 1; 0]
(0;j+3),j+1
3+j

2

,

AlB̄1[j; 0]
(1,0;3j+8)

2+ j
2

→AlB̄1[j; 0]
(1;j+2),j+3

2+ j
2

+ LB̄1[j; 0]
(0;j+4),j+2

2+ j
2

+A1B̄1[j + 1; 0]
(1;j+3),j+2
5+j

2

+ LB̄1[j + 1; 0]
(0;j+5),j+1
5+j

2

,

AlB̄1[j; 0]
(0,1;3j+4)

2+ j
2

→AlB̄1[j; 0]
(1;j+2),j+1

2+ j
2

+AlĀ2̄[j; 0]
(0;j),j+2

2+ j
2

+A1B̄1[j + 1; 0]
(1;j+3),j
5+j

2

+A1Ā2̄[j + 1; 0]
(0;j+1),j+1
5+j

2

.
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In terms of N = 1 multiplets, the decomposition is:

AlB̄1[j; 0]
(0,0;3j+6)

1+ j
2

→

AlB̄1[j; 0]
( j+2

3
),(0;2j+4)

1+ j
2

+A1B̄1[j + 1; 0]
( j+3

3
),(1;2j+3)

3+j
2

+A1B̄1[j + 2; 0]
( j+4

3
),(0;2j+2)

2+ j
2

,

AlB̄1[j; 0]
(1,0;3j+8)

2+ j
2

→

LB̄1[j; 0]
( 4+j

3
),(1;2j+5)

2+ j
2

+AlĀ2̄[j; 0]
( j

3
),(0;2j+6)

2+ j
2

+ LB̄1[j + 1; 0]
( 5+j

3
),(2;2j+4)

j+5
2

+ LB̄1[j ± 1; 0]
( 5+j

3
),(0;2j+4)

j+5
2

+A1Ā2̄[j + 1; 0]
( 1+j

3
),(1;2j+5)

5+j
2

+A1Ā2̄[j + 2; 0]
( 2+j

3
),(0;2j+4)

6+j
2

+ LB̄1[j + 2; 0]
( 6+j

3
),(1;2j+3)

3+ j
2

+ LB̄1[j; 0]
( 6+j

3
),(1;2j+3)

3+ j
2

+ LB̄1[j + 1; 0]
( 7+j

3
),(0;2j+2)

7+j
2

,

AlB̄1[j; 0]
(0,1;3j+4)

2+ j
2

→

LB̄1[j; 0]
( 4+j

3
),(0;2j+2)

2+ j
2

+AlĀ2̄[j; 0]
( j

3
),(1;2j+3)

2+ j
2

+ LB̄1[j + 1; 0]
( 5+j

3
),(1;2j+1)

j+5
2

+A1Ā2̄[j + 1; 0]
( 1+j

3
),(2;2j+2)

5+j
2

+A1Ā2̄[j + 1; 0]
( 1+j

3
),(0;2j+2)

5+j
2

+ LB̄1[j + 2; 0]
( 6+j

3
),(0;2j)

3+ j
2

+AlĀ1̄[j; 1]
( j−1

3
),(0;2j+4)

5+j
2

+A1Ā2̄[j + 2; 0]
( 2+j

3
),(1;2j+1)

6+j
2

+A1Ā1̄[j + 1; 1]
( j

3
),(1;2j+3)

6+j
2

+A1Ā1̄[j + 2; 1]
( 1+j

3
),(0;2j+2)

7+j
2

.

Next we present the decomposition for several other multiplets, first in terms of N = 2

multiplets:

AlB̄1[j; 0]
(2,0;3j+10)

3+ j
2

→

AlB̄1[j; 0]
(2;j+2),j+4

3+ j
2

+ LB̄1[j; 0]
(1;j+4),j+3

3+ j
2

+ LB̄1[j; 0]
(0;j+6),j+2

3+ j
2

+A1B̄1[j + 1; 0]
(2;j+3),j+3
7+j

2

+ LB̄1[j + 1; 0]
(1;j+5),j+2
7+j

2

+ LB̄1[j + 1; 0]
(0;j+7),j+1
7+j

2

,

AlB̄1[j; 0]
(1,1;3j+6)

3+ j
2

→

AlB̄1[j; 0]
(2;j+2),j+2

3+ j
2

+ LĀ2̄[j; 0]
(0;j+2),j+2

3+ j
2

+ LB̄1[j; 0]
(1;j+4),j+1

3+ j
2

+AlĀ2̄[j; 0]
(1;j),j+3

3+ j
2

+A1B̄1[j + 1; 0]
(2;j+3),j+1
7+j

2

+ LĀ2̄[j + 1; 0]
(0;j+3),j+1
7+j

2

+ LB̄1[j + 1; 0]
(1;j+5),j
7+j

2

+A1Ā2̄[j + 1; 0]
(1;j+1),j+2
7+j

2

,

AlB̄1[j; 0]
(0,2;3j+2)

3+ j
2

→

AlB̄1[j; 0]
(2;j+2),j

3+ j
2

+AlĀ2̄[j; 0]
(1;j),j+1

3+ j
2

+AlL̄[j; 0]
(0;j−2),j+2

3+ j
2

+A1B̄1[j + 1; 0]
(2;j+3),j−1
7+j

2

+A1Ā2̄[j + 1; 0]
(1;j+1),j
7+j

2

+A1L̄[j + 1; 0]
(0;j−1),j+1
7+j

2

,
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and next in terms of N = 1 multiplets:

AlB̄1[j; 0]
(2,0;3j+10)

3+ j
2

→

LB̄1[j; 0]
( 6+j

3 ),(2;2j+6)

3+ j
2

+ LĀ2̄[j; 0]
( 2+j

3 ),(1;2j+7)

3+ j
2

+A1L̄[j; 0]
( j−2

3 ),(0;2j+8)

3+ j
2

+ LB̄1[j + 1; 0]
( 7+j

3 ),(3;2j+5)
7+j
2

+ LB̄1[j + 1; 0]
( 7+j

3 ),(1;2j+5)
7+j
2

+ LB̄1[j − 1; 0]
( 7+j

3 ),(1;2j+5)
7+j
2

+ LĀ2̄[j + 1; 0]
( 3+j

3 ),(2;2j+6)
7+j
2

+ LĀ2̄[j + 1; 0]
( 3+j

3 ),(0;2j+6)
7+j
2

+ LĀ2̄[j − 1; 0]
( 3+j

3 ),(0;2j+6)
7+j
2

+A1L̄[j + 1; 0]
( j−1

3 ),(1;2j+7)
7+j
2

+ LB̄1[j + 2; 0]
( 8+j

3 ),(2;2j+4)
8+j
2

+ LĀ2̄[j + 2; 0]
( 4+j

3 ),(1;2j+5)
8+j
2

+A1L̄[j + 2; 0]
( j
3 ),(0;2j+6)

8+j
2

+ LB̄1[j; 0]
( 8+j

3 ),(2;2j+4)
8+j
2

+ LB̄1[j; 0]
( 8+j

3 ),(0;2j+4)
8+j
2

+ LĀ2̄[j; 0]
( 4+j

3 ),(1;2j+5)
8+j
2

+ LB̄1[j + 1; 0]
( 9+j

3 ),(1;2j+3)
9+j
2

+ LĀ2̄[j + 1; 0]
( 5+j

3 ),(0;2j+4)
9+j
2

,

AlB̄1[j; 0]
(1,1;3j+6)

3+ j
2

→

LB̄1[j; 0]
( 6+j

3 ),(1;2j+3)

3+ j
2

+ LĀ2̄[j; 0]
( 2+j

3 ),(2⊕0;2j+4)

3+ j
2

+A1L̄[j; 0]
( j−2

3 ),(1;2j+5)

3+ j
2

+ LB̄1[j + 1; 0]
( 7+j

3 ),(2⊕0;2j+2)
7+j
2

+ LB̄1[j − 1; 0]
( 7+j

3 ),(0;2j+2)
7+j
2

+ LĀ2̄[j + 1; 0]
( 3+j

3 ),(3;2j+3)
7+j
2

+ 2LĀ2̄[j + 1; 0]
( 3+j

3 ),(1;2j+3)
7+j
2

+ LĀ2̄[j − 1; 0]
( 3+j

3 ),(1;2j+3)
7+j
2

+A1L̄[j + 1; 0]
( j−1

3 ),(2⊕0;2j+4)
7+j
2

+ LĀ2̄[j; 1]
( 1+j

3 ),(1;2j+5)
7+j
2

+A1L̄[j; 1]
( j−3

3 ),(0;2j+6)
7+j
2

+ LB̄1[j + 2; 0]
( 8+j

3 ),(1;2j+1)
8+j
2

+ LĀ2̄[j + 2; 0]
( 4+j

3 ),(2;2j+2)
8+j
2

+ LĀ2̄[j + 2; 0]
( 4+j

3 ),(0;2j+2)
8+j
2

+A1L̄[j + 2; 0]
( j
3 ),(1;2j+3)

8+j
2

+ LB̄1[j; 0]
( 8+j

3 ),(1;2j+1)
8+j
2

+ LĀ2̄[j; 0]
( 4+j

3 ),(2⊕0;2j+2)
8+j
2

+ LĀ1̄[j + 1; 1]
( 2+j

3 ),(2⊕0;2j+4)
8+j
2

+A1L̄[j + 1; 1]
( j−2

3 ),(1;2j+5)
8+j
2

+ LĀ1̄[j − 1; 1]
( 2+j

3 ),(0;2j+4)
8+j
2

+ LB̄1[j + 1; 0]
( 9+j

3 ),(0;2j)
9+j
2

+ LĀ2̄[j + 1; 0]
( 5+j

3 ),(1;2j+1)
9+j
2

+ LĀ1̄[j + 2; 1]
( 3+j

3 ),(1;2j+3)
9+j
2

+ LĀ1̄[j; 1]
( 3+j

3 ),(1;2j+3)
9+j
2

+A1L̄[j + 2; 1]
( j−1

3 ),(0;2j+4)
9+j
2

+ LĀ1̄[j + 1; 1]
( 4+j

3 ),(0;2j+2)
10+j

2

,

AlB̄1[j; 0]
(0,2;3j+2)

3+ j
2

→

LB̄1[j; 0]
( 6+j

3 ),(0;2j)

3+ j
2

+ LĀ2̄[j; 0]
( 2+j

3 ),(1;2j+1)

3+ j
2

+A1L̄[j; 0]
( j−2

3 ),(2;2j+2)

3+ j
2

+ LB̄1[j + 1; 0]
( 7+j

3 ),(1;2j−1)
7+j
2

+ LĀ2̄[j + 1; 0]
( 3+j

3 ),(2⊕0;2j)
7+j
2

+A1L̄[j + 1; 0]
( j−1

3 ),(3⊕1;2j+1)
7+j
2

+ LĀ1̄[j; 1]
( 1+j

3 ),(0;2j+2)
7+j
2

+AlL̄[j; 1]
( j−3

3 ),(1;2j+3)
7+j
2

+ LB̄1[j + 2; 0]
( 8+j

3 ),(0;2j−2)
8+j
2

+ LĀ2̄[j + 2; 0]
( 4+j

3 ),(1;2j−1)
8+j
2

+A1L̄[j + 2; 0]
( j
3 ),(2;2j)

8+j
2

+ LĀ1̄[j + 1; 1]
( 2+j

3 ),(1;2j+1)
8+j
2

+A1L̄[j + 1; 1]
( j−2

3 ),(2⊕0;2j+2)
8+j
2

+AlL̄[j; 0]
( j−4

3 ),(0;2j+4)
8+j
2

+ LĀ1̄[j + 2; 1]
( 3+j

3 ),(0;2j)
9+j
2

+A1L̄[j + 2; 1]
( j−1

3 ),(1;2j+1)
9+j
2

+A1L̄[j + 1; 0]
( j−3

3 ),(1;2j+3)
9+j
2

+A1L̄[j + 2; 0]
( j−2

3 ),(0;2j+2)
10+j

2

.
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LB̄1. The next type of short multiplets is LB̄1, whose ground state carry the charges

[j; 0]
(R1,R2;r)
2
3

(R1+2R2)+ r
6

. Here, r is not fixed but must obey r > 6 + 3j + 2(R1 − R2). The

decompositions for some selected cases are:

LB̄1[j; 0]
(0,0;r>3j+6)
r
6

→LB̄1[j; 0]
(0; r

3
), r

3
r
6

+ LB̄1[j ± 1; 0]
(0; 3+r

3
), r−3

3
3+r

6

+ LB̄1[j; 0]
(0; r+6

3
), r−6

3

1+ r
6

,

LB̄1[j; 0]
(1,0;r>3j+8)
r+4

6

→LB̄1[j; 0]
(1; r−2

3
), r+1

3
r+4

6

+ LB̄1[j; 0]
(0; r+4

3
), r−2

3
r+4

6

+ LB̄1[j ± 1; 0]
(1; 1+r

3
), r−2

3
7+r

6

+LB̄1[j ± 1; 0]
(0; 7+r

3
), r−5

3
7+r

6

+LB̄1[j; 0]
(1; r+4

3
), r−5

3
r+10

6

+LB̄1[j; 0]
(0; r+10

3
), r−8

3
r+10

6

,

LB̄1[j; 0]
(0,1;r>3j+4)
r+8

6

→LB̄1[j; 0]
(1; r+2

3
), r−1

3
r+8

6

+ LĀ2̄[j; 0]
(0; r−4

3
), r+2

3
r+8

6

+ LB̄1[j ± 1; 0]
(1; r+5

3
), r−4

3
r+11

6

+LĀ2̄[j ± 1; 0]
(0; r−1

3
), r−1

3
r+11

6

+ LB̄1[j; 0]
(1; r+8

3
), r−7

3
r+14

6

+ LĀ2̄[j; 0]
(0; r+2

3
), r−4

3
r+14

6

,

in terms of N = 2 multiplets, and:

LB̄1[j; 0]
(0,0;r>3j+6)
r
6

→

LB̄1[j; 0]
( r

9
),(0; 2r

3
)

r
6

+ LB̄1[j ± 1; 0]
( r+3

9
),(1; 2r−3

3
)

3+r
6

+ LB̄1[j ± 2; 0]
( r+6

9
),(0; 2r−6

3
)

1+ r
6

+ LB̄1[j; 0]
( r+6

9
),(2; 2r−6

3
)

1+ r
6

+ ε0jLB̄1[j; 0]
( r+6

9
),(0; 2r−6

3
)

1+ r
6

+ LB̄1[j ± 1; 0]
( r+9

9
),(1; 2r−9

3
)

9+r
6

+ LB̄1[j; 0]
( r+12

9
),(0; 2r−12

3
)

r+12
6

,

LB̄1[j; 0]
(1,0;r>3j+8)
r+4

6

→

LB̄1[j; 0]
( r+4

9
),(1; 2r−1

3
)

r+4
6

+ LĀ2̄[j; 0]
( r−8

9
),(0; 2r+2

3
)

r+4
6

+ LB̄1[j ± 1; 0]
( r+7

9
),(2⊕0; 2r−4

3
)

7+r
6

+ LĀ2̄[j ± 1; 0]
( r−5

9
),(1; 2r−1

3
)

7+r
6

+ LB̄1[j ± 2; 0]
( r+10

9
),(1; 2r−7

3
)

r+10
6

+ LB̄1[j; 0]
( r+10

9
),(3⊕1; 2r−7

3
)

r+10
6

+ ε0jLB̄1[j; 0]
( r+10

9
),(1; 2r−7

3
)

r+10
6

+ LĀ2̄[j ± 2; 0]
( r−2

9
),(0; 2r−4

3
)

r+10
6

+ LĀ2̄[j; 0]
( r−2

9
),(2; 2r−4

3
)

r+10
6

+ ε0jLĀ2̄[j; 0]
( r−2

9
),(0; 2r−4

3
)

r+10
6

+ LB̄1[j ± 1; 0]
( r+13

9
),(2⊕0; 2r−10

3
)

13+r
6

+ LĀ2̄[j ± 1; 0]
( r+1

9
),(1; 2r−7

3
)

r+13
6

+ LB̄1[j; 0]
( r+16

9
),(1; 2r−13

3
)

r+16
6

+ LĀ2̄[j; 0]
( r+4

9
),(0; 2r−10

3
)

r+16
6

,

LB̄1[j; 0]
(0,1;r>3j+4)
r+8

6

→

LB̄1[j; 0]
( r+8

9
),(0; 2r−2

3
)

r+8
6

+ LĀ2̄[j; 0]
( r−4

9
),(1; 2r+1

3
)

r+8
6

+ LB̄1[j ± 1; 0]
( r+11

9
),(1; 2r−5

3
)

r+11
6

+ LĀ2̄[j ± 1; 0]
( r−1

9
),(2⊕0; 2r−2

3
)

r+11
6

+ LĀ1̄[j; 1]
( r−7

9
),(0; 2r+4

3
)

r+11
6

+ LB̄1[j ± 2; 0]
( r+14

9
),(0; 2r−8

3
)

r+14
6

+ LB̄1[j; 0]
( r+14

9
),(2; 2r−8

3
)

r+14
6

+ ε0jLB̄1[j; 0]
( r+14

9
),(0; 2r−8

3
)

r+14
6

+ LĀ2̄[j ± 2; 0]
( r+2

9
),(1; 2r−5

3
)

r+14
6

+ LĀ2̄[j; 0]
( r+2

9
),(3⊕1; 2r−5

3
)

r+14
6

+ ε0jLĀ2̄[j; 0]
( r+2

9
),(1; 2r−5

3
)

r+14
6

+ LĀ1̄[j ± 1; 1]
( r−4

9
),(1; 2r+1

3
)

r+14
6
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+ LB̄1[j ± 1; 0]
( r+17

9
),(1; 2r−11

3
)

r+17
6

+ LĀ2̄[j ± 1; 0]
( r+5

9
),(2⊕0; 2r−8

3
)

r+17
6

+ LĀ1̄[j; 1]
( r−1

9
),(2; 2r−2

3
)

r+17
6

+ ε0jLĀ1̄[j; 1]
( r−1

9
),(0; 2r−2

3
)

r+17
6

+ LĀ1̄[j ± 2; 1]
( r−1

9
),(0; 2r−2

3
)

r+17
6

+ LB̄1[j; 0]
( r+20

9
),(0; 2r−14

3
)

r+20
6

+ LĀ2̄[j; 0]
( r+1

9
),(1; 2r−11

3
)

r+20
6

+ LĀ1̄[j ± 1; 1]
( r+2

9
),(1; 2r−5

3
)

r+20
6

+ LĀ1̄[j; 1]
( r+5

9
),(0; 2r−8

3
)

r+23
6

,

in terms of N = 1 multiplets.

We will not have need for the decomposition of other multiplets.

Applications. Like in the N = 2 case, we can consider the implications of the decompo-

sitions we found on the possible SUSY preserving relevant and marginal deformations. As

we are dealing with N = 3 SCFTs, there are no flavor symmetries, and all the operators

are only charged under the N = 3 superconformal symmetry.

Relevant operators with dimension 1 < ∆ < 2. The only N = 3 multiplets containing

LB̄1[0; 0]
(r)
3
2
r

type multiplets with 2
3 < r < 4

3 are the LB̄1[0; 0]
(0,0;r′)
r′
6

type ones, for 6 < r′ <

12. However, looking at the decomposition of these operators into N = 2 multiplets, it is

apparent that these contain spinning Coulomb branch operators, and so from the results

of [71], cannot appear in physical theories. This also implies that we can ignore this type of

multiplets when considering SUSY preserving operators of dimension ∆ ≥ 2. We therefore

conclude that N = 3 SCFTs have no SUSY preserving relevant operators of dimension

1 < ∆ < 2.

Relevant operators with dimension ∆ = 2. Ignoring multiplets containing higher spin

currents or spinning Coulomb branch operators, there are two types of N = 3 multiplets

containing LB̄1[0; 0]
( 4

3
)

2 type multiplets. The first are the B1B̄1[0; 0]
(1,1;0)
2 type multiplets,

corresponding to the energy-momentum tensor. As such, these are always present in any

N = 3 SCFT, and contain two relevant deformations. From the N = 2 viewpoint, these

correspond to the moment map of the U(1)G flavor symmetry and the relevant operator

in the N = 2 extra SUSY current multiplet. From the N = 1 viewpoint, these give two

relevant operators that form a doublet under the SU(2) and carry U(1)v charge −1. The

N = 2 decomposition implies that one preserves the N = 2 SUSY while the other breaks it

to N = 1, but the N = 1 viewpoint implies the two deformations are related by an SU(2)

transformation, that is non other then part of the N = 3 R-symmmetry. Taking both

of these into account, we conclude that both of these deformations individually preserve

N = 2, but together they preserve only N = 1. In other words, the deformations preserve

different N = 2 subgroups of the N = 3 supersymmetry group.

The second type of multiplets are the B1B̄1[0; 0]
(2,0;4)
2 type multiplets and their com-

plex conjugates, corresponding to additional SUSY currents. Together these contain four

relevant deformations. From the N = 2 viewpoint, these correspond to the moment maps

associated with extra currents enhancing U(1)G to SU(2), a dimension two Coulomb branch

operator, and the relevant operator in the N = 2 extra SUSY current multiplet. From the

N = 1 viewpoint, these give four relevant operators that form a triplet under the SU(2)

with U(1)v charge 2, and an SU(2) singlet with U(1)v charge −4. As a result, we see that
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generically

n∆=2 = 4NSUSY − 10,

where n∆=2 is the number of SUSY preserving dimension two operators, and NSUSY is the

number of supercharges, assumed to be at least three.

Relevant operators with dimension 2 < ∆ < 3. The only N = 3 multiplets containing

LB̄1[0; 0]
(r)
3
2
r

type multiplets with 4
3 < r < 3 are the LB̄1[0; 0]

(0,0;r′)
r′
6

, LB̄1[0; 0]
(1,0;r′)
r′+4

6

and

LB̄1[0; 0]
(0,1;r′)
r′+8

6

type ones, for appropriate values of r′. However, we have already noted

that LB̄1[0; 0]
(0,0;r′)
r′
6

multiplets cannot appear in physical theories. Furthermore, from the

decomposition of these operators into N = 2 multiplets we see that also LB̄1[0; 0]
(1,0;r′)
r′+4

6

contains spinning Coulomb branch operators and so is not allowed. This leaves us only

with the LB̄1[0; 0]
(0,1;r′)
r′+8

6

type multiplets for 4 < r < 10. From the N = 2 viewpoint, these

correspond to the relevant operator in a mixed branch operator. From the N = 1 viewpoint,

this gives a single relevant operator which is an SU(2) singlet with U(1)v charge 2r′−2
3 .

Marginal operators. Finally we consider marginal operators. By going over the list, ignor-

ing cases containing higher spin currents or spinning Coulomb branch operators, we find

several types of possible N = 1 preserving marginal operators, differing by their represen-

tation under the SU(2)×U(1)v symmetry. These are:

1. LB̄1[0; 0]
(2),(3;3)
3 ⊕ LB̄1[0; 0]

(2),(0;−6)
3 : this combination of multiplets can only come

from the B1B̄1[0; 0]
(3,0;6)
3 type multiplets together with their complex conjugate

B1B̄1[0; 0]
(0,3;−6)
3 . These contain a dimension three Coulomb branch operator from

the N = 2 viewpoint.

2. LB̄1[0; 0]
(2),(2;0)
3 ⊕ LB̄1[0; 0]

(2),(1;−3)
3 : this combination of multiplets can only come

from the B1B̄1[0; 0]
(2,1;2)
3 type multiplets together with their complex conjugate

B1B̄1[0; 0]
(1,2;−2)
3 .

3. LB̄1[0; 0]
(2),(1;3)
3 : this type of multiplets can only come from the A2B̄1[0; 0]

(1,1;6)
3 type

multiplets.

4. LB̄1[0; 0]
(2),(0;6)
3 : this type of multiplets can only come from the LB̄1[0; 0]

(2),(0,1;10)
3

type multiplets.

5. LB̄1[0; 0]
(2),(0;0)
3 : this type of multiplets can come from one of two sources. One is

the B1B̄1[0; 0]
(2,0;4)
2 multiplets, where it comes from the top component. As such it

preserves the full N = 3 SUSY, and in fact as these multiplets give additional SUSY

currents, actually preserve N = 4. The second type is the A2B̄1[0; 0]
(0,2;2)
3 type of

multiplets, which only preserves N = 1 SUSY.

These results allows us to make some statements about the possible conformal mani-

folds in N = 3 SCFTs. We first note that the B1B̄1[0; 0]
(3,0;6)
3 type multiplets, and their

– 47 –



J
H
E
P
0
1
(
2
0
2
1
)
0
6
2

complex conjugates, that contain the dimension three Coulomb branch operator, provide

five marginal operators that support a Kahler quotient under the SU(2)×U(1)v subgroup

of the N = 3 R-symmetry. This comes about as the 4 of SU(2) has a singlet in its quartic

symmetric product. This gives a one dimensional conformal manifold, where four of the

marginal operators combine with the broken SU(2) × U(1)v currents to form marginally

irrelevant operators. Therefore, any theory containing a dimension three Coulomb branch

operator has at least a one dimensional conformal manifold along which the SU(2)×U(1)v
symmetry is broken.

Other notable multiplets are B1B̄1[0; 0]
(2,1;2)
3 with its complex conjugate and

A2B̄1[0; 0]
(0,2;2)
3 . For the former, the LB̄1[0; 0]

(2),(2;0)
3 type operator contained in it forms

by itself a Kahler quotient under the SU(2) × U(1)v symmetry, while LB̄1[0; 0]
(2),(1;−3)
3

cannot by itself form such a quotient. This leads to a one dimensional conformal manifold

along which the SU(2) is broken to its Cartan and U(1)v is preserved. As the operators

in LB̄1[0; 0]
(2),(1;−3)
3 cannot form a quotient, they are marginally irrelevant, unless there

are additional marginal operators. Finally, the multiplet A2B̄1[0; 0]
(0,2;2)
3 contains a true

singlet under SU(2) × U(1)v. As a result, in the presence of such multiplets, there is an

N = 1 only preserving conformal manifold on which the SU(2)×U(1)v remains unbroken.

The remaining multiplets do not form a Kahler quotient by themselves and so can only

lead to exactly marginal deformations if they appear in conjunction with other multiplets.

A.3.4 N = 4

We next consider the case of N = 4 SCFTs. We again use the conventions of [36], so

we take Q to have charges [1; 0]
(1,0,0)
1
2

. We shall first consider here the decomposition into

N = 3, where for that, we shall decompose the SU(4) such that 4 → 3−1 + 13, where

the fundamental becomes the N = 3 supercharges. The remaining cases can in principle

be recovered by applying the decompositions in the previous sections. Here we shall also

write down the decomposition in terms of N = 1 multiplets as that will be useful when

considering possible SUSY preserving deformations.

Next, we present the decomposition rules for selected N = 4 multiplets:

B1B̄1. The shortest multiplet type is the B1B̄1 type, whose ground state carry the

charges [0; 0]
(R1,R2,R1)
2R1+R2

. Like the previous cases, the R1 = R2 = 0 case describes the

vacuum state, while the R1 = 0, R2 = 1 case is the N = 4 free vector. The case of

R1 = 1, R2 = 0 contains higher-spin currents, and the case of R1 = 0, R2 = 2 describes

the energy-momentum tensor multiplet. Additional cases of special physical interest are

the R1 = R2 = 1 and R1 = 0, R2 = 3 cases, which contain SUSY preserving marginal

operators.

We next consider the decomposition of these multiplets under the N = 3 subgroup:

B1B̄1[0; 0]
(0,2,0)
2 → B1B̄1[0; 0]

(2,0;4)
2 +B1B̄1[0; 0]

(0,2;−4)
2 +B1B̄1[0; 0]

(1,1;0)
2 .
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These are respectively, the extra SUSY currents and the N = 3 energy-momentum

tensor.

B1B̄1[0; 0]
(1,0,1)
2 →A2B̄1[0; 0]

(0,1;4)
2 +B1Ā2̄[0; 0]

(1,0;−4)
2 +B1B̄1[0; 0]

(1,1;0)
2 +A2Ā2̄[0; 0]

(0,0;0)
2 ,

B1B̄1[0; 0]
(0,3,0)
3 →B1B̄1[0; 0]

(3,0;6)
3 +B1B̄1[0; 0]

(0,3;−6)
3 +B1B̄1[0; 0]

(2,1;2)
3 +B1B̄1[0; 0]

(1,2;−2)
3 ,

B1B̄1[0; 0]
(1,1,1)
3 →B1B̄1[0; 0]

(2,1;2)
3 +B1B̄1[0; 0]

(1,2;−2)
3 +A2B̄1[0; 0]

(1,1;6)
3 +B1Ā2̄[0; 0]

(1,1;−6)
3

+A2B̄1[0; 0]
(0,2;2)
3 +B1Ā2̄[0; 0]

(2,0;−2)
3 +A2Ā2̄[0; 0]

(1,0;2)
3 +A2Ā2̄[0; 0]

(0,1;−2)
3 .

We note here that if R1 = 0 we in general have that [38]:

B1B̄1[0; 0]
(0,R,0)
R →

R∑
i=0

B1B̄1[0; 0]
(R−i,i;2(R−2i))
R .

However, cases with R1 6= 0 will in general contain N = 3 multiplets longer than B1B̄1.

Given the decompositions in the previous section, these will then contain N = 2 multiplets

whose ground state has spin.

Finally, we consider the decomposition in terms of N = 1 multiplets.

B1B̄1[0; 0]
(0,2,0)
2 →

A2Ā2̄[0; 0]
(0),(1,1)
2 + LB̄1[0; 0]

( 4
3 ),(2,0)

2 +B1L̄[0; 0]
(− 4

3 ),(0,2)
2

+A1Ā2̄[1; 0]
( 1
3 ),(0,1)

5
2

+A2Ā1̄[0; 1]
(− 1

3 ),(1,0)
5
2

+ LB̄1[1; 0]
( 5
3 ),(1,0)

5
2

+B1L̄[0; 1]
(− 5

3 ),(0,1)
5
2

+ LB̄1[0; 0]
(2),(0,0)
3 +B1L̄[0; 0]

(−2),(0,0)
3 +A1Ā1̄[1; 1]

(0),(0,0)
3 .

B1B̄1[0; 0]
(0,3,0)
3 →

LB̄1[0; 0]
(2),(3,0)
3 +B1L̄[0; 0]

(−2),(0,3)
3 + LĀ2̄[0; 0]

( 2
3 ),(2,1)

3

+A2L̄[0; 0]
(− 2

3 ),(1,2)
3 + LB̄1̄[1; 0]

( 7
3 ),(2,0)

7
2

+B1L̄[0; 1]
(− 7

3 ),(0,2)
7
2

+ LĀ2̄[1; 0]
(1),(1,1)
7
2

+A2L̄[0; 1]
(−1),(1,1)
7
2

+ LĀ1̄[0; 1]
( 1
3 ),(2,0)

7
2

+A1L̄[1; 0]
(− 1

3 ),(0,2)
7
2

+ LB̄1[0; 0]
( 8
3 ),(1,0)

4 +B1L̄[0; 0]
(− 8

3 ),(0,1)
4 + LĀ2̄[0; 0]

( 4
3 ),(0,1)

4

+A2L̄[0; 0]
(− 4

3 ),(1,0)
4 + LĀ1̄[1; 1]

( 2
3 ),(1,0)

4 +A1L̄[1; 1]
(− 2

3 ),(0,1)
4 .

B1B̄1[0; 0]
(1,1,1)
3 →

LB̄1[0; 0]
(2),(1,1)
3 +B1L̄[0; 0]

(−2),(1,1)
3 + LĀ2̄[0; 0]

( 2
3 ),(2,1)

3

+A2L̄[0; 0]
(− 2

3 ),(1,2)
3 + LĀ2̄[0; 0]

( 2
3 ),(0,2)

3 +A2L̄[0; 0]
(− 2

3 ),(2,0)
3 + LĀ2̄[0; 0]

( 2
3 ),(1,0)

3

+A2L̄[0; 0]
(− 2

3 ),(0,1)
3 + LB̄1̄[1; 0]

( 7
3 ),(2,0)

7
2

+B1L̄[0; 1]
(− 7

3 ),(0,2)
7
2

+ LB̄1̄[1; 0]
( 7
3 ),(0,1)

7
2

+B1L̄[0; 1]
(− 7

3 ),(1,0)
7
2

+ 2LĀ2̄[1; 0]
(1),(1,1)
7
2

+ 2A2L̄[0; 1]
(−1),(1,1)
7
2

+ LĀ2̄[1; 0]
(1),(3,0)
7
2

+A2L̄[0; 1]
(−1),(0,3)
7
2

+ LĀ1̄[0; 1]
( 1
3 ),(2,0)

7
2

+A1L̄[1; 0]
(− 1

3 ),(0,2)
7
2

+ LĀ1̄[0; 1]
( 1
3 ),(1,2)

7
2

+A1L̄[1; 0]
(− 1

3 ),(2,1)
7
2

+ LĀ2̄[1; 0]
(1),(0,0)
7
2

+A2L̄[0; 1]
(−1),(0,0)
7
2

+ LĀ1̄[0; 1]
( 1
3 ),(0,1)

7
2

+A1L̄[1; 0]
(− 1

3 ),(1,0)
7
2

+ LB̄1[0; 0]
( 8
3 ),(1,0)

4 +B1L̄[0; 0]
(− 8

3 ),(0,1)
4 + . . . .

where the remaining terms have dimension ∆ ≥ 4, and we will not have need of them here.
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AlB̄1. The next type of short multiplet is AlB̄1, whose ground state carry the charges

[j; 0]
(R1,R2,2+j+R1)

1+R1+R2+R3+ j
2

. The decompositions into N = 2 multiplets for selected cases are:

A2B̄1[0; 0]
(0,0,2)
3 →A2B̄1[0; 0]

(0,2;2)
3 +A2Ā2̄[0; 0]

(0,1;−2)
3 +A2L̄[0; 0]

(0,0;−6)
3 +A1B̄1[1; 0]

(0,2;5)
7
2

+A1Ā2̄[0; 0]
(0,1;1)
7
2

+A1L̄[1; 0]
(0,0;−3)
7
2

,

In terms of N = 1 multiplets, the decomposition is:

A2B̄1[0; 0]
(0,0,2)
3 →LB̄1[0; 0]

(2),(0,0)
3 +A2L̄[0; 0]

(− 2
3

),(2,0)

3 + LĀ2̄[0; 0]
( 2

3
),(1,0)

3 + LB̄1[1; 0]
( 7

3
),(0,1)

7
2

+A1L̄[1; 0]
(− 1

3
),(2,1)⊕(1,0)

7
2

+A2L̄[0; 1]
(−1),(1,1)
7
2

+ LĀ2̄[1; 0]
(1),(1,1)⊕(0,0)
7
2

+ LĀ1̄[0; 1]
( 1

3
),(0,1)

7
2

+ . . . ,

where the remaining terms have dimension ∆ ≥ 4, and we will not have need of them.

Similarly we will have no need of other types of multiplets here.

Applications. Like in the previous cases, we can consider the implications of the decom-

positions we found on the possible SUSY preserving relevant and marginal deformations.

In this case there are no flavor symmetries, and all operators have integer dimensions.

Relevant operators with dimension ∆ = 2. Ignoring multiplets containing higher spin

currents, then only the B1B̄1[0; 0]
(0,2,0)
2 multiplet, corresponding to the energy-momentum

tensor, can contain operators of type LB̄1[0; 0]
( 4

3
)

2 . This type of multiplts contains six of

these, that transform in the 6 of the SU(3), which is the commutant of the N = 1 U(1) R-

symmetry in the N = 3 R-symmetry. In Lagrangin theories, these correspond to quadratic

invariants of the three adjoint chirals. As in any interacting N = 4 SCFT we expect to have

one, and only one, energy-momentum tensor, these must contain precisely six dimension

two SUSY preserving relevant deformations.

Marginal operators. We next consider the case of marginal operators. By going over the

list, ignoring cases containing higher spin currents, we find a handful of types of possible

N = 1 preserving marginal operators, differing by their representation under the SU(3)

symmetry. These are:

1. LB̄1[0; 0]
(2),(3,0)
3 : these can only come from the B1B̄1[0; 0]

(0,3,0)
3 type multiplets. These

contain a dimension three Coulomb branch operator from the N = 2 viewpoint. In

Lagrangian theories, these come from totally symmetric cubic invariants of the three

adjoint chirals. This type of multiplets possesses a Kahler quotient, by itself, and

leads to a two dimensional conformal manifold on a generic point of which the SU(3)

symmetry is broken.

2. LB̄1[0; 0]
(2),(1,1)
3 : this type of multiplets can only come from the B1B̄1[0; 0]

(1,1,1)
3 type

multiplets. In Lagrangian theories, these in principle can come from cubic invariants

of the three adjoint chirals using the mixed symmetry state defined by the partition
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[1, 1]. Nevertheless, it is interesting to note that this type of product is not gauge

invariant for any simple Lie-group, and as a result, there is no known physical theory

containing these types of multiplets, unless it contains decoupled parts. This type

of multiplets possesses a Kahler quotient, by itself, and leads to a two dimensional

conformal manifold on a generic point of which the SU(3) symmetry is broken down

to the Cartan subalgbra, assuming no additional symmetries.

3. LB̄1[0; 0]
(2),(0,0)
3 : this type of multiplets can come from one of two sources. One is

the B1B̄1[0; 0]
(0,2,0)
2 multiplets, where it comes from the top component. As such

it preserves the full N = 4 SUSY. In Lagrangian theories, this corresponds to the

coupling constant. As it comes from the energy-momentum tensor multiplet, it is

again expected that any interacting N = 4 SCFT has exactly one of these

The second type of mutiplets, containing such a deformation, is the A2B̄1[0; 0]
(0,0,2)
3

type multiplets. These then would give an N = 1 preserving conformal manifold

along which the SU(3) symmetry is fully preserved. We are not aware of any N = 4

SCFT possessing such multiplets.

A.4 Superconformal index

In this section we summarize the contribution of the various superconformal multiplets to

the superconformal index. For this we use the results of [72], which determined these rela-

tions for the case of N = 1 superconformal multiplets. Using the decomposition presented

previously, it is straightforward to extend this to cases with extended supersymmetry. The

results for the various contributions are:

LB̄1[j; 0]
(r)
3
2
r
→ (−1)j

t3rχj(y)

(1− t3y)
(

1− t3

y

) ,
B1L̄[0; j̄]

(r)

− 3
2
r
→ 0,

AlĀl̄[j; j̄]
( 1

3
(j−j̄))

2+ 1
2

(j+j̄)
→ (−1)1+j̄+j t6+j+2j̄χj(y)

(1− t3y)
(

1− t3

y

) ,
LĀl̄[j; j̄]

(r)

2+j̄+ 3
2
r
→ (−1)1+j̄+j t3(2+j̄+r)χj(y)

(1− t3y)
(

1− t3

y

) ,
AlL̄[j; j̄]

(r)

2+j− 3
2
r
→ 0,

AlB̄1[j; 0]
( 1

3
(j+2))

1+ j
2

→ (−1)j
(t2+jχj(y)− t5+jχj−1(y))

(1− t3y)
(

1− t3

y

) ,

B1Āl̄[0; j̄]
(− 1

3
(j̄+2))

1+ j̄
2

→ (−1)1+j̄ t2(2+j̄)

(1− t3y)
(

1− t3

y

) .
Here we have deviated from our norm so far, and employed the notation of [72]. It is

related to the notaton employed in the rest of the article by p = t3y, q = t3

y . We also note

that χj(y) =
∑ j

2

i=− j
2

y2i for j even, and χj(y) =
∑ j−1

2

i=− j+1
2

y2i+1 for j odd.

– 51 –



J
H
E
P
0
1
(
2
0
2
1
)
0
6
2

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References
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