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1 Introduction and summary

Defects are useful probes in quantum field theories. For a given field theory there are

often infinitely many different defects and universal results are hard to come by.

This

situation improves if we focus on long distances where we recover the conformal defects

which correspond to the (forced) symmetry breaking pattern

so(d+1,1) — so(p+1,1) xso(d—p).

(1.1)



The rationale for this pattern is as follows. First, if we assume locality and reflection posi-
tivity then a d-dimensional infrared theory generally has so(d + 1, 1) conformal invariance.
If we now put the p-dimensional defect on an RP subspace of R? then we can assume that
it preserves: (a) a p-dimensional Poincaré symmetry, (b) rotations in the transverse d — p
dimensions, and (c) an overall dilatation symmetry in the infrared. There are exceptions
to (a) and (b), see for example [1] for the kinematics of defects charged under transverse
rotations, but we will not consider this here. As for (c), a simple computation involving
the bulk stress tensor shows that this scale invariance is enhanced to so(p + 1,1), so p-
dimensional conformal invariance, if the defect does not contain a specific ‘virial current’ of
dimension p — 1, see for example [2]. In this precise sense the pattern in (1.1) is considered
to be the generic situation at long distances.
In the following we will follow standard notation and introduce

g=d—p (1.2)

as the co-dimension of the p-dimensional defect. In this work we will consider ¢ > 1 and,
since p > 0, d > 2 as well. The case ¢ = 1 is analyzed in [3].!

For the physics of the defect both sides of (1.1) are important. Away from the defect the
s50(d+1,1) symmetry algebra acts on the local bulk operators and implies the existence of a
convergent bulk operator product expansion. On the defect the local operators are organized
in representations of so(p+ 1,1) x so(q), with the first factor acting as the usual conformal
algebra in p dimensions and the latter as a usual global symmetry — although neither of
these symmetries is generated by a local current on the defect. Furthermore, these defect
operators have their own convergent defect operator product expansion. The connection
with the bulk operators is provided by the bulk-defect operator expansion which states that
a local bulk operator in the vicinity of the defect can be written as a sum over defect
operators. For example, for a scalar operator and a co-dimension two defect we can write:

k =Sk
¢<f,z,z>—2(‘ b 2
k

— 52 (1], FHO@) + e 13
oA LA k<x>+cc> (1.3

where we split the d-dimensional Euclidean coordinates as z* = (Z, Re(z), Im(z)) with the
latter two coordinates taken to be orthogonal to the defect. The index k labels the differ-
ent primary defect operators @k, which in this case are all scalars and therefore labeled
by their scaling dimensions Ak and SO(2) spin s;. The contribution of their descendants
is taken into account by the (explicitly known [5]) differential operator ¢x [z, V2]. The
expansion also furnishes the bulk-defect operator expansion coefficients b’;.

For co-dimension two defects the following comment is in order. In equation (1.3)
the spins s are integers if the bulk fields are to be single-valued around the defect. This
is however not necessary. If the bulk theory has a global symmetry G then one might
alternatively require that

H(T,e*™ 2,672 7) = ¢9(Z, 2), for g € G. (1.4)

!See also [4] for recent work on free scalars that interact through a boundary.



For non-trivial g such defects are called monodromy defects. One may think of them as
the boundaries of the co-dimension one defects that implement g. We will only consider
GG = Zo and then there is a single type of monodromy defect corresponding to the non-trivial
element of G. In the presence of such a defect the odd bulk operators have a bulk-defect
expansion of the form given in equation (1.3) with half-integer s. For more general G, like
the case studied in [6], the expansion would need further modifications.

The philosophy of the defect bootstrap is to explore the consistency conditions that
follow from the associativity of the three operator expansions given above. In recent years
there has been significant progress on this programme [7-17]. Just as in the ordinary (bulk)
conformal bootstrap, it is essential to know the relevant conformal blocks which group the
contributions of an entire conformal representation. Pioneering work in this direction was
done by [18, 19] in the case of co-dimension 1, whereas [5, 8, 20-24] contains results for
higher co-dimensions.

Ideally the defect bootstrap would lead to a classification of all the possible defects
for a given bulk CFT. In the future it might for example be possible to show that the
monodromy defect is the only non-trivial line defect in the three-dimensional Ising model,
or that the known co-dimension two and four defects are the only conformal defects in the
six-dimensional (2,0) theories. In this paper we consider a more modest problem: that of
the classification of defects in the theory of a single real free scalar. Our most important
conclusion is that there is very little scope for non-trivial conformal defects of co-dimension
two and higher in such theories. We consider this somewhat surprising: for example, we
do not expect this conclusion to hold for co-dimension one (boundaries). Indeed, for d > 2
several non-trivial boundary conditions appear possible [3, 25-29] and for d = 2 there exists
a family of conformal boundary conditions for a free (compact) scalar [30]. Also, non-trivial
defects do exist in other cases where the bulk is free, like the non-trivial co-dimension two
monodromy defects for a free hypermultiplet in 4d with ' = 2 [31, 32] (see also [33, 34]
for not necessarily conformal defects in this theory) and the co-dimension four surface
operators in the abelian (2,0) theory [35-41]. Another example are the infinity of possible
boundary conditions in a free four-dimensional Maxwell theory [42], see also [43-45], which
of course also features conformal Wilson and 't Hooft lines.

1.1 Summary

Although this work contains some more general results, our main outcome is that most
defects in the free scalar theory are ‘trivial’ in the sense that there is no room for any
interesting dynamics on the defect: up to potentially an undetermined one-point function
(for ¢ = p+ 2 only), all the n-point correlation functions of the bulk field ¢ are completely
fixed.? More precisely, we will show that, in a reflection positive setup,

2More precisely, the connected two-point function of ¢ is simply the unique Klein-Gordon propagator
with boundary conditions on the defect defined as below, and the connected higher-point functions of ¢ are
all zero. This definition relies on the Gaussian properties of the bulk scalar field theory, which are not spoiled
by a trivial defect. In the literature the word ‘trivial defect’ is often used to mean ‘no defect’. This definition
of ‘trivial’ agrees with ours only in the case of non-monodromy defects without one-point functions.



e monodromy defects with ¢ = 2 can be non-trivial only if d > 4;

e non-monodromy defects can be non-trivial only if ¢ = 3 and if d > 5;

Our reasoning proceeds as follows.

First, in section 2 we show that the equation of motion for two-point functions strongly
constrains the bulk-defect operator expansion of the bulk field ¢. We will discuss how, in
all cases except the ones given above, this expansion is completely fized. For example, for
co-dimension two it must take the form

6(F22) =3 (0] 2°Causllzl, VUL (@) + e (1.5)

s

)

constrained to be either half-integer or integer depending on the monodromy type of the

for some operators wé” with dimensions Af:r = Ay + s and transverse spins s > 0
defect. The coefficients b;f’s are given below.

An expansion like equation (1.3) completely fixes the two-point function of the bulk
field ¢, but more work is required to also constrain the higher-point functions: we have
to learn about the defect OPE of the operators ¢§+) themselves. This we do in sections 3
and 4, where we will demonstrate that the operators LZ)§+) are generalized free fields and
their n-point functions are given by a sum over Wick contractions. In more detail, in
section 3 we analyze the singularities in the three-point function of one free bulk and two
defect operators. Requiring the absence of unphysical singularities implies that the defect
OPE of two ng operators can only contain non-trivial operators of the ‘double twist’
type. This analysis however cannot fix the OPE coefficients nor the multi-OPEs of the
zp§+) operators. To finish the proof we therefore need one more ingredient and this is
provided in section 4: we can use a dispersion relation in the complex time plane for the
n-point functions of the ¢§+) operators. Since the discontinuities in this dispersion relation
are trivial the n-point functions must be trivial as well, and so our claim of the triviality
of the n-point functions of the bulk field ¢ also follows.

In section 5 we will specialize to the case of line defects. Although the derivation is
grosso modo the same, some subtleties arise because the analyticity properties of conformal
correlation functions on a line are different. However if we assume parity on the defect
then our conclusions remain the same. This in particular rules out a non-trivial parity-
preserving monodromy defect for a real scalar in d = 3, in sharp contrast with the non-
trivial supersymmetric monodromy defects in d = 4.

Section 6 is devoted to perturbative tests of our results. We consider examples in
conformal perturbation theory that could lead to a non-trivial defect for the free scalar
theory and therefore a counterexample to our main claim. As expected these attempts fail,
but they do so in a rather interesting manner.

Some applications of our results will be discussed in section 7.

2 The two-point function of the free scalar

In this section we will analyze the spectrum of operators appearing in the bulk-defect
operator expansion (1.3) for a free scalar field ¢. To do so it suffices to look at two-point



functions involving one bulk field ¢ and a defect operator 0. By imposing the equation
of motion ¢ = 0 (away from contact points), we will find that the spectrum in the
bulk-defect operator expansion is highly constrained. We will then consider the two-point
function of ¢ to fix almost all the coefficients. In the main text we will focus on ¢ = 2 for
simplicity of notation. The case with ¢ > 2 is discussed in appendix A.

This section is mostly a review of results that have already appeared in the literature.
The defect blocks for the scalar two-point function in the presence of the twist defect were
first presented in [8]. For generic p, ¢ defects, the blocks for the scalar two-point functions
were computed in [5] (see also [21, 23]). The constraints imposed by the bulk equation of
motion and by unitarity on the bulk-defect expansion of a free scalar were first discussed
in [46] (see also [8]) for the case of the twist defect. This analysis was extended to generic
p and ¢ in appendix B of [5], and the equation “s < (4 — ¢q)/2” of that reference is a less
refined version of the information presented in the two tables below. For ¢ = 1, the blocks
for the scalar two-point function were obtained in [18] while spectrum of boundary modes
of the free scalar was discussed in [7, 9, 47, 48].

2.1 General form of the two-point functions

In this section we consider the two-point function of a general scalar bulk primary ¢ and
a defect primary operator . For a defect operator with transverse spin s and scaling
dimension A one finds that3

bg zs

2127881212 + |212)%0

<¢(f’272)@s(0)> = (2'1)

where we used the same conventions for parallel and transverse coordinates as listed in
the introduction. Recall that in CFTs without defects the functional form of three-point
functions efficiently encapsulates the contribution of descendants in the bulk OPE. In the
defect setup the two-point function in equation (2.1) similarly encodes the contribution of
descendants in the bulk-defect operator expansion. This is analyzed in appendix Aj; the
corresponding infinite-order differential operator is given in equation (A.4).

Next we consider the two-point functions of two general bulk scalar operators ¢,

(p(Z1, 21, 21) p(T2, 22, 22))- (2.2)
This correlation function depends non-trivially on two cross-ratios, which we can take to be:

21

, p=arg () . (2.3)

22

_ Fel + a2
B |21 22]
In the following we will need the defect channel decomposition of this two-point function

which is obtained by plugging in the bulk-defect operator expansion twice. This leads to
two infinite-order differential operators of the form given in equation (A.4) acting on the

3See [5, 8, 20-24] for recent work on kinematical contraints for defect CFTs and also [7, 18, 19] for
previous studies in the co-dimension one case.



two-point function of a defect primary. In appendix C we resum these contributions from
the defect descendants and obtain the defect channel decomposition:

(001,21, 20)0(0, 22, 2) = |ZIHZQ,A¢ZZ|%| U (0. (24

where we introduced the defect conformal blocks as:

AR As A~+1 o 4
A~ D
Fi (0 =x"8.1 <,A +1—2,X2>. (2.5)

wo[©
Q)

]

We remark that these functions can also be computed by solving certain Casimir equations
with appropriate boundary conditions [5, 8, 21, 23]. One could also consider a bulk chan-
nel decomposition of the same two-point function in terms of a sum over bulk one-point
functions. We will not need this decomposition in our analysis.

2.2 Two-point functions of the free scalar

-1

(N]IsH

We now specialise to the case where ¢ is a free bulk scalar of canonical dimension Ay =
and therefore obeys ¢ = 0 away from contact points.
For the bulk-defect two-point function given in (2.1) the action of the Laplacian gives

~

0 = (Oe(Z, 2, 2)0s(0)) ~ (Ag — Ay +[s)(Ag — Ay — |5])

o+ |72)°
(
Therefore, the only defect primaries allowed to appear in the bulk-to-defect OPE of a free
scalar belong to one of the two families that we denote as wg") with p = £, with dimensions
Bg”) given by:*

Y AE = Ay £ s, (2.7)

We recall that we have set ¢ = 2 and then have the spins s € Z or Z + %, depending on
the choice for the Zy monodromy, and [wgi)]T = 1/1(_?. As we explain in more detail in
appendix B, for s = 0 the two families merge and there is no degeneracy.

In reflection positive setups the spectrum is further constrained. The scaling dimen-
sions A of any operator O on a p-dimensional defect need to obey the standard unitarity

condition
o~ p o~ o .
AZ§ or A =0, if p>2,
A >0, if p<2. (2.8)

If the inequality for p > 2 is saturated then the operator is necessarily a free field and
its correlators must obey JO = 0. If A = 0 for any p then the operator is position-
independent, 00O = 0. We will also assume cluster decomposition and then, by moving

4Note that &*) + 32‘) = 2A4 = d— 2 = p and in this sense the operators 1/J£+) and w@ on the
p-dimensional defect are like a shadow pair.



p= ey
p>2 | ¢ and ¢(£1)/2
seZ | q=2 q= q=41 q=25 q=2=6
p=1 1/1§+) and 1 ng*)
p=2 w(+) §+) and 1 ¢§+)
° (+) -)
p= 3 ws and ’lbo ) Q,Z)LEJF) and 1 ¢(+)
p—4 et 9l and 1

Table 1. Table of unitary defect spectrum in the free theory: for monodromy defects with ¢ = 2
and half-integer s on the top, and for general non-monodromy defects on the bottom. The pattern
in the bottom table continues outside the shown range of p and q. For ¢ > 2 the listed operators
transform as symmetric traceless SO(q) tensors and then s corresponds to its rank.

the position-independent operator far away, (O...) = (O)(...). The operator O therefore
behaves as a multiple of the identity operator and in particular cannot be charged under
transverse rotations.

For our operators «/;gi) these conditions happen to rule out almost all of the wg_) since
their dimensions are g — 5. In more detail, we first of all observe that the zpﬁ‘) modes with
s > 1 all sit below the unitarity bounds. For non-monodromy defects this leaves the s = 1
case but it also happens to always be disallowed: it would be below the unitarity bound
for p =1, a charged dimension zero operator for p = 2, and a free field for p > 2 for which
the bulk-defect two-point function does not obey its equation of motion. For monodromy
defects the condition s < 1 leaves the z/)g;) operators and these are allowed for all p > 1
but not for p = 1 because then they Woulangain correspond to a dimension zero operator.

The analysis of the previous paragraph is summarized in the ¢ = 2 column of table 1.
The other columns are obtained by repeating the analysis for higher co-dimensions, the
detailed computations for which can be found in appendix A. We note that the aforemen-
tioned s = 0 degeneracy is lifted if ¢ > 2 and in that case the 1/}67) mode can become
a defect identity operator precisely when ¢ = p + 2, and also that free defect fields can
never appear because the bulk-defect two-point function never obeys the Laplace equation.
Below we will demonstrate that defects are necessarily trivial if none of the non-identity
¢£‘) operators appears, and this leads directly to the main claim given in the introduction:
interesting monodromy defects can exists only for p > 2 and interesting non-monodromy
defects only for ¢ = 3 and p > 2.

Before concluding this section, let us comment on the bulk-defect coefficients for the
operators wgi). As discussed in [8] and reviewed in appendix B, in order to reproduce the



contact term in the Klein-Gordon equation,

D
/ dm>t p+2 /
{Bo(z) 6(z")) = — % ) T (x — o), (2.9)
2
the coefficients of the wﬁ” are necessarily fixed to be
s -8 (A¢>) s
b5+ (p — )by = |S|!' 5 (2.10)

S

Note that any phases in b(zi5 can be absorbed in a phase of the corresponding operators

¢§i), and therefore we can take the bulk operator expansion coefficients to be real and
positive. It follows that any freedom in the bulk-defect expansion coeflicients is solely due

9

to the appearance of the ‘—’ modes, with only one real parameter introduced for every

such mode. Without these modes the two-point function is completely fixed.”

3 Constraining defect interactions

The goal of this section is to derive constraints on the defect spectrum from analyticity
requirements on correlation functions in the presence of defects. The bulk of this section
concerns ¢ = 2 defects, but our argument can be extended to higher ¢ with only small
changes; the relevant formulae for generic ¢ are collected in appendix C. Whenever nec-
essary, we comment about results and differences with respect to the higher co-dimension
case. The main characters will be the three-point functions involving the free scalar ¢ and
one or two defect operators O and O

(¢()O@F)0'(@"),  (d(x1)p(22)O(E")). (3.1)

We will show that the bulk-defect operator expansion of these correlators features unphys-
ical singularities, which can be removed only if very special conditions are met.

Even though our analysis can be carried over to any unitary representation of the
parallel Lorentz group, we will restrict ourselves to symmetric and traceless tensors of
SO(p). We will contract the Lorentz indices with “parallel” polarization vectors 6%, (a =
1,...,p) on the defect and work with polynomials in 6, see for example [50] for details.
Concretely, for any symmetric and traceless SO(p) tensor of spin j we define

0V(0,7) = 0™ ... 090" (Z), Oef =0, (3:2)

where o represents the SO(p)-invariant scalar product.

®The appearance of the ‘—" mode in the free theory was not considered in [8]. Note that this mode

plays an important role in the free hypermultiplet example of [32]. Furthermore, as a small generalization
of our result we note that a very similar analysis applies to conical metric singularities. In that case the
only difference is that the transverse spins s do not have to be half-integers. Such singularities are relevant
for the computation of Renyi entropies, see for example appendix C of [49] for a computation in the free
scalar theory. It would be interesting to understand the appearance of the ‘—’ modes in more detail in this
context. We thank Lorenzo Bianchi, Chris Herzog and Marco Meineri for raising this point with us.



3.1 Bulk-defect-defect three-point functions

Let us consider first the three-point function of one bulk operator ¢ and two defect pri-
maries. For simplicity we take one of them, denoted (5, to be an SO(p) scalar, and the
second one, denoted f, to be a symmetric and traceless tensor of parallel spin j. Without
loss of generality we can place the third operator at infinity and so we investigate:

(6(&1, 2, 2) O, (T2)TY) (6, 00)). (3.3)

This correlator is completely determined, via the bulk-defect operator expansion, by the

defect three-point functions between T , O and the defect modes of the free scalar ¢§’°)

introduced above. These are, in turn, constrained by the defect conformal symmetry to be

A G 8 )0s
(W) (#1)Os (#) T (0, 00)) = —— TP (212.0). (3.4)
7
where we should require that
s1+ s2+s=0. (3.5)

Note that the dependence on the SO(p) spin is captured by a unique polynomial, homoge-
neous of degree j in the parallel polarization vector [50]

PO (319,0) = (—i1000) , 3% =

” (3.6)

By Bose symmetry the three-point function above cannot depend on the operator ordering®
and therefore

b i

fO’gZ)T - ( 1) f¢OT' (37)
This implies in particular that only even j are allowed if the first two operators are identical.
The complete expression for (3.3) can be obtained by plugging the bulk-to-defect OPE and
resumming the contributions from descendants. After some algebra, which we relegate to

appendix C, the result of this procedure is the defect channel expansion of equation (3.3).
This expansion takes the form

() ( 4

P (212,0) ) IR
H—’ (p,5) p(p) —isp TOT (&
|Z|A¢+£6_£? pe%:} b¢ fsé\f € fP,S (X)7

s = —8] — S9. (3.8)

(6(Z1,]2]e"%) O, (#2)T) (6, 00)) =

The defect blocks in this expression are simple Hypergeometric functions of the cross-ratio”

. |Ze)?
X = EER (3.9)

SFor line defects the three-point functions generically depend on the ordering of the operators on the
line. This will be discussed in section 5.1.

Since the defect three-point functions (3.4) do not depend on the transverse angle, the dependence on
 in (3.8) enters only via the prefactor ¢**? in the bulk-to-defect OPE. It follows that the defect blocks will
only depend on |Z12| and |z|, so (3.9) must be the appropriate cross-ratio.



and in appendix C we show they are given by®

N o ot L D .
]:OT(X) XHpOT 2 2F1 (1 — 5 -] K;pé\j_\" — pOT’ 1—= _|_ A(P) X) , (3.10)
where we introduced 1
ro7 = —5 (A + 85— Az +). (3.11)

Notice that the sum on the r.h.s. of (3.8) contains at most two terms. For g > 2 the
prefactors in equation (3.8) change a bit but the functional form of the blocks given in
equation (3.10) happens to remain the same, with the index s now denoting the rank of
an SO(q) symmetric and traceless tensor. We refer the reader to appendix C for details.

3.2 Constraints from analyticity

In equation (3.8) the ¥ — oo limit corresponds to the bulk-defect operator expansion. If we
take the opposite limit ¥ — 0 we are sending Z12 — 0 and for finite transverse separation
the correlator should be analytic at #; = #3. However a generic term in (3.8) is not analytic

since:?

, PN _ J T (G+2-1)T 24_3(13)
PO (#12,0) FOT (%) (o)’ 1y TU+S (1- )

i o —X =
=0 2] (k670G + AP + 5 57)

... (3.12)

Such unphysical singularities must cancel out from the r.h.s. of (3.8). This can happen
either because of a relation among the OPE coefficients f or because the quantum numbers
are such that (3.12) does not hold and the block is actually regular. For all p and ¢ we find
that either of the following possible scenarios must be realized.

1. In the first scenario the quantum numbers are such that the ‘generic’ relation (3.12)
is valid. Let us first suppose that both the “+” and “—” mode are present, then the
cancellation of the unphysical singularities can be enforced by the following relation
between the OPE coefficients:!°

~ jAp—AI LA AL jap—AD At AL
b(+,s)r(1§+A§”)F< =6 T)F( AR
fo — b )

sOT (=) . A LA AL A A AL
T r(eg B (R ) (e

(3.13)

8The notation employed in eq. (3.10) is a bit loose, since the defect blocks depend on the quantum
numbers of the operators T and O and not on the operators themselves. May the reader forgive this
licentious choice.

When p = 2 and j = 0 the singularity is actually logarithmic in § but the coefficient is essentially the
same. For p = 1 the non-analyticity of (3.12) is due to odd powers of \/X ~ |Z12|. More details on the
continuation to p = 1 are given in section 5.1.

10These special relations, which re-emphasize that one should think of the wgi) as shadow pairs, have
appeared already in the context of the long-range Ising model [2, 51-53]. This is not surprising, since the
latter has a description in terms of a conformal defect of non-integer co-dimension q.

~10 -



where we used the shadow relation Aﬁ) + At(f) = p. On the other hand, if the

mode is absent (or equal to the identity operator for which there is no xy — 0
singularity), then the coefficient of the corresponding “+” mode must be zero.

2. In the second scenario the scaling dimensions align such that (3.12) is not valid. This
can happen if

* Ko7 =N with n € N. In other words,

=AW 4+ As+j+2n, neN (3.14)

so the dimension of T equals that of a “double twist” combination of O and
(p)
s .

e j+ Ko 5T + 89’) = —n with n € N. In other words,

Ag=AP +As+j+2n, neN (3.15)

so the dimension of O equals that of a “double twist” combination of T and
(p)
S .

As shown in table 1, the “—” family does not occur in a large class of defects and then
the second scenario is the only one that can give non-zero three-point functions. This is the
case we will focus on below. It is however interesting to point out that even in the other
cases the non-triviality of the correlators is entirely due to the appearance of the single “—"
mode compatible with unitarity listed in table 1. Including this mode leads to an interesting
variation of the usual bootstrap problem because of the “shadow” relations (3.13) between
OPE coefficients. A first numerical analysis of this type of problem already appeared in
the context of the long-range Ising model [53] and in [3] similar equations were analyzed
in the context of boundary conditions for free scalar fields.

3.3 Reconstructing the bulk

We will now go one step beyond the analysis in the previous subsection and consider
three-point functions of the type:

(B(1)p(22) T (8, 00)). (3.16)

Note that the only allowed Lorentz representation for T are symmetric traceless tensors.
In a ‘defect channel’ these three-point functions become a sum over the sort of three-point
functions that we just considered. Importantly, this sum should be able to reproduce the
‘bulk channel” OPE which corresponds to bringing the two ¢ operators together. We will

see that this is indeed the case.!!

1 One might try to go even further and also analyze the three-point function of the bulk field, (¢¢p¢), in
the presence of the defect. We found that this correlation function does not lead to additional constaints.
Note that it automatically vanishes for a monodromy defect.
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3.3.1 The defect-channel expansion

Our first goal will be to compute the defect channel blocks for the three-point func-
tion (3.16). Our starting point is equation (3.4) specialized to the case where O is one
of the %, which is:

o f(m,pAz) ‘
<1]Z)9131) (fl)¢§g2) (fQ)TS(J) (0, OO)> = Asls2z = P”(J) (»%127 9) 6s1+52+s,0~ (3'17)
e

The correlator (3.16) can be obtained by acting twice with the bulk-to-defect OPE on the
three-point functions (3.17) and resumming the contributions from descendants. As we
show in appendix C the result of this computation takes a simple form when we specialize
to the kinematical configuration where the two bulk operators lie at the same transverse

distance from the defect
21 = |2]€", 29 = |2|. (3.18)

In this configuration, the full three-point function takes the following form

(B0, |21e") (2, |2) T (8, 00)) (3.19)

P(])(ﬁ:u,ﬁ)

_ (p1,51) 7 (p2,52) (Pl,Pz) o is19 T -
T POED DL S A A Floro0).ase) (D0savsats0

T Pze{-i- } S1

The defect blocks in the expression above are computed in appendix C and read

~
A

7 orpptd
‘7:(131781)7(132,82)()() =) PR2T2

— 1= PN AN - R 4
><4F3 (Aw—h—2,A12—h,—/£p1p2,—lip1p2 —J —h;Agl) —h,Agg2) —h,2A12—2h—1;—>2) s
— 1~ ~ 1~ ~ ~ . » D
Ays zz(Agﬁ1>+Agg2>), ﬁplpzE—i(Ag’fl)—i-Ag’;?)—Af—kj), h=5-1, (3.20)

where ¥ is the cross-ratio defined in (3.9). Again we should emphasize that the result (3.20)
holds for all ¢, as we show in appendix C.

3.3.2 Consistency with the bulk OPE

Our next goal will be to deduce under which conditions the ‘defect channel’ expansion (3.19)
is consistent with the ‘bulk channel’ OPE. In order to facilitate this analysis, we integrate
both sides of (3.19) against €% to obtain

1 2

oo | A e ((E, |2le?) (2, [T (6, 00)) (3.21)
(J)
P (z 7
_oo e 12,0 (p1,8") 1.(p2,52) p(p1,p -
- 2A Z b ' b 52) fs’ 12; ‘F(p ’),(pg,sg)(X) 5s’+sz+s,0'
12122078 pelt}

In contrast with equation (3.19), the sum on the r.h.s. of the above expression contains at
most three terms. In the higher co-dimension case we can analogously integrate the three-
point function against the appropriate spherical harmonics, to isolate each SO(q) irrep. We
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will now proceed similarly to what we have done in section 3.2. On the one hand, the bulk
self-OPE of the free scalar requires analyticity at 1 = Z2 for both the original as well as
the integrated correlator (3.21). (Note that the identity operator in the ¢ x ¢ OPE does not
contribute.) On the other hand, for generic values of its parameters the r.h.s. of (3.21) be-
comes singular in this limit. For generic values of p and j the most singular term is given by:

() T . (—z1000) | . b
PH] ($127e)f(p1751),(}32,82)(x) X:O TX T2 (3.22)

y T(AE) — DAS) — WT(h + )T +As — 1) .
A N APDLACP YR iy
D(—Fpypo) LG + Agﬁl) + Kppa )T (7 + AS;Q) + Fpypo )T < 1 22 -

1 . N 1 . N
but there are also powers of )25(17J PHAR) and )25(273 “PHAD) with equally involved coeffi-

cients.

As in the previous subsection, we can find constraints by demanding that such sin-
gularities are absent in the full correlator. If both the ‘—’ and the ‘+’ modes are present
then there is an interesting spectrum of constraints to be found on both OPE coefficients
and scaling dimensions of T that we will not fully report here. Instead, we focus on the
case where only the ‘+’ modes are present which is important for the rest of the paper. In
that case three-point functions can only be non-zero if the second scenario of section 3.2 is
realized. Furthermore, we should take O to also be a defect mode of ¢, SO O = wg,ﬂ, and
after projecting on a given s’ as above we get to apply the ‘double twist’ conditions on Af
of that scenario twice. Only the first of the two possibilities listed in that subsection then
gives a dimension A,f that is above the unitarity bound, and we conclude that:

Af _ Agﬂ + 3922) +j+2n, neN. (3.23)

In short, in the absence of the ‘—’" modes the OPE of the ¢§+) operators contains only ‘dou-
ble twist’ operators! Armed with this condition we see that there is no further constraint
to be gained from equation (3.22), since the coefficient of the singular term now vanishes
and the (¢¢T) correlator is analytic at 7 = .

4 Triviality of defects of dimension 2 and higher

We have established that for many defects the bulk-defect operator expansion of a free
scalar field is constrained to only contain operators that we called ¢§+), with fixed coef-
ficients. We have also shown that the non-trivial operators in the OPE of the ¢§+) must
be of a ‘double twist’ type. In this section we will show that the latter statement implies
that all the correlation functions of the wﬁ” operators must be those of a generalized free
theory. From this the triviality of the n-point functions of ¢ follows immediately.!?

We will consider here the case p > 2. The line with p = 1 will be discussed in the
next section. To apply the theorem below to our analysis of defects with ¢ > 2 one should

126 be precise, when g = p+2 the identity operator can also appear in the bulk-defect operator expansion
of ¢. Its coefficient is the only variable not fixed by our analysis.
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in principle group the operators in representations of the non-abelian transverse rotation
algebra. It is however easy to see that this just produces some extra factors that do not
change the gist of the argument.

The result ‘GFF spectrum implies GFF n-point functions’ might be interesting on its
own; for n = 4 it can be rephrased as the statement that a trivial double discontinuity [54]
in all channels implies that the correlation function itself is trivial.'

Theorem 1 Consider a conformal theory in more than one dimension with a state-
operator correspondence and a discrete spectrum such that cluster decomposition is obeyed.
Suppose the theory has a set of scalar operators vs(x) whose OPEs take the form

e, X Vs, = 5,.5,1 + (operators with twist Asl + ASQ + 2k, with k € N) (4.1)
Then all the n-point correlation functions of 1¥s(x) are those of generalized free fields.

The main ingredient in our proof will be a dispersion relation in the complex time
plane!# for which we will need the commutator [¢)(z),1(y)]. For spacelike separation we

write the operator product expansion as'®

e

)b, (0) = 12 A oF 0 4.2

a0 = R S At O, O (4
where in the sum over non-trivial operators k we do not distinguish between primaries and
descendants. By assumption Ak by, = A 51 +A s, T2k, and therefore every term in the sum
only yields non-negative integer powers of z2. Passing to the commutator therefore yields

[¢s1 ((E), Vs, (0)] = disc 58177:9\] 1, (43)
(x2)2
which is valid as an operator equation as long as the OPE converges. As usual, operator
orderings in the commutator must be understood as the Fuclidean time orderings and the
discontinuity has support only when the operators are causally connected. We will not
need the detailed expression of the discontinuity but it is straightforward to work out.'¢
Our proof will now proceed inductively. We will study the n-point function

<7/)51 (xl)wsz ($2)¢83 (1'13) s d}sn (l’n» (4'4)

in the following specific kinematic configuration. We put all operators but the first one on
a line:
:EZ:(Tk5050703>7 QSkSTL, (45)

13For four-point functions of identical operators this theorem is a corollary of theorem 1 in [55]. In all
other cases we believe this result is new.

14 A discussion of the analytic structure of conformal correlation functions can found, for example, in [56].
Recent other work on dispersion relations for four-point functions includes [57, 58].

15The attentive reader will have noticed a small change of notation: in this section the operators s are
taken to be Hermitian. They should be thought of as the real and imaginary part of the 1/)§+) operators of
the previous sections.

16For integer A the discontinuity is supported only at 22 = 0, in agreement with Huygens’ principle.
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Figure 1. Left: operators ¢, (k > 2) are inserted along the Euclidean time (Re7) axis.
Lorentzian time is along the imaginary-7 axis. The lightcone of 1), is illustrated in blue triangles.
s, is off the line and its time component 7 is complex in general. Right: lightcone branch cuts on

the complex-7 plane.

ordered such that 73, < 7341, whereas for the first operator we choose:
xéjl = (T,y,0,0,...) (46)

with y > 0 a social distancing parameter and 7 an arbitrary complex time coordinate.
In the 7 plane the correlator is analytic except on the vertical lightcone cuts starting at
T = 1 £ iy for 2 < k < n and running off to +ioco (see figure 1). The discontinuities
across these cuts completely determine the correlator because it vanishes at large |7| by
cluster decomposition (see below for more details). This can be formalized as a dispersion

relation:!”
dr’ 1 ,
Gn( ) = Qﬂ.lﬁGn(T)
_ / dt (T - Ti [, (72 ,9), Y (72) Wy () (72) A, (7))
r— Ti it (Vo (T2) [0y (T3 + 38, y), Yy (T3) |05, (T4) - - - s, (Tr)) (4.7)
+...

b e W () (1) - [y (7 i,0), i, (1))
T —Tp — 1t
where we used that Euclidean time ordering determines the operator ordering.

Next we would like to substitute OPEs and conclude that only the identity contributes
in each commutator as in equation (4.3). Before doing so we need to ensure that the OPE
actually converges. Consider the contribution of the commutator between the first and the
k’th operator in the dispersion relation. It will only have support if the operators become

17Single-variable and two-variable dispersion relations in CFT were recently studied in [58] and [57]

respectively.
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timelike separated, so if [t'| > y. OPE convergence for all values of ¢’ can be shown by
mapping the configuration into the more familiar z and z coordinates. These can be found
by performing a Mobius transformation:

T — Tk Tkl — Tk—1
T - + (4.8)
T —Tk—1 Tk+1 — Tk

which maps 7, to the origin, 7441 to 1 and 7,1 to infinity; the image of operator 1 then
defines what we call z and z. One finds:
Lo T Tk Thel — Tk s T Tk W Thel — Tkl

T —Th—1 T Tht1 — Tk T —Th—1 = Tht1 — Tk

(4.9)

The Mobius transformation maps the other operators somewhere on the real axis between
1 and oco. As is familiar from studies of conformal four-point functions, the desired OPE
converges for any z and z away from the real interval [1,00), even if we take z and z

t.!1® Fortunately the entire ¢ integration region stays in that region:

complex and independen
substituting 7 = 7, +it shows that the imaginary parts of z and z are never zero for |t| > y.

Therefore, the OPE converges and we can substitute equation (4.3) in equation (4.7).

It is useful to analyze the large |7| behavior in the z and z variables. One finds that
2,2 = (The1 — Th—1)/(The1 — T%) which is a real number greater than one.'® This being
the image of infinity, we conclude that there is no operator inserted at this point and the
correlator in the z, Z coordinates does not blow up.2? It follows that the original correlator
must vanish due the Jacobian factor proportional to (7 + iy — 7_1) 2 (7 — iy — Tp_1) 2.
This is the ‘cluster decomposition’ that we alluded to above.

Now let us return to equation (4.7). Since each commutator is proportional to the
identity operator, each of the (n — 1) terms in the dispersion relation factorizes into an
n — 2 point function times the discontinuity of the two-point function, and it is the latter
that contains all the ¢’ dependence. The ¢’ integrals are therefore easily done and we find

8 After doing a further transform to the configuration corresponding to the p coordinates of [59] we
find the OPE yields an absolutely convergent expansion in powers of pp = e?” with coefficients that are
polynomials in \/%—i— \/5/7 = 2cos(f) with 7 and € cylinder coordinates and 7 < 0. Adding an imaginary
part to 7 clearly does not affect the convergence. Adding an imaginary part to § may seem more problematic,
but since the twists of all the non-trivial operators are non-negative we can rewrite the expansion as an
absolutely convergent series in p and p. This series will then still converge when p and p are complex and
independent, as long as they both have a modulus smaller than one.

9This is actually at the very limit of the domain where the OPE between operator 1 and operator k
converges, which illustrates that OPE convergence is not at all guaranteed for a less judicious choice of the
n — 1 operator insertions.

20In fact, the operators at Tk, Thi1, Tki2, --.Tn lie to the left of this point and the other ones to its
right, with 7,_1 as stated at infinity. Fusing these two groups of operators together yields a natural OPE
channel for this point which converges for large |7| both in the Euclidean window and in between the cuts
emanating from 7, and 741
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that

Galtr) = 2 (4 (), () -, (7))
(215) 702

2 (2 (7). (7))
(215) 72 (4.10)
+...
6317377.
+ 7/\@052 (7—2)¢S3 (7-3) s wsn—1 (Tn—1)>'
(23,)%
By the induction hypothesis all the (n — 2)-point functions in the preceding expression
are generalized free correlation functions, which when n is even are given by a sum over
the (n — 3)!! possible complete Wick contractions. For the n-point function the above
expression gives (n — 1) x (n — 3)!! = (n — 1)!! terms, and indeed it is easy to verify that
this is again just the sum of all possible Wick contractions. We can therefore do induction
in steps of two, using the one- and two-point function as a starting point. This also means
that the correlation functions vanish for odd n, in agreement with the more general result
of the previous section.

To complete the proof we need to relax the restricted kinematics where all but one of
the operators sit on a straight line. This is straightforward: our argument also goes through
for descendants of ¥, so we are free to take any number of derivatives in any given direction
acting on any of the n operators. The analyticity of the Euclidean correlation functions
away from contact points then dictates that our correlation functions are also equal to
those of the generalized free theory for more general choices of the insertion points.

5 Triviality of line defects

In this section we consider line defects with p = 1. The equivalent of the rotation group on
the line is O(1) ~ Zs which is really just a parity symmetry.?’ An important assumption
in what follows is that this symmetry is preserved. For definiteness we will take the bulk
scalar to be parity even and leave the parity odd case as an exercise.

The main objective of this section is then to prove that there is no room for interacting
line defects in our setup, either with or without a monodromy. To this end we will first
discuss how the results of section 3 can be adapted to the special case of p = 1. We then
adapt the theorem of the previous section and again prove that the “double twist” spectrum
of defect operators implies that their correlation functions must be those of a generalized
free theory.

5.1 Analytic continuation to line defects

Let us first revisit the results of section 3. For the sake of simplicity we will again take
q = 2, but also comment on the main differences with respect to the higher co-dimension
case, where necessary. For line defects with parity the only allowed representations for the

2Tn the context of the 3d Ising model, this parity has been called S-parity of [8, 46].
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parallel spin j are the scalar with 5 = 0 and the pseudo-scalar with j = 1. The parity
action is given by
z—Re=-xz, OFR(Rz)= (=109 (x). (5.1)

We also recall table 1, which states that only the wé” modes are allowed in the bulk-to-
defect OPE of the free scalar. So to prove the triviality of all line defects it suffices to prove
that those modes are generalized free.

The kinematics of correlation functions in the presence of line defects can be obtained
from their higher dimensional counterparts presented in section 3. The O(1) spin depen-
dence is captured by the polynomials (3.6) for j = 0 or j = 1. With this in mind, the
most general three-point function between the defect modes ng and any other two defect
operators reads

ool

<¢§+)(m)@{”(m)ﬂé”(w» — | ‘K(Eﬁ%AﬁA (signx12)j Ostsi4s0,0, J=J1+j2 mod2.
;L'IQ s (@] T

(5.2)
Note that, because of the sign function above, the defect correlators may depend on the
cyclic order of the operators on the line, which is preserved by the conformal algebra but
reversed by the parity operation. The operator ordering along the line will play an impor-
tant role later in this section, when we will be interested in n-point correlation functions
of the ’s.
We can now repeat the arguments of sections 3.1 and 3.2 to obtain constraints on the
defect spectrum from the analyticity properties of correlators like

(D21, 2,2)09" (22) T U2 (00)). (5.3)

The defect channel expansion of such correlators is again derived by acting with the bulk-
defect operator expansion on the three-point functions (5.2) and resumming the descen-
dants. It is easy to verify that the result is the natural continuation of (3.8) to p = 1:

<¢($1, |Z’e“ﬂ)@\gﬂll)(xg)fg322)(oo)> = mbghs)fs(g%: e—iswffg()%), § = —51 — 89,

(5.4)
where j = j; + jo mod 2 and with blocks given by (3.10). Compared to the result ob-
tained earlier for generic p > 1 — see equation (3.8) — the r.h.s. of (5.4) contains only a
single defect block.?? Hence, from the analyticity argument of section 3.2, we immediately
conclude that the defect three-point function (5.2) vanishes unless

Af:£§+)+£5+j+2n, neN, j=j1+j2 mod?2,

or

g
)

I
>

(D4 As+j+2n, neN, j=ji+j mod?2. (5.5)

22In the case where ¢ = 3 the identity operator is also allowed to appear which gives a disconnected
contribution.
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In particular, when O is itself a defect mode of ¢ we find that the scaling dimension of ﬂf )

must equal
Ar=AP+AP +j+2n, neN (5.6)

In conclusion, by repeating the analysis of section 3 for line defects, we have proven
that the ¢ x v OPE contains only operators with “double twist” spectrum. In the next
section we will argue that the n-point functions of the v¢’s on the line must again necessarily
be those of a generalized free field.

5.2 Line defects and generalized free field theories

In this subsection we will discuss the one-dimensional version of theorem 1. We will again
write equations for the co-dimension 2 case, but the generalization to higher co-dimensions
is again straightforward.

Theorem 2 Consider a conformal theory in one dimension with parity, a convergent op-
erator product expansion and a discrete spectrum such that cluster decomposition is obeyed.
Suppose the theory has scalar operators ¥s(x), with even parity, whose OPEs take the form

s, X1s, = Og,,5, 14 (0perators with twist Ag, + Ag, + 2k, with k € N, and spin j € {0,1})
(5.7)
Then all the n-point correlation functions of the vs(x) are those of generalized free fields.

The main idea of this proof is similar to that of Theorem 1, that is, we use a dispersion
relation and use the GFF spectrum to compute all the discontinuities. However, a subtlety
arises in one-dimensional CFT because two correlation functions with different operator
ordering modulo cyclic permutations are generically not related by an analytic continuation.
For example, if we start with the correlator (11(0)y2(z)13(1)14(c0)) with 0 < z < 1 and
analytically continue it into the complex z plane then its value at negative real z generally
does not agree with (¢2(2)11(0)y3(1)1h4(00)). In our case we start with an n-point function
with operators sequentially ordered,

<¢s1 (m1)¢52($2) o s, (xn»v T <22 <...< Tp, (5'8)

and we would like to explore the complex x; plane. Suppose we continue z; via the upper
half plane to a real value between x9 and x3. We can use the above OPE to see what
happens. If we include the position dependence then it becomes

551,52 1 + )‘12k

k
24, ~O%x2), @1 <z, (59)

Asl +A52 _Ak

Vs, (21) s, (22) =

(2 —x1) k(12— 1)
By the main assumption of the theorem the contribution of the non-trivial operators gives
an analytic contribution in x; in the vicinity of x3. For the identity operator, on the other
hand, we generally obtain a cut and some more detail is needed. We will put the cut in

the lower half of the z; plane, which we emphasize by writing

Sy 5p€™ui1 At
Vs, (xl)z/)SQ ($2) = —— =~ i

(ei™/2(mq — ml))zAsl ko (v2 — 1)

k
Au1An, Ay O%(x2) (5.10)
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Figure 2. Analyticity structure of m-point correlation function is established by consecutively
hopping around the n — 1 operators in the complex x; plane. The branch cuts are chosen to stretch
along the negative imaginary direction.

and the fractional power is now understood to be evaluated on the principal branch. The
analytic continuation via the upper half plane leads to the analytically continued OPE

given by:
Voo lag) = — @™ sh MMEDY gk g
S1 S2 iy 233 B KS +KS *Kk 9 9
(e=im/2(zy — x9)) "1 Tk (21 — @) BT
(5.11)
Now we use the assumed parity symmetry. It dictates that
k j k
Ao = (1) A", (5.12)

and this allows us to claim that, up to the contribution of the identity operator, the
analytically continued OPE is the same as the re-ordered OPE. In equations:

2inAs,
b (@) (g) = 20T L (@), m> . (5.13)

(:1:1 o CCQ)2A51

This is a useful formula. Indeed, since our original correlation function had a
(19213 . . .) ordering, it would normally be impossible to use an OPE to analyze what
happens when 1 approaches x3 via analytic continuation. Equation (5.13) however shows
us that, up to a factor proportional to the identity operator, this approach is actually
determined by the OPE in the (121113 ...) correlator. In terms of the dispersion relation,
this indicates that no unwanted contribution arises because the extra factor has vanishing
discontinuity along the lightcone branch cut of g, ¥s,,...,9s,. Of course we can now
keep hopping around the remaining n — 2 operators and discover the full analytic structure
of the n-point function in the complex x1 plane: with our choice of cuts, there are vertical
branch cuts starting at xg,xs,...z, and no other singularities (see figure 2). What is
more, the discontinuity across those cuts is proportional to a two-point function times an
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(n—2)-point function.?® Since the correlation function also falls off** at large |z1] it is once
more completely determined by these discontinuities, and the same arguments as those in
the previous section show that it equals the generalized free correlation function for all n.

6 Tests in conformal perturbation theory

In this section we present some tests of our claims in the context of co-dimension two
defects. In all the examples we consider, the candidate conformal defect is obtained by
coupling the free bulk scalar to the local operators of a lower-dimensional CFT), living on
the defect, and flowing to the IR. In the UV the interaction is taken to be

Sint = ZQI/ dPx @I(f)v (61)
I Re

where @ are some scalar composites made of (derivatives of) the bulk fields as well as of
local operators in the CFT,. We then seek for IR fixed points of (6.1) which allow for non-
trivial bulk-to-defect interactions. If all the operators @;’s have dimensions A 1=p—901
with 0 < §; < 1, then the deformation (6.1) is slightly relevant and the RG flow can be
studied perturbatively. At the first order in couplings g; the beta functions read [60]

S _
Bk = —0KkgK + pTl > frik 9195 + O(g?). (6.2)
.

In the equation above, S,_1 is the volume of the (p — 1)-sphere and the numbers J?IJK,
which are real in unitary theories, denote the three-point functions of the ¢’s computed at
gr=20 R
frox =(21(0)p, (1) Pk (00)). (6.3)
A simple example of this scenario is the case where ¢; = ¢, which is marginal when
g = p + 2 and was also considered in [5]. In agreement with our main result, the only
effect of this defect is to give a one-point function to ¢ that is proportional to g. Below we
will present some other concrete realizations of the flow (6.1). For these examples, we will
check explicitly (using conformal perturbation theory) that the CFT), decouples from the
bulk at the unitary IR fixed points, whenever the ¥(~) modes are not generated.

Z0OPE convergence along the discontinuity is guaranteed by the same arguments as before.

24We claim that any correlation function (... (z)...) in one dimension (that obeys cluster decomposition
and without operator insertions at infinity) vanishes when sending |z| — oo not along the real axis. To
see this, first perform a conformal inversion such that the new variable ' = —1/x goes to zero. We claim
that this inverted correlator is finite and the original correlation function therefore vanishes as |z|~24%,
which is the Jacobian factor from the inversion. To prove finiteness, suppose first that i (z) was the
leftmost or rightmost operator. Then finiteness is immediate: the point 2’ = 0 is a physical point with no
operators touching. If ¢)(z) was not the leftmost or rightmost operator then we need to hop over the other
operators to reach ' = 0. For the correlator at hand the discontinuity is known and does not lead to a
further singularity, so finiteness of the inverted correlator follows. But the result is actually more general:
just fuse the operators to the left and to the right of 0 to obtain a sum over three-point functions like
((z")O(yr)O(yr)) with yr, < 0 and yr > 0 the fusion points. The sum converges absolutely in a domain
determined by the coordinate differences |z; —yr,r| and one can always find a path in the complex z’ plane
to reach ' = 0 without exiting this domain. The sum is therefore finite.
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6.1 Coupling the trivial defect to lower-dimensional matter

We start by considering a slightly relevant deformation which couples the defect limit of ¢
to some operator O of a given CFT,. If O has dimension & —§, with 0 < § < 1, then a
natural coupling is

S = [ @ (019(3.00() +926%(7,0) . (6.4)

Note that the “single-trace” coupling controlled by ¢; generates the marginal operator ¢?
at the leading order along the RG flow. The interaction (6.4) has the form of (6.1) with
o1 = ¢O and @, = 2. From the general result (6.2) it is straightforward to obtain the
beta functions at the first order:

Sp—1 =~ S 1/~ ~
p1 = —0g1 + p2 Lfonigrge, fo= p2 ! (f222 g2+ fi12 9%) . (6.5)

From the second equation above, it is clear that a unitary and non-trivial fixed point of
this deformation will exist only if J?222 and fug have opposite sign. On the other hand,
these numbers can be computed using Wick’s theorem (since the bulk and the defect are
decoupled at g1 = g2 = 0), and as such they are product of two-point functions. Since
two-point functions, in turn, must be positive in unitary theories, we conclude that the
only possible fixed point at this order is the trivial one, and the CFT, is decoupled.

For a concrete realization of the “single-trace” deformation (6.4) we can consider the
Yukawa coupling of a 4d free scalar field to a 2d free fermion y:

Sint = /R2 A’z <91>2X¢> + g20* + 93()2)()2) : (6.6)

Since the fermion has UV dimension Ax = % = %, the Yukawa coupling is classically

marginal. As soon as we turn on g, the marginal couplings ¢? and (yx)? will be generated
at one-loop. From (6.2), the beta functions at the first order read

P = Sp2_1f131 9193, B2 = % (fmz 93 + fiiz g%) , B3= sz_l (J?333 93 + fus g%) :
(6.7)
As in the previous example, the three-point function coefficients above, which can be
computed in free theory, are positive numbers. We conclude that the only possible fixed
point of (6.6) is the trivial one.
The story becomes more interesting if we dimensionally continue (6.6) below dimension
two while keeping the co-dimension fixed, i.e. work with p =2—d andd =4-9 (0 < § < 1).
When doing so, the operator ¢ remains marginal, while g1, g3 become slightly relevant and
therefore we find

_ _915 Sp-1 7 Sl (7 92 7 9
B1 = - + > f131 9193, B2 = > <f222 95 + fi12 91) ,
S, 1/~ =
P3 = —g3d + p2 ' (f333 95 + fu13 g%) : (6.8)

Assuming unitarity, the first two equations set g; = go = 0, while from the third we get g3 ~
d. In other words, the deformation (6.6) flows towards a decoupled Gross-Neveu model.
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6.2 A nearly marginal deformation in free theory

As another case of the general setup discussed at the beginning of this section, we can try
the classically marginal deformation of the free theory

Sui =9 [ & 62,0, (6.9)

Although scale invariance is preserved classically, this example turns out to break it in a
subtle way quantum-mechanically. To establish this fact, it is sufficient to compute the
exact bulk-to-defect correlator (¢(x)$(0))y. In order to simplify the task, we will work in
p-dimensional momentum space and consider

((K, 0)p(~F,0)),. (6.10)
The tree-level contribution can be extracted from the propagator obtained in appendix B
and reads
. - . Gy .
G (k. al) = (6(F [ )oK, 0) =0 = %5 Ko([Fllal). (6.11)

The propagator between two d)(E, 0)’s on the defect, which can be obtained by taking the
limit as z; — 0 of the expression above, contains a log |z1| divergence. Setting |z1| = p the
leading term in this expansion is

G3alh) = G000 —F. )0 = ~ 55 (1 -+ o) —log2), (612
up to subleading terms as the scale p is sent to zero. Because of this log, the propaga-
tor (6.12) depends on the scale. This dependence is only “small”, since the u-derivative
of (6.12) maps exactly to a contact term in position space, and as such it can be under-
stood as a “small” conformal anomaly [61, 62] and not something to worry about. On the
other hand, order by order in perturbation theory, the corrections to the bulk-to-defect
correlator are geometric and they can be exactly resummed:

i . o n Gk |al)
(6(k, [21))6(—F, 0))g = G 5(K, |21]) Z( Fom) _M. (6.13)
= ppr?

In this final expression, the u dependence is far from being a contact term in position space
since

C¢ gG¢$<E7 ‘Zlb

——— (6.14)
) (149G (F )

o -
N%<¢(k7|zl‘) (—F,0))g =

and, as such, it cannot be interpreted as a “small” conformal anomaly. The “small” confor-
mal anomaly of (6.12) has exponentiated, leading to a “large” breaking of scale invariance
and we conclude that the deformation (6.9) does not lead to a non-trivial conformal defect.
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6.3 A monodromy defect in free theory

For our final example we couple a free scalar with non-trivial Zo monodromy to a lower
dimensional CFT, equipped with an additional SO(2); global symmetry. If the latter
contains in its spectrum a operator Oy of dimension A = % — 9, charged under SO(2);
with spin |s| = 1/2, then we can consider an interaction that preserves the diagonal of
SO(2) x SO(2);:
it = g/dpx ¥i70_ ) +ce. (6.15)
2

This coupling is consistent with unitarity if p > 1 and it is slightly relevant if 0 < § < 1.

Since the three-point functions of wﬁg vanish due to SO(2) symmetry, the existence
of an IR fixed point for the interaction (6.15) depends on certain complicated conditions
that arise at the next-to-leading order in conformal perturbation theory.?®

Assuming that there exists a non-trivial fixed point g2 ~ §, one may wonder how this
would fit in with our claims of the previous sections. The applicability of our theorem to
defect setups hinges on the absence of the so-called (=) modes in the bulk-defect operator
expansion of the bulk field ¢. For p = 1 these modes are excluded by cluster decomposition,
but for p > 1 our theorem would still dictate that the dynamics of the CFT, must decouple
from the bulk if we could consistenly set these modes to zero.

As it happens, a deformation of the form (6.15) necessarily induces the appearance of
the ¥(~) modes in the bulk-to-defect OPE of ¢ at order g. To establish this, it is sufficient to
note that the bulk-to-defect two-point function between ¢ and (51 /2 is non-zero at order g:

R z° Coo 2
<¢(07272)OS(0)> = —g/dpw (‘Z|2 + |u—;‘2)A¢+s ‘w’2A¢725726 + O(g )

z T(E)I(s)

3
=—gCssS)_ ——= 4+ 0(62), =1/2. 6.16
g OOPI’ZWQF(%—FS) (62), s / ( )
This result matches the expected form of a correlator between ¢, and @Z)§72) — see

equation (2.1) — with bulk-to-defect coefficients b;’l/ ’xg.

In conclusion, the deformation (6.15) could provide an example of a unitary, non-trivial
conformal defect for p > 1. The way it is allowed to be non-trivial is consistent with our
theorem.

7 Applications

For the single free scalar field ¢ the space of possible conformal defects is remarkably
constrained, and in many cases the only allowed defects are trivial in the sense specified in
the introduction. In all dimensions and co-dimensions the appearance of a ¥(~) mode in
the bulk-to-defect expansion of ¢ is a necessary condition for a defect to not be trivial.
We should point out that our results also apply when the bulk theory has a decoupled
real free scalar, since one can integrate out all the other bulk matter and conclude that the

25 At the next-to-leading order the existence of the fixed point depends on the sign of certain regularized
integrals of the four-point function of the deformation, see e.g. [51, 63] and also [64] for the case of 1d CFTs.
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n-point functions of the scalar are trivial. This works in particular for some supersymmetric
theories. For example, consider the surface defects in the abelian (2,0) theories in six
dimensions that were recently discussed in [40]. If conformality is not spoiled by an anomaly
as in the example discussed above, we would expect triviality of the scalar correlation
functions. Another example are the aforementioned defects in the N' = 2 four-dimensional
free hypermultiplet. These appear to be labelled by a monodromy ® — €*® with ® a
complex scalar. We can immediately conclude that no defect can exist for & = 0 and that
for other values of o any non-triviality is allowed because of the single (=) mode in the
two-point function of the bulk scalar. This is in line with some recent explicit computations
in [32]. In three dimensions our results also match with the supersymmetric literature: for
example, the non-trivial defects in free N/ = 4 theories in [65] all appear to have a scale
associated with them.

Defects and free scalar fields also naturally appear as the infrared description of vortices
and Goldstone bosons in setup where a U(1) global symmetry is spontaneously broken.
In that case the size R of the vortex provides a natural scale. Our results imply that
interactions between the Goldstone degrees of freedom and the vortex trivialize in the
deep infrared when R — 0. A good physical example of this situation is the scattering of
phonons off a vortex in superfluid helium. In this case a microscopic model is available,
and computations in for example [66] (but see also references therein) confirm this view.

Let us finally point out an interesting possible extension of our results to conformal de-
fects in (weakly) interacting theories. As explained in section 3 there are always unphysical
singularities when we apply the bulk-defect operator expansion to three-point functions,
and their cancellation will therefore imply a infinite and non-trivial sum rule. It would be
interesting to analyze tese constraints further, for example in an epsilon expansion or in a
large N limit.
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A Details of the scalar bulk-to-defect OPE

In this appendix we give some details about the bulk-to-defect OPE of a scalar bulk opera-
tor. We then specialize to the case where the bulk operator is a free field, and we spell out
the constraints imposed by the equations of motion on the spectrum of its defect modes.

For the sake of completeness, we consider generic conformal defects of dimension p and
co-dimension ¢. In order to encode the SO(p) x SO(g) spin it is convenient to contract the
corresponding indices with “parallel” or “transverse” polarizations vectors, respectively 6
(a=1,...,p) and w' (i = 1,...,q), and work with polynomials in these variables. The
following definitions generalizes the ones given in (3.2)

@Zl.‘.aj (w’ ;Z") = wil o wiS@al"'aji1...is (f% wow = 0,

OD (w,0,7) = 6% ... 0% O (w, 7), fe6 = 0, (A1)

s

where the symbols o and e represent, respectively, SO(g)-invariant and SO(p)-invariant
scalar products in real space.

The bulk-to-defect OPE of a scalar bulk operator ¥(z) contains infinitely many defect
primaries 5 s, scalars under SO(p) and transforming as symmetric and traceless tensors of
SO(q). If we neglect the contribution from defect descendants, we have schematically

b -
2 — 72/\ 7)° 2 i . e A2
(@) = 32— (wod)* Sy(w, ) + (4.2)
3,8 ‘xJ-‘ 2
In the expression above we introduced the unit vector ' = I;%\’ orthogonal w.r.t. the

defect.?6 If we take the defect operators to be unit normalized, then the numbers b% are
identified precisely with the bulk-to-defect couplings

b3 (woi)*

|08 (@2)78

(B(2)Ss (w, 0)) = (A.3)

The contribution from the defect descendants in (A.2) is completely encoded into (A.3).
By comparing the bulk-to-defect OPE with (A.3) one finds [5]

5 ~ L, 2e2)” _
g ( ) (wod)® Sy (w, 7). (A4)

B(e) =22,

£ A—An A _p
Ss " loyl z nl <A2+1 2)

n

We now specialize to the case where the bulk operator X is a free scalar, which we denote
by ¢, with defect modes 5. As we have shown explicitly for co-dimension two defects
in section 2.2, the defect primaries that can couple to ¢ are selected by the free equation
of motion. Requiring that the Laplacian annihilates (A.3) at separated points gives the
following condition [5]

(F—Ap)(Ap—F+2-q—25) =0, 7=Ag-s. (A.5)

26To recover the operator’s contribution in real space from the expression above it is sufficient to note
that (wo)® ¥s(w, Z) is mapped to £ ... &% L% (7),
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Assuming no further degeneracy, for each spin s at most two families of defect primaries
are allowed in the bulk-to-defect OPE of ¢. These two solutions, denoted as wgi), form a
shadow pair on the defect

e Al = Ay +s, or i) ﬁg_) =Ay+2—q—s. (A.6)

S S

Crucially, the spin of the second family is restricted by unitarity (2.8) to the values s < 42;(1
(for p > 1) and s < 3—;‘1 (for p = 1). Note that for ¢ = p + 2 there is a ‘—’' mode
of dimension zero and (as explained in the main text) by cluster decomposition we may
assume it proportional to the defect identity 1. For p > 2 the primary that saturates the
unitarity bound is a free field and must obey the Laplace equation, which is inconsistent
with a non-zero two-point function with the bulk field ¢. It can therefore be consistently
removed from the spectrum. Altogether the unitary defect spectrum is summarized in
table 1 in the main text.

B Two-point function in free theory for q = 2 defects

In this appendix we perform the computation of the two-point function of a free scalar in
the presence of a twist defect. This computation was originally performed by the authors
of [8], however we will obtain a slightly more general result. The starting point is Green’s
equation (2.9), which we report here for convenience

4zt
_ \:‘G(l‘l,l’Q) = C¢ 5p+2(x1 — xg), C¢ = T (E) . (Bl)
2
The normalization Cy is chosen in such a way that
1
G(xi,x9) ~ ———— (B.2)

w12 |1 — 29]d72"

To solve Green’s equation, it is convenient to Fourier transform to the p-dimensional mo-
mentum space along the defect and then adopt a basis of SO(2) spherical harmonics. In
terms of the complex coordinates z; = |21|e¥ and zo = |22| we obtain

Pk . -
G(x1,22) = Z/ @2n)r ek Tzeiseq (|k|, |21, |22]), (B.3)

where the sum runs over all (half)-integers, depending on the choice of monodromy for ¢.
Denoting |z;| = r; for simplicity of notation, we find that the modes as satisfy the following

differential equation?”

- 0? 1 9 2 . C.1
(W - -t s) as([k],r1,m9) = =2 —=5(r1 — 12). (B.4)

ory riory 13 21

The homogeneous problem has a general solution given by as(|k|,71,72) = A(r2) 1 (|E|r) +
B(TQ)K|S|(‘E|T1), where I (x), Ks(z) are modified Bessel functions. Let us consider the

*"We used 6*(z — 2’) = 26(¢ — ¢')6(r — 1’) and then §(p) = £ > _e™%.
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region where r; > ry. Then, regularity of the solution asymptotically far away from the
defect, i.e. 71 — 00, sets A = 0. In the region where r1 < ry, the I\ (|k|r) are regular while
K ;| behave as

K‘s‘(’k|r) T:O ‘k|_|5|7~_|5| + |E||S|’I"‘s|7

KO(IE\T) o~ ¢ log(r\la) +c, (B.5)

for some constants ¢, ¢’. Due to the logarithmic singularity in the second line of the above,
which is not allowed by conformal invariance, we are forced to set B = 0 for s = 0. For
|s| > 0, on the other hand, there is no reason to impose regularity conditions at r = 0,
since we do not expect the physics to be smooth in the proximity of the defect. In terms
of the bulk-to-defect OPE, the singular modes in the first line of (B.5) take into account
the presence of the defect primaries of dimensions Ay — |s|. These singular solutions are
compatible with unitarity as long as p=1or p > 1 and 0 < |s| < 1. Hence

|s| >0, B(ra) Ky (|klry), T > T2,
as(|kl,r1,m2) = S |s| =0 or |s| > 1,  AL(r2) I (K]r1), r1 <7y, (B.6)
0<|s| <1, Al(ro)Ig(lklr1) + Bh(ro) K ([Klr1), 71 < 7o
For p = 1 the solution (B.5) is either a constant mode (|s| = %) or below the unitarity
bound and we are free to set it to zero by choosing B = 0 for all 5.2® Let us now go back
to the inhomogeneous problem and fix the solution (B.6) in order to reproduce the contact
term in the r.h.s. of (B.4). To this end, we need to impose continuity of (B.6) at r1 = ro,

Co

S After some
Tro

and that the discontinuity of its first derivative at r1 = r9 equals precisely
little algebra we find

BY(ra) Kjo (1Flr1) + S2 1 (Flr2) K ((KIr1),  m1 >

- . q (B.7)
Bl(ra) K5 (|k|r1) + %I|s|(|k!7’1)K\s\(!k\7’2), ry < 7o

as(k|,r1, o) = {

with the understanding that Bl(rg) # 0 only for p > 1 and 0 < [s| < 1. If we finally
impose symmetry under exchange of the two external scalars, which are identical, we find
the condition

B(r1) Ky (|klr2) = Bi(ra) K ([Elr1), (B.8)

which is satisfied by Bl(rq) = hsK |S|(|l§|r2), for any real constant hs. The final solution
can be written as

G(x1,19) = G (@1, 29) + G (21, 22)

G(f)(xlij) = Z /
s::i:%

APk iRy s 7 >
(27[_);0 ek 120 ‘Pth|s|(|k3|’l”1)K‘s‘(’k|r2)

C PPk iR s 7 7
G (21, 29) = 2;; > /(%)p R T2l L ([k|r< ) K g (|Elrs), (B.9)
+3

Z8Upon invoking cluster-decomposition principle, as we did in appendix A.
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where ro = min(rq,7r2) and r~ = max(ry,r2). Note that the expression above differs from
the result of [8] by the additional contribution G(~)(z1,x3). One can explicitly perform
the momentum-space integration in the second line of (B.9) to find

A, —L
GO ) 2p72h% r (A 1) cos (%) (5 +VEE+4) + 2) v (B.10)
T1,X2) =~ 1 -3 ) .
(27r)A¢—% 2) (rirg)®e (5 4 EEFD + 4>2A¢ 1
where we introduced the cross ratio
|Z12]? + (r1 — 72)?
= . B.11
¢ (B.11)
In real space, the spin s contribution to G(*) (x1, x5) is [§]
T Ag+) 1S 739')
G (21, 29) = (A(+) ) esPg .
T (Ag)T (AL = Ay +1) (rir)®
~ ~ -1 ~ 4
X o F (Ang)’Ang) BT 2A() —p+1; —§> ; (B.12)

where A" = Ay + |s|. Note that the result (B.12) is equivalent to (2.4) in virtue of the
following identity

R <x,g+x+;;p+2x+l;§> = (£42) "R, (x_;l g —§+ z+1 (£f2)2) .
(B.13)
Note that if we impose trivial monodromy, the result (B.12) leads to the two-point function
for a trivial defect:
Z G :131, {L‘Q (B.14)

(.%1 o 'T2 SEZ

For the twist defect in p = 2, we note that the generic solution (B.9) takes a simple form

2 cos (%) 1 hi(1—cosp+§/2) \/2+€+v€(f+4)
G(l’l,xg): + 2 ) 15)
(11— 22)? \ VET A V2 (4+¢+vEE+D)

which reduces to the result of [8] when we set h1 = 0.
2
Finally, by comparing (B.9) with the defect channel blocks (2.4) we can extract the
relevant bulk-to-defect OPE coefficients:

512 sz (Bg)s)
hy 1
P =ty e ()
72 4 ¢—— 2
4 p/2—1
0<h < T (B.16)

')

b57:|:

The inequality in the last line follows from | p | > 0, which is required by reflection-

positivity.
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C Three-point functions from the bulk-to-defect OPE

This appendix contains the derivations of the defect conformal blocks presented in section 3.
In what follows we will keep p,q generic, for the sake of completeness. As a further
generalization, we will take the bulk scalar to be generic, i.e. not necessarily free, and
denote it as ¥ (as we did in appendix A).

Let us start from deriving the defect expansion of

(S(1) O, (wo, T2) T (w3, 0, 00)). (C.1)

In the expression above, O and T are symmetric and traceless tensors of SO(q), respectively
of spin sp and s3. The dependence on the SO(p) x SO(q) is encoded into polynomials in
the polarization vectors {w;}, 0, as explained in appendix A.

The starting point is the three-point functions between the defect modes of 32, denoted
as f], and any other two defect operators:

~ A f"’v\ 51,82,8
(So1 (w1, 1) O, (w2, T2) T (w3, 0, 00)) = 2o Pil’ 29 ({w;}) P (212, 0).
(C.2)
The SO(p) spin is encoded in the polynomials ”( 7 which were already introduced in (3.6).
(81752,53)

The SO(q) spin dependence is captured by the polynomials P , which are homoge-

neous of degree s; in the transverse polarization vectors w;

Pfl’”’sg)({wi}) — (wlow2)%(s1+sg—83)(wlow3)%(51—52+83)(w20w3)%(52—81+53), (C.3)
where s; are non-negative integers satisfying

$1+ Sy — 83 =2n1, 81— S92+ S3=2n9, S9— 81+ 83 =2ng3, n; € N. (C.4)

Note that the wi,ws,ws’s cannot be linearly independent for ¢ = 2, and as such the
basis (C.3) becomes over-complete.

To compute (C.1), we apply the bulk-to-defect OPE (A.4) on the three-point func-
tions (C.2). The derivatives in the parallel directions commute with the SO(g) polynomials
and, making use of the identity

on [ (—T1206)7 n . P\ (=Ti2e8)
v <ﬂ> — 4 (1), (1 g 2>n o (C.5)

B
we can find the following series representation

(S(21)Os, (w2, F2) TY) (w3, 0, 00))

P(])(-TIQ, N
B As+As-An > b5 fsop PP ({w;}) (woiy )*
ENR TS5
o (o o P i
« X@aﬁg Z (—Xx) n (—KgE7)n (1 27 J— K“EOT) (C.6)
1 N ) :
- (Bs =5 +1),
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where we introduced the parameter

P
K$a7p = §(A§+A6_Af+])’ (C.7)

as well as the cross-ratio (3.9). The sum over s is truncated to those values that satisfy
SO(q) selection rules (C.4). Finally, the sum over n can be performed for generic values of
the parameters. The results is a beautiful Hypergeometric function

OT [+ choantd p . DR 1
T(X) Xﬁon 29k (1 - 5 —J T Rsa RS 1-— 5 + Ag; —)2> . (C.S)

When we take the bulk operator to be a free scalar, the expression above gives precisely
eq. (3.10). This result, can also be obtained by solving the relevant Casimir equation as
done in [67].2° Importantly, the defect blocks F are completely blind to the transverse
directions. In particular they only depend on the parallel dimension p, and not on gq.

Let us now consider the bulk-bulk-defect three-point function
(3(21)2(22) TV (w, 8, 00)). (C.9)

Again, we will not require Y. to be a free scalar. The complete form of the expression
above can be obtained by applying once again the bulk-to-defect OPE to eq. (C.6) and
then resum the descendants. In practise it is easier to start from the three-point functions

N

A A

(Sy (wr, 1) 5, (w2, )T (w, 6, 00)) = 5oA _AAPfl’”’”<{wi}>afﬂ'><sﬁm,e>,

|15
(C.10)
and apply twice on it the bulk-to-defect OPE (A.4). Making use twice of the identity (C.5)
we obtain

(S(z1)2(22) T (w,0,00)) = S bbs fogn
/Z\,g’,sl,SQ

EAfA 2 A, —As+2
(1) oy [50[RSt

+2m+2n—j

XD

m,n o |$1

(Crssn(hss +mn (s, —h=i),, (res +m—h—d),
(AA—ﬁ)n (Bg —h

x (wyof1)® (wgoxg)”P(sl’sz’)(wl,wg,w)P”]) 2,0), (C.11)

|—2f€22,

X

Wl(51,8278)(§;17§;27w)

where we introduced

o~ o~

Koy = —i(Ag +A§, — Aj:-f-j), h =

N |3

~1. (C.12)

We do not find perfect agreement with the block calculated in [67]. We obtained the same Casimir
equation however our block is a different linear combination of solutions. The solution of [67] does not seem
to be consistent with the OPE limit.
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The integers s1, s2, s are constrained by the selection rules (C.4). Resumming this expres-
sion is expected to be hard since this configuration is characterized by three cross-ratios
(compare to (2.3)),

_ |Z12)% + |21 )% + |22 |? _ w1y |

i

cos p = Z101s. (C.13)

\ﬂquxzﬂ - ‘xQJ_‘7

For our purposes, which is studying the bulk OPE limit of (C.9), it will be sufficient to
specialize (C.11) to the “cylindrical” configuration

= |z|nt, b =|z|nY, mniong =cosp, mnon=1, t=1, (C.14)

where the resummation can be performed easily. In terms of the cross-ratio ¥ defined
in (3.9) we find:
~ 1,7 -~ -~
Fle, () =x2Bst e 75 (C.15)
1. IR
X 4F3 (Alz —h—5, M2 —h, kg, —kgg —J— A

where we defined Ajp = %(ﬁg + AE') When we take ¥ to be a free scalar we find
precisely the blocks (3.20). Furthermore, from this result we can recover the blocks for the
two-point function shown in eq. (2.4) by simply setting > = 3 and the third operator to be
the identity. In this case, the functions W, 119 hecome Gegenbauer polynomials of cos ¢

s s B 3! q_
WL (@1, 82) = (wi081)° (wa082)® (wiown)® = 5oa 8V (cos ). (C.16)

Finally, after the hypergeometric transformation (B.13), the 4F3 in (C.15) simply reduces
to (2.4).
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