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1 Introduction and summary

1.1 Holographic order parameter

The strong correlation is property of a phase of general matters not a few special mate-
rials, because even a weakly interacting material can become strongly interacting in some
parameter region. It happens when the fermi surface (FS) is tuned to be small, or when
conduction band is designed to be flat. The Coulomb interaction in a metal is small only
because the charge is screened by the particle-hole pairs which are abundantly created when
FS is large. In fact, any Dirac material is strongly correlated as far as its FS is near the
tip of the Dirac cone. This was demonstrated in the clean graphene [1, 2] and the surface
of topological insulator [3–5] through the anomalous transports that could be quantita-
tively explained by a holographic theory [6–8]. In the cuprate and other transition metal
oxides, hopping of the electrons in 3d shells are much slowed down because the outermost
4s-electrons are taken by the Oxygen. In disordered system electrons are slowed down by
the Kondo physics [9]. In twisted bi-layered graphene [10, 11] flat band appears due to
the formation of larger size effective lattice system called Moire lattice. In short, strong
correlation phenomena is ubiquitous, where the traditional methods are not working very
well, therefore new method has been longed-for for many decades.

When the system is strongly interacting, it is hard to characterize the system in terms
of its basic building blocks and one faces the question how to handle the huge degrees of
freedom to make a physics, which would allow just a few number of parameters. Recently,
much interest has been given to the holography as a possible tool for strongly interacting
system (SIS) by applying the idea to describes the quantum critical point (QCP) describing
for example the normal phase of unconventional superconductivity. Notice however that
the QCP is often surrounded by an ordered phase. Physical system can be identified by
the information of nearby phase as well as the QCP itself.

For the ordinary finite temperature critical point, the Ginzberg-Landau (GL) theory
is introduced precisely for that purpose. As is well known, it describes the transition
between the ordered and disordered states near the critical point. It works for weakly
interacting theory and when it works it is a simple but powerful. The order parameter
depends on the symmetry of the system and the phase transition is due to the symmetry
breaking. The tantalizing question is whether there is a working GL theory for strongly
interacting systems. The GL theory works also because of the universality coming from
the vast amount of information loss at the critical point, which resembles a black hole.
For the quantum critical point, we need one more dimension to encode the evolution of
physical quantities along the probe energy scale [12, 13]. Therefore it is natural to interpret
AdS/CFT [14–16] as a GL theory for the strongly interacting system where the radial
coordinate describe the dependence on the renormalization scale [17–20]. For this reason
we call it as Ginzberg-Landau-Wilson theory.

The transport and the spectral function (SF) have been calculated in various gravity
backgrounds using the holographic method. However, it has been less clear in general
for what system such results correspond to. For this we believe that the information
on the ordered phase is as important as the information on the QCP itself. Clarifying
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this point will be the first step for more serious condensed matter physics application of
the holography idea and this is the purpose of this paper. The idea is to introduce the
holographic order parameters of various symmetry type and calculate the spectral function
in the presence of the order. The resulting features of the fermion spectrum should be
compared with the Angle Resolved photo-emission spectroscopy (ARPES) data, which is
the most important finger print of the materials.

Notice that both the magnetization and the gap of superconductor can be understood
as the expectation value of fermion bi-linears [21] 〈χ†~σχ〉 and 〈χχ〉 of the fermion χ. In fact,
the expectation value of any fermion bilinears can play the role of leading order parameters.
When two or more of them are non-zero, they can compete or coexist according to details
of dynamics. Then, the most natural order parameter in the holographic theory should be
the bulk dual field of the fermion bilinear because it contains the usual order parameter as
the coefficient of its sub-leading term in the near boundary expansion. The presence of the
order parameter actually characterizes the physical system off but near the critical point.
We will calculate spectral functions [22–25] in the presence of the order parameter. Our
prescription for them is to add the Yukawa type interaction between the order parameter
and the fermion bilinear in the bulk and see its effect on the spectrum.

To be more specific, let ψ0 be the source field of the fermion χ at the boundary and
Φ0I be the source of the fermion bilinear χ̄ΓIχ where I = {µ1µ2 · · ·µn} represent different
tensor types of Gamma matrix. The extension of source fields ψ0 and Φ0I to the AdS bulk
is the bulk dual field ψ and the order parameter field ΦI . We calculate the fermion spectral
function by considering the Yukawa type interaction of the form

ΦI · ψ̄ΓIψ. (1.1)

For example, the complex scalar can be associated with the superconductivity, and the
neutral scalar to a magnetic order. We will classify 16 types of interactions into a few
class of scalars, vectors and two-tensors and calculate the spectral functions. With such
tabulated results, one may identify the order parameter of a physical system by comparing
the ARPES data with the spectral functions.

Some of the idea has been explored for scalar [26] and tensors [27, 28] to discuss the
spectral gap of the superconductivity. But in our paper, we will see much more variety
of spectral features like flat band, pseudo gap, surface states, split cones and nodal line
etc. The most studied feature of the fermion spectral function is the gap. The authors
of [29, 30] considered the dipole term ψ̄FrtΓrtψ to discuss the Mott gap. However, if we
define the gap as vanishing density of state for a finite width of energy around the fermi
level, the dipole term does not generate such spectrum because the band created by the
dipole interaction approaches to the Fermi level for large momentum. In [28] the author
reported the observation of Fermi-arc in the sense of incomplete Fermi surface. Our Fermi-
arc is in the sense of surface state in topological materials. In our set up, they exists in the
presence of various different types of vector order.

We found that the parity symmetry controls the presence of the zero mode or gap. For
example, Φ5ψ̄Γ5ψ generates a gap as it was discovered in [26], while Φψ̄Γ5ψ can generate a
zero mode. Another interesting aspect is that some of the order parameters in holographic
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theory, especially those of tensors with radial index do not have direct symmetry breaking
interpretation in the boundary theory, and this opens the possibility of ‘an order without
symmetry breaking’.

1.2 Surface states as zero mode of the bulk

When we describe the surface of topological insulator (TI), having insulating bulk and
conducting surface, in terms of holographic theory, one may wonder whether it is possible
at all, because the essence of the material is the surface properties while there is no surface of
boundary of AdS. Because the bulk is gapped and has no interesting transport coefficients,
we took the surface of 3d TI as the Dirac material and modeled it in terms of the AdS4 [7, 8].
Although the transport properties of the system could be described consistently with data,
this is certainly unsatisfactory, because TI can be defined consistently only by the bulk
and surface together.

One of the most important discovery of this work is find an alternative and possibly
the correct way to describe such topological materials. After symmetry breaking, half of
the 16 possible interactions give zero modes which turns out to be the same as the surface
state of topological materials of various types. The point is that, the surface mode is one
of the bulk modes, because it exists as a solution of the bulk equation of motion. The zero
mode is just confined or localized in one direction and propagate in other spatial directions,
which is the reason why it is a surface mode. For higher modes, they penetrate more to
the bulk by oscillations. In this spatial picture, it is clear why the zero mode is the surface
mode. On the other hand in momentum space, the “surface mode” does not look like much
different from the other bulk mode apart from that its energy or mass is zero. It actually
located near the Γ point ω = k = 0.

Then, we can model the 3d TI using ‘the AdS5 theory with a zero mode’ instead of
modeling the 2d surface of 3d TI in terms of AdS4 theory. We believe this is the correct holo-
graphic theory of the TI because the bulk modes include the massless surface mode as well.

Actually the most interesting point of this paper is that we can realize the surface
modes of all the known types, in holographic context from the bulk equation of motion and
we will clarify when the surface modes exist in terms of a discrete symmetry. We also see
that the spectrum of the symmetry broken phase mimics that of weakly interacting theory,
although their critical version describe the strongly interacting system.

Finally it is also worthwhile to notice that the chirality as the monopole charge of the
Berry phase can exist in any dimension, although the Weyl fermion as a representation of
SU(2) exist only for the even dimensions. Therefore the presence of the Fermi arc as a zero
mode which connect the two tip of the Dirac cones with + and - monopole charges can
exist in any dimension too.

1.3 Summary of main results

Before we go further, we want to give a short summary of main results to motivate the
reader. Since the holographic theories rely on the universality rather than microscopic
details, having the spectrum to measure the dynamical exponents of the QCP and the
symmetry of interaction terms are enough to identify the physical system. Using these
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(a) +Φ, s. (b) QCP. (c) -Φ, s.

Figure 1. Spectral Function(SF) for the one flavor. (a) Gap with positive coupling with the order.
(b) QCP: the spectrum of zero coupling. (c) zero mode with negative coupling. There is a metal
insulator transition at the QCP.

(a) Bxy(−1) s. (b) Bxy(−1) s.

achievable by different means of combining interlayer asymmetry, sub-
lattice asymmetry, and doping. The mechanism allows control of the
band dispersion all the way from parabolic through flat band forma-
tion to Mexican hat–like.

RESULTS
Experiment
Figure 1 shows ARPES data for a 6H-SiC sample with 1.2 monolayer
graphene (MLG) coverage. [As usual, the structural graphene mono-
layer at the interface, “zero-layer graphene” (ZLG), which is covalently
bonded and acts as buffer, is not counted.] For this coverage, the MLG
Dirac cone dispersion is expected to dominate with BLG contributing
just a faint intensity. However, there is an additional peculiar, very in-
tense, very sharp, and very flat band portion at 255-meV binding
energy that is not present in the case of MLG on SiC (20). The new
band is marked by white arrows in Fig. 1 (A to C). On the basis of
both calculations and experimental data, we attribute this band to the
bottom of one of the BLG bands. For this 1.2 monolayer coverage, the
photoemission intensities of the BLG bands are about four times lower
than those of the MLG bands, but at the same time, the flat band in-
tensity is about three times higher than that of the MLG bands.

There are examples in the literature where it is possible to see
this intense band in the data, but it has been ignored in discussions
so far (21–23), possibly because the resolution was not sufficient for
details of the band dispersion. We performed the measurements in
Fig. 1A with the electron wave vector perpendicular to the GK direc-

tion and through the K point, at a temperature of 60 K and a photon
energy of 62 eV. We did not observe any difference between data at K
and K′ . The features are much better visible as first derivative with
respect to energy in Fig. 1B: There is a faint indication that possibly
one more flat band at 150 meV (blue arrow) exists together with a
kink in the dispersion in the 150- to 160-meV energy range.

To judge the photoemission intensity distribution, we measured a
3D map around theK point. The cut along the GK direction in Fig. 1C
reveals that, in this experimental geometry, only half of the monolayer
Dirac cone and only half of the bilayer dispersion are visible because
of a destructive interference from the two graphene sublattices (24, 25).
We see the flat band on both sides from the K point with similar inten-
sities. This is unusual for photoemission interference from graphene.
In Fig. 1D, two constant energy cuts are presented, taken from Fig. 1A
data at 235- and 255-meV binding energies. An energy difference of
20 meV, very small for ARPES otherwise, is enough to show the drastic
change in the constant energy cuts. At 235 meV, away from the flat band,
there is a nearly circular ring with intensity modulation due to the photo-
emission interference effect, but at 255 meV, one sees the shape of a
disk, without modulation by interference.

The representation in Fig. 1E as a stack of photoemission spectra
(only every 10th spectrum is shown) demonstrates the high photo-
emission intensity of the flat band. Figure 1F shows the spectrum that
exactly intersects the K point. The spectra were analyzed by simple
single-peak Gaussian fitting of the topmost portion of the photoemission
peaks. The resulting dispersion is shown as dots in Fig. 1G. We find
that the scattering of peak maxima energies is not more than 2 meV
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Fig. 1. Angle-resolved photoemission spectroscopy. (A) Data for the sample with 1.2 monolayer graphene (MLG) coverage around the !K point of the graphene
Brillouin zone. The MLG Dirac cone dispersion, the faint BLG dispersion, and an intense nondispersing flattened band at 255-meV binding energy, marked by a white
arrow, can be seen. Measurements were done at hn = 62 eV and T = 60 K. (B) First derivative with respect to energy from the same data as in (A) where dispersions of all
bands are much more visible. A blue arrow shows the possible presence of one more flat band. (C) Measurements in theGK direction showing a destructive interference
effect for the monolayer and bilayer bands and its absence for the flat band. (D) Constant energy cuts taken at 235- and 255-meV binding energies. (E) Same data as in
(A) presented as a stack of spectra (only every 10th spectrum is shown). (F) Spectra at the !K point showing the flattened band intensity and its narrow width. (G) Dispersion of
the maxima extracted from the spectra.
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(c) TBG.

Figure 2. Spectral function with 2-tensor Bxy for the two flavor. (a) ω vs kx, (b) spectral function
in kx, ky plane. Notice the zero mode Disk in Bxy. (c) bilayer graphene with Extremely flat
band [33].

identification idea, we will find at least four interesting results. Since this paper is the
classification of the orders and resulting spectrum, we will only give pictures to compare
our result and the physical system, leaving the detailed data comparison in future work.

1. For symmetry breaking by the scalar order, there can be a massless phase as well as
massive ones depending on the sign of the order parameter in one flavor or quantiza-
tion rule for two flavors. See figure 1. This is rather surprising since in flat space one
can never have such result. This result can also be used to describe the metal insulator
transition or order-disorder transition, for which we will report in a separate paper.

2. For symmetry breaking by B5x, the spectrum can describe the Weyl fermion and its
Fermi arc. The result is consistent with the Haldane’s tangential attachment [31] of
the fermi arc to the fermi surface. See the figure 6.

3. For the tensor order Bxy, the spectrum has flat band which is suitable for describing
the bilayer graphene [32, 33]. See figure 2. If we add chemical potential, the spectrum
resembles that of the heavy fermion in Kondo lattice. See figure 3.

Some reader may worry about describing the topological matter in terms of the holo-
graphic theory, because in topological matter the boundary plays important role but the
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(a) Bxy,c = 0. (b) Bxy,c = 5. (c) Bxy,c = 10. (d) Kondo lattice.

Figure 3. (a-c) Formation process of bent flat band by as we change the stregnth of the coupling.
From the left to right Bxyc = 0, 5, 10. The chemical potential is fixed to be µ = 2

√
3. (d) Formation

of flat band by hybridization of localized state and conducting state.

boundary and the bulk of the matter can not be modeled in holographic method. But we
do not need to worry too much thanks to the bulk-edge correspondence: although we need
to combine the bulk and the surface to have a well defined physical system, we know the
bulk if we know the boundary and vice versa. Therefore, we can describe the boundary
only for TI. Previously we found that at least for the purpose of the transports, modeling
the boundary of TI as AdS boundary, works fine [7, 8] for data fitting. We assume this is
also the case for the spectrum. For Weyl or Dirac semi-metals, we identify the boundary
of AdS as the bulk of the material because the matter. What is surprising is that we will
find “surface mode” in the spectrum of the bulk in these cases.

2 Flat spacetime spectrum for various Yukawa interactions

To learn the effect of the each type of interaction, we first study the spectral functions(SF)
of flat space fermions and classify them. The spectral functions will be delta function
sharp. This will help us by suggesting what to expect in curved space if there are corre-
spondence, because the AdS version will be a deformed and blurred version of flat space SF
by interaction effects which is transformed into the geometric effect. However, AdS4 and its
boundary has difference in the number of independent gamma matrices, threrefore there are
interaction terms in the bulk which does not have analogue in its boundary fermion theory.

We now consider boundary fermion χ1, χ2 whose action is given by

S = Sχ + SΦ + Sint, where (2.1)

Sχ =
∫
d3x

2∑
j=1

iχ̄jγ
µDµχj (2.2)

SΦ =
∫
d3x

(
(DµΦI)2 −m2

ΦΦIΦI),
)

(2.3)

Sint = p1

∫
d3x (χ̄1 Φ · γ χ1 + h.c) + p2

2∑
j=1

∫
d3x (χ̄1 Φ · γ χ2 + h.c) , (2.4)

where Φ · γ = γµ1µ2···µI Φµ1µ2···µI and I is the number of the indices. For one flavor case,
we set p1 = 1, p2 = 0 and set p1 = 0, p2 = 1 for 2 flavor. Each two component fermion in

– 6 –



J
H
E
P
0
1
(
2
0
2
1
)
0
5
3

(a) Int. with Φ. (b) Int.with Bt. (c) Int.with Bi.

Figure 4. SF for one flavor. (a) scalar Interaction generate a gap. (b) Bt shift the spectrum along
ω direction. Bt = 2 (c) Bi shift the spectral cone in ki direction. Bi = 2.

2+1 dimension has definite helicity and the spin is locked with the momentum. Therefore
with one flavor, we can not have a Pauli paramagnetism. We list 2× 2 gamma matrices of
2+1 dimension.

γt = iσ2, γx = σ1, γy = σ3, (2.5)

γµν = 1
2 [γµ, γν ] , γtx = σ3, γty = −σ1, γxy = −iσ2 (2.6)

Following identity is necessary and useful to construct lagrangian.

γµ† = γ0γµγ0, and γµν = εµνλγλ, (2.7)

2.1 Spectrum in flat space

Because we did not introduce a lattice structure, we do not have periodic structure in
momentum space. instead we focus on the band structure near the zero momentum. If we
include only one flavor, only two bands will appear in the spectrum. For the zero mass,
left and right modes can be split, while it can not be for the massive case. For two flavors,
the number of bands is just doubled.

2.1.1 One flavor case: χ̄1 Φ · γ χ1

Scalar: Φ · γ = Φ. For the flat space, there is not much difference between the scalar
interaction and the mass term. Gap is generated as one can see from the equation of
motion. See also the figure 4(a). The mass term, if exist, violate the parity symmetry.

Vector: Φ · γ = Bµγ
µ. Its effect is shifting the spectral cone in xµ direction. See

figure 4(b,c).

Antisymmetric tensor: Φ · γ = Bµνγ
µν . In 2+1, The role ofInt. Bµν is the same

as that of εµνλBλ due to the second identity of eq. (2.7). Therefore no new spectrum is
generated. Comparing with figure 1 and figure 2, we can see that the spectral double of
the two flavor case is manifest as doubling of the bands.
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(a) Int.with Φ. (b) Int.with Bt. (c) Int.with Bi.

Figure 5. SF for two flavors. (a) scalar interaction generates a gap. (b) Bt shift the spectrum
along ω direction. The configuration has rotational symmetry in kx, ky space. (c) Bi shift the
spectral cone along ki direction. Different flavor shifts in opposite direction.

2.1.2 2 flavor: χ̄1 Φ · γ χ2 + h.c.

Here for convenience, we consider parity symmetry invariant combination of interaction
terms,

• Scalar: Lint = iΦ(χ̄1χ2 + χ̄2χ1) or Φ(χ̄1χ2 − χ̄2χ1) .

• Vector: Lint = Bµ(χ̄1γ
µχ2 + χ̄2γ

µχ1), or iBµ(χ̄1γ
µχ2 − χ̄2γ

µχ1)

• Antisymmetric tensor: Lint = Bµν(χ̄1γ
µνχ2 + χ̄2γ

µνχ1), or iBµν(χ̄1γ
µνχ2− χ̄2γ

µνχ1)

The point is that when the order parameter fields has non-zero vacuum expectation values,
the result of the operation depends on the fluctuating fields, the interactions are invariant
but when In each case, two forms of the interaction are equivalent because the second
form is just unitary transform of the first by χ1 → −iχ1, χ2 → χ2. Notice that when
the equation motion does not involve the i in the interaction term, the flavors shift in
opposite direction for vector and anti-symmetric tensor cases while two flavors share the
same spectrum for the scalar interaction.

The spectrum for the two flavor system is a double of one flavor case. For scalar,
gap is generate and spectrum is degenerated because two flavors has identically gapped
spectrum. For vector interaction, the spectral cone of each flavor is shifted in opposite
direction. Therefore in 2+1 dimensional flat space, anti-symmetric sector can be mapped
to the vectors. because the role of Bµν is that of εµνλBλ. However, in anti-de Sitter space,
two sectors can be different.

3 The fermions in AdS4

3.1 Dirac fermions in flat 2+1 space and in AdS4

For massless case, the spin-orbit coupling locks the spin direction to that of the momentum
so that for fixed momentum only one helicity is allowed for one flavor. In AdS4, half of the
fermion components are projected out depending on the choice of the boundary terms [34].
The spectrum of the fermions with AdS bulk mass term is still gapless, unless interaction
creates a gap, because the AdS bulk mass is a measure of the scaling dimension not a gap.
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Therefore 4-component AdS4 fermion suffer the same problem of 2 component massless
fermions in 2+1 dimension. For example such spin-momentum locked fermion system does
not have a Pauli paramagnetism [35]. One way to avoid such problem is to introduce two
flavor and create a gap in the spectrum by coupling with non-zero scalar field Φ as we will
show later.

A Dirac fermion in real system is that of 3+1 dimension even in the case the system is
arranged into a two dimensional array of atoms. Therefore it should be described by two
flavor of two component fermions, which corresponds to two flavor 4-component fermions
in AdS. Then the spectrum of massless Dirac fermion in condensed matter system should
be described as a degenerated Dirac cones. To describe the sublattice structure of the
graphene, we need another doubling of the flavor. Therefore we consider only two flavor
cases in the maintext, and provide the spectrum of the one flavor in the appendix for
curiosity.

Notice that in 2+1 dimension, a fermion field has two component while in AdS4 it has
4 components, where only half of the fermion components are physical [34]. Therefore, the
degrees of freedom of the bulk match with those of boundary in AdS4 theory if the number
of flavor in each side are the same. However, in AdS5, we need to double the number of
the fields, because 4 components in the boundary corresponds to the 8 components in the
AdS bulk. To avoid too many cases, we will consider only AdS4 cases here, and treat the
AdS5 separately in the future if necessary. The boundary action must be chosen such that
it respect the Parity symmetry as we have done in eq. (3.2), otherwise the flat space and
curved space does not have correspondence especially in scalar order.

3.2 Fermion action and equation of motion

We consider the action of bulk fermion ψ which is the dual to the boundary fermion χ.
Let ΦI be the dual bulk field of the operator χ̄ΓIχ. The question is how the ΦI couples
to the bulk fermion ψ. When ΦI is a complex field, it describe a charged order like the
superconductivity that has been already studied in holographic context. [36, 37]. If it is
real, it describes a magnetic order like anti-ferromagnetism or gapped singlet order. The
main difference is the absence or presence of the order parameter with vector field Aµ
which is dual to the electric current Jµ. We will consider both cases simultaneously and
summarize simply as “without or with chemical potential”, µ = At(r)|=∞.

The action is given by the sum S = Sψ + Sbdry + SΦ + Sint, where

Sψ =
∫
d4x

2∑
j=1

iψ̄jγ
µDµψj − im(ψ̄1ψ1 − ψ̄2ψ2), (3.1)

Sbdry = 1
2

∫
bdry

d3x i(ψ̄1ψ1 + ψ̄2ψ2), (3.2)

SΦ =
∫
d4x
√
−g

(
|DµΦI |2 −m2

ΦΦ∗IΦI
)
, (3.3)

Sint = p2f

2∑
j=1

∫
d4x

(
ψ̄1 Φ · γ ψ2 + h.c

)
+ p1f

∫
d4x

(
ψ̄1 Φ · γ ψ1

)
, (3.4)
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where Φ ·γ = γµ1µ2···µI Φµ1µ2···µI and it is important to remember that for scalar γ ·Φ = iΦ.
For one flavor, p2f = 0 and for 2 flavor, p1f = 0. Also depending on real/complexity of ΦI ,
the covariant derivative Dµ = ∂µ− igAµ has g = 0 or 1, and we use the AdS Schwarzschild
or Reisner-Nordstrom metric.

ds2 = − r
2

L2 f(r)dt2 + L2

r2f(r)dr
2 + r2

L2dx
2

f(r) = 1− rH
3

r3 −
rHµ

2

r3 + r2
Hµ

2

r4 (3.5)

where the horizon of the metric rH = 1
3(2πT+

√
4π2T 2 + 3µ2) and µ is a chemical potential.

Following the standard dictionary of AdS/CFT for the p-form bulk field Φ dual to the
operator O with dimension ∆, its mass is related to the operator dimension by

m2
Φ = −(∆− p)(d−∆− p), (3.6)

and asymptotic form near the boundary is

Φ = Φ0z
d−∆−p + 〈O∆〉z∆−p. (3.7)

For the AdS4, d = 3, p = 2,∆ = 2[ψ] = 2, we should set

m2
Φ = 0, and Bµν = B(−1)

µν z−1 +B(0)
µν . (3.8)

Here we used the coordinate z = 1/r which is simpler due to the homogeneity of the AdS
metric in this coordinate. We can find out the expression of the fields in r coordinate by
using the tensorial property.

Throughout this paper, we use the probe solution Φ which is the solution in the pure
AdS background. This approximation can give qualitatively the same behavior of the
fermion spectral function because for finite temperature, the horizon of the black hole cut
out the black hole’s inner region where the true solution of Φ deviate much from the probe
solution.

Following [23], we introduce φ± by

ψ± = (−ggrr)−
1
4φ±, φ± = (y±, z±)T . (3.9)

Then the equations of motion for the one flavor, with all the possible terms turned on, can
be written as

(∂r + UK)φ+ UIφ = 0, φ = (y+, z+, y−, z−)T (3.10)

where matrix UK is from the kinetic terms and UY is from the interaction term. If all types
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of interaction terms are turned on, they are given by

UK = −i ω
r2f

Γrt + i
kx

r2√f
Γrx + i

ky
r2√f

Γry − ig At
r2f

Γrt − m

r
√
f

Γr, and (3.11)

UI = − Φ
r
√
f

Γr − i Φ5
r
√
f

Γr5 + Bxy
r3√f

Γt5 + i
Brt
r
√
f

Γt + i
Brx
r

Γx

+ i
Bry
r

Γy − Btx
r3f

Γy5 + Bty
r3f

Γx5 − i Bx
r2√f

Γrx

− i By
r2√f

Γry − i Bt
r2f

Γrt − iBr1−
B5x
r2√f

Γty + B5y
r2√f

Γtx

− B5t
r2f

Γxy − iB5rΓ5, (3.12)

where

Φ =
Φ(s)
r

+
Φ(c)
r2 , Φ5 =

Φ5(s)
r

+
Φ5(c)
r2

Bµν = rBµν(s) +Bµν(c), Brµ =
Brµ(s)
r

+
Brµ(c)
r2

Bµ = Bµ(s) +
Bµ(c)
r

, B5µ = B5µ(s) +
B5µ(c)
r

,

Br =
Br(s)
r2 +

Br(c)
r3 , B(5)r =

B5r(s)
r2 +

B5r(c)
r3 ,

where the index i, j runs t, x, y and f is the screening factor of the metric. For AdS
Schwartzschild case, f = 1− r3

H/r
3.

For two flavors, the equation of motion changes minimally:

(∂r + UK)φ1 + UIφ2 = 0, (3.13)
(∂r + UK)φ2 + UIφ1 = 0, (3.14)

with the same UK and UI given above. For the clarity of the physics we turn on just one field
ΦI to calculate corresponding spectral function. ΦI is the order parameter field that couples
with spinor bilinear in the bulk. In this paper, we will treat it at the probe level with AdS
background. Although the probe solution for ΦI does not respect all the requirements at
the horizon, the IR region where the probe solution blows up by ∼ 1/r∆ is removed by the
presence of the horizon. Therefore it is a good approximation, unless the temperature is ex-
cessively small. We will separately consider the cases where order parameter field with con-
densation only and the case with source only in order to understand the effect of each case.

3.3 Discrete symmetries in AdS4

To discuss the discrete symmetry, we first list the explicit forms of the Gamma Matrices
we use.

Γt = σ1 ⊗ iσ2, Γx = σ1 ⊗ σ1, Γy = σ1 ⊗ σ3, Γr = σ3 ⊗ 1, (3.15)

Γ5 = iΓ0123 = σ2 ⊗ 1, Γµν = 1
2 [Γµ,Γν ] , Γtx = 1⊗ σ3, Γty = 1⊗−σ1, (3.16)

Γxy = 1⊗−iσ2, Γrt = iσ2 ⊗ iσ2, Γrx = iσ2 ⊗ σ1, Γry = iσ2 ⊗ σ3, (3.17)
Γt5 = iσ3 ⊗ iσ2, Γx5 = iσ3 ⊗ σ1, Γy5 = iσ3 ⊗ σ3, Γr5 = −iσ1 ⊗ 1 (3.18)
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Our convention of the tensor product is that the second factor is imbedded into each
component of the first factor. Notice that the construction is based on Γµ = σ1 ⊗ γµ, for
µ = 0, 1, 2, and Γr was chosen to satisfy the Clifford algebra {Γµ,Γµ} = 2ηµν . 1

2(1 ± Γr)
are projections to the upper (lower) two components of the 4-component Dirac spinor. In
AdS space, the bulk mass of a field is not playing the role of the gap. Therefore without
interaction, fermion spectrum is basically massless, and therefore helicity is a good quantum
number. The upper two components are for positive helicity while lower two components
have negative helicity. Depending on the boundary term, some of the components are
projected out. In this paper we will choose the upper two components of the first flavor
and lower two of the second flavor.

The bulk gamma matrix is 4× 4 and we can decompose it into irreducible representa-
tions of Lorentz group:

16 = 1(scalar) + 4(vector) + 6(tensor) + 4(axial vector) + 1(pseudo scalar), (3.19)

and we will consider each type of the interaction in detail.
From the boundary point of view, we have scalar and vector interaction. What hap-

pened to the correspondence between the bulk and the boundary? we can reclassify the 16
AdS4 tensors in terms of 2+1 tensors.

• 4 scalars: 1,Γ5,Γr,Γr5 = σA ⊗ 1 with σA = (1, σ2, σ3,−iσ1) .

• 3 types of vectors Γµ = σ1 ⊗ γµ, Γµ5 = iσ3 ⊗ γµ, Γrµ = ßσ2 ⊗ γµ,

• 3 tensors Γµν = εµνα1⊗ γα, where index runs 0, 1, 2.

We will see the similarities in each classes.
Below, we discuss the three discrete symmetries. T ,P, C acting on the Dirac spinors

and its bilinear in our gamma matrix convention. We need to know that the hermitian
form of interaction lagrangian is given by

Lint = ΦI ψ̄1ΓIψ2 + Φ∗I ψ̄2ΓIψ1 (3.20)

for all ΓI = i1,Γµ,Γ5µ,Γµν with µ, ν = t, x, y, r.

• The time reversal operation is given by T = TK where K is complex conjugation
and T is a unitary matrix. From the invariance of the Dirac equation, we have
TΓ0∗T−1 = −Γ0 and TΓi∗T−1 = +Γi. Since Γµ (µ = t, x, y, r) are all real in our
gamma matrix convention, we should have T = Γ1Γ2Γ3. Under the ψ(t) → ψ′(t′) =
T ψ(t) = Tψ∗(−t),

ψ̄1ΓIψ2 → ψ̄2Γ5ΓI†Γ5ψ1. (3.21)

Therefore the invariant Hermitian bilinears correspond to following 8 matrices:

ΓI = Γ5,Γ5r,Γt,Γ5i,Γti,Γtr. (3.22)

On the other hand, the other half with change sign under the time reversal operation.

ΓI = i1,Γr,Γ5t,Γi,Γri,Γxy. (3.23)
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• The parity symmetry (t, x, y, z)→ (t,−x,−y,−z) with z = 1/r. For this, one should
imagine that two AdS spaces with z > 0 and z < 0 are patched together along
the hyperplane at z = 0. Notice that vierbeins are even function of z because
eµa = δµa

√
gµµ and the horizon of the mirror geometry is located at −zH . The operation

P : ψ(t, x, y, r) → Γ0ψ(t,−x,−y,−z) realizes the symmetry, under which a fermion
bilinear transforms

ψ̄1ΓIψ2 → −ψ̄1Γ0ΓIΓ0ψ2. (3.24)

Then the invariant Hermitian quadratic forms correspond to following 8 gamma ma-
trices:

ΓI = i1,Γ5r,Γt,Γ5i,Γri,Γxy. (3.25)

On the other hand, the other half with

ΓI = Γ5,Γr,Γ5t,Γi,Γti,Γtr. (3.26)

change sign under the parity operation. Later we will see that the fermions with in-
teractions invariant under the Parity will have zero modes, that would be interpreted
as a surface mode, if there were an edge of the boundary of the AdS.

• The charge conjugation in our Gamma matrix convention is given by C = CK with
C = 1. This is due to the reality of the Γa with a = t, x, y, r, 5. Under this symmetry,

ψ̄1ΓIψ2 → ψ̄2Γ0ΓI†Γ0ψ1 = ψ̄2ΓIψ1. (3.27)

Therefore the bilinear term is invariant if the interaction is invariant under the 1↔ 2
and the order parameter is real.

• Next, we define the chiral symmetry under which we combine the time reversal and
sublattice symmetry S : 1↔ 2,

ψ1(t, x, y, r)→ Γ0ψ∗2(−t, x, y, r). (3.28)

It can be realized by X = Γ0KS, so that

ψ̄1ΓIψ2 → −ψ̄1ΓI†ψ2. (3.29)

Therefore quadratic forms corresponding to following 8 hermitian gamma matrices
change the sign

ΓI = Γ5,Γr,Γ5t,Γi,Γti,Γtr, (3.30)

while the other half
ΓI = i1,Γ5r,Γt,Γ5i,Γri,Γxy, (3.31)

which are anti-hermitian matrix does not change sign under this symmetry operation.
Then the kinetic term effectively reverse the sign while the mass term is invariant
and the equation of motion, hence the spectrum, is invariant as far as the order
parameter is real and the ΓI is hermitian. Notice the set of spectral symmetry of X
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is precisely complements of that of the parity symmetry. Notice also that X could
be a possible symmetry of the system because the bulk mass terms were chosen as
−im(ψ̄1ψ1 − ψ̄2ψ2) instead of −im(ψ̄1ψ1 + ψ̄2ψ2), which explains our choice of the
opposite signs in mass terms. However, such a change of mass term is a unitaty
operation and can not change the spectrum. On the other hand The parity is a
symmetry regardless of such sign choices. As we will see, the spectrum of our theory
follows P while its dual follows X .

4 Classifying the spectrum by the order parameter for 2 flavours

we classify the spectrum into scalar, vector, and tensor along the line we discussed above.
In all the figure below, we should keep in mind that the kx and the vertical one represents
either ω mostly except the fixed ω slice, where the vertical axis is ky.

4.1 Summary of spectral features

Here, we classify, summarize and tabulate some essential spectral features.

Spectral classification. Following the discussion below (3.19), we classify the spectrum
according to the 2+1 Lorentz tensor.

• There are 4 scalars. 1,Γ5,Γr,Γ5r. The first two were described above. For
the gauge invariant fields Bµ, we should set Br = B5r = 0. In fact, even for
non-gauge invariant case,the last two are identical to the zero Yukawa coupling
in our gamma matrix representation. For scalar interactions, the roles of source
and condensation are qualitatively the same.

• There are three classes of vectors: Bµ, Brµ and B5µ. The source creates the split
cones and the condensation creates just asymmetry. The first two are invariant
under the parity symmetry showing zero mode related features like Fermi-arc
and surface states(Ribbon band).

• There are 3 rank 2-tensor terms: Γxy,Γtx,Γty,. The first one is parity invariant
and has zero modes.

Gap vs zero modes with scalar order. Out of the 16 interaction types, only parity
symmetry breaking scalar interaction with Γ = Γ5) creates a gap without ambiguity.
Both source and the condensation create gaps.
On the other hand, parity invariant scalar with Γ = i1 has a zero mode Dirac cone
in spectrum, which is much sharper than the case of the non-interacting case due to
the transfer of the spectral weight to the zero mode by the interaction. The genuine
physical system with full gap will be described by this coupling.

Pseudo gap. When the interaction is parity non-invariant, the spectrum has pseudo gap
apart from Γ5 which produces real gap. Seven interactions corresponding to

ΓI = Γr,Γ5t,Γi,Γti,Γtr.
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C. Physical consequences of topology

We have seen that there are topological aspects of WSMs
which are most simply stated in terms of them being
monopoles of Berry curvature. Here we explore some of
the consequences of that topology. From experience with
topological insulators and quantum Hall states, we are used to
two different manifestations of topology. The first is to look
for nontrivial surface states, and the second is to study the
response to an applied electric and/or magnetic field. We
follow these general guidelines in this case. WSMs have
special surface states called Fermi arcs and an unusual
response to electric and magnetic fields due to the previously
discussed chiral anomaly.

1. Fermi arc surface states

Surface states are usually associated with band insulators.
Well-defined surface states can exist within the bulk band gap
and are typically exponentially localized near the surface. How
can we define surface states when the bulk is gapless, as in
WSMs? For this we need to further assume translational
invariance, so we label surface states by crystal momenta
within the 2D surface Brillouin zone (sBZ). Then we require
only that there are regions of the sBZ that are free of bulk states
at the same energy. Indeed if we consider the idealized limit of a
pair of Weyl nodes at the chemical potential (EF ¼ 0) at
momenta "k#

0 in the sBZ, one can define surface states at the
same energy at all momenta except at the projection of theWeyl
points onto the sBZ (Fig. 6, top left). At those two points,
surface states can leak into the bulk even at EF ¼ 0 and are not
well defined. If one considers other energies, the momentum
region occupied by bulk states grows as shown at the bottom of
Fig. 6. The presence of these bulk states allows for surface
states that are impossible to realize in both strictly 2D and on the

surface of any three-dimensional insulator, where there is a
finite energy gap throughout the entire Brillouin zone.
We can now discuss the nature of the surface states that

arise in WSMs, which at EF ¼ 0 are Fermi arcs that terminate
at "k#

0. These are a direct consequence of the fact that Weyl
nodes are sources and sinks of Berry flux. Hence, we consider
a pair of planes at kz ¼ 0 and kz ¼ π=a in the model given in
Eq. (12). Since they enclose a Weyl node, or Berry monopole,
there must be a difference in Berry flux piercing these two
planes that accounts for this source. Indeed, in the model of
Eq. (12) we see that kz ¼ 0 (kz ¼ π=a) has Chern number
C ¼ 1 (C ¼ 0). In fact, any plane −k0 < kz < k0 will have
Chern number C ¼ 1, so each of the of 2D Hamiltonians
Hkzðkx; kyÞ represents a 2D Chern insulator. If we consider a
surface perpendicular to the x direction, we can still label
states by kz, ky. The 2D Chern insulators Hkz will each have a
chiral edge mode that will disperse as ϵ ∼ vky near the Fermi
energy as shown also in Fig. 7(c). In the simplest model, v is
independent of kz as long as it is between the Weyl nodes. The
Fermi energy EF ¼ 0 crosses these states at ky ¼ 0 for all
−k0 < kz < k0, leading to a Fermi arc that ends at the Weyl
node projections on the sBZ, and in this particular model is a
straight line. An alternative continuum derivation of the Fermi
arc surface states was given byWitten (2015), where boundary
conditions are formulated to characterize scattering of Weyl
electrons from the boundary of the solid.
On changing the chemical potential away from the Weyl

nodes, the Fermi arc is displaced by virtue of its finite
velocity. The surface states all disperse in the same direction
and inherit the chiral property of the Chern insulator edge
states. At the same time, the bulk Fermi surface now
encloses a nonvanishing volume, and their projection onto
the sBZ is now a pair of filled disks that encloses the Weyl
node momenta. How are the Fermi arc surface states
attached to the projection of the bulk Fermi surface? In
the top right of Fig. 6, a plot of both surface (pink) and bulk
bands projected to the sBZ is shown, and sections of this
dispersion at two energies resemble the two left figures at
the bottom of Fig. 6. In a conventional 2D electron
dispersion traversing a band around a closed isoenergetic
contour in momentum space returns one to the starting
momentum. In contrast, in a WSM system, on following a
closed contour around an end point of the Fermi arc one
moves between the valence and conduction bands. A useful
analogy is the Riemann surface generated by a multivalued
function (Fang et al., 2016). Therefore, such a band
structure, although impossible in 2D, is allowed as a surface
state since the surface states can be absorbed by bulk bands
on moving away from the Weyl nodes in energy.
Haldane (2014) argued that the Fermi arc surface states

must be tangent to the bulk Fermi surfaces projected onto the
sBZ. This follows from the fact that the surface states must
convert seamlessly into the bulk states as they approach their
termination points. Putting this differently, the evanescent
depth of the surface state wave function grows until at the
point of projection onto the bulk states the surface states
merge with the bulk states. They should inherit the velocity of
the bulk states, which implies they must be attached tangen-
tially to the bulk Fermi surface projections as shown in Fig. 6.

FIG. 6. (Top left) Chern number, Weyl points, and surface Fermi
arcs. (Top right) Connection of surface states to bulk Weyl points.
(Bottom) Evolution of the Fermi arc with chemical potential in a
particular microscopic model on raising the chemical potential
from the nodal energy (E ¼ 0). Fermi arcs are tangent to the bulk
Fermi surface projections and may persist even after they merge
into a trivial bulk Fermi surface. From Balents, 2011, Wan et al.,
2011, and Haldane, 2014.

N. P. Armitage, E. J. Mele, and Ashvin Vishwanath: Weyl and Dirac semimetals in three- …

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015001-9

(a) Surface mode.

(b) B5xs, ω-kx. (c) ω = 0, kx-ky. (d) ω = 2, kx-ky. (e) B5xs, ω-ky.

(f) B5xs, ω-kx. (g) ω = 0, kx-ky. (h) ω = 2, kx-ky. (i) B5xs, ω-ky.

Figure 6. (a)up-left: surface Brillouine zone and Fermi-arc for Weyl-metal. This corresponds to
our 1-flavor theory. (a)up-right: bulk spectrum with split cones and ‘surface state’, which is the
zero mode. The figure came from [38]. Figures (b,c,d,e) are for our spectral functions (SF) for
1-flavor theory with B5x order. Figures (f,g,h,i) are for SF for 2-flavor theory. In figures (d,h), two
circles representing the sections of cones are so dim that only arc lines are visible.

have pseudo gaps. Therefore the pseudo gap is a typical phenomena rather than an ex-
ception for general interaction in this theory, while the true gap is a rare phenomena.

Fermi-arc. For vectors Bµ, B5µ and Brµ the role of source term is to generate the split
Dirac cones along kµ direction, µ = 0, 1, 2, while that of the condensation is to gen-
erate an anisotropy. This is just like the flat space cases. However, there is a very
interesting phenomena when the interaction term is invariant under the parity: that
is, for B5

i , Bri i = x, y, there exist a spectral line connecting the tips of two Dirac cones
at ω = 0 plane. This resembles the “Fermi-arc” in the study of Dirac or Weyl-semi
metal. The fact that we found a surface mode was a surprise at first, since we thought
that the arc is present only if there is a boundary of the matter. However, the paper
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by Vishwanath et al. [38, 39] clearly stated that the Fermi arc at the surface Brillouine
Zone(sBZ) at the figure 6(a)up-left is a projection along z-direction of a bulk mode at
E = 0 in 6(a)up-right. At each slice of energy, there is a spectral line which tangen-
tially connects the two split cones, as described by Haldane in [31]. See three figures
in 6(a)down. In (ω, k) space, they form a sliding-frame like band for 1 flavor theory,
and a wedge shape band for the 2-flavor theory. This is the “surface states” which ex-
ists regardless of the presence of the edge of the physical system. The Fermi-arc in the
bulk is the line where this surface band crosses the Fermi level EF . What is observed
in the experiment is the projected version of this to the sBZ. The edge mode is local-
ized at the boundary in position space but it is inside the bulk of momentum space.

Now looking at the figure 6(b,c,d,e) of our 1-flavor theory spectral functions, our
arc lines and cones satisfy all the conditions described above so that it is clearly
the same spectrum which is presented in the figure 6(a)up-right, which describes the
Weyl metal. Similarly, 6(f,g,h,i) of our 2-flavor theory describe the Dirac metal where
there are two fermi arcs forming a closed curve. It is crucial to notice that our zero(
or zero-mass) mode in figure 6(e,i) describe the sliding frame of not the Dirac cones.

This is true for any surface mode. Namely, any zero mode describes a surface mode
which is localized at the surface, if actual surface exist. It is easier to think if one
consider the TI, where the surface mode exists as a bulk zero mode connecting the
upper and lower band which are separated by a gap.

To make the long story short, the so called surface mode is part of the bulk modes
in momentum space, therefore it is natural to discover ‘the surface spectrum’ from
the bulk spectrum.

Finally we want to remark that although there is no Weyl fermion in 2+1 dimension,
one can still define the positive and negative monopole charges of the Berry connec-
tion. Almost all construction for the Weyl fermion in momentum space continue to
exist in 2+1. They include the surface states are the same apart from their dimen-
sionality. That is why the fermi-arc, which is associated with Wey fermion appears
in our AdS4 calculation. In fact, the spectrum of the boundary fermion for the AdS4
and that of AdS5 shares the same features. The so called surface states exist as bulk
zero modes in both AdS5 as well as AdS4.1

Flat band. Bxy interaction introduces a flat band which is a disk like isolated band at
the fermi level ω = 0. If chemical potential is applied, the disk bend like a bowl and
the fermi level shifts.

Zero mode and parity symmetry. In the presence of the background field BI with
coupling BI ψ̄ΓIψ, the spectrum shows the zero modes if the quadratic form is parity
invariant.

1This is analogous to the Faraday’s law
∮

C
dl · E = − ∂B

∂t
where left hand side is non-zero regardless of

the presence of the real circuit along the curve, if there is a time dependent magnetic flux.
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Duality. If we change the boundary term to Sbdry = 1
2
∫

bdry d
3x i(ψ̄1ψ1 − ψ̄2ψ2), then the

spectrum of dual pairs are exchanged. By the dual pair, we mean one of following
set of pairs:

(Φ,Φ5), (Bµ, B5µ), (Bµν , εµναβBαβ),

with indices running t, x, y, r. We found that, in this case, the presence of the zero
mode are protected by the chiral symmetry X we defined earlier.

Order without rotational symmetry breaking. The presence of the non-vanishing
order parameter field means the breaking of the some rotational or Lorentz sym-
metry from the bulk point of view. However, from the boundary point of view, some
order parametrs involving r-index, like Brt does not have obvious symmetry break-
ing interpretation and therefore they can be interpreted as ‘orders without symmetry
breaking’.

The table 1 summarizes all the features we found. We attributed the presence of the
zero modes to the protection of the parity invariance. The zero mode is of course the key for
the surface states. The presence of the zero mode results in the bright crossing of the Dirac
cone with the Fermi-level. This means that the zero modes create sharp Fermi-surface,
which was orginally fuzzy due to the strong interaction at the boundary. This is one of the
most interesting observation made in this paper. That is, the parity invariant interaction
can make a strongly interacting system be fermi-liquid like. Earlier in the figure 3 we
gave comparison of the spectrum with coupling Bxyψ̄Γxyψ in the presence of chemical
potential and that of the heavy fermion in Kondo lattice. More explicit comparison with
the experimental data is left as a future project.

4.2 Spectral Function (SF) with scalar interaction

4.2.1 Parity symmetry breaking case: Lint = Φ5(ψ̄1Γ5ψ2 + ψ̄2Γ5ψ1)

We begin with the simplest case where the order parameter field is scalar field. We choose
m2

Φ = −2 in AdS4 for simplicity. Then [40, 41]

Φ5 = M05z +M5z
2, (4.1)

in the probe limit. We consider source only and condensation only cases separately.

Scalar source: M05. The scalar source is usually interpreted as a mass of the boundary
fermion. Indeed our result given in the figure 7(a), where we draw the spectral function
(SF) in the presence of scalar with source term only, fulfill such expectation.

Scalar condensation: M5. This case describes the spontaneous scalar condensation.
For complex Φ with nonzero M it describe the cooper pair condensation while for real case
it may describe a chiral condensation or a random spin singlet condensation where lattice
spins pair up to form singlets, the dimers, in random direction so that there is no net
magnetic ordering. In fact, in lattice models with antiferromagnetic coupling, the ground
state is anti-ferromagneticaly ordered if frustrations and randomness are small enough.
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Order p./ Figure# Gap zero mode spectral feature possible dual system

Φ5
s/7a #

× gap
RS(real Φ)

c/7b # SC(complex Φ)

iΦ
s/7c ×

# Dirac cone Majorana Fermion in SC
c/7d ×

B5
r

s/7e ×
# Non-coupling NA

c/7e ×

Br
s/7e ×

× Non-coupling NA
c/7e ×

B5
i

s/9ghi ×
#

Split cones
Top. semi-metal

c/9jkl × Fermi arc

Bi
s/9abc ×

×
Split cones

NA
c/9def × pseudo gap

B5
t

s/10abc ×
× Rot. Sym NA

c/10ghi ×

Bt
s/10def ×

# Nodal line Top. semi-metal
c/10jkl ×

Brt
s/11d ×

× Marginal gap NA
c/11ef ×

Bri
s/12ghi ×

#
Split cones

Top. Ins.
c/12jkl × Fermi-arc

Bxy
s/11ab 4

# Disk flat band
twisted bi-layer graphene

c/11c 4 Kondo lattice

Bti
s/12abc ×

× Split cones, Fermi-arc Top. Ins.
c/12def ×

Table 1. In the table of “Gap”, # denotes gap at the fermi-level, 4 represents gap off the fermi
level and × is gapless. SC=superconductivity, RS=Random Singlet. A(kx, ω) means we consider
the spectral function A as the function of kx and ω. Under kx ↔ ky those with one spatial index
are assymetric. All others are symmetric. NA=not available.

On the other hand, it has random singlet (RS) state [42–45] if there is a randomness,
a distribution of next-nearest site couplings. Whether a RS like state has a gap or not
depends on the details of the lattice symmetry as well as the size of the randomness [46–
52]. Our philosophy is to bypass all such details and characterize the system only by a
few order parameter, assuming this is possible at least near the critical points. From our
calculation, a RS state with gap is described by a scalar order. Notice that the dipole
type interaction Frtψ̄γ

rtψ, which was used to study the Mott physics [29, 30, 53], does
not generate a true gap, because its density of state does not really has a gap although
its spectral function has gap like features in small momentum region. This is because the
spectral function shows a band that approaches to the fermi level for large momentum.
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(a) Φ5, s. (b) Φ5, c. (c) Φ, s. (d) Φ, c. (e) Br, B5r, s, c.

Figure 7. Spectral Function(SF) (a,b) with parity breaking scalar. (a) with source only. Gap
∆ ∼ M05. (b) with condensation only, ∆ ∼

√
M5; (c,d) with parity invariant scalar. Notice the

zero modes. (c) source only (d) condensation only. (e) Br, Brt shows the spectrum of zero coupling
due to the gamma matrix structrure.

z

Veff(z)

Figure 8. Shape of potential near the horizon. Dashed lines are the event horizons at a few
temperatures. As T increases, horizon moves out in z-coordinate.

Spectrum in potential picture. More characteristic feature is the appearance of
Kaluza-Klein (KK) modes in the figure 7, which is due to the effective z2 Schrödinger
potential for large z generated by the condensation part: the effective Schrödinger poten-
tial V ∼ Φ2

5/z
2 which goes like ∼M2

5 z
2 for large z [41]. Comparing the effect of the scalar

condensation with that of the scalar source, the gap is generated by condensation is smaller
than that generated by the source, as shown in 7 (a,b).

In the presence of chemical potential or temperature, the effect of z2 term is suppressed
because both T and µ increase the horizon size r0 and the region ‘inside’ the black hole,
z > z0 = 1/r0 is cut out. Then the rising potential z2 also disappear, and the potential
near the horizon collapses into −∞ because near the horizon,

Veff(zH) ∼ − 4 + w2zH
2

16(z − zH)2 , (4.2)

Furthermore the solution should satisfy the infalling boundary condition, so that instead of
the infinitely many clean quantized eigenvalues (KK modes), only finitely many imaginary
eigenvalues due to the tunneling to the horizon appears. See figure 8. This explains the
fuzziness and disappearance of KK modes in 7(d) in the presence of the chemical potential.
For the vector and tensor cases, there can be a pole between the horizon and the boundary.

We emphasize that this case is not related to the rotational symmetry breaking. The
Z2 symmetry is not encoded in this model either. So one natural candidate is the spin
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liquid with a gap [54, 55]. This case may be also useful to describe the coupling between
the localized (lattice) spin net work and the itinerant electron, namely the Kondo physics.

4.2.2 Parity preserving scalar interaction: Lint = iΦ(ψ̄1ψ2 + ψ̄2ψ1)

For the consistency with scalar model, we choose the m2
Φ = −2 so that we still have

Φ = M0z + Mz2. The spectrum is gapped for both source and condensation. For the
latter case zero chemical potential case shows sharp KK modes. Compared with the scalar
case, spectrum is sharper. See figure 7 (c,d) for the spectral functions with pseudo scalar
source and condensation respectively. The system is similar to the scalar but with Parity
symmetry broken. The most famous case is the pion condensation in nuclear physics.

4.3 Vectors

From the 2+1 dimension boundary point of view there are three classes of vectors: Bµ, Brµ
and B5µ, respectively. In each class, the source shifts the two degenerate Dirac cones, one
to negative and the other to positive kµ directions. The last two classes are invariant under
the parity showing zero mode related feature like Fermi-arc and surface states(Ribbon
band). See figures 10, and 9.

4.3.1 Polar vector: Lint = iBµ(ψ̄1Γµψ2 − ψ̄2Γµψ1)

Bµ is the extension of the source field that couples to boundary fermion current χ̄Γµχ. We
can set the mass of vector and axial-vector order field to zero. Then, Bi = B

(0)
i + B

(1)
i z1.

Notice that there are asymmetry between x and y direction. Therefore when Bx → By, it
has to be followed by kx → ky at the same time.

Source. SF for Bx coupling with source only is just superposition of two shifted SF’s of
zero coupling cases along the kx. Different flavors shift in opposite directions.

Condensation. Anisotropy instead of cone splitting is created. See figure and 9 and 10.

4.3.2 Pseudo vector: Lint = iB5µ(ψ̄1Γ5µψ2 − ψ̄2Γ5µψ1)

Pseudo vectors mostly follows the pattern of polar vectors. One important point to em-
phasize is the line shaped zero mode at ω = 0 plane. At higher slice ω = 2, there are also
lines connecting two cicles representing the two shifted Dirac cones. See figure 9(b)(c). So
the total 3 dimensional figure is like figure 6 with double of the surface modes, which we
call Ribbon bands.

4.3.3 Radial vector: Lint = iBrµ(ψ̄1Γrµψ2 − ψ̄2Γrµψ1)

Radial vectors follows the pattern of polar vectors including zero modes. See figure 11
and 12.

– 20 –



J
H
E
P
0
1
(
2
0
2
1
)
0
5
3

(a) Bx s. (b) ω = 0, Bx s. (c) ω = 2, Bx s. (d) s, By(0). (e) Bx c. (f) ω = 2, Bx c.

(g) B5x s. (h) ω = 0, B5x s. (i) ω = 2, B5x s. (j) s, B5y(0). (k) B5x c. (l) ω = 2, B5x c.

Figure 9. (adgj)Spectral Functions of Bx and B5x with additional sliced view in kx, ky plane of
ω = 0, 2 slices. Notice that source splits the degenerated Dirac cones. Bx has zero modes nut B5x
does not. In all figures, we used B = 4 for any indices.

(a) s, B5t(0). (b) ω = 0, B5ts. (c) ω = 2, B5ts. (d) s, Bt(0). (e) ω = 0, Bts. (f) ω = 2, Bts.

(g) c, B5t(0). (h) ω = 0, B5tc. (i) ω = 2, B5tc. (j) c, Bt(0). (k) ω = 0, Btc. (l) ω = 2, Btc.

Figure 10. Spectral function with (pseudo) vector source interactions (a-f), and SF with (pseudo)-
vector condensation (g-l). s means source and c means condensation.

4.4 Antisymmetric 2-tensor

6 anti-symmetric rank 2 tensors can be decomposed into three Bµr, µ = 0, 1, 2 which should
be reclassified as a boundary vector and the rests Btx, Bty, Bxy. The former was already
described above.

Notice the manifest zero mode Disk in Btr from the figure 11. There are rotational
symmetry in Btr, Bxy, but not in Bxr. Spectrum of Bty and Bxr are ambiguous without
the views in kx-ky at various ω slices, which we provide in figure 12. Both of them have
split cones and the zero modes. Both have Ribbon bands connecting the two cones.
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(a) Bxy(−1) s. (b) Bxy(−1) s. (c) Bxy(0) c. (d) Btr(−1) s. (e) Btr(0) s. (f) Btr(0) c.

Figure 11. Spectral function with various types tensor interaction, which is decomposed into 2+1
radial vector Bµr’s (ab) and 2-tensor Bxy (cd). Notice the zero mode Disk in Bxy. There are
rotational symmetry in Btr, Bxy.

(a) Bty(0) s. (b) ω = 0 Bty s. (c) ω = 2 Bty s. (d) c, Bty(0). (e) ω = 0 Bty c. (f) ω = 2 Bty c.

(g) Brx(0) s. (h) ω = 0 Brx s. (i) ω = 2 Brx s. (j) c, Brx(0). (k) ω = 0 Brx c. (l) ω = 2 Brx c.

Figure 12. Spectrum of Brx and Bty with sliced views kx-ky at ω = 0, 2 slices, without which
these spectra are ambiguous. Notice the zero modes and Ribbons connecting the two split cones.

5 Conclusion

We classified the Yukawa type interactions according to its Lorentz symmetry of the bound-
ary theory and calculate their spectral functions. We met many interesting features that
appear in the strongly correlated system: gap, pseudogap, flat band and Fermi-arc stuc-
tures appear.

Out of the 16 interaction types, only parity breaking scalar interaction (Γ = 1) creates
a gap without ambiguity. Both source and the condensation create gaps. However, the
parity conserving scalar (Γ = Γ5) has a zero mode Dirac cone in spectrum, which is much
sharper than the case of the non-interacting case due to the transfer of the spectral weight
to the zero mode by the interaction. The genuine physical system with full gap will be
described by this coupling. For vector Bµ, B5µ, Brµ show feature of split cones if the order
parameter field have source part. The last two are invariant under the parity , there are
the Fermi-arc. Another interesting feature is the flat disk band of Bxy, which might be
useful to describe the twisted bi-layered graphene. If chemical potential is applied, the disk
bend like a bowl and the fermi level shifts, resembling the band of the Kondo lattice.
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There are three classes of vectors, Bµ, Brµ and B5µ, respectively. The source creates
the splited cones and the condensation creates just asymmetry. The first two are invari-
ant under the reflection showing zero mode related features like Fermi-arc and surface
states(Ribbon band). There are 3 tensor types: Γxy,Γtx,Γty. These respect the parity and
has zero modes.

Since the spectral data is the fingerprint of a matter, we would be able to determine
the order of a strongly interacting system by comparing the calculated spectral function
in the presence of these orders with the experimental data. We expect that our result will
give an insight for magnetic orders of strongly interacting materials.

Final remark is that the quartic or higher terms do not contribute to the spectral
functions.Therefore it is enough to discuss the effect of the Yukawa coupling to calculate
the leading order effects of order parameter fields on the fermion spectrum. In fact, the
Yukawa coupling terms are most relevant ones in low energy. Here we consider the gravity
background of asymptotically AdS4 with Lorentz invariance.

In the future, we will study the AdS5 version of this paper, which related to Weyl
Semi-metal instead of Dirac semi-metal. It will be also interesting to extend our work
to higher quantum critical points. There are ten classes of different topological insula-
tor/superconductors depending on the discrete symmetries. It will be also interesting to
realize all of such 10 folds way in terms of the explicit laglangian. One more possibility is
to study the effect of combinations of the Yukawa interactions to create different types of
spectral features. Studies in these directions are under progress.
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A Spectrum with one flavour

We present the results for 1 flavor, which in many case seems to give an half of the 2-flavor
case with an asymmetry.

A.1 Scalar

Other type of scalars Γr5,Γr does not seem to change the spectrum of zero scalar coupling.
Notice that there is no zero mode in one flavor scalar interaction. This is striking difference
from the 2 flavor case.
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(a) s M0. (b) s M5. (c) c M0. (d) c M5.

Figure 13. SF (a) with scalar source, Gap ∆ ∼M0. (b) with pseudo-scalar source. Gap ∆ ∼
√
M .

(c) with scalar condensation (d) with pseudo-scalar condensation.

(a) s, Bx. (b) ω = 0, Bx s. (c) s, By(0). (d) c, Bx. (e) ω = 2, Bx c. (f) c, By(0).

(g) s, B5x. (h) ω = 2, B5x s. (i) s, B5y(0). (j) c, B5x. (k) ω = 2, B5x c. (l) c, B5y(0).

(m) s, Bt(0). (n) s, B5t(0). (o) c, Bt(0). (p) c, B5t(0).

Figure 14. SF with most typical vector interactions. For SF with Bt and B5t, these are the same
as those of 2-flavors due to the rotational symmetry in xy plane.

A.2 Vectors

A.3 Anti-symmetric tensor

B The role of the chemical potential

Let’s begin by looking at the simplest scalar case. As one can see from figure 16, the
main effect of the chemical potential is three folds: the first is to shift the Fermi-level and
the second is to make the spectrum fuzzier. The third one is to introduce the asymmetry
between the positive and negative frequency regions.
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(a) s, Bty(0). (b) ω = 0 Bty s. (c) ω = 2 Bty s. (d) c, Bty(0). (e) ω = 0 Bty c. (f) ω = 2 Bty c.

(g) s, Bxr(0). (h) ω = 0 Bxr s. (i) ω = 2 Bxr s. (j) c, Bxr(0). (k) ω = 0 Bxr c. (l) ω = 2 Bxr c.

(m) s, Bxr. (n) ω = 0 Bxr s. (o) ω = 2 Bxr s. (p) c, Btr. (q) ω = 0 Btr s. (r) ω = 2 Btr s.

(s) s, Bxy. (t) s, Btr. (u) ω = 0 Btr s. (v) ω = 2 Btr s.

Figure 15. Spectrum of Anti-symmetric tensors. For Bxy and Btr, the spectrum is similar to that
of the 2-flavor described in the main text due to the rotational symmetry.

(a) µ = 0, A(w, k). (b) µ = 2
√

3,
A(w, k).

-10 -5 0 5 10

0

1

2

3

4

5

ω

A
(ω
,k
=
0)

(c) A(w, k = 0).

Figure 16. The role of µ for the case with scalar condensation: (a) without and (b) with chemical
potential. (c) Spectrum at k = 0: blue for µ = 0, green for µ =

√
3, red for µ = 2

√
3.
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(a) Bxy s, µ = 0. (b) Bxy s, µ =
√

3. (c) Bxy c, µ = 0. (d) Bxy c, µ =
√

3.

Figure 17. (a,b): SF with only source Bxy with one flavor. Notice the presence of the flat
band of disk-shape, which is bent down in the presence of chemical potential; (c,d): SF with only
condensation Bxy. All figures here have cylindrical symmetry.

Now we consider the one flavor Bxy and Btr interactions which are in a sense dual to
each other. To consider the case of spontaneously broken symmetry, we set B(−1) = 0.
Most important feature here is the appearance of the flat band and gated gap, which
means that the gap is reachable by gating. For µ = 0, exact flat band is generated at
w = 0. If we turn on the chemical potential, the central flat band is bent to give a
shallow-bowl shaped band. With increasing A fuzzy flat band is created at higher energy.
See figure 17(d). Notice the similarity of the spectrum with that of the heavy fermion
spectrum in Kondo lattice, where an impurity spin interact with the itinerant electron
with anti-ferromagnetic coupling. Indeed, our interaction term Bxyψ̄Γxyψ is the form of
the Kondo coupling ~Simp ·ψ̄~σψ in the boundary if we interpret the order parameter field Bxy
as the impurity spin along z axis, because Γxy is the corresponding spin generator matrix.

Both source and condensation seem to develop a gap in the negative energy region while
Fermi level passes through the conduction band. Since gap usually means gap containing
the Fermi-level to give an insulator, we need a new name. We call such gap as gated gap
because we expect that we can get an insulator by gating the system, that is by applying
external electric field. Therefore we studied the evolution of Brt in µ. Figure 18 shows,
however, that gap is generated only in a window of negative µ around µ = −1.

B.1 Brt vs Frt
We want to make a comment on comparing this case with the work of Phillips et al. [29, 30]
where the dipole interaction Frtψ̄Γrtψ was considered in search of the gap. The difference
with ours is that our Brt is an order parameter independent of the basic vector field Aµ
while Frt = ∂rAt. Namely,

A =
(
µ1 −

r0
r

)
dt, F = dA = µr0

r2 dt ∧ dr, B = B
(0)
rt dt ∧ dr. (B.1)

If the condensation B
(0)
rt is related to the chemical potential by B

(0)
rt = µ/r0, our model

with non-zero chemical potential is exactly the same as the dipole interaction model. In
fact, figure 19 shows that the overall features of two cases are similar. However, for zero
chemical potential, our model still have the non-zero order parameter B(0)

rt while the dipole
interaction vanishes automatically. Both source and condensation seem to develop a gap
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(a) µ = −2
√

3. (b) µ = −
√

3. (c) µ = 0. (d) µ =
√

3. (e) µ = 2
√

3.

-15 -10 -5 0 5 10 15
0

1

2

3

4

5

6

k

A(k,ω=0;μ)

μ = -2 Sqrt[3]

μ = -Sqrt[3]

μ = 0

μ = Sqrt[3]

μ = 2 Sqrt[3]

(f) µ = −2
√

3 to µ = 2
√

3.

Figure 18. µ-evolution of SF of Brt interaction with condensation Brt(0) = 7. (a,b,c,d,e): denisity
plot in (ω, k). (f):SF at the Fermi level. The minimum of DOS is at µ ' −1.

(a) µ =
√

3, Frt. (b) µ = 2
√

3, Frt. (c) µ =
√

3, Brt. (d) µ = 2
√

3, Brt.

Figure 19. (a,b): SF for Frt and (c,d): SF for Brt with condensation B(0)
rt = 7. Two models are

similar.

in the negative energy region while Fermi level passes through the conduction band. Since
gap usually means gap containing the Fermi-level to give an insulator, we need a new name.
We call such gap as gated gap because we expect that we can get an insulator by gating
the system, that is by applying external electric field. Therefore we studied the evolution
of Brt in µ. Figure 19 shows, however, that gap is generated only in a window of negative
µ around µ = −1.
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