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1 Introduction

The model for a massless gauge two-form in four dimensions was introduced in the mid-
1960s by Ogievetsky and Polubarinov [1] who showed that it describes a spin-zero particle.
Unfortunately, their work remained largely unknown for a decade. The same model was
rediscovered, and generalised, twice in 1974 in the context of dual resonance models [2, 3].
However, active studies of gauge p-forms in diverse dimensions began only in the late 1970s
when it was recognised that such fields naturally occur in supergravity theories, see, e.g., [4–
6] for early publications and [7–9] for reviews. Gauge p-forms are also of special interest
in string theory where they appear in the low-energy effective actions see, e.g., [10–13]
for reviews.
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There are two important themes in modern quantum field theory that originated by
studying the quantum dynamics of massless gauge p-forms: (i) reducible gauge theories;
and (ii) quantum equivalence of dual theories. It is appropriate here to briefly recall these
developments.

For p > 1, all massless p-form actions are examples of the so-called reducible gauge
theories (following the terminology of the Batalin-Vilkovisky formalism [14]). In the frame-
work of covariant Lagrangian quantisation, reducibility means that the generators of gauge
transformations are linearly dependent. This fact has a number of non-trivial implications,
which are: (i) gauge-fixing functions are constrained; (ii) ghosts for ghosts are required;
and (iii) a naive application of the Faddeev-Popov quantisation scheme leads to incorrect
results. Several consistent quantisation procedures have been developed to quantise re-
ducible Abelian gauge theories such as gauge p-forms [15–19], including the formulations
of [17, 19] which apply in the supersymmetric case. These quantisation schemes are much
easier to deal with than the Batalin-Vilkovisky formalism [14].1

In d dimensions, two massless field theories describing a p-form and a (d− p− 2)-form
are known to be classically equivalent, see, e.g., [9, 23] for reviews. These theories are
dual in the sense that the corresponding actions are related through the use of a first-
order (or parent) action, see e.g. [24]. The issue of quantum equivalence of such classically
equivalent theories was raised, building on the results of [25], in 1980 by Duff and van
Nieuwenhuizen [26, 27]. They showed, in particular, that (i) a massless two-form and
a non-conformal scalar in four dimensions give rise to different trace anomalies; and (ii)
the corresponding one-loop divergences differ by a topological term. These results were
interpreted in [26] as a possible quantum non-equivalence of these dual field realisations.
The issue was resolved in several publications [19, 24, 28, 29] in which it was shown that the
effective actions of dual massless theories in four dimensions differ only by a topological
invariant being independent of the spacetime metric. As a result, the dual theories are
characterised by the same quantum energy-momentum tensor, 〈Tab〉, which proves their
quantum equivalence.2 Analogous results hold in higher dimensions [24, 30], as well as for
dual supersymmetric field theories in four dimensions [19, 29] (see also [31] for a review).
It is worth discussing the supersymmetric story in some more detail.

Several important massless N = 1 supermultiplets in four dimensions can be realised in
terms of super p-forms [32] (see also [33]), with the cases p = 0, 2 and 3 corresponding to the
chiral, tensor and three-form multiplets, respectively. The corresponding supersymmetric
theories are related either by a duality transformation or by a superfield reparametrisation.

1One of the earliest applications of the Batalin-Vilkovisky formalism [14] was the Lagrangian quanti-
sation [20, 21] of the Freedman-Townsend model [22]. Ref. [20] was accepted for publication in Sov. J.
Nucl. Phys. in 1987. It was subsequently withdrawn shortly before publication, after the authors had
been informed by a colleague that the same problem had already been solved elsewhere. Due to a limited
access to the journals, at the time it was not possible to verify this information, which in fact turned out
to be false.

2In the four-dimensional case, the dual two-form and zero-form theories are classically non-conformal.
As emphasised in [29], the quantum operator T aa in such theories “contains the effects of both classical
and quantum breaking and is not equal to the trace anomaly.” In other words, there is no point to compare
trace anomalies in classically non-conformal theories.
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The simplest model for the tensor multiplet [34] in a supergravity background is given by
the action3

Stensor[Ψ, Ψ̄] = −1
2

∫
d4x d2θ d2θ̄ E

(
G(Ψ)

)2
, G(Ψ) := 1

2
(
DαΨα + D̄α̇Ψ̄α̇) , (1.1)

where Ψα is a covariantly chiral spinor, D̄β̇Ψα = 0. Its dual version [34]

Schiral[Φ, Φ̄] = 1
2

∫
d4x d2θ d2θ̄ E (Φ + Φ̄)2 , D̄β̇Φ = 0 , (1.2)

describes the non-conformal scalar multiplet.
Let us represent the dynamical variables in (1.2) as Φ = P+V and Φ̄ = P−V , where

V is a real scalar and the operators P+ and P− have the form4

P+ = −1
4
(
D̄2 − 4R

)
, P− = −1

4
(
D2 − 4R̄

)
. (1.3)

Then we end up with the three-form multiplet realisation [32] of the non-conformal scalar
multiplet. The corresponding action is

S3-form[V ] = 1
2

∫
d4x d2θ d2θ̄ E V

(
P+ + P−

)2
V , V̄ = V . (1.4)

This theory was studied in [19], see also [31] for a review.
The models (1.1) and (1.2) are dually equivalent [34]. Their quantum equivalence was

established in [29] in the case of an on-shell supergravity background, and in [19] for an
arbitrary supergravity background.

Since the three-form multiplet action (1.4) is obtained from (1.2) by setting Φ = P+V ,
the physical fields can be chosen to coincide in both models. The main difference between
the models (1.2) and (1.4) at the component level is that one of the two real auxiliary scalars
in (1.2) is replaced by (the Hodge dual of) the field strength of a three-form in the case
of (1.4). Being non-dynamical, the three-form is known to generate a positive contribution
to the cosmological constant [26, 37–41]. In order to achieve a better understanding of the
three-form multiplet model (1.4), we describe its dual version. It is obtained by starting
with the first-order action [19]

S[V,L] = −
∫

d4xd2θd2θ̄ E

{1
2L

2 − L
(
P+ + P−

)
V

}
, (1.5)

where V and L are unconstrained real scalars. Varying S[V,L] with respect to L leads to
the three-form multiplet action (1.4). On the other hand, varying V gives(

P+ + P−
)
L = 0 =⇒ P+L = iµ , µ = µ̄ = const . (1.6)

3Our consideration below can readily be extended to the nonlinear theories which were introduced in [34]
and are obtained by replacement G2 → f(G). However, such theories are non-renormalisable in general
and will not be studied in what follows. It should be pointed out that the duality transformations for the
nonlinear f(G) models were described in [35]. The special choice of f(G) ∝ G lnG corresponds to the
so-called improved (superconformal) tensor multiplet [36].

4For any scalar superfield U , P+U is covariantly chiral, and P−U antichiral.

– 3 –



J
H
E
P
0
1
(
2
0
2
1
)
0
4
0

This constraint defines a deformed tensor multiplet, in accordance with the terminology
of [42]. The dynamics of this multiplet is described by the action

S[L] = −1
2

∫
d4x d2θ d2θ̄ E L2 , P+L = iµ , µ = µ̄ = const . (1.7)

At the component level, the main manifestation of the deformation parameter µ in (1.7) is
the emergence of a positive cosmological constant. Unlike (1.7), no parameter µ is present
in the action (1.4). However, µ gets generated dynamically, since the general solution of
the equation of motion for (1.4) contains such a parameter,(

P+ + P−
)2
V = 0 =⇒ P+

(
P+ + P−

)
V = iµ , (1.8)

with µ a real parameter. On the mass shell, we can identify
(
P+ +P−

)
V = L. The effective

actions corresponding to different values of µ differ by a cosmological term. The authors
of [19] made use of the choice µ = 0 and demonstrated that the effective actions Γchiral and
Γ3-form, which correspond to the locally supersymmetric models (1.2) and (1.4), differ by
a topological invariant.

It should be pointed out that general duality transformations with three-form multi-
plets and their applications were studied in [43–45].

So far we have discussed the models for massless p-forms and their supersymmetric
extensions. Massive antisymmetric tensor fields were discussed in the physics literature
even earlier than the massless ones. Kemmer in 1960 [46], and independently Takahashi
and Palmer in 1970 [47], showed that the massive spin-1 particle can be described using a
2-form field. Further publications on massive antisymmetric fields [3, 48–53] revealed, in
particular, that a massive p-form in d dimensions is dual to a massive (d−p−1)-form.5 This
raised the issue of quantum equivalence of dual models. Some quantum aspects of massive
p-forms were studied using the worldline approach in [56, 57]. In the important work by
Buchbinder, Kirillova and Pletnev [58], the quantum equivalence of classically equivalent
massive p-forms in four dimensions was established. In the present work we extend the
results of [58] to d dimensions. Our proof of the quantum equivalence of dual theories
in d = 4 differs from the one given in [58]. Our approach is also extended to the case
of massive super p-forms coupled to background N = 1 supergravity in four dimensions.
Specifically, we study the quantum dynamics of the following massive super p-forms: (i)
vector multiplet; (ii) tensor multiplet; and (iii) three-form multiplet. In particular, we
demonstrate that the effective actions of the massive vector and tensor multiplets coincide.

Massive super p-forms have recently found numerous applications, including the effec-
tive description of gaugino condensation [59–62], inflationary cosmology [63], and effective
field theories from string flux compactifications [64] (see also [65] for a review). Here we
do not attempt to give a complete list of works on massive super p-forms and their appli-
cations. However it is worth mentioning those publications in which such supermultiplets
were introduced in the case of four dimensional N = 1 supersymmetry. Massive tensor and
vector multiplets coupled to supergravity were studied in [34, 53, 66]. Tensor multiplets

5Massive p-forms naturally occur in the framework of string compactifications with non-trivial back-
ground fluxes [54, 55].
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with complex masses were studied in [69–71]. To the best of our knowledge, a massive
three-form multiplet was first discussed in [31], although a massive three-form is contained
at the component level in one of the models introduced by Gates and Siegel [72].

This paper is organised as follows. In section 2 we derive effective actions Γ(m)
p for

massive p-form models in d-dimensional curved spacetime. We then demonstrate that, for
0 ≤ p ≤ d − 1, the effective actions Γ(m)

p and Γ(m)
d−p−1 differ by a topological invariant.

Section 3 is devoted to alternative proofs of some of the results of section 2 specifically for
the d = 4 case. Effective actions for massive super p-forms in four dimensions are studied
in section 4. In section 5 we discuss the obtained results and sketch several generalisations.
Four technical appendices are included. Appendix A collects the properties of the Hodge-de
Rham operator. Appendix B gives a summary of the results concerning massless p-forms in
d dimensions. The effective action of a massless three-form in d = 4 is discussed in appendix
C. Finally, appendix D describes dual formulations in the presence of a topological mass
term. We make use of the Grimm-Wess-Zumino geometry [73] which underlies the Wess-
Zumino formulation [74] for old minimal supergravity (see [75] for a review) discovered
independently in [76–81]. Our two-component spinor notation and conventions follow [31].
The algebra of the supergravity covariant derivatives, which we use, is given in section
5.5.3 of [31].

In order to have a uniform notation for non-supersymmetric and supersymmetric the-
ories, in this paper we make use of the vielbein formulation for gravity. The background
gravitational field is described by a vielbein ea = dxmema(x), such that e = det(ema) 6= 0,
and the metric is a composite field defined by gmn = em

aen
bηab, with ηab the Minkowski

metric. All p-form fields in d dimensions carry Lorentz indices. We make use of the
torsion-free covariant derivatives

∇a = ea + ωa = ea
m∂m + 1

2ωa
bcMbc , [∇a,∇b] = 1

2Rab
cdMcd . (1.9)

Here Mbc = −Mcb denotes the Lorentz generators, eam(x) the inverse vielbein, eamemb =
δa
b. The Lorentz generators act on a d-vector va as Mbcv

a = δabvc − δacvb = 2δa[bbc].

2 Massive p-forms in d dimensions

In this section we derive effective actions Γ(m)
p for massive p-form models in curved space

and demonstrate that Γ(m)
p and Γ(m)

d−p−1 differ by a topological invariant.

2.1 Classical dynamics

Let Ba1...ap(x) = B[a1...ap](x) ≡ Ba(p)(x) be a differential p-form in curved spaceMd. The
dynamics of a massive p-form is described by the action

S(m)
p [B] = − 1

2(p+ 1)!

∫
ddx eF a1...ap+1(B)Fa1...ap+1(B)

−m
2

2p!

∫
ddx eBa1...apBa1...ap , (2.1)

– 5 –
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where Fa1...ap+1(B) := (p + 1)∇[a1Ba2...ap+1] is the field strength, and m the mass. It is
assumed in this section that m 6= 0. The Euler-Lagrange equation corresponding to (2.1) is

∇bFba1...ap(B)−m2Ba1...ap = 0 . (2.2)

It implies that

∇cBca1...ap−1 = 0 , (2.3)

and therefore the equation of motion turns into

(�p −m2)Ba1...ap = 0 , (2.4)

where �p is the covariant d’Alembertian (A.5).
The symmetric energy-momentum tensor corresponding to the model (2.1) is

T ab[p,m](B) = 1
p!
{
F ac1...cp(B)F bc1...cp(B)− 1

2(p+ 1)η
abF c1...cp+1(B)Fc1...cp+1(B)

}
+ m2

(p− 1)!
{
Bac1...cp−1Bb

c1...cp−1 −
1
2pη

abBc1...cpBc1...cp

}
, (2.5)

with ηab the Minkowski metric. It is conserved,

∇bT ab[p,m] = 0 , (2.6)

on the mass shell.

2.2 Duality equivalence

It is known that the massless models for a p-form and (d − p − 2)-form are classically
equivalent, see appendix B. In the massive case, however, a p-form is dual to a (d− p− 1)-
form, see, e.g., [51, 53]. Here we recall the proof of this result. To demonstrate that the
massive theories with actions S(m)

p [B] and S(m)
d−p−1[A] are equivalent, we first rewrite (2.1)

in the form

S(m)
p [B] = 1

2(d− p− 1)!

∫
ddx eLa(d−p−1)(B)La(d−p−1)(B)

−m
2

2p!

∫
ddx eBa(p)Ba(p) , (2.7a)

where

La1...ad−p−1(B) := 1
(p+ 1)!ε

a1...ad−p−1b1...bp+1Fb1...bp+1(B) ≡ ∗F a1...ad−p−1(B) , (2.7b)

and introduce the first-order action

S[Bp, Lq, Aq] =
∫

ddx e
{ 1

2q!L
a(q)La(q) −

m2

2p!B
a(p)Ba(p)

+m

q!Aa(q)
(
La(q) − ∗F a(q)(B)

)}
, q = d− p− 1 . (2.8)

– 6 –
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Here the variables Lq and Aq are unconstrained (d − p − 1)-forms. Varying with respect
to Aq returns the original action, eq. (2.1). On the other hand, varying with respect to Lq
and Bp leads to the dual action S(m)

d−p−1[A].
The equations of motion corresponding to (2.8) are

mBa1...ap = −(−1)d(p+1) ∗ Fa1...ap(A) , (2.9a)
mAa1...aq := −La1...aq , (2.9b)
La1...aq = ∗Fa1...aq(B) . (2.9c)

Making use of these equations, one may show that the energy-momentum tensors in the
theories S(m)

p [B] and S(m)
d−p−1[A] coincide,

T ab[p,m](B) = T ab[d−p−1,m](A) . (2.10)

2.3 Quantisation

Associated with the massive p-form model (2.1) is the effective action Γ(m)
p defined by

ei Γ(m)
p =

∫
[DBp] eiS(m)

p [B] . (2.11)

To obtain a useful expression for Γ(m)
p , we introduce a Stueckelberg reformulation of the

theory. It is obtained from (2.1) by replacing

Ba1...ap → Ba1...ap + 1
m
Fa1...ap(V ) , (2.12)

for some (p− 1)-form Va1...ap−1(x). The resulting action

S(m)
p [B, V ] = − 1

2(p+ 1)!

∫
ddx eF a(p+1)(B)Fa(p+1)(B)− m2

2p!

∫
ddx eBa(p)Ba(p)

− 1
2p!

∫
ddx eF a(p)(V )Fa(p)(V )− m

p!

∫
ddx eBa(p)Fa(p)(V ) (2.13)

is invariant under gauge transformations

δζBa(p) = p∇[a1ζa2...ap] ≡ Fa(p)(ζ) , δζVa(p−1) = −mζa(p−1) . (2.14)

The gauge freedom allows us to choose the gauge condition Va(p−1) = 0 and then we are
back to the original model.

The compensating field Va(p−1) appears in the action (2.13) only via the field strength
Fa(p)(V ) which is invariant under gauge transformations

δλVa(p−1) = (p− 1)∇[a1λa2...ap−1] ≡ Fa(p−1)(λ) . (2.15)

This gauge freedom is characterised by linearly dependent generators, which makes it
tempting to conclude that the gauge theory under consideration is reducible. Neverthe-
less, (2.13) is an irreducible gauge theory and can be quantised à la Faddeev and Popov.

– 7 –
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The point is that (2.15) is a special case of the transformation (2.14) with ζa(p−1) =
−m−1Fa(p−1)(λ).

To quantise the gauge theory with action (2.13), we choose the gauge fixing

χa(p−1) = ∇bBba(p−1) +mVa(p−1) − ρa(p−1) , (2.16)

with ρa(p−1) an external field. The gauge variation of χa(p−1) is

δζχa(p−1) = ∇bFba(p−1)(ζ)−m2ζa(p−1) ≡ (Oζ)a(p−1) . (2.17)

Here O is the kinetic operator in the massive p-form model (2.1). Making use of (2.11),
we conclude that the Faddeev-Popov determinant ∆FP is

∆FP = detO = exp
(
− 2i Γ(m)

p−1

)
. (2.18)

Now, in accordance with the Faddeev-Popov procedure, the effective action is

ei Γ(m)
p =

∫
[DBp][DVp−1] detO δ

[
∇bBba(p−1) +mVa(p−1) − ρa(p−1)

]
eiS(m)

p [B,V ] . (2.19)

Averaging the right-hand side over ρa(p−1) with weight

exp
{
− i

2(p− 1)!

∫
ddx e ρa(p−1)ρa(p−1)

}
(2.20)

leads to

ei Γ(m)
p =

∫
[DBp][DVp−1] detO eiSquant[B,V ] , (2.21a)

Squant[B, V ] = 1
2p!

∫
ddx eBa(p)(�p −m2)Ba(p) + S

(m)
p−1[V ] . (2.21b)

As a result, for the effective action we obtain

exp
{

i Γ(m)
p

}
= exp

{
− i Γ(m)

p−1

} [
det(�p −m2)

]− 1
2
. (2.22)

This is a recurrence relation. It leads to a simple expression for the effective action

Γ(m)
p = i

2

p∑
k=0

(−1)k ln det(�p−k −m2) = i
2(−1)p

p∑
k=0

(−1)k ln det(�k −m2) . (2.23)

In the d = 4 case, this result agrees with [58].
The representation (2.23) is formal since each term on the right-hand side contains

UV divergences. This issue is addressed by introducing a regularisation for the effective
action, (Γ(m)

p )reg. We will use the following prescription:

(Γ(m)
p )reg = − i

2(−1)p
∫ ∞

0

ds
s1−ω e−i(m2−iε)s

p∑
k=0

(−1)k
∫

ddx e trUk(x, x|s) , (2.24)

with ω, ε → +0. Here the right-hand side involves the (heat) kernel of the evolution
operator Uk(s) = exp(is�k) acting on the space of k-forms. The kernel of Uk(s) is defined by

Ua(k)
a′(k)(x, x′|s) = eis�k δa(k)

a′(k)(x, x′) , (2.25)

– 8 –



J
H
E
P
0
1
(
2
0
2
1
)
0
4
0

where the delta-function is

δa(k)
a′(k)(x, x′) = k!δ[a1

a′1 . . . δak]
a′ke−1δd(x− x′) = k!δa1

[a′1 . . . δak
a′k]e−1δd(x− x′) , (2.26)

such that
1
k!

∫
ddx′ e(x′) δa(k)

a′(k)(x, x′)ωa′(k)(x′) = ωa(k)(x) , (2.27)

for any k-form ω. In accordance with the definition of the delta-function, the trace over
Lorentz indices in (2.24) is

trUk(x, x|s) = 1
k!Ua(k)

a(k)(x, x|s) . (2.28)

2.4 Quantum equivalence

In d dimensions, the model for a massive p-form is classically equivalent to that for a
massive (d− p− 1)-form. Let us analyse whether this equivalence extends to the quantum
theory. Our analysis will be based on the fact that the spaces of p-forms and (d− p)-forms
are isomorphic, and the corresponding Hodge d’Alembertians are related to each other
as follows

∗(�p ω) = �d−p (∗ω) , (2.29)

where ω is an arbitrary p-form.
Making use of the relations (2.23) and (2.29), one may show that

Γ(m)
p − Γ(m)

d−p−1 = (−1)pX(m) , X(m) := i
2

d∑
k=0

(−1)k ln det(�k −m2) . (2.30)

There are two distinct cases. If the dimension of space-time is odd, d = 2n + 1, the
functional X(m) can be seen to vanish identically,

d = 2n+ 1 =⇒ X(m) = 0 . (2.31a)

In the even-dimensional case, d = 2n, X(m) can be rewritten in the form:

X(m) = i
d/2−1∑
k=0

(−1)k ln det(�k −m2) + i
2(−1)d/2 ln det(�d/2 −m2) . (2.31b)

This functional is no longer identically zero. However, it turns out to be a topological
invariant in the sense that

δ

δema(x)X
(m) = 0 . (2.32)

In order to prove (2.32), let us consider the regularised version of X(m)

(X(m))reg = 1
2

∫ ∞
0

ds
s1−ω e−i(m2−iε)sΥ(s) , ω, ε→ +0 , (2.33a)
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where we have introduced the functional

Υ(s) = −i
d∑

k=0
(−1)k

∫
ddx e trUk(x, x|s) . (2.33b)

Giving the gravitational field a small disturbance, the functional Υ(s) varies as

δΥ(s) = −s
d∑

k=0
(−1)k

∫
ddx e tr

{
(dδd† + δd†d)Uk(x, x′|s)

}∣∣∣
x=x′

. (2.34)

This variation may be rearranged by making use of the Ward identities

(k + 1)∇[a1Ua2...ak+1]
a′(k)(x, x′|s) = −∇b′Ua(k+1)

b′a′(k)(x, x′|s) , (2.35a)

−∇bUba1...ak−1
a′(k)(x, x′|s) = k∇[a′1Ua(k−1)

a′2...a
′
k](x, x′|s) , (2.35b)

in conjunction with the relations∫
ddx e

{
∇b∇[bUa(k)]

a′(k)(x, x′|s) +∇[a′k+1∇[ak+1Ua(k)]
a′(k)](x, x′|s)

}∣∣∣∣∣∣ = 0 , (2.35c)∫
ddx e

{
k∇[a1∇

bU|b|a2...ak−1]
a′(k)(x, x′|s) +∇b′∇bUba(k−1)

b′a′(k−1)(x, x′|s)
}∣∣∣∣∣∣ = 0 , (2.35d)

where the double vertical bar means setting x = x′ and a = a′. Then one obtains

δΥ(s) = 0 , (2.36)

which is equivalent to (2.32).
Similar arguments may be used to show that Υ(s) is actually s-independent,

d
dsΥ(s) = −

d∑
k=0

(−1)k
∫

ddx e tr
{

(dd† + d†d)Uk(x, x′|s)
}∣∣∣
x=x′

= 0 . (2.37)

For small values of s, it is well known that the diagonal heat kernel has the asymptotic
expansion

trUk(x, x|s) = i
(4πis)d/2

∞∑
n=0

(is)ntr a(n)
k (x, x) , (2.38)

with an(x, x) the Seeley-DeWitt coefficients. As a result, the topological invariant (2.33b)
takes the form

Υ = 1
(4π)d/2

d∑
k=0

(−1)k
∫

ddx e tr a(d/2)
k (x, x) , (2.39)

which is the heat kernel expression for the Euler characteristic, see, e.g., [83].
The above analysis is a variant of the famous heat kernel proofs of the Chern-Gauss-

Bonnet theorem, see [83] for a review.
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3 Massive p-forms in four dimensions

In this section we will present alternative proofs of some results from the previous section
in the d = 4 case. The topological mismatch X(m) in (2.30) will be ignored.

3.1 Two-form field

The model for a massive two-form in curved space is described by the action

S
(m)
2 [B] = 1

2

∫
d4x e

{
La(B)La(B)− m2

2 BabBab

}
, (3.1)

where we have denoted

La(B) = 1
2ε

abcd∇bBcd = 1
6ε

abcdFbcd(B) . (3.2)

This theory is classically equivalent to the model with action S(m)
1 [V ], which describes the

massive vector field in curved space.
We are going to show that

exp
(
iΓ(m)

2

)
= exp

(
iΓ(m)

1

)
. (3.3)

For this we consider the following change of variables6

Bab = 2∇[aVb] + εabcd∇cKd , (3.4a)
Φ = ∇aKa , Ψ = ∇aV a . (3.4b)

Its Jacobian proves to be

J(B,Φ,Ψ|V,K) = det�1 . (3.5)

We perform the change of variables (3.4) in the action

S[B,Φ,Ψ] = S
(m)
2 [B]− 1

2

∫
d4x eΦ(�0 −m2)Φ− m2

2

∫
d4x eΨ2 . (3.6)

Then S[B,Φ,Ψ] turns into

m2

2

∫
d4x e V a�1Va + 1

2

∫
d4x eKa(�1 −m2)�1Ka . (3.7)

Making use of (3.5) leads to

exp
(
iΓ(m)

2

)[
det(�0 −m2)

]−1/2
=
∫

[DB2][DΦ][DΨ] exp
(
iS[B,Φ,Ψ]

)
=
[

det(�1 −m2)
]−1/2

, (3.8)

which is equivalent to (3.3).
6Given an arbitrary p-form ωp on a compact Riemannian manifold (M, g), the Hodge decomposition

theorem states that ωp = dϕp−1 + d†Ψp+1 + hp, where hp is harmonic, �php = 0. It is assumed in (3.4a)
that �p has no normalised zero modes.
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3.2 Three-form field

The model for a massive three-form in curved space is described by the action

S
(m)
3 [V ] = 1

2

∫
d4x e

{
(∇aV a)2 +m2V aVa

}
. (3.9)

In terms of the field strength H = ∇aV a, the equation of motion is

∇aH −m2Va = 0 =⇒ (�0 −m2)H = 0 . (3.10)

This shows that the three-form model (3.9) is equivalent to the massive scalar model

S
(m)
0 [ϕ] = −1

2

∫
d4x e

{
∇aϕ∇aϕ+m2ϕ2

}
. (3.11)

Classical equivalence of the theories (3.9) and (3.11) is established by considering a first-
order model with Lagrangian

L = ρ∇aV a − 1
2ρ

2 + 1
2m

2V aVa . (3.12)

The effective action for the massive three-form model is

exp
(
iΓ(m)

3

)
=
∫

[DV ] eiS(m)
3 [V ] . (3.13)

We are going to show that

exp
(
iΓ(m)

3

)
= exp

(
iΓ(m)

0

)
. (3.14)

For this we consider the following change of variables [19]

Va = ∇aΦ + 1
2εabcd∇

bBcd ≡ ∇aΦ + La(B) , (3.15a)

Ka = ∇aΨ +∇bBab ≡ ∇aΨ +Ga(B) . (3.15b)

The corresponding Jacobian is

J(V,K|B,Φ,Ψ) = det�0 (det�2)
1
2 , (3.16)

see [19] for the derivation. We perform the above change of variables in the path integral

exp
(
2iΓ(m)

3

)
=
∫

[DV ][DK] exp i
(
S

(m)
3 [V ]− S(m)

3 [K]
)

(3.17)

For the action S(m)
3 [V ]− S(m)

3 [K] we obtain

S
(m)
3 [V ]− S(m)

3 [K] = 1
4m

2
∫

d4x eBab�2Bab + 1
2

∫
d4x eΦ�0(�0 −m2)Φ

−1
2

∫
d4x eΨ�0(�0 −m2)Ψ . (3.18)

Then, taking into account (3.16) leads to (3.14).
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4 Massive super p-forms in four dimensions

In this section we study effective actions of the following massive locally supersymmetric
theories in four dimensions: (i) vector multiplet; (ii) tensor multiplet; and (iii) three-form
multiplet. In the massless case, these multiplets are naturally described in terms of super
p-forms, with p = 1, 2 and 3, respectively. The models for massive vector and tensor
multiplets are classically equivalent. Here we will demonstrate their quantum equivalence.

At the component level, the locally supersymmetric models of our interest contain the
massive p-form models we have studied in the previous section.

4.1 Setup

The massive vector multiplet in a supergravity background [34, 66] is described in terms
of a real scalar prepotential V . The action is

S
(m)
vector[V ] = 1

2

∫
d4xd2θd2θ̄ E V

{1
8D

α(D̄2 − 4R)Dα +m2
}
V , V̄ = V . (4.1)

The massive tensor multiplet [34] is described in terms of a covariantly chiral spinor super-
field Ψα, D̄β̇Ψα = 0, and its conjugate Ψ̄α̇. The action is

S
(m)
tensor[Ψ, Ψ̄] = −1

2

∫
d4xd2θd2θ̄ E

(
G(Ψ)

)2 − {m2

2

∫
d4xd2θ E Ψ2 + c.c.

}
, (4.2)

where we have introduced the real superfield

G(Ψ) := 1
2
(
DαΨα + D̄α̇Ψ̄α̇) , (4.3)

which is covariantly linear, (D̄2 − 4R)G = 0. Similar to the vector multiplet, the massive
three-form multiplet is formulated in terms of a real scalar prepotential V . The corre-
sponding action is obtained from (1.4) by adding a mass term,

S
(m)
3-form[V ] = 1

2

∫
d4xd2θd2θ̄ E V

{(
P+ + P−

)2 −m2
}
V , (4.4)

where the operators P+ and P− are defined in (1.3). We recall that P+U and P−U are
covariantly chiral and antichiral, respectively, for any scalar superfield U .

Associated with the above massive models are their effective actions defined by

eiΓ(m)
vector =

∫
[DV ] eiS(m)

vector[V ] , (4.5a)

eiΓ(m)
tensor =

∫
[DΨ][DΨ̄] eiS(m)

tensor[Ψ,Ψ̄] , (4.5b)

eiΓ(m)
3-form =

∫
[DV ] eiS(m)

3-form[V ] . (4.5c)

There exist alternative representations for the effective actions introduced. They may be
derived by making use of Stueckelberg reformulations of the models under consideration.
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4.2 Quantisation of the massive vector multiplet model

The Stueckelberg reformulation of the massive vector multiplet model is obtained by re-
placing

V → V + 1
m

(
P+ + P−

)
K , K̄ = K (4.6)

in the action (4.1). The resulting action

S
(m)
vector[V,K] = 1

2

∫
d4xd2θd2θ̄ E

{1
8VD

α(D̄2 − 4R)DαV +m2V 2

+2mV
(
P+ + P−

)
K +K

(
P+ + P−

)2
K

}
(4.7)

is invariant under gauge transformations

δUV =
(
P+ + P−

)
U , δUK = −mU , Ū = U . (4.8)

To quantise the gauge theory with action (4.7), we introduce the gauge fixing

χ =
(
P+ + P−

)
V +mK − F , (4.9)

with F a background real superfield. The gauge variation of χ is

δUχ =
(
P+ + P−

)2
U −m2U ≡ OU , (4.10)

and therefore the Faddeev-Popov determinant is

∆FP = detO = exp
(
− 2iΓ(m)

3-form

)
. (4.11)

For the effective action we obtain

eiΓ(m)
vector =

∫
[DV ][DK] detO δ

[(
P+ + P−

)
V +mK − F

]
eiS(m)

vector[V,K] . (4.12)

Averaging the right-hand side over F with weight

exp
{
− i

2

∫
d4xd2θd2θ̄ E F2

}
, (4.13)

we obtain

exp
{

iΓ(m)
vector

}
= exp

{
− iΓ(m)

3-form

}[
det

(
�(R)

v −m2)]− 1
2
, (4.14)

where we have introduced the operator7 [31, 82]

�(R)
v = −1

8D
α(D̄2 − 4R)Dα +

(
P+ + P−

)2
= DaDa −

1
4G

αα̇[Dα, D̄α̇]− 1
4R(D̄2 − 4R)− 1

4R̄(D2 − 4R̄)

−1
4(DαR)Dα −

1
4(D̄α̇R̄)D̄α̇ − 1

4(D2R)− 1
4(D̄2R̄) + 2RR̄ . (4.15)

Our final result (4.14) relates the effective actions (4.5a) and (4.5c).
7The d’Alembertian �(R)

v is a member of the family of operators �(Φ)
v introduced in [31, 82], where

�(Φ)
v = − 1

8D
α(D̄2 − 4R)Dα +

{
P+,P−

}
+ ΦP+ + Φ̄P−, with Φ a chiral scalar.
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4.3 Quantisation of the massive tensor multiplet model

The Stueckelberg reformulation of the massive tensor multiplet model, eq. (4.2), is obtained
by replacing

Ψα → Ψα + i
2mWα(V ) , Wα = −1

4(D̄2 − 4R)DαV , V̄ = V (4.16)

in the action (4.2). This leads to the action

S
(m)
tensor[Ψ, Ψ̄, V ] = −1

2

∫
d4xd2θd2θ̄ E

(
G(Ψ)

)2 − {m2

2

∫
d4xd2θ E Ψ2 + c.c.

}
+
∫

d4xd2θd2θ̄ E
{ 1

16VD
α(D̄2 − 4R)DαV +mV L(Ψ)

}
, (4.17)

where we have introduced the covariantly linear superfield

L(Ψ) := i
2
(
DαΨα − D̄α̇Ψ̄α̇) . (4.18)

The action is invariant under gauge transformations

δKΨα = − i
8
(
D̄2 − 4R

)
DαK , δKV = −mK , K̄ = K . (4.19)

To quantise the gauge theory with action (4.17), we introduce the gauge fixing

χ = L(Ψ)−mV − U , (4.20)

where U is a background real superfield. The gauge variation of χ is

δKχ = 1
8D

α(D̄2 − 4R
)
DαK +m2K ≡ OK . (4.21)

Here O is exactly the operator which determines the vector multiplet action (4.1). This
means that the Faddeev-Popov determinant is

∆FP = detO = exp
(
− 2iΓ(m)

vector

)
. (4.22)

As a result, the effective action can be written in the form

eiΓ(m)
tensor =

∫
[DΨ][DΨ̄][DV ] detO δ

[
L(Ψ)−mV − U

]
eiS(m)

tensor[Ψ,Ψ̄,V ] . (4.23)

Since the right-hand side of (4.23) is independent of U, we can average it over U

with weight

exp
{ i

2

∫
d4xd2θd2θ̄ E U2

}
. (4.24)

This leads to

exp
{

iΓ(m)
tensor

}
= exp

{
− iΓ(m)

vector

}[
det

(
�c −m2) det

(
�a −m2)] 1

2
, (4.25)

where the d’Alembertian �c acts on the space of covariantly chiral spinors [19, 29]

�cΨα := 1
16
(
D̄2 − 4R

)(
D2 − 6R̄

)
Ψα

=
{
DbDb + 1

4RD
2 + iGbDb + 1

4(DβR)Dβ −
3
8
(
D̄2 − 4R

)
R̄

}
Ψα

−
{
W β

αγDβ + 1
2(DβWαβγ)

}
Ψγ . (4.26)

Our final result (4.25) relates the effective actions (4.5a) and (4.5b).
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4.4 Quantisation of the massive three-form multiplet model

The Stueckelberg reformulation of the massive tensor multiplet model, eq. (4.4), is obtained
by replacing

V → V + 1
m
G(Ψ) , G(Ψ) := 1

2
(
DαΨα + D̄α̇Ψ̄α̇) , D̄β̇Ψα = 0 . (4.27)

The resulting action

S
(m)
3-form[V,Ψ, Ψ̄] = 1

2

∫
d4x d2θ d2θ̄ E V

{(
P+ + P−

)2 −m2
}
V

−
∫

d4x d2θ d2θ̄ E

{
mVG(Ψ) + 1

2
(
G(Ψ)

)2} (4.28)

is invariant under gauge transformations

δλV = 1
2
(
Dαλα + D̄α̇λ̄α̇

)
, δλΨα = −mλα , D̄β̇λα = 0 . (4.29)

To quantise the gauge theory with action (4.28), we introduce the gauge condition

χα = 1
2Wα(V ) +mΨα − ξα , Wα(V ) := −1

4
(
D̄2 − 4R

)
DαV , (4.30)

where ξα is a background chiral spinor. The gauge variation of χα is

δλχα = −1
8
(
D̄2 − 4R

)
DαG(λ)−m2λα ≡ Oλα . (4.31)

Here O is the operator which determines the massive tensor multiplet model (4.2). This
means that the Faddeev-Popov super-determinant is

∆FP = [detO]−1 = exp
(
− 2iΓ(m)

tensor

)
. (4.32)

Therefore, the effective action is given by the path integral

eiΓ(m)
3-form =

∫
[DV ][DΨ][DΨ̄] detO eiS(m)

3-form[V,Ψ,Ψ̄]

×δ
[1

2Wα(V ) +mΨα − ξα
]
δ

[1
2W̄α̇(V ) +mΨ̄α̇ − ξ̄α̇

]
(4.33)

Since the right-hand side is independent of the chiral spinor ξα and its conjugate ξ̄α̇, we
can average over these superfields with weight

exp
{
− i

2

(∫
d4x d2θ E ξ2 + c.c.

)}
. (4.34)

This will lead to the relation

exp
{

iΓ(m)
3-form

}
= exp

{
− iΓ(m)

tensor

}[
det

(
�(R)

v −m2)]− 1
2
, (4.35)

which connects the effective actions (4.5b) and (4.5c).
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4.5 Analysis of the results

We have derived three different relations which connect the three effective actions defined
in (4.5). They are given by the equations (4.14), (4.25) and (4.35). These results have
nontrivial implications. Firstly, it follows from (4.14) and (4.35) that

Γ(m)
vector = Γ(m)

tensor . (4.36)

Therefore, the classically equivalent theories (4.1) and (4.2) remain equivalent at the quan-
tum level. Secondly, making use of (4.25) and (4.36) leads to

Γ(m)
vector = Γ(m)

tensor = − i
4 ln det

(
�c −m2)− i

4 ln det
(
�a −m2) . (4.37)

Thirdly, from (4.35) and (4.37) we deduce

Γ(m)
3-form = i

2 ln det
(
�(R)

v −m2)+ i
4 ln det

(
�c −m2)+ i

4 ln det
(
�a −m2) . (4.38)

The superfield heat kernels corresponding to the operators appearing in (4.37) and (4.38)
were studied in [19, 31, 82, 84, 85].

As follows from (4.37), the effective actions Γ(m)
vector and Γ(m)

tensor coincide, without any
topological mismatch. This is due to the use of the Stueckelberg formulation defined by
eqs. (4.6) and (4.7). A topological mismatch will emerge if we consider a slightly different
Stueckelberg reformulation, which is obtained by replacing the dynamical superfield in (4.1)
by the rule

V → V + 1
m

(
Φ + Φ̄

)
, D̄α̇Φ = 0. (4.39)

This leads to the action

S
(m)
vector[V,Φ, Φ̄] = 1

2

∫
d4xd2θd2θ̄ E

{1
8VD

α(D̄2 − 4R)DαV +
(
mV + Φ + Φ̄

)2}
, (4.40)

which possesses the gauge freedom

δλV = λ+ λ̄ , δλΦ = −mλ , D̄α̇λ = 0 . (4.41)

Modulo a purely topological contribution, the functional (4.38) proves to be twice the
effective action of a scalar multiplet. To justify this claim, let us consider the following
dynamical system

S(m)[V,Φ, Φ̄] = 1
2

∫
d4xd2θd2θ̄ E

{
V
(
P+ + P−

)2
V +

(
Φ + Φ̄

)2 + 2mV
(
Φ + Φ̄

)}
, (4.42)

where Φ is a chiral scalar. This model proves to be dual to the massive three-form the-
ory (4.4). The action (4.42) is invariant under gauge transformations

δλV = 1
2
(
Dαλα + D̄α̇λ̄α̇

)
, D̄β̇λα = 0 (4.43)
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corresponding to the massless three-form multiplet. Quantisation of the reducible gauge
theory can be carried out using the method described in [19]. Next, we represent the chiral
scalar Φ in (4.42) as

Φ = P+U , Ū = U . (4.44)

Finally, we introduce new variables K± = 1√
2(V ± U). Then the action turns into

S(m)[K±] = 1
2

∫
d4xd2θd2θ̄ E

{
K+

(
P+ + P−

)2
K+ +K−

(
P+ + P−

)2
K−

+mK+
(
P+ + P−

)
K+ −mK−

(
P+ + P−

)
K−

}
. (4.45)

This is the three-form counterpart of the theory

S
(m)
scalar[Φ±, Φ̄±] = 1

2

∫
d4x d2θ d2θ̄ E

{(
Φ+ + Φ̄+

)2 +
(
Φ− + Φ̄−

)2}
+m

2

{∫
d4x d2θ E

(
Φ2

+ − Φ2
−

)
+ c.c.

}
, (4.46)

which describes two decoupled massive scalar multiplets in a supergravity background. The
quantum effective action for this theory is

Γ(m)
scalar = i

2 ln
(
DetH(R+m)DetH(R−m)

)
, (4.47)

where H(ψ) denotes the following operator [31, 82]

H(ψ) =
(
ψ P+
P− ψ̄

)
, D̄α̇ψ = 0 . (4.48)

By definition, the operator H(ψ) acts on the space of chiral-antichiral column-vectors

H(ψ)
(
η

η̄

)
=
(
ψη + P+η̄

ψ̄η̄ + P−η

)
, D̄α̇η = 0 . (4.49)

A useful expression for DetH(ψ) in terms of the functional determinants of covariant
d’Alembertians is derived in [31, 82].

Since the effective actions (4.38) and (4.47) should differ only by a topological term,
we conclude that

−2X(m) = i ln det
(
�(R)

v −m2)+ i
2 ln det

(
�c −m2)+ i

2 ln det
(
�a −m2)

−i ln
(
DetH(R+m)DetH(R−m)

)
(4.50)

is a topological invariant. It is a generalisation of the invariant introduced in [19, 29].
Our analysis in this section provides the supersymmetric completion of the results

obtained in section 3.
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5 Discussion and generalisations

In this paper we derived compact expressions for the massive p-form effective actions for
0 ≤ p ≤ d− 1, where d is the dimension of curved spacetime. We then demonstrated that
the effective actions Γ(m)

p and Γ(m)
d−p−1 differ by a topological invariant. These results were

extended to the case of massive super p-forms coupled to background N = 1 supergravity in
four dimensions. There are several interesting p-form models which we have not considered
in this work and which deserve further studies. Here we briefly discuss such models.

As a natural generalisation of the Cremmer-Scherk model for massive spin-1 in d =
4 [3], the dynamics of a massive p-form in d dimensions can be described in terms of a
gauge-invariant action involving two fields Bp and Aq, with q = d−p−1, and a topological
(B ∧ F ) mass term. The action is

S(m)[Bp, Aq] = −1
2

∫
ddx e

{ 1
(p+ 1)!F

a(p+1)(B)Fa(p+1)(B) (5.1)

+ 1
(q + 1)!F

a(q+1)(A)Fa(q+1)(A)
}

+ I(m)[Bp, Aq] ,

where I(m) stands for the topological mass term

I(m)[Bp, Aq] = m

q!(p+ 1)!

∫
ddx e εa(q)b(p+1)Aa(q)Fb(p+1)(B)

= (−1)d(d−p) m

p!(d− p)!

∫
ddx e εa(p)b(q+1)Ba(p)Fb(q+1)(A) . (5.2)

As is well known, this model is dual to the massive theories S(m)
p [B] and S

(m)
q [A], with

S
(m)
p [B] defined by eq. (2.1). The corresponding duality transformations are described, for

completeness, in appendix D.
The action (5.1) is invariant under gauge transformations

δζBa(p) = p∇[a1ζa2...ap] , δξAa(q) = q∇[a1ξa2...aq ] . (5.3)

The corresponding generators are linearly dependent, and therefore the gauge theory (5.1)
should be quantised using the Batalin-Vilkovisky formalism [14] or the simpler quantisation
schemes [17–19], which are specifically designed to quantise Abelian gauge theories. It
would be interesting to show that the effective action for the gauge theory (5.1) coincides
with (2.23) modulo a topological invariant.

In four dimensions, a supersymmetric generalisation of the Cremmer-Scherk model was
given by Siegel [34]

S(m)[Ψ, Ψ̄, V ] = −1
2

∫
d4x d2θ d2θ̄ E

{(
G(Ψ)

)2 − 1
8VD

α(D̄2 − 4R)DαV
}

+ I(m) , (5.4)

where the mass term is given by

I(m)[Ψ, Ψ̄, V ] = m

∫
d4x d2θ d2θ̄ E V G(Ψ) = −1

2m
∫

d4xd2θ E ΨαWα(V ) + c.c. (5.5)
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This is a dual formulation for the models (4.1) and (4.2). The action (5.4) is invariant
under combined gauge transformations corresponding to the massless vector and tensor
multiplets. This reducible massive gauge theory can be quantised using the method de-
scribed in [19].

The mass term (5.5) is locally superconformal [53]. For the supergravity formulation
used in the present paper, this means that (5.5) is super-Weyl invariant. We recall that a
super-Weyl transformation of the covariant derivatives [89, 90] is

δΣDα =
(

Σ̄− 1
2Σ
)
Dα +DβΣMαβ , δΣD̄α̇ =

(
Σ− 1

2Σ̄
)
D̄α̇ + (D̄β̇Σ̄)M̄α̇β̇ , (5.6)

where the parameter Σ is chiral, D̄α̇Σ = 0, and Mαβ and M̄α̇β̇ are the Lorentz generators
defined as in [31]. Such a transformation acts on the prepotentials V and Ψα as

δΣV = 0 , δΣΨα = 3
2ΣΨα , (5.7)

see [31] for the technical details. The mass term (5.5) is the supersymmetric version of the
d = 4 Green-Schwarz anomaly cancellation term.

Another supersymmetric analogue of the Cremmer-Scherk model is described by the
action (4.42).

If d is even, d = 2n, one can introduce massive n-form models with two types of mass
terms [67–69],

S(m,e)
n [B] = − 1

2n!

∫
ddx e

{ 1
n+ 1F

a(n+1)(B)Fa(n+1)(B)

+m2Ba(n)Ba(n) +meBa(n) ∗Ba(n)

}
, (5.8)

withm and e constant parameters. Here the second mass term vanishes if n is odd (however,
it is non-zero in the case of several n-forms [69].) The model (5.8) is known to be dual to
S

(M)
n [B] of the type (2.1), where M =

√
m2 + e2. The results of section 2 can naturally be

extended to the case of the model (5.8).
Supersymmetric extensions of (5.8) have been discussed in several publications includ-

ing [69–71]. In particular, the massive tensor multiplet model (4.2) possesses the following
generalisation:

S
(m,e)
tensor[Ψ, Ψ̄] = −1

2

∫
d4x d2θ d2θ̄ E

(
G(Ψ)

)2 − 1
2m

{
(m+ie)

∫
d4x d2θ E Ψ2 + c.c.

}
. (5.9)

Quantisation of this model can be carried out using the approach developed in section 4.
In conclusion, we would like to come back to the important work by Duff and van

Nieuwenhuizen [26]. Their argument concerning the quantum non-equivalence of the dual
two-form and zero-form models in d = 4 was based on the different trace anomalies. How-
ever, these theories are non-conformal and, therefore, the quantum operator T aa “con-
tains the effects of both classical and quantum breaking and is not equal to the trace
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anomaly” [29]. Nevertheless, the argument given in [26] can be refined within a Weyl-
invariant formulation for general gravity-matter systems [86, 87]. We recall that a Weyl
transformation acts on the covariant derivative as

∇a → ∇′a = eσ
(
∇a +∇bσMba

)
, (5.10)

with the parameter σ(x) being arbitrary. Such a transformation is induced by that of the
gravitational field

ea
m → eσeam =⇒ gmn → e−2σgmn . (5.11)

In the Weyl-invariant formulation for gravity in d 6= 2 dimensions, the gravitational field
is described in terms of two gauge fields. One of them is the vielbein ema(x) and the other
is a conformal compensator ϕ(x). The latter is a nowhere vanishing scalar field with the
Weyl transformation law

ϕ→ ϕ′ = e
1
2 (d−2)σϕ . (5.12)

Any dynamical system is required to be invariant under these transformations. In partic-
ular, the Weyl-invariant extension of the Einstein-Hilbert gravity action is

SGR = 1
2

∫
ddx e

{
∇aϕ∇aϕ+ 1

4
d− 2
d− 1Rϕ

2
}
. (5.13)

Choosing the Weyl gauge ϕ = 2
κ

√
d−1
d−2 reduces (5.13) to the Einstein-Hilbert action.

The Weyl-invariant reformulation of the massless p-form action (B.1) is

Sp[B;ϕ] = − 1
2(p+ 1)!

∫
ddx eϕ2∆pF a(p+1)(B)Fa(p+1)(B) , ∆p = 1− 2p

d− 2 . (5.14)

Here we have made use of the Weyl transformation8 of Bp

B′a(p) = epσBa(p) . (5.15)

Let Γp[ϕ] be the effective action corresponding to (5.14). Unlike the classical action (5.14),
the nonlocal functional Γp[ϕ] is not Weyl invariant. However, this Weyl anomaly can be
eliminated by adding a local counterterm which depends on the compensator ϕ, see [88]
for the technical details.

At the classical level, the two massless theories Sp[B;ϕ] and Sd−p−2[A;ϕ] prove to
be dual, with ∆p = −∆d−p−2. In the even-dimensional case, it was shown in [30] that
the quantum effective actions for these theories, Γp[ϕ] and Γd−p−2[ϕ], are related to each
other9 as

Γd−p−2[ϕ]− Γp[ϕ]− (−1)pX(m) ∝
∫

ddx e lnϕ Ed , (5.16)

8There are two representations for the p-form, Bp = 1
p!Bm1...mp dxm1∧· · ·∧xmp = 1

p!Ba1...ape
a1∧· · ·∧eap ,

with ea = dxmema the vielbein. The p-form field with world indices, Bm(p), is inert under the Weyl
transformations.

9The field φ = −∆p lnϕ was interpreted in [30] as the dilaton.
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where Ed is the Euler invariant,

Ed = 1
(8π)nn!ε

a1b1...anbnεc1d1...cndnRa1b1c1d1 . . . Ranbncndn , d = 2n . (5.17)

Relation (5.16) is a generalisation of (B.8). The expression on the right-hand side of (5.16)
is a local functional and can be removed by adding a local counterterm. This proves the
quantum equivalence of the theories.

In a similar manner supergravity in diverse dimensions can be formulated as conformal
supergravity coupled to certain compensating supermultiplet(s) [91]. The super-Weyl-
invariant extensions of the models (1.1) and (1.2) are given (see, e.g., [53]) by

Stensor[Ψ, Ψ̄;S0, S̄0] = −1
2

∫
d4x d2θ d2θ̄ E

(
G(Ψ)

)2
S0S̄0

, (5.18a)

Schiral[Φ, Φ̄;S0, S̄0] = 1
2

∫
d4x d2θ d2θ̄ E S0S̄0(Φ + Φ̄)2 , (5.18b)

where S0 is the chiral compensator, D̄α̇S0 = 0, corresponding to the old minimal formu-
lation for N = 1 supergravity, see [89, 92–95]. By definition, S0 is nowhere vanishing and
possesses the super-Weyl transformation δΣS0 = ΣS0. The matter chiral scalar in (5.18b)
is super-Weyl neutral. The models (5.18a) and (5.18b) are classically equivalent. On
general grounds, these models should be equivalent at the quantum level. It would be
interesting to carry out explicit calculations to check this. It should be pointed out that
the actions (5.18a) and (5.18b) lead to non-minimal operators for which the standard su-
perfield heat kernel techniques [31, 82, 84, 85] for computing effective actions do not work.
Quantum supersymmetric theories with non-minimal operators were studied in [96, 97].

Our analysis in this paper was restricted to those systems in which the classical action
is quadratic in the dynamical fields and therefore the corresponding effective action admits
a closed-form expression in terms of the functional determinants of certain operators. In
the case of nonlinear theories, such as the following model [35, 53]

S =
∫

d4x d2θ d2θ̄ E

{
S0S̄0 F

(
G(Ψ)
S0S̄0

)
+ 1

16VD
α(D̄2 − 4R)DαV +mVG(Ψ)

}
(5.19)

and its duals, it is not possible to obtain simple expressions for the effective action. Nev-
ertheless, the issue of quantum equivalence can still be addressed using the path integral
considerations described by Fradkin and Tseytlin [24]. This approach was used in [20] to
prove quantum equivalence of the Freedman-Townsend model [22] and the principal chiral
σ-model.
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A Hodge-de Rham operator

Given a non-negative integer p ≤ d, the so-called Hodge-de Rham operator (also known as
the covariant d’Alembertian)

�p = −(d†d + dd†) (A.1)

is defined to act on the space of p-forms. We recall that the operators of exterior derivative
d and co-derivative d† are defined to act on a p-form ω as

d : ωa1...ap → (dω)a1...ap+1 = (p+ 1)∇[a1ωa2...ap+1] , (A.2a)

d† : ωa1...ap → (d†ω)a1...ap−1 = −∇bωba1...ap−1 . (A.2b)

These operators are nilpotent, d2 = 0 and (d†)2 = 0, and are adjoint of each other,

1
(p+ 1)!

∫
ddx e (dω)a1...ap+1ϕ

a1...ap+1 = 1
p!

∫
ddx eωa1...ap(d†ϕ)a1...ap , (A.3)

with respect to the inner product

〈ωp, ψp〉 = 1
p!

∫
ddx eωa1...apψ

a1...ap . (A.4)

In the case of a d-dimensional curved spaceMd, the action of �p on a p-form ωa1...ap can
be written as

�pωa1...ap = ∇b∇bωa1...ap +
p∑

k=1
(−1)k

[
∇b,∇ak

]
ωba1...âk...ap

. (A.5)

The Hodge-de Rham operators have the important properties

d�p = �p+1d , d†�p = �p−1d† , (A.6)

which are used in section 2.

B Massless p-forms in d dimensions

Setting m = 0 in (2.1) gives the massless p-form field theory

Sp[B] = − 1
2(p+ 1)!

∫
ddx eF a1...ap+1(B)Fa1...ap+1(B) . (B.1)

The field strength Fp+1(B) is invariant under gauge transformations

δζBa(p) = p∇[a1ζa2...ap] , (B.2)

and so is the action. It is known, by Poincaré duality, that the massless gauge theories
with actions Sp[B] and Sd−p−2[B] are classically equivalent.
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The energy-momentum tensor, T abp (B), corresponding to (B.1) is obtained from (2.5)
by setting m = 0.

T abp (B) = 1
p!

{
F ac1...cp(B)F bc1...cp(B)− 1

2(p+ 1)η
abF c1...cp+1(B)Fc1...cp+1(B)

}
. (B.3)

It is conserved on-shell, ∇bT abp = 0. If the dimension of spacetime is even p+ 1 = d/2, the
energy-momentum tensor is traceless in the massless case,

d = 2(p+ 1) =⇒ ηabT
ab
d/2−1 = 0 . (B.4)

This is a corollary of the fact that the p-form action in 2(p+ 1) spacetime dimensions

Sp[B] = − 1
2(p+ 1)!

∫
d2(p+1)x eF a1...ap+1(B)Fa1...ap+1(B) (B.5)

is invariant under arbitrary Weyl rescaling of the vielbein.
Let Γp denote the effective action for the massless p-form theory (B.1). As shown

in [18] (see also [17]),

Γp = i
2

p∑
k=0

(−1)k(1 + k) ln det�p−k . (B.6)

In the case that p = d− 1, the action describes no local degrees of freedom, and therefore
the corresponding effective action should be a topological invariant. Indeed, making use
of (B.6) allows us to rewrite Γd−1 in the form

Γd−1 = −d2X , X = i
2

d∑
k=0

(−1)k ln det�k . (B.7)

The functional X is obtained from X(m) given by eq. (2.30) by setting m = 0.
For p 6= d− 1, d, it is known that the massless p-form and (d− p− 2)-form models are

classically equivalent. For the corresponding effective actions, the following relation holds:

Γd−p−2 − Γp = (−1)p
(
d

2 − p− 1
)
X . (B.8)

This result was established in [19, 24, 29] for d = 4, and later generalised to the d > 4 case
in [30, 98].

C Massless three-form in four dimensions

The analysis described in the previous appendix has some nuances in the d = p + 1 case.
For simplicity, here we discuss the massless three-form in four dimensions.

The gauge three-form model is described by the action

S̃3[V ] = 1
2

∫
M

d4x eH2 −
∫
M

d4x e∇a(V aH) ≡ S3[V ]−
∫
M

d4x e∇a(V aH) , (C.1)
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where H := ∇aV a is the field strength being invariant under gauge transformations

δBV
a = 1

2ε
abcd∇bBcd . (C.2)

The second term in the action is a boundary term; it was introduced in [40, 43]. To obtain
a consistent variation problem, one demands [40] that

δH
∣∣∣
∂M

= 0 , (C.3)

such that an arbitrary variation of the action is

δS̃3[V ] = −
∫
M

d4x e δV a∇aH −
∫
M

d4x e∇a(V aδH) . (C.4)

The equation of motion is

∇aH = 0 =⇒ H = c = const . (C.5)

This shows that the model under consideration has no local degrees of freedom.
Different values of c correspond to different vacua in the quantum theory. When

computing the path integral, for a given c we make use of the background-quantum splitting

V a = V a
0 + va , ∇aV a

0 = c , (C.6)

such that the classical action becomes

S̃3[V ] = −1
2c

2
∫
M

d4x e+ S3[v] . (C.7)

Here the first contribution on the right is the cosmological term. Evaluating the path
integral, for the effective action one gets

Γ3[gmn] = −1
2c

2
∫
M

d4x e− 2X , (C.8)

where we have defined

X := i
2 ln det�2 [det�0]2

[det�1]2 . (C.9)

The functional X is the four-dimensional version of the topological invariant (B.7).

D Duality with topological mass term

To construct a dual formulation for (5.1), we introduce the first-order action

S[Lq, Aq, Cq−1] = 1
q!

∫
ddx e

{1
2L

a(q)La(q) −
1

2(q + 1)F
a(q+1)(A)Fa(q+1)(A)

+La(q)
[
mAa(q) + Fa(q)(C)

]}
, (D.1)
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where La(q) and Ca(q−1) are unconstrained antisymmetric tensor fields. The equation of mo-
tion for Ca(q−1) implies that La(q) = 1

(p+1)!ε
a(q)b(p+1)Fb(p+1)(B), and then the action (D.1)

turns into (5.1). On the other hand, we can eliminate La(q) from the action (D.1) using
the corresponding equation of motion. This leads to

S(m)
q [Aq, Cq−1] = − 1

2q!

∫
ddx e

{ 1
q + 1F

a(q+1)(A)Fa(q+1)(A)

+
[
mAa(q) + Fa(q)(C)

]2}
, (D.2)

This is the Stueckelberg formulation for the massive (d− p− 1)-form model, see eq. (2.13).
Thus we have shown that the massive q-form model (D.2) is dual to (5.1).

There is an alternative dual formulation for (5.1), which is obtained by making use of
the first-order action

S[Lp, Bp, Vp−1] = 1
p!

∫
ddx e

{1
2L

a(p)La(p) −
1

2(p+ 1)F
a(p+1)(B)Fa(p+1)(B)

+(−1)d+dpLa(p)
[
mBa(p) + Fa(p)(V )

]}
, (D.3)

where La(p) and Va(p−1) are unconstrained antisymmetric tensor fields. The equation of
motion for Va(p−1) implies that La(p) = 1

(q+1)!ε
a(p)b(q+1)Fb(q+1)(A), and then the action (D.3)

turns into (5.1). On the other hand, integrating out La(p) leads to the massive p-form
model (2.13).
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