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1 Introduction

The framework to calculate OTOCs for quantum mechanical systems with general Hamil-
tonians has been set up in ref. [1]. The simplest case is that of the harmonic oscillator,
which can be treated analytically, and gives OTOCs that are purely oscillatory. More com-
plicated examples that exhibit classical chaos such as the two-dimensional stadium billiard
must be treated numerically and give OTOCs that are growing non-exponentially at early
times followed by a saturation at late times [1].

Early-time exponential growth of OTOCs has been found in a system of non-linearly
coupled oscillators [2], which is expected to exhibit quantum chaos. More recently, however,
it has been found that OTOCs show exponential growth in systems that do not possess
quantum chaos, such as the inverted harmonic oscillator [3, 4].

In the present work, I study OTOCs and spectral form factors for the case of the
one-dimensional anharmonic quantum oscillator, which has not been done before.

2 Out-of-time-ordered correlators in quantum mechanics

This section largely follows the setup outlined in ref. [1] to calculate both microcanonical
and thermal OTOCs in quantum mechanics, which I will be using in the following. Given
a Hamiltonian H = H(x̂, p̂), the OTOC is defined as

OT (t) ≡ −〈[x(t), p(0)]2〉T , (2.1)
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where the subscript T denotes calculation of the expectation value in a heat bath of tem-
perature T = 1

β . Specifically, introducing the microcanonical OTOC cn(t) as the OTOC
for a fixed energy eigenstate |n〉 as in [1]

cn(t) = −〈n|[x(t), p(0)]2|n〉 , (2.2)

this implies

OT (t) = Z−1(β)
∞∑
n=0

e−βEncn(t) , Z(β) =
∞∑
n=0

e−βEn , (2.3)

where H|n〉 = En|n〉. The microcanonical OTOC may be expressed as

cn(t) =
∞∑
m=0
|bnm(t)|2 , bnm(t) ≡ −i〈n|[x(t), p]|m〉 , (2.4)

and if the Hamiltonian is of the form

H = p2 + V (x) , (2.5)

it was shown in ref. [1] that this leads to

bnm(t) = 1
2

∞∑
k=0

xnkxkm
[
(Ek − Em) e−it(Ek−En) + (Ek − En) eit(Ek−Em)

]
,

xnm ≡ 〈n|x|m〉 . (2.6)

As a consequence, knowledge of the energy eigenvalues En and the matrix elements xnm is
sufficient to calculate the quantum mechanical OTOC.

Spectral form factor in quantum mechanics. Another quantity that is related to
OTOCs is the spectral form factor. Following [5], it that has been proposed as a handle
on information loss and I will employ its normalized version defined as

g(β, t) ≡ |Z(β + it)|2

Z2(β) , (2.7)

where Z(c) for complex c is the analytically continued partition function defined in eq. (2.3).
The normalization ensures that g(β, 0) = 1.

3 Discrete “solutions” for the quartic oscillator

Let me consider a Hamiltonian such as (2.5) with an anharmonic oscillator potential V (x)
given by

V (x) = x2N

4 , (3.1)

with N ≥ 1 not necessarily integer. Widely known examples of this potential are the
cases N = 1 (the harmonic oscillator), N = 2 (the quartic oscillator), N = 3 (the sextic
oscillator) and N = ∞ (particle in a box). Only N = 1 and N = ∞ have known analytic
solutions while for generic N analytic solutions for the energy spectrum of the anharmonic

– 2 –



J
H
E
P
0
1
(
2
0
2
1
)
0
3
0

quantum oscillator remain unknown. In the following, I concentrate on the case N = 2
(the quartic oscillator) for which the Schrödinger equation becomes

ψ′′n(x)− x4

4 ψn(x) = −Enψn(x) , (3.2)

with ψn(x) = 〈n|ψ〉.
Now consider the auxiliary problem

χ′′(x)− x4

4 χ(x) = −γxχ(x) , x ≥ 0 (3.3)

which has a discrete solution spectrum that is spanned by the associated generalized La-
guerre polynomials. Specifically, separating wave-functions into parity-even (+) and parity-
odd (-) solutions, (3.3) is solved by

χ+(x) = e−
x3
6 L

(− 1
3 )

i

(
x3

3

)
, χ−(x) = xe−

x3
6 L

(+ 1
3 )

i

(
x3

3

)
, (3.4)

where i = 0, 1, 2, . . . and the respective eigenvalues γ in (3.3) take the values γ+
i = 1 + 3i,

γ−i = 2 + 3i. Expanding wave-functions ψn(x) of the original problem (3.2) in terms of the
auxiliary functions thus leads to

ψ2n(x) = e−
x3
6

K∑
i=0

c
(2n)
i L

(− 1
3 )

i

(
x3

3

)
, ψ2n+1(x) = xe−

x3
6

K∑
i=0

c
(2n+1)
i L

(+ 1
3 )

i

(
x3

3

)
, (3.5)

with K → ∞ and obvious modifications for x < 0. I will refer to (3.5) as the “Laguerre-
transform” of ψ(x), and to ci as the “Laguerre-coefficients”. Plugging (3.5) back into (3.2),
the Laguerre coefficients c(n)

i have to fulfill

E2n

K∑
i=0

c
(2n)
i L

(− 1
3 )

i

(
x3

3

)
= x

K∑
i=0

(1 + 3i)c(2n)
i L

(− 1
3 )

i

(
x3

3

)
, (3.6)

E2n+1

K∑
i=0

c
(2n+1)
i L

( 1
3 )
i

(
x3

3

)
= x

K∑
i=0

(2 + 3i)c(2n+1)
i L

( 1
3 )
i

(
x3

3

)
. (3.7)

After using the steps detailed in appendix A, the energy eigenvalues En and Laguerre
coefficients ci are found to be related to the eigenvalues and eigenvectors of Aij , Bij given
in eqs. (A.3):

Aij c̃
(2n)
j = 3

1
3

Γ
(

1
3

)
E2n

c̃
(2n)
i , Bij c̃

(2n+1)
j = 3

1
3

E2n+1
c̃

(2n+1)
i , (3.8)

where i, j = 0, 1, 2, . . .K and I have rescaled the Laguerre coefficients as

c
(2n)
i = c̃

(2n)
i

√√√√ i!
(1 + 3i)Γ

(
2
3 + i

) , c
(2n+1)
i = c̃

(2n+1)
i

√√√√ i!
(2 + 3i)Γ

(
4
3 + i

) . (3.9)
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A full solution for the quartic oscillator requires finding the eigenvalues and eigenvec-
tors for K →∞, for which A,B become infinite matrices. Keeping K finite can either be
viewed as an approximation to the full solution, or, to a solution at a discrete set of points.
Specifically, solving the eigenproblem (3.8) for fixed and finite K, leads to K parity-even
and K parity-odd wave-functions ψ̃n(x) that each are exact solutions to (3.2) at 2K points
x = ±x1,±x2 . . . ,±xK . In many respects, this is reminiscent of constructing continuum
solutions out of Fourier series.

For pedagogical reasons, some of the above properties are discussed for analytically
tractable case K=1 in the next section.

4 Analytically tractable approximation for c0(t)

For K=1, the eigenvalue problems (3.8) is analytically solvable. The non-vanishing matrix
elements (A.6) are evaluated to be

x01 =' 0.81 , x03 =' −0.01 , x21 =' 0.87 , x23 =' 1.65 , (4.1)

cf. appendix A for details. Note that x03 is an order of magnitude smaller than the other
matrix elements, such that neglecting contributions involving x03 is a good approximation.
As a consequence, to good approximation,

b00(t) ' x2
01(E1 − E0) cos (E1 − E0)t ,

b02(t) ' x01x21
2

[
(E1 − E2)e−it(E1−E0) + (E1 − E0)eit(E1−E2)

]
, (4.2)

such that

c0(t) ' x4
01(E1 − E0)2

2 + x2
01x

2
21

4
[
(E1 − E0)2 + (E2 − E1)2

]
(4.3)

+x4
01(E1 − E0)2

2 cos 2t(E1 − E0)

−x
2
01x

2
21

2 (E1 − E0)(E2 − E1) cos t(2E1 − E0 − E2) .

This results suggests that c0(t) is the superposition of two harmonics plus a constant. I find
that (4.3) is correct semi-quantitatively also when K →∞, when replacing the numerical
values E0, E1, E2, x01, x21 accordingly from K = 1 to higher K.

5 Numerical results

Except for the ground state where reasonable approximations can be found,1 eq. (3.8) is
hard to solve analytically in the limit K → ∞. However, for generic K, (3.8) is amenable
to efficient numerical solution using readily available eigenvalue packages. In practice, I
use K = 4096 and vary by a factor of two to test for numerical sensitivity w.r.t. finite K,
showing only results that do not exhibit such sensitivity to the naked eye. As an example,

1See e.g. appendix B.
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Eigenvalue Spectrum of the Quartic Oscillator
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Figure 1. Eigenvalue spectrum En of the anharmonic quartic oscillator, compared to the WKB
approximation as a function of n. Inset shows En/E

(WKB)
n − 1 to demonstrate that eigenvalues

rapidly converge to the WKB values (note the logarithmic scale).

results for the eigenvalue spectrum of the quartic oscillator are shown in figure 1. For
comparison, results from the WKB approximation [6, 7] are shown in figure 1, which in my
units becomes

E(WKB)
n =

3π2[3(n+ 1
2
)4] 1

3

Γ
(

1
4

) 8
3

. (5.1)

It is a well-known feature that the eigenvalue spectrum of the quartic oscillator is nu-
merically close to the WKB spectrum for all but lowest-lying eigenvalues (see inset in
figure 1). However, the same is not true for the eigenfunctions ψn(x) which in the WKB
approximation feature a singularity close to the classical turning point.

Using the numerically determined Laguerre coefficients c̃i, I find that the matrix ele-
ments (A.6) for generic K are strongly peaked for nearest energy-levels only, e.g.

x2n,2m+1 ' #1δn,m + #2δn,m+1 , (5.2)

with #1,#2 two numbers of order unity. This is similar to what was found in (4.1) for
K=1. Therefore, I find for n ≥ 2

cn(t) ' |bn,n−2(t)|2 + |bn,n(t)|2 + |bn+2,n(t)|2 , (5.3)

and bnm(t) similarly dominated by nearest-neighbor energy levels. As a consequence, eval-
uation of cn(t) is dominated by matrix elements xij with i, j ' n, which greatly reduces the
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Figure 2. Microcanonical OTOCs cn(t) as a function of time for n = 0, 2, 4, 8, 16 (OTOCs for odd
n are qualitatively similar).

computational cost whenever K becomes large. In practice, I determine and use all matrix
elements up to x64,65 when calculating OTOCs, resulting in a very good approximation for
cn(t) with n ≤ 32.

Examples for low-lying microcanonical OTOCs cn(t) are shown in figure 2. First
note that c0(t) qualitatively agrees with the analytic result (4.3) in that it behaves as the
superposition of two harmonics plus a constant. For higher n, cn(t) exhibit a rapid rise at
early times, followed by a qualitatively similar behavior: a constant plus two harmonics.
However, results for cn(t) shown in figure 2 indicate that as n increases, the period of
the high-frequency harmonic does not change much, while the period of the low-frequency
harmonic increases with n. This feature can be qualitatively understood when identifying
the high-frequency harmonic with cos[2(En−En−1)t] and the low-frequency harmonic with
cos[(2En − En−1 − En+1)t], cf. eq. (4.3), and using (5.1) to find

lim
n→∞

(En − En−1) ∝ n
1
3 , lim

n→∞
(En−1 + En+1 − 2En) ∝ n−

2
3 . (5.4)

Since figure 2 also indicates that the amplitude of the high-frequency harmonic con-
tributing to cn(t) is considerably less than those of the low-frequency parts for n� 1, the
resulting behavior of cn(t) is that of a rapid rise at early times followed by a near-constant
behavior at late times.

The resulting OTOC (2.3) for various temperatures is shown in figure 3. Thermal
averaging of the microcanonical cn(t) seems to have the effect of further reducing the
amplitude of the harmonic contributions such that at temperatures T ≥ 8, figure 3 suggests
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Figure 3. OTOCs OT (t) as a function of time for various temperatures T . For higher temperatures,
there is a rapid rise at early times followed by a plateau-like behavior at late times. Note that this
rapid rise is not exponential, but rather power-law like. For comparison, the expected behavior of
OT (∞) for a quantum chaotic system (5.5) is shown for T = 4, 8, 16, 32.

a rapid early-time rise followed by a plateau at late times for OT (t). While the early-time
rise is clearly not a simple exponential, this qualitative behavior of OT (t) (rapid rise,
saturation) has been associated with quantum chaotic behavior in systems that exhibit
chaos, cf. ref. [2]. However, for the case of the quartic oscillator, the system is classically
integrable, and hence not expected to exhibit quantum chaos.

For quantum chaotic system, it is expected that at late times [2]

lim
t→∞

OT (t) = 2〈x2〉T 〈p2〉T , (5.5)

where 〈O〉T again denotes the thermal expectation value of the operator O. Using the quan-
tum virial theorem, it is straightforward to relate the expectation value of the momentum-
operator squared to

〈n|p2|n〉 = 2
3En , (5.6)

whereas the expectation value of the position operator is given by (A.7). The result from
evaluating (5.5) compared to OT (t) is shown for higher temperatures in figure 3. This
comparison indicates that the apparent saturation of OT (t) at high temperatures and late
times is roughly consistent with (5.5).

Finally, to complete the picture I also show the spectral form factor (2.7) in figure 4.
At low temperatures, g(β, t) seems to first decrease and then bounce back to its value at
early times, while for high temperatures, g(β, t) first drops, then rises again followed by
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Figure 4. Spectral form factor g(β, t), normalized to g(β, 0) = 1 as a function of time for three
different temperatures T = 1, 4, 32. For high temperatures, the behavior of the spectral form factor
is very much reminiscent of that from random matrices, cf. ref. [5]. For comparison, the analytic
high-temperature limit of the form factor (C.3) is also shown.

a plateau with strong fluctuations. The high temperature behavior of g(β, t) is not that
dissimilar from what has been observed for a single random matrix, cf. ref. [5].

The behavior for small times can be calculated in a straightforward manner from
the exact partition function in the high temperature limit (C.3). As can be seen from
figure 4, the analytic result for the spectral form factor matches the numerical results at
early times, but deviates at late times. To keep the non-trivial late-time dependence in
the high-temperature approximation, one can consider evaluating g(β, t) using the WKB
energy eigenvalues (5.1) in (2.3). The result for T = 32 is shown in figure 5. From this
figure, it can be seen that the WKB form factor matches the analytic result (C.3), while
faithfully reproducing the late-time “bounce” and fluctuating plateau at late times for high
temperature.

6 Summary and conclusions

In this work, I studied the quantum-mechanical out-of-time-ordered-correlators for quartic
interaction potential. It was found that at low temperature, OTOCs are periodic, while at
high temperature OTOCs exhibit rapid power-law growth followed by an apparent satura-
tion consistent with the temperature-dependent value 2〈x2〉T 〈p2〉T . At high temperatures,
the spectral form factor for this theory decreases at early times, followed by a bounce
and a plateau with strong fluctuations. It was found that the early-time decrease can be
understood from the analytic high-temperature limit of the partition function.
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Figure 5. Spectral form factor g(β, t), normalized to g(β, 0) = 1 using the WKB energy eigenval-
ues (5.1) for T = 32. For comparison, the analytic high-temperature limit of the form factor (C.3)
is also shown.

In conclusion, many interesting observables for one-dimensional quantum mechanics
with anharmonic oscillator potential can be readily calculated using a spectral (Laguerre)
decomposition. This may have implications for our understanding of quantum chaos, in
particular when paired with the search for theories with gravitational duals.

While the present study was performed for quartic oscillator potential, all of the steps
presented here can be repeated for potentials V (x) ∝ xN with arbitrary (even non-integer)
N, cf. eq. (3.1). Since it may be interesting in the future to study properties such as
the power-law rise in early-time OTOCs or the dip-time in the spectral form factor as a
function of the potential index N , I made the numerical codes used to generate the plots
in this study publicly available at [8].
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A Some details on solving the eigenvalue problem

This appendix collects some of the more technical details of solving the eigenvalue problem
discussed in section 3, starting with equations (3.6). Multiplying these equations with
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e−
x3
3 L

(− 1
3 )

j , e−
x3
3 x2L

( 1
3 )
j , respectively, changing variables to z = x3

3 and integrating using [9]

∫ ∞
0

dze−zzκL
(κ)
i (z)L(κ)

j (z)

= Γ(i+ κ+ 1)
i! δij , (A.1)∫ ∞

0
dze−zzκL

(φ)
i (z)L(ρ)

j (z)

= Γ (1+κ)
(φ−κ)i (ρ−κ)j

i!j! 3F2

(
−i −j 1+κ

1+κ−φ− i 1+κ−ρ−j

)
,

where (a)i denotes the Pochhammer symbol and 3F2 is a generalized hypergeometric func-
tion evaluated at unit argument, leads to

Γ
(

2
3 + j

)
(1 + 3j)3

1
3

j!E2nΓ
(

1
3

) c
(2n)
j =

K∑
i=0

(
1
3

)
i

(
1
3

)
j

i!j! 3F2

(
−i −j 1

3
2
3 − i

2
3 − j

)
c

(2n)
i ,

Γ
(

4
3 + j

)
(2 + 3j)3

1
3

j!E2n+1
c

(2n+1)
j =

K∑
i=0

(
1
3

)
i

(
1
3

)
j

i!j! 3F2

(
−i −j 1

2
3 − i

2
3 − j

)
c

(2n+1)
i . (A.2)

Writing

Aij =

(
1
3

)
i

(
1
3

)
j√

i!j!(1 + 3i)(1 + 3j)Γ
(

2
3 + i

)
Γ
(

2
3 + j

) 3F2

(
−i −j 1

3
2
3 − i

2
3 − j

)
,

Bij =

(
1
3

)
i

(
1
3

)
j√

i!j!(2 + 3i)(2 + 3j)Γ
(

4
3 + i

)
Γ
(

4
3 + j

) 3F2

(
−i −j 1

2
3 − i

2
3 − j

)
, (A.3)

one obtains eq. (3.8) in the main text. Wavefunctions are suitably normalized if∫∞
−∞ ψ

2
n(x) = 1, which leads to the following normalization conditions for c̃i:

1 = 2
∫ ∞

0
dxψ2

2n(x) = 2× 3−
2
3 Γ
(1

3

)∑
ij

c̃
(2n)
i Aij c̃

(2n)
j = 2× 3−

1
3

E2n

K∑
i=0

c̃
(2n)
i c̃

(2n)
i , (A.4)

1 = 2
∫ ∞

0
dxψ2

2n+1(x) = 2
∑
ij

c̃
(2n+1)
i Bij c̃

(2n+1)
j = 2× 3

1
3

E2n+1

K∑
i=0

c̃
(2n+1)
i c̃

(2n+1)
i . (A.5)

I close this section by pointing out that because of parity-symmetry, matrix elements
xnm require n to be even and m to be odd (or vice-versa). Without loss of generality
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assuming n to be even, one finds using (A.1), [10, eq. 16.4.3]

xnm = 2
∑
ij

c
(n)
i c

(m)
j

∫ ∞
0

dxe−
x3
3 L

(− 1
3 )

i

(
x3

3

)
L

(+ 1
3 )

j

(
x3

3

)
x2 ,

= 2
∑
ij

c
(n)
i c

(m)
j

(
−1

3

)
i

(
1
3

)
j

i!j! 3F2

(
−i −j 1

4
3 − i

2
3 − j

)
,

= 2
∑
ij

c̃
(n)
i c̃

(m)
j

(
−1

3

)
i

(
1
3

)
j√

i!j!(1 + 3i)(2 + 3j)Γ
(

2
3 + i

)
Γ
(

4
3 + j

) (1− 3i)(1 + 3j)
1− 3i+ 3j . (A.6)

Other matrix elements that will be needed in the following are

〈2n|x2|2n〉

=
∑
ij

c̃
(2n)
i c̃

(2n)
j

|c̃(2n)|2
E2n3

1
3 ×

(
−1

3

)
i

(
−1

3

)
j√

i!j!(1 + 3i)(1 + 3j)Γ
(

2
3 + i

)
Γ
(

2
3 + j

) 3F2

(
−i −j 1

4
3 − i

4
3 − j

)
,

〈2n+ 1|x2|2n+ 1〉 (A.7)

=
∑
ij

c̃
(2n+1)
i c̃

(2n+1)
j

|c̃(2n+1)|2
E2n+13

1
3 Γ
(

5
3

)
×
(
−1

3

)
i

(
−1

3

)
j√

i!j!(2 + 3i)(2 + 3j)Γ
(

4
3 + i

)
Γ
(

4
3 + j

) 3F2

(
−i −j 5

3
4
3 − i

4
3 − j

)
,

where |c̃|2 =
∑
i c̃ic̃i.

For K = 1, the matrices A,B become

A
(K=1)
ij = 1

Γ
(

2
3

)
 1 1√

24
1√
24

1
6

 , B
(K=1)
ij = 1

2Γ
(

4
3

)
 1 1√

30
1√
30

1
3

 , (A.8)

which leads to the energy eigenvalues

E
(K=1)
0 = 12(

7 +
√

31
) × 3

1
3 Γ
(

2
3

)
Γ
(

1
3

) ' 0.696 , E
(K=1)
2 = 12(

7−
√

31
) × 3

1
3 Γ
(

2
3

)
Γ
(

1
3

) ' 6.1 ,

E
(K=1)
1 = 60(

20 +
√

130
) × 3

1
3 Γ
(4

3

)
' 2.46 , E

(K=1)
3 = 60(

20−
√

130
) × 3

1
3 Γ
(4

3

)
' 9 ,

and eigenvectors

c̃
(0),(K=1)
i ∝

(√
31 + 5,

√
6
)
, c̃

(2),(K=1)
i ∝

(√
31− 5,−

√
6
)
,

c̃
(1),(K=1)
i ∝

(√
39 +

√
30, 3

)
, c̃

(3),(K=1)
i ∝

(√
39−

√
30,−3

)
.
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Using the normalization condition (A.4), the non-vanishing matrix elements (A.6) are
readily evaluated to be

x01 = 108
√

5 + 45
√

26 + 22
√

155 + 10
√

806√
10
(
62 + 11

√
31
) (

130 + 11
√

130
) × 3

1
3

2
√

Γ
(

1
3

) ' 0.81 ,

x03 = −108
√

5 + 45
√

26− 22
√

155 + 10
√

806√
10
(
62 + 11

√
31
) (

130− 11
√

130
) × 3

1
3

2
√

Γ
(

1
3

) ' −0.01 ,

x21 = −108
√

5− 45
√

26 + 22
√

155 + 10
√

806√
10
(
62− 11

√
31
) (

130 + 11
√

130
) × 3

1
3

2
√

Γ
(

1
3

) ' 0.87 ,

x23 = 108
√

5− 45
√

26− 22
√

155 + 10
√

806√
10
(
62− 11

√
31
) (

130− 11
√

130
) × 3

1
3

2
√

Γ
(

1
3

) ' 1.65 , (A.9)

which are quoted in the main text.

B Towards an analytic solution of the ground state of the quartic oscil-
lator

Using [10, eq. 16.4.3], one can write

Aij = 1
Γ2
(

2
3

)
(

1
3 − i

)
j

(
1
3

)
i(

2
3 − i

)
j

(
2
3

)
i

√√√√Γ
(
i+ 2

3

)
Γ
(
j + 2

3

)
i!j!(1 + 3i)(1 + 3j) , (B.1)

such that using i = 0 in eq. (3.8), the even energy-levels E2n can be written as

E2n =
3

1
3 Γ
(

2
3

)
∑∞
j=0

Γ(j+ 1
3 )

j!
c

(2n)
j

c
(2n)
0

, (B.2)

where c(2n)
i are the unrescaled Laguerre coefficients, cf. eq. (3.9). The ground state Laguerre

coefficients correspond to the dominant eigenvalue of the matrix Aij , which can be obtained
by iteration of an initial guess citeration 0

i = δi,0. It is convenient to introduce a second
rescaling of the ground-state Laguerre coefficients,

c
(0)
i = i!

(1 + 3i)
(

2
3

)
i

˜̃ci , (B.3)

where using (3.8) and (B.1) the ground-state coefficients and energy can be found from the
recursion relation

˜̃citeration q
i =

(
1
3

)
i

i!

∞∑
j=0

(
1
3 − i

)
j(

2
3 − i

)
j

˜̃citeration q−1
i

1 + 3j , Eiteration q
0 =

3
1
3 Γ
(

2
3

)
Γ
(

1
3

)∑∞
j=0

( 1
3 )
j

(1+3j)( 2
3 )
j

˜̃cj
˜̃c0

.

(B.4)
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Specifically, the starting point is ˜̃citeration q
i = δi,0, such that (B.2) implies

Eiteration 0
0 =

3
1
3 Γ
(

2
3

)
Γ
(

1
3

) ' 0.729011 . . .

The first non-trivial iteration gives

˜̃citeration 1
i =

(
1
3

)
i

i! , Eiteration 1
0 =

3
1
3 Γ
(

2
3

)
Γ
(

1
3

)
3F2

(
1
3

1
3

1
3

4
3

2
3

) ' 0.676893 . . . , (B.5)

where here and in the following pFq denotes a generalized hypergeometric function of
argument unity.

The next iteration ˜̃citeration 2
i = ( 1

3 )
i

i! 3F2

(
1
3

1
3

1
3 − i

4
3

2
3 − i

)
, and Eiteration 2

0 involves the

non-standard sum
∞∑
j=0

(
1
3

)2

j

j!(1 + 3j)
(

2
3

)
j

3F2

(
1
3

1
3

1
3 − j

4
3

2
3 − j

)
. (B.6)

The generalized hypergeometric function appearing in this sum is a non-terminating
Saalschützian, which using [11, eq. 4.1] may be rewritten as

3F2

(
1
3

1
3

1
3 − j;

4
3

2
3 − j; 1

)
=

Γ
(

2
3

)
Γ
(

4
3

)
Γ2
(

2
3 + j

)
Γ
(

1
3 + j

) [ 1
j! (B.7)

+
Γ
(

2
3 + j

)
Γ2
(

1
3

)
Γ
(

4
3 + j

)
Γ
(

5
3 + j

) 3F2

(
2
3

2
3 + j 2

3 + j;
4
3 + j 5

3 + j; 1

) .
Inserting the first part of this decomposition leads to a contribution to (B.6) that is readily
evaluated. For the second part, note that

∞∑
j=0

(
1
3

)
j

(1 + 3j)j! t
j

1F0

(2
3 , t
)

= 2F1

(1
3 ,

1
3 ,

4
3 , t
)

(1− t)−
2
3 = 2F1

(
1, 1, 4

3 , t
)
. (B.8)

Multiplying by t−
1
3 and integrating gives

∞∑
j=0

(
1
3

)
j

(1 + 3j)j! t
j

(
2
3

)
j(

5
3

)
j

2F1

(2
3 ,

2
3 + j; 5

3 + j; t
)

= 3F2

(2
3 , 1, 1; 4

3 ,
5
3; t
)
. (B.9)

Multiplying by t−
1
3 (1− t)−

1
3 and integrating t from 0 to 1 leads to

∞∑
j=0

(
1
3

)
j

(1 + 3j)j!

(
2
3

)2

j(
4
3

)
j

(
5
3

)
j

3F2

(2
3 ,

2
3 + j,

2
3 + j; 4

3 + j,
5
3 + j; 1

)

= 4F3

(2
3 ,

2
3 , 1, 1; 4

3 ,
4
3 ,

5
3; 1

)
, (B.10)
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such that, reassembling all parts of (B.6) one finds for the second iteration ground
state energy

Eiteration 2
0 =

3
1
3 Γ
(

2
3

) [
1 + 9

2Γ3( 1
3 ) 3F2

(
2
3 ,

2
3 ,

2
3 ; 4

3 ,
5
3 ; 1
)]

Γ
(

1
3

) [
3F2

(
1
3 ,

1
3 ,

2
3 ; 1, 4

3 ; 1
)

+ 9
2Γ3( 1

3 ) 4F3
(

2
3 ,

2
3 , 1, 1; 4

3 ,
4
3 ,

5
3 ; 1
)]

' 0.66936 . . . (B.11)

At the third iteration, plugging ˜̃citeration 2
i with the decomposition (B.7) into (B.4),

the sum

Im =
∞∑
j=0

(
1
3 −m

)
j(

2
3 −m

)
j

(
2
3

)3

j

(1 + 3j)j!
(

4
3

)
j

(
5
3

)
j

3F2

(
2
3

2
3 + j 2

3 + j
4
3 + j 5

3 + j

)
, (B.12)

with I0 = 4F3
(

2
3 ,

2
3 , 1, 1; 4

3 ,
4
3 ,

5
3 ; 1
)
from (B.10) appears. Writing

∞∑
j=0

(
2
3

)
j

(
1
3 −m

)
j
tj

(1 + 3j)j!
(

2
3 −m

)
j

1F0

(2
3; ; t

)
= 3F2

(
1
3

2
3

1
3 −m;

4
3

2
3 −m; t

)
1F0

(2
3; ; t

)
≡ sm(t) ,

the sought-after sum (B.12) arises as from considering
∫ 1

0
du
u (1− u)−

1
3
∫ u

0 dtt
− 1

3 sm(t).
A well-known property of generalized hypergeometric functions is the relations of shift-

ing upper and lower parameters by unity. For the case at hand, it is particularly convenient
to consider Fn(t) ≡ p+2Fq+2

(
a (b)p d−n

1+a (c)q g−n

)
(t) which upon shifting gives the relation

Fn = (d− n)(g − n− a)
(g − n)(d− n− a)Fn−1 + a(d− g)

(g − n)(d− n− a) p+1Fq+1

(
(b)p d− n
(c)q g − n+ 1

)
, (B.13)

where p, q, n are integers and all the parameters a, (b)1, (b)2, . . . (b)p, (c)1, (c)2, . . . (c)q, d, g
are arbitrary. Note that (B.13) relates generalized hypergeometric functions of arbitrary
argument t (not written), and thus directly is applicable to sm(t) above for a = 1

3 , b =
2
3 , d = 1

3 , g = 2
3 , finding the recursion relation

sm(t) =

(
m− 1

3

)2

m
(
m− 2

3

)sm−1(t)− 1
9m

(
m− 2

3

) 2F1

(
4
3 1−m

5
3 −m

)
(t) ,

where I used 1F0
(

2
3 ; ; t

)
2F1

(
2
3

1
3−m
5
3−m

)
(t) = 2F1

(
4
3 1−m

5
3−m

)
(t) to combine the last expres-

sion. Integrating twice then leads to the following recursion relation for the sum (B.12):

Im =

(
m− 1

3

)2

m
(
m− 2

3

)Im−1 −
2

27m
Γ2(m)(

2
3

)
m

(
1
3

)
m

, (B.14)

where I used the Saalschützian identity [10, eq. 16.4.3] to write

3F2

(
2
3

2
3 1−m
5
3

5
3 −m

)
=

Γ2(m)Γ
(

5
3

)
Γ
(

1
3

)
Γ
(

2
3 +m

)
Γ
(
−2

3 +m
) .
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eq. (B.14) is a first-order recursion relation that is straightforward to solve so that (B.12) is

Im =

(
2
3

)2

m

m!
(

1
3

)
m

[
4F3

(
2
3

2
3 1 1
4
3

4
3

5
3

)
− 1

4 4F3

(
1 1 1 1

5
3

5
3

5
3

)

+1
4
m!3(
5
3

)3

m

4F3

(
1 1 +m 1 +m 1 +m

5
3 +m 5

3 +m 5
3 +m

) . (B.15)

Now using relations between generalized hypergeometric functions of the form2

4F3

(
2
3

2
3 1 1;

4
3

4
3

5
3 ; 1

)
− 1

4 4F3

(
1 1 1 1;
5
3

5
3

5
3 ; 1

)

=
2Γ3

(
1
3

)
9 3F2

(
1
3

1
3

2
3

1 4
3

)
−

Γ5
(

1
3

)
27Γ

(
2
3

) ,
4F3

(
1 1+m 1+m 1+m;

5
3 +m 5

3 +m 5
3 +m

)
(B.16)

= −
3
(

2
3 +m

)2
Γ2
(

1
3

)
Γ
(

1
3 +m

)
Γ
(

5
3 +m

)
Γ
(

2
3

)
m!2

4F3

(
1
3

2
3

2
3

1
3 −m

1 4
3

2
3 −m

)

+
Γ2
(

1
3

)
Γ2
(

5
3 +m

)
Γ2
(

2
3

)
Γ2
(

4
3 +m

) 4F3

(
2
3

2
3 +m 1 +m 1 +m
4
3 +m 4

3 +m 5
3 +m

)
+

Γ5
(

1
3

)
Γ3
(

5
3 +m

)
2m!3Γ4

(
2
3

) ,

the whole third-order iteration for the Laguerre coefficients can be written as

˜̃citeration 3
i =

(
2
3

)
i

i!


(

2
3

)
i

i! 3F2

(
1
3

1
3

2
3

1 4
3

)
+ 9

2Γ3
(

1
3

) (1)2
i

(
2
3

)
i(

4
3

)2

i

(
5
3

)
i

4F3

(
2
3 1 + i 1 + i 2

3 + i
4
3 + i 4

3 + i 5
3 + i

) .
The third iteration of the ground state energy involves again a sum that can be solved with
the same methods as those outlined above and one finds

Eiteration 3
0 =

31/3Γ
(

2
3

)
Γ
(

1
3

) 3F2

(
1
3

1
3

2
3

1 4
3

)
+ 9

2Γ3( 1
3 ) 4F3

(
2
3

2
3 1 1
4
3

4
3

5
3

)
(

3F2

(
1
3

1
3

2
3

1 4
3

))2

+ 9
2Γ3( 1

3 ) 5F4

(
2
3 1 1 1 1

4
3

4
3

4
3

5
3

) ' 0.6683 . (B.17)

The fourth iteration again leads to a recursion relation similar to that for (B.6), but
now involving 4F3

(
2
3 1 1 −j

4
3

5
3

2
3−j

)
. Unlike the case for the non-terminating Saalschützian

3F2 , there is no known general formula to expand the non-terminating Saalschützian 4F3 ,
so I did not find a closed-form expression for ˜̃citeration 4

i , despite its close similarity with the
sum appearing in Eiteration 3

0 .
2These relations may be derived by using (B.13) with a = 1

3 , b1 = b2 = 2
3 , c1 = 1 and a = 1

3 , b1 = b2 =
2
3 , c1 = 1, d = 1

3 − m, respectively, for which the recursion relation for Fn can be solved explicitly using the
known form of the non-terminating Saalschützian [11, eq. 4.1].
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C Exact high temperature limit

Recall that the partition function for quantum mechanics with Hamiltonian (2.5) can be
written in terms of a path integral [12][eq. 1.37],

Z(β) =
∫
Dxe

−
∫ β

0 dτ

[
1
4

(
dx(τ)
dτ

)2
+V (x)

]
, (C.1)

with periodic boundary conditions x(β) = x(0). In the high temperature limit β → 0, only
the Fourier zero-mode x(τ) = x̄ = const. contributes to Z(β). As a consequence, one has

lim
β→0

Z(β) =
∫ ∞
−∞

dx̄e−βV (x̄) (C.2)

which can be evaluated for any potential V (x). Specifically, for V (x) = x4

4 one finds
Z(β) = β−

3
4 × const, such that the spectral form factor (2.7) in the high temperature limit

becomes
lim
β→0

g(β, t) =
(
1 + β−2t2

)− 3
4 . (C.3)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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