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1 Introduction

The four-dimensional supersymmetric index (or the superconformal index) counts certain
protected states on a three-sphere [1, 2], which can be written as

I(ω1, ω2) = TrH(−1)F e−ω1(J1+R/2)e−ω2(J2+R/2) = TrH(−1)F pJ1+R/2qJ2+R/2 , (1.1)

where the trace is over the states on S3. Here J1,2, R are the generators of the angular
momenta and R-charge. The ω1,2 are the chemical potentials for the angular momenta
shifted by R-charge. We also use the fugacities p ≡ e−ω1 , q ≡ e−ω2 frequently throughout
the paper. Since the supersymmetric index is invariant under the renormalization group
flow and also under the change of marginal couplings, it can often be computed using the
weak-coupling limit of the gauge theory. Hence it provides a useful tool to investigate the
non-perturbative aspects of superconformal theories. See the review [3] and the references
therein for more details.

We call the limit |ωi| � 1 as the Cardy limit in analogy with the high-temperature
limit of the Cardy’s formula for two-dimensional CFT [4]. In our case, the ‘Cardy limit’
actually corresponds to the large charge (or angular momentum) limit at zero temperature
since the index counts BPS states. The Cardy limit of the 4d superconformal index has
been studied by di Pietro and Komargodski [5]. They found that the asymptotic behavior
of the index (1.1) can be written in terms of the conformal anomalies as

I(ω) ∼ exp
(

16π2

3ω (c− a)
)
, (1.2)
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in the ω1 = ω2 = ω � 1 limit assuming the chemical potentials are strictly real. It was
noticed by [6] that this formula can receive corrections for the theories having a > c. One of
the original motivation to introduce the superconformal index is to reproduce the entropy
of the supersymmetric black holes in AdS5×S5 [7–10]. It has been believed for more than
a decade that this goal cannot be achieved from the index due to severe boson-fermion
cancellations. This is also consistent with the di Pietro-Komargodski’s formula for a ≈ c

since the free energy with (−1)F seems to be much smaller than the degrees of freedom
counted by the central charges.

However, it was recently realized that the index of N = 4 U(N) SYM theory does
capture the black hole entropy once we allow the chemical potentials to have imaginary
parts [11–14]. In particular, it was shown in [12] that when the chemical potentials for the
angular momentum |ω1,2| are taken to be small, log(I) scales as N2 and reproduces the
‘black hole entropy function’ of [15] in the Cardy regime. See also [16, 17].

In this paper, we generalize the analysis of [12] to arbitrary N = 1 superconformal
theories with finite and general central charges. One obvious difference between generic
N = 1 theory and N = 4 theory is that the two central charges (a, c) are not necessarily
equal. In addition, one crucial difference is that the superconformal R-charges for the
N = 1 theories are not quantized and can be any real numbers.1 Therefore, a straight-
forward generalization of [12] requires a slight twist. We define a modified version of the
superconformal index as

I(ω1, ω2) = TrH
[
eπiRpJ1+R/2qJ2+R/2

]
, (1.3)

where (−1)F is replaced by eπiR. This form indeed qualifies as a Witten index since the
supercharge shifts R by exactly one unit.2 This form of the index contains equivalent
information as the conventional one since we simply multiplied an extra phase factor for
each contribution coming from short multiplets. However, it turns out that the modified
index in the Cardy limit captures more entropy than the ordinary index. It enables us to
extract enough amount of degrees of freedom that accounts for the black hole entropy in
the large N limit. For the models with flavor symmetries, it often happens that shifting
their chemical potentials by suitable imaginary amounts changing eπiR into the ordinary
(−1)F . In these cases, using (1.3) is equivalent to turning on the complex flavor chemical
potentials for the ordinary index, which allows us to see the true large charge saddle points.

We find that the modified index in the Cardy limit (|ω1,2| � 1, ∆ ∼ −iπ) is given as

logI(ω1, ω2) ∼ 8∆3

27ω1ω2
(5a− 3c) + 8π2∆

3ω1ω2
(a− c) , (1.4)

with ∆ = ω1+ω2
2 − πi. Here Re(∆) > 0 and Re(ω1,2) > 0. Once we allow the chemical

potential for the angular momentum to have both real and imaginary part, the index in
1It is widely believed that the R-charges for the chiral operators in an N = 1 theory are algebraic

numbers [18], whereas for N = 2 are rational [19, 20]. For N ≥ 3, R-charges are integers up on suitable
normalization.

2A similar definition of the index was used in [21] in the case of N = 2 theory.
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the Cardy limit |ω1,2| � 1 can be written as (with ω1 = ω2 = ω ≡ ωR + iωI)

Re[logI(ω)] ∼ 32π3ωIωR
27|ω|4 (3c− 2a) . (1.5)

This is our Cardy formula. For an interacting unitary SCFT, (3c−2a) is always positive [22]
(it is zero for a free vector multiplet). Therefore the real part of the index always grows
exponentially once we have positive ωI .

The index can be written as

I(ω1, ω2) =
∑

BPS states
Ω(j1, j2)e−ω1j1−ω2j2 , (1.6)

where Ω(j1, j2) gives the lower bound on degeneracies of the BPS states with given charges.
In principle, one can perform an inverse Laplace transformation to extract Ω(j1, j2). In the
Cardy limit, one can simplify the procedure via saddle point approximation. In the end, it
is equivalent to performing the Legendre transformation on the Cardy free energy log(I).
We perform the Legendre transformation of the Cardy free energy to obtain the entropy of
a microcanonical ensemble of the states with large angular momentum. It turns out that
the most dominant saddle point is complex-valued with a positive imaginary part ωI > 0.
At the saddle point, the entropy becomes

Re(S) = logΩ(J) ∼ (3c− 2a)1/3J2/3 , (1.7)

for J1 = J2 = J so that it is positive whenever a/c < 3/2, which is identical to the one
side of the Hofman-Maldacena bound [22].

For a holographic theory (such as N = 4 SYM) with a ≈ c, we easily see that the
free energy given as above scales as a ∼ N2. Our formula distinctively differs from the
earlier work of [5] where a− c played the role of proportionality constant. In our case, we
get 3c−2a

ω2 as the leading asymptotic behavior instead of c−a
ω . We also see that in a = c

limit, (1.4) reduces to the so-called the entropy function for the AdS5 black hole. It was
advocated in [11, 15] that Casimir energy accounts for the black hole entropy. This is
reminiscent of the two-dimensional Cardy formula, where the Casimir energy (which is
the low-temperature behavior fixed by the central charge) is indeed related to the high-
temperature asymptotics. Therefore it is quite possible that some version of modular
invariance is hidden in this setup.

We also apply our result to the case with N = 1 SCFT dual to type IIB string theory
on AdS5 × Y p,q [23]. We find that when p = q, the Cardy free energy can be written in
the same form as that of the N = 4 SYM theory upon mapping the chemical potentials.
This allows us to perform Legendre transformation to obtain the macroscopic entropy of
the supersymmetric black holes of [7, 8, 10].

The outline of this paper is as follows. In section 2, we give a detailed analysis of
the (modified) superconformal index in our Cardy limit. In section 3, we derive the same
formula using the background field analysis on three-sphere. In section 2, we focus on
Lagrangian gauge theories. However, with our intrinsic anomaly-based analysis of section 3,
we expect that the result is true for non-Lagrangian theories as well. In section 4, we
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consider various examples to demonstrate that the dominant saddle point in the holonomy
integral is at the origin which preserves the full gauge symmetry. Then in section 5, we
perform the Legendre transformation of the asymptotic free energy to obtain the asymptotic
entropy of the microcanonical ensemble of fixed charges.

2 Asymptotic index of N = 1 gauge theory

Let us consider the general partition function of N = 1 gauge theory on S3 ×R,

Z(β, ω1, ω2,∆) = Tr
[
e−βE−ω1J1−ω2J2−∆R+ix·f

]
= Tr

[
e−βEpJ1qJ2tR

∏
a

zfaa

]
, (2.1)

where (E, J1, J2, R) are the Cartans of the superconformal algebra su(2, 2|1) and p =
e−ω1 , q = e−ω2 , t = e−∆, za = eixa . Here we choose the chemical potentials ω1,2 as the
conjugate to the angular momentum associated to two R2 planes inside R4. We define
J1 = jL+jR, J2 = jL−jR with (jL, jR) being the generators of the Lorentz group SU(2)L×
SU(2)R ⊂ SO(4). When there is a flavor symmetry in the theory, we introduce the
flavor chemical potentials x = (x1, · · · , x|F |), being conjugate to the Cartan generators
f = (f1, · · · , f|F |) of the flavor symmetry group F .

TheN = 1 supercharges are {Qα,Q†α, Q̃α̇, Q̃†α̇}, where α and α̇ denote doublet indices
for SU(2)L and SU(2)R, respectively. Here we assign their R-charges to be [R,Qα] = +Qα
and [R, Q̃α̇] = −Q̃α̇. For the following pairs of supercharges, their anti-commutation
relations are given by

δ± = {Q±,Q†±} = E ± 2jL −
3
2R ,

δ̃±̇ = {Q̃±̇, Q̃†±̇} = E ± 2jR + 3
2R .

(2.2)

When the supercharges are acted by the operators inside the trace formula (2.1), they
transform as

e−∆R−ω1J1−ω2J2Q± = e
−2∆∓(ω1+ω2)

2 Q±e−∆R−ω1J1−ω2J2 ,

e−∆R−ω1J1−ω2J2Q̃±̇ = e
2∆∓(ω1−ω2)

2 Q̃±e−∆R−ω1J1−ω2J2 .
(2.3)

Once we take the limit β → 0 with the following constraint between the chemical potentials,
the above partition function becomes the Witten index (or the superconformal index)
preserving the corresponding supercharges:

Q+ : 2∆ + ω1 + ω2 = −2πi (mod 4πi)
Q− : 2∆− ω1 − ω2 = −2πi (mod 4πi)
Q̃+̇ : 2∆− ω1 + ω2 = −2πi (mod 4πi)
Q̃−̇ : 2∆ + ω1 − ω2 = −2πi (mod 4πi)

(2.4)

Then the index receives contributions only from the states with either δ± = 0 or δ̃± = 0
depending on the choice of the constraint. For example, if we choose 2∆−ω1−ω2 = −2πi,

– 4 –



J
H
E
P
0
1
(
2
0
2
1
)
0
2
5

we set t2 = pq with the eπiR insertion inside the trace. It gives the index I− which is the
trace over the states with δ− = 0, i.e.,

Z(β, p, q, t)→ I−(p, q) = Trδ−=0
[
eπiRpJ1+R

2 qJ2+R
2
]
. (2.5)

This is the familiar definition of the N = 1 superconformal index in the literature except
that (−1)F is replaced by eπiR. It is effectively the same as the insertion of (−1)F since
the supercharges will map states with R to (R ± 1). The main difference is that we dress
each supermultiplet by the phase determined by the R-charge of the top component.

Another thing to note is that the choice of the supercharge will set the signs for (the
real part of) the chemical potentials. The current choice (Q−) sets the real part of ∆
and ω+ ≡ ω1+ω2

2 to be of the same sign. The index I− gets contributions from the states
with jL + R/2 ≥ 0. To see this, note that the index I− is obtained from the states with
δ− = 0 but also any states in the theory satisfies δ+ ≥ 0, δ̃±̇ ≥ 0. We can easily see
that jL + R/2 = (2δ+ + δ̃+̇ + δ̃−̇)/12 ≥ 0. Therefore the index is convergent as a series
expansion in terms of the fugacity (pq). Other choices of supercharges work with different
sign choices. We proceed with the index I− in the rest of this paper.

2.1 Letter partition function

Here we study the partition function (2.1) for a very weakly coupled gauge theory as was
done in the case of N = 4 SYM in [24]. In the end, we will study the index that can be
evaluated reliably at strong-coupling by imposing the supersymmetry condition (2.4). But
this turns out to be a useful exercise to correctly identify the contributing factors to the
index and the choice of signs for the chemical potentials.

Let us first evaluate the single letter partition function fV for an N = 1 vector multi-
plet. The operators Fµν and (λα, λα̇) are subject to the equations of motion, i.e., ∂µFµν = 0
and Γµαα̇∂µλα = Γµαα̇∂µλα̇ = 0. Thus fV is obtained by adding up the contributions from
the component fields, minus that of the equations of motion. Each part in an N = 1 vector
multiplet contributing to the partition function is summarized in table 1. We also write
the index I− which can be obtained in β → 0 limit with t2 = pq and insertion of eπiR. In
the table, χd(z) denotes the character for the d-dimensional irreducible representation of
SU(2) given as χ2(z) = z

1
2 + z−

1
2 and χ3(z) = z + 1 + z−1.

Taking into account the tower of derivatives, (∂)n, acting on the letters and the equa-
tions of motion, the bosonic operator Fµν contributes to

fVB = e−2β (χ3(pq) + χ3(p/q))− 2e−3βχ2(pq)χ2(p/q) + 2e−4β

(1− e−βp)(1− e−βp−1)(1− e−βq)(1− e−βq−1) · χGadj , (2.6)

where G refers to the gauge group and χGR refers to the character for the representation
R for the gauge group G. The last term in the numerator was added to compensate
for subtraction of ∂µ∂νFµν which vanishes identically. Similarly, the fermionic operator
(λα, λα̇) contributes to

fVF = e−
3
2βχ2(pq)t−1 − e−

5
2βχ2(p/q)t−1 + e−

3
2βχ2(p/q)t1 − e−

5
2βχ2(pq)t1

(1− e−βp)(1− e−βp−1)(1− e−βq)(1− e−βq−1) · χGadj . (2.7)
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Letter SU(2)L × SU(2)R E R fV I−
Fµν (3,1)⊕ (1,3) 2 0 e−2β (χ3(pq) + χ3(p/q)) pq

λα (2,1) 3/2 −1 e−3β/2 t−1 χ2(pq) 0
λ̄α̇ (1,2) 3/2 +1 e−3β/2 t1 χ2(p/q) −p− q

∂µFµν 2(2,2) 3 0 −e−3β χ2(pq)χ2(p/q) 0
Γµαα̇∂µλα (1,2) 5/2 −1 −e−5β/2 t−1 χ2(p/q) 0
Γµαα̇∂µλ̄α̇ (2,1) 5/2 +1 −e−5β/2 t+1 χ2(pq) pq

∂µ∂νFµν 2 (1) 4 0 e−4β 0

∂±±̇ (2,2) 1 0 e−βp±q± p, q

Table 1. Letter partition function of an N = 1 vector multiplet.

Letter SU(2)L × SU(2)R E R fX I−
Φ (1,1) 3

2rX −rX e−(3rX /2)·β t−rX 0
Φ† (1,1) 3

2rX rX e−(3rX /2)·β t−rX (pq)
rχ
2

ψα (2,1) 3
2rX + 1

2 −rX + 1 e−(3rX +1)/2·β t−rX +1 χ2(pq) −(−pq)1− rχ2

ψ̄α̇ (1,2) 3
2rX + 1

2 rX − 1 e−(3rX +1)/2·β trX−1 χ2(p/q) 0

∂2Φ (1,1) 3
2rX + 2 −rX −e−(3rX /2+2)·β t−rX 0

∂2Φ† (1,1) 3
2rX + 2 rX −e−(3rX /2+2)·β trX 0

Γµαα̇∂µψα (1,2) 3
2rX + 3

2 −rX + 1 −e−(3rX +3)/2·β t−rX +1 χ2(p/q) 0
Γµαα̇∂µψ̄α̇ (2,1) 3

2rX + 3
2 rX − 1 −e−(3rX +3)/2·β trX−1 χ2(pq) 0

∂±±̇ (2,2) 1 0 e−βp±q± p, q

Table 2. Letter partition function of an N = 1 chiral multiplet.

Now let us consider the single letter partition function fX for a chiral multiplet X
in the representation (R,F) of G × F . Following the Romelsberger’s prescription [25],
we do not fix the U(1)R-charge of the chiral multiplet to be that of the free field 2/3.3

Instead, we leave it as a free parameter rX that will be fixed for an interacting theory using
anomaly cancellation or a-maximization [18]. The letters in a chiral multiplet and their
contribution to the partition functions/indices are summarized in table 2. The scalar fields
(Φ,Φ†) are subject to ∂2Φ = ∂2Φ† = 0. The fermionic fields (ψα, ψα̇) satisfy the Dirac
equation Γµαα̇∂µψα = Γµαα̇∂µψα̇ = 0. Combining the contributions from each letter, we

3In our convention, this is the charge of the scalar in the anti-chiral multiplet. We will always call the
R-charge of a chiral multiplet as that of Φ† in table 2.
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obtain

fXB =
e−(3rX /2)β(1− e−2β)

(
t−rX χGR χFF + trX χGR χFF

)
(1− e−βp)(1− e−βp−1)(1− e−βq)(1− e−βq−1) , (2.8)

fXF =
e−(3rX+1)/2·βt−rX+1

(
χ2(pq)− e−β χ2(p/q)

)
χGRχ

F
F

(1− e−βp)(1− e−βp−1)(1− e−βq)(1− e−βq−1)

+
e−(3rX+1)/2·βtrX−1

(
χ2(p/q)− e−β χ2(pq)

)
χGRχ

F
F

(1− e−βp)(1− e−βp−1)(1− e−βq)(1− e−βq−1) .

(2.9)

Once we are given the single-letter partition function, the (gauge-variant) multi-letter
partition function is obtained by taking the Plethystic exponential (PE) as

Z = exp
[ ∞∑
m=1

1
m

∑
ϕ

(
fϕB(·m) + (−1)m+1fϕF (·m)

)]
, (2.10)

where (·m) indicates that all chemical potentials multiplied by m, including the ones for the
gauge symmetry. Here we distinguish the bosonic and fermionic PE to take into account
the spin-statistics. The ϕ-summation runs over all the N = 1 multiplets in a given QFT.
To obtain the gauge-invariant partition function we integrate Z over the gauge group with
Haar measure.

2.2 Cardy limit of the superconformal index

Let us consider a generic N = 1 gauge theory with gauge group G and a number of chiral
multiplets {X} under the representations RX with R-charges rX . The central charges for
N = 1 SCFT are given in terms of trace anomalies of the superconformal R-current as [26]

a = 3
32(3TrR3 − TrR) , c = 1

32(9TrR3 − 5TrR) . (2.11)

For the gauge theory at our hand, we find

TrR = |G|+
∑
X

(rX − 1)|rX | , TrR3 = |G|+
∑
X

(rX − 1)3|rX | , (2.12)

where the sum is over all the chiral multiplets in the theory. Here the first terms come from
the gauginos and the second terms from the fermions in the chiral multiplets. Combining
the two expressions, we get

a = 3
32

(
2|G|+

∑
X
|RX |

(
3(rX − 1)3 − (rX − 1)

))
, (2.13)

c = 1
32

(
4|G|+

∑
X
|RX |

(
9(rX − 1)3 − 5(rX − 1)

))
. (2.14)

The superconformal R-charges rX are constrained via gauge anomaly cancellation

TrRGG = 0 ⇔ d(G) +
∑
i

d(RX )(rX − 1) = 0 , (2.15)

– 7 –
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where d(R) refers to the Dynkin index of the representation R. Sometimes, anomaly-free
condition is not enough to fix the R-charge. In this case, one can use the a-maximization
procedure [18] to fix the R-charges. We aim to express the asymptotic expression for the
partition function (index) in terms of the central charges.

Now, let us study the asymptotic behavior of the superconformal index in the Cardy
limit, i.e., |ω1|, |ω2| � 1. The superconformal index for a gauge theory is obtained by the
gauge invariant projection of the letter index (2.10). This is done by integrating over the
Haar measure (also referred to as the Molien integral) as

I =
∫ |G|∏

i=1
dαi

∏
ρ∈∆+

G

2 sin2
(
ρ · α

2

)
exp

[ ∞∑
m=1

∑
ϕ

fϕB(·m) + (−1)m+1fϕF (·m)
m

]∣∣∣∣∣∣∣
(2.4)

, (2.16)

where ∆+
G refers to the set of all positive roots of G. The integrand in our Cardy limit can

be greatly simplified. First, let us take β → 0 with the index constraint 2∆−ω1−ω2 = −2πi
imposed. For a vector multiplet, we get

ZV
∣∣∣
(2.4)

= exp

∑
n≥1

1
n

(
1− (−1)n 2 sinh(n∆)

2 sinh(nω1/2) 2 sinh(nω2/2)

)
· χadj(nα)


= exp

∑
n≥1

1
n

1−
(−1)n

(
en(∆−ω+) − e−n(∆+ω+)

)
n(1− e−nω1)(1− e−nω2)

 ∑
ρ∈∆G

einρ·α

 .

(2.17)

Here the
∑
n 1/n inside the exponential comes from the bosonic part, and the rest comes

from the fermionic part.
The term

∑
n

( 1
n · χadj(nα)

)
in the exponent mostly cancels with the Haar measure.

The Haar measure can be written as

1
|WG|

∏
ρ∈∆+

G

(1− eiρ·α)(1− e−iρ·α) = 1
|WG|

exp

∑
n≥1

1
n

(
−χadj(nα) + rk(G)

) , (2.18)

where rk(G) is the rank of the gauge group and |WG| is the order of the Weyl group of
G. We have the Cartan piece that is non-vanishing. There is no divergence coming from
this term since the fermionic part of the Cartan contribution gives −1 + en∆ to cancel
the unity. In the Cardy limit, this factor does contribute to the index, but it simply
gives an overall volume factor of the form ( 1

ω1ω2
)rk(G). Since this only makes a subleading

logarithmic correction log(ω1ω2) to our Cardy formula, we ignore this factor. Therefore,
the vector multiplet index (combined with the Haar measure) in the Cardy limit becomes
the exponential of the following expression:∑

ρ∈∆G

∑
n≥1

−(−e∆−ω++iρ·α)n + (−e−∆−ω+−iρ·α)n

n3ω1ω2
= −

∑
s=±

∑
ρ∈∆G

sLi3(−es(∆−sω++iρ·α))
ω1ω2

,

(2.19)
where we used the fact that ∆ ∼ −iπ is of order 1 while ω+ ≡ ω1+ω2

2 is taken to be small.4

In the end, we focus on the leading order in ω1,2 so ω+ inside the Li3 can be dropped.
4The second term in the infinite sum is convergent since Re(∆) > 0 and Re(ω+) > 0. The first term is a

sum of a pure phase since ∆−ω+ = −iπ, and it converges since |
∑

n
zn/n3| ≤

∑
n

1/n3 = ζ(3) for |z| = 1.
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For a chiral multiplet X in the representation RX of G,

ZX
∣∣∣
(2.4)

= exp

∑
n

(−1)n−1

n

∑
w∈RX

(
tn(−rX+1)einw(α) − tn(rX−1)e−inw(α)

2 sinh(nω1/2) 2 sinh(nω2/2)

) . (2.20)

Its exponent simplifies in the Cardy limit to the following expression:5∑
s=±

s

ω1ω2

∑
w∈RX

Li3(−es(1−rX )∆+isw(α)) . (2.21)

Inserting (2.19) and (2.21) back to (2.16), the asymptotic expression of I becomes

∫
[dα] exp

∑
s=±

s

− ∑
ρ∈∆G

Li3(−es(∆+iρ·α))
ω1ω2

+
∑
χ

∑
w∈RX

Li3(−es(1−rX )∆+isw(α))
ω1ω2

,
(2.22)

where [dα] =
∏
i dαi.

The holonomy integral (2.22) can be performed by applying the saddle point approxi-
mation. The most dominant saddle point is located at the global minimum of the following
expression:

∑
s=±

s

ω1ω2

 ∑
ρ∈∆G

Li3(−es(∆+iρ·α))−
∑
χ

∑
w∈RX

Li3(−es(1−rX )∆+isw(α))

 ≡ F
ω1ω2

(2.23)

Now we search for the saddle point of the function F to approximate the index integral in
the Cardy limit. In the Cardy limit, the U(1)R chemical potential ∆ should be ∆ ∼ −iπ
since |w+| � 1. In addition, we assume that Im (ω1ω2) > 0. The consistency of the
assumption will be tested later in section 5.

We conjecture that the saddle point is at the origin in the gauge holonomies α1 = · · · =
α|G| = 0. One intuition behind this is as follows. When any of the holonomy variables get
a non-zero value, gauge symmetry is (partially) broken so that we acquire some massive
degrees of freedom. But we expect the high-temperature behavior for an asymptotically
free gauge theory is in the maximally deconfining phase, rather than partially confining
or Higgssed phase. Also, in the work of [24], such a maximally deconfining saddle was
naturally assumed at high temperature, based on the intuitions from the solvable Gross-
Witten-Wadia model [28, 29]. This is rather different from the previous analysis [5, 6, 30–
32], where the index does not capture the fully deconfining phase of the gauge theory
due to the heavy bose-fermi cancellations. There one has to be careful about the non-
trivial holonomy saddles [33], otherwise one gets an incorrect answer. In our case, we

5Had we studied the superconformal index of [1, 2] (with (−1)F insertion) instead of (2.5) (with eπiR

insertion), the formula (2.21) would have become∑
s=±

1
ω1ω2

∑
ρ∈R

∑
λ∈F

[
sLi3 (eisρ(α)−sλ(m)) + ω+(1− rX )Li2 (eisρ(α)−sλ(m))

]
+O(ω0).

Ignoring the issue of holonomy saddles, all Li3 pairs become zero. Inserting Li2(1) = π2

6 reproduces the
asymptotic free energy of [5], proportional to Tr(R) ∝ (a− c). See also [6].
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will see that the index captures enough degrees of freedom (eg. O(eN2) for the SU(N)
theory) to see the deconfining phase. Therefore it is natural to expect the ‘maximally
deconfining’ configuration dominates. In section 4, we plot (ReF , ImF)|∆∼−iπ as a function
of holonomies for various theories to support our claim.

Assuming that the dominant saddle is indeed given at the origin, the asymptotic
expression for the log I can be written as

log(I) =
∑
s=±

s

ω1ω2

(
−|G|Li3(−es∆) +

∑
X
|RX |Li3(−es(1−rX )∆)

)
. (2.24)

One can further simplify this expression by applying the following Li3 identity,

Li3(−ex)− Li3(−e−x) = −(x− 2πip)3

6 − π2(x− 2πip)
6 , (2.25)

which holds for (2p− 1)π < Im(x) < (2p+ 1)π. (The lower bound can be saturated when
Re(x) = 0.) Once we assume 0 < rX < 2 for any chiral multiplet,6 ∆ and (1 − rX )∆
appearing in (2.24) are in the canonical chamber with their imaginary parts between −π
and π. Then (2.24) becomes

log(I) = 1
ω1ω2

( |G|
6 (∆3 + π2∆)−

∑
X

|RX |
6
(
(1− rX )3∆3 + π2(1− rX )∆

))
. (2.26)

Using the following relation for a generic N = 1 gauge theory

TrR3 = |G|+
∑
X

(rX − 1)3|RX | =
16
9 (5a− 3c) , (2.27)

TrR = |G|+
∑
X

(rX − 1)|RX | = 16(a− c) , (2.28)

we can express the asymptotic free energy in terms of c and a as

log(I) = TrR3 ∆3

6ω1ω2
+ TrR π2∆

6ω1ω2
= 8(5a− 3c)

27ω1ω2
∆3 + 8π2(a− c)

3ω1ω2
∆. (2.29)

This is the key formula, which is reminiscent of the ‘entropy function’ in N = 4 SYM
theory [15]. Indeed, it can be reduced to the N = 4 formula upon taking a = c and

6Many literatures on the subject (implicitly) assumes 0 < rX < 2 for the elementary fields [5, 6, 34].
This is required to put supersymmetric gauge theories on a three-sphere since a chiral multiplet has the
conformal mass of the form rX (2 − rX ). However, this condition is not always satisfied. For example, the
gauge theories studied in [35–37] have charged matter fields with R-charges less or equal to 0. Nevertheless,
the superconformal index for the fixed point is clearly well-defined beyond 0 < rX < 2. The superconformal
index for the case with rX ≤ 0 or rX ≥ 2 has been considered in [36–39] for example. For these cases, we can
turn on the chemical potentials for the (possibly anomalous) flavor symmetry to push the argument inside
trilogarithm to be in the ‘canonical chamber’ |Im(x)| < π. Then we turn off the flavor chemical potential to
recover the index. Whenever this procedure can be done, our expression (2.26) gives the correct asymptotic
limit of the index. For example, Kutasov-Schwimmer duality [35, 40] sometimes maps a gauge theory with
R-charge within 0 and 2 to a dual description with rX < 0 fields. Since the superconformal index for the
two dual descriptions has to be identical, we claim our formula still holds for the case R not within 0 and
2. See section 6 of [38] for a discussion on the integration contour issue for the index.
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∆1 = ∆2 = ∆3. Upon replacing ∆ = ω+ − iπ, and writing the leading powers in ω, we
obtain

Re(log(I)) = (3c− 2a)16π2Im(ω1ω2)
27|ω1|2|ω2|2

+O(ω−1) . (2.30)

We see that this indeed reproduces the N2 growth for the ‘high-temperature’ limit of the
SU(N) N = 4 SYM theory with a = c ∼ N2. As long as we choose the imaginary part of
ω1ω2 to be positive, we find the exponential growth of the states in the ‘high-temperature’
limit controlled by the combination of central charges 3c− 2a. This is enough to account
for the O(N2) growth of N = 4 SYM theory which has a = c ∼ N2 [12].

So far we did not specify the precise value of ω1,2. In section 5 we will perform
the Legendre transformation to entropy and then extremize it with respect to chemical
potentials ωi. We find that at the extremum, Im(ω1ω2) > 0. Also, if ω1 = ω2 = ω, we get
Re(ω) '

√
3Im(ω) so that the ω has the phase near π/6.

Index with flavor chemical potentials. Let us slightly generalize our Cardy formula
by including the chemical potentials x = (x1, x2, . . . , xn) for the flavor symmetry. Let us
assume, for simplicity, that the flavor symmetries are abelian U(1)n and denote the flavor
generators as FI with I = 1, 2, . . . , n. For a chiral multiplet of representation R under the
gauge group G and the flavor charge Q = (Q1, . . . , Qn), the index becomes

ZX '

 1
ω1ω2

∑
n≥1

(−1)n−1

n3

∑
w∈G

(
tn(1−rX )en(iw(α)+iQ·x)) − tn(rX−1)e−n(iw(α)+iQ·x)

)
= exp

[
− 1
ω1ω2

∑
w∈R

{
Li3

(
−e(1−rX )∆+iw(α)+iQ·x

)
− Li3

(
−e−(1−rX )∆−iw(α)−iQ·x

)}]
(2.31)

= exp
[

1
6ω1ω2

∑
w∈R

{(
(1− rX )∆ + iw(α) + iQ · x

)3
+ π2

(
(1− rX )∆ + iw(α) + iQ · x

)}]
.

Assuming the dominant saddle point is located at the origin α1 = α2 = · · · = 0, the index
for a gauge theory in the Cardy limit can be written as

I ∼ exp

∑
α∈∆

∆3+π2∆
6ω1ω2

+
∑
X

(
|RX |
6ω1ω2

(iQX ·x+(rX−1)∆)3+π2|RX |
6ω1ω2

(iQX ·x+(rX−1)∆)
)

= exp
[

∆3

6w1w2

(
|G|+

∑
X

(rX−1)3|RX |
)

+ π2∆
6ω1ω2

(
|G|+

∑
X

(rX−1)|RX ||
)]

(2.32)

×exp
[
i∆2

2ω1ω2

∑
X
|RX |QX ·x(rX−1)2− ∆

2ω1ω2

∑
X
|RX |(QX ·x)2(rX−1)

]

×exp
[
iπ2

6ω1ω2

∑
X
|RX |QX ·x−

i

6ω1ω2

∑
X
|RX |(QX ·x)3

]
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Now we can use the trace anomalies to simplify the above formula:

kRRR ≡ TrR3 = |G|+
∑
X

(rX − 1)3|RX | ,

kR ≡ TrR = |G|+
∑
X

(rX − 1)|RX | ,

kRRI ≡ TrR2FI =
∑
X

(rX − 1)2|RX |QX ,I ,

kRIJ ≡ TrRFIFJ =
∑
X
|RX |(rX − 1)QX ,IQX ,J ,

kIJK ≡ TrFIFJFK =
∑
X
|RX |QX ,IQX ,JQX ,K ,

kI ≡ TrFI =
∑
X
|RX |QX ,I .

(2.33)

Here QX ,I denotes the U(1)I charge of the chiral multiplet X . For the superconformal field
theory, we have the relations kI = 9kRRI and kRIJ < 0 [18, 41]. Then the index in the
Cardy limit can be written as

log I ∼ kRRR∆3 + 3ikRRI∆2xI − 3kRIJ∆xIxJ − ikIJKxIxJxK

6ω1ω2
+ π2(kR∆ + ikIx

I)
6ω1ω2

.

(2.34)
When the flavor symmetry is baryonic, kI = kRRI = 0 so that the sum involving kI or
kRRI only runs over non-baryonic flavor symmetries.

3 Background field method on S3

So far, we have relied upon the explicit expression for the supersymmetric index of a
Lagrangian theory. In this section, we describe how to obtain the Cardy free energy (2.29)
without referring to the Lagrangian description of a 4d N = 1 SCFT as was done in [5]. Let
us consider the effective action of the background fields coupled to the SCFT on S3 × S1.
The chemical potentials β, ω1, ω2, ∆ introduced in (2.1) should appear as the 4d metric
and background gauge fields as follows:

ds2 = r2
[
dθ2 +

2∑
i=1

n2
i

(
dφi −

iωi
β
dτ

)2
]

+ dτ2, A = i∆
β
dτ. (3.1)

Since we are interested in the small circle limit β/r � 1, it is convenient to arrange the
above 4d background in terms of the 3d background fields, i.e., ds2 = ds2

3 + e−2Φ(dτ + a)2

and A = A4(dτ + a) +A. The metric ds2
3, graviphoton a, dilaton e−2Φ, U(1)R connection

A, scalar A4 are given as

ds2
3 = r2

dθ2 +
2∑

n=1
n2
i dφ

2
i + r2(

∑
i ωin

2
i dφi)2

β2(1− r2∑
i
n2
iω

2
i

β2 )

 , a = −i r2∑
i ωin

2
i dφi

β(1− r2∑
i
n2
iω

2
i

β2 )
,

e−2Φ = 1− r2∑
i

n2
iω

2
i

β2 , A4 = i∆
β
, A = −A4a.

(3.2)
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Firstly, let us consider Lagrangian theories. We consider the path integral expression
of the index (2.1) in this background. Each 4d field can be separated into the 3d zero mode
and the Kaluza-Klein tower. Since the 3d QFT is well-defined in UV, the only possible
divergence in |ω| � 1 should be the IR divergence, contributing to the free energy at the
subleading order O(logω) [12]. To find the leading free energy in the Cardy limit, therefore,
it is sufficient to integrate out all the Kaluza-Klein modes of 4d dynamical fields. All 4d
fermions are anti-periodic before imposing the constraint (2.4). In a generic 4d background,
the masses of the KK fermions are shifted by A4 = i∆/β, such that mn = n− β

2π (1−R)A4
for n ∈ Z + 1

2 , where (1− R) is the U(1)R charge of the fermion. Integrating out the KK
fermion generates the effective Chern-Simons action. Unless there is a massless fermion in
the KK tower, i.e., −1

2 <
β
2π (1−R)A4 <

1
2 , the CS action is [5]

− iβ (1−R)3

2(2π)2

∫ (
A4A ∧ dA+A2

4A ∧ da+ 1
3A

3
4a ∧ da

)
− i (1−R)

2β

∫ ( 1
12A ∧ da

)
. (3.3)

Given the BPS index condition (2.4), the Cardy limit |ω| � 1 inevitably implies ∆ ∼ −iπ.
Here we assume the U(1)R charge of every chiral multiplet X is in the range of 0 < RX < 2
to avoid the appearance of massless fermions.7 Summing over all the fermions in the theory,
we find [5]

SCS = Scubic + Smixed,

Scubic = − iβ Tr(R
3)

2(2π)2

∫ (
A4A ∧ dA+A2

4A ∧ da+ 1
3A

3
4a ∧ da

)
,

Smixed = − iTr(R)
2β

∫ ( 1
12A ∧ da

)
.

(3.4)

We can write the trace anomalies in terms of central charges as TrR3 = 16
9 (5a − 3c) and

TrR = 16(c− a).
One can also understand the CS action (3.4) from an abstract anomaly matching [5,

42–44] without referring to Lagrangian. The first term Scubic is not invariant under the
background U(1)R gauge transformation. The presence of this term is required to match the
4d U(1)3

R covariant anomaly [5, 42, 43]. Matching the mixed U(1)R gauge-gravity anomaly
also requires the inclusion of another Chern-Simons term. However, the corresponding
term must contain 3 derivatives, thus being proportional to β3. It is suppressed in the limit
β/r � |ω1,2| � 1. The gauge-invariant Chern-Simons term, Smixed, is required for anomaly
matching under the large gauge transformations and the large diffeomorphisms [43, 44].
Other gauge-invariant Chern-Simons terms, such as

∫
a ∧ da or

∫
A ∧ dA, are not allowed

due to the CPT invariance of 4d QFT [42]. Therefore, the expression (3.4) can be derived
without referring to a Lagrangian description.

There are infinitely many possible terms in constructing the background fields’ effective
action, apart from the Chern-Simons terms. It was found in [12] that all terms which

7This assumption 0 < RX < 2 is not always true as we discussed in the footnote near (2.26). Given
our expression does not depend on a specific choice of UV gauge theory or dual descriptions, we conjecture
that (3.4) is correct for arbitrary superconformal theories.
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involve the volume integral
∫
d3x
√
g are suppressed in the BPS and the Cardy limit, i.e.,

β/r � ω1,2 � 1. Likewise, those terms which involve the totally antisymmetric tensor
εµνσ in the Lagrangian density are suppressed in the Cardy limit if they do not belong
to (3.4) [12]. In summary, the only non-vanishing possibilities are the gauge invariant and
non-invariant Chern-Simons terms (3.4).

Finally, we plug in the actual value (3.2) of background fields into the action (3.4).
The evaluated action Scubic and Smixed are in agreement with (2.29), i.e.,

Scubic = −Tr(R3) ∆3

6ω1ω2
= −8(5a− 3c)∆3

27ω1ω2
,

Smixed = −Tr(R) π2∆
6ω1ω2

= −16π2(a− c)∆
ω1ω2

,

(3.5)

since ∫
a ∧ da = (2π)2r4ω1ω2

β2(1− r2ω2
1

β2 )(1− r2ω2
2

β2 )
' (2π)2β2

ω1ω2
+O

(
β4

r2ω4

)
. (3.6)

This result perfectly agrees with our previous computation using the free field theory
analysis of the index.

4 Saddle point analysis

We assumed in section 2.2 and 3 that the most dominant saddle point of the holonomy
integral (2.22) is at the origin α1 = α2 = · · · = α|G| = 0. In this section, we provide
supporting evidence for the prior assumption. We numerically search for the most dominant
saddle point for a large set of theories: SQCDs with different gauge groups and flavors, N =
4 SYM with different gauge groups, ISS model [45], BCI model [46], Pouliot theory [47] and
SU(2)3 gauge theory coupled via trifundmental chiral multiplets. We also consider ‘non-
Lagrangian’ Argyres-Douglas theories of (A1, AN ) type [48–50] using the N = 1 Lagrangian
description [51, 52]. This set of examples includes the theories with c < a which were shown
to have non-trivial holonomy saddle points [6] when the chemical potentials are real-valued.

We have also investigated the possibility of a saddle point away from the real line,
having a complex value. Before taking the Cardy limit, there are infinitely many poles
inside the integration contour. As we take the Cardy limit, these poles collide to form a
branch cut. Therefore we cannot move the contour away from the origin without changing
the value of the integral. At least for the case of SU(2) gauge theory, we explicitly verified
that there is no other saddle point besides the one at the origin. Throughout the rest of
this section, we focus on the real values of α assuming that there is no other saddle point,
or any possible complex saddle is sub-dominant.

We make the following assumption throughout this section:

Im (ω1ω2) > 0 (4.1)

The consistency of this assumption is tested in section 5, by finding the actual solution of
the extremization equation (5.4) at ω1 = ω2. The asymptotical value of the U(1)R chemical
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(a) SU(2) Nf = 3 (b) SU(2) Nf = 4 (c) SU(2) Nf = 5 (d) SO(3) Nf = 2

Figure 1. (ReF , ImF)|∆=−iπ of rank-1 SQCDs. The blue/orange line is ReF/ImF .

potential is ∆ ∼ −iπ due to the constraint ∆ = −iπ + ω+. So we evaluate the numerical
value of (ReF , ImF)|∆∼−iπ on the gauge holonomy space. Mathematica’s NMaximize and
NMinimize functions can be used to show that

(i) ReF|∆=−iπ = 0. More generally, ReF is nearly zero at ∆ ∼ −i(π−ε)±ε with ε� 1.
(ii) ImF has a global minimum at α1 = · · · = α|G| = 0 for ∆ ∼ −i(π−ε)±ε with ε� 1.8

The above two conditions, combined with (4.1), should be sufficient to conclude that the
most dominant saddle point of the integral (2.22) is located at the origin.

SQCD. We first consider SQCDs with various gauge groups. There are Nf fundamental
and anti-fundamental chiral multiplets in SU(N) and E6 SQCDs. The Sp(N) SQCD has
an even number (2Nf ) of fundamental chiral multiplets to avoid the Witten anomaly [53].
The SQCDs with other gauge groups have Nf fundamental chiral multiplets. The R-charge
of the chiral multiplet for each gauge group is fixed to be

RSU(N) = 1− N

Nf
, RSO(N) = 1− N − 2

Nf
, RSp(N) = 1− N + 1

Nf
, RE6 = 1− 2

Nf
,

RE7 = 1− 3
Nf

, RE8 = 1− 1
Nf

, RF4 = 1− 3
Nf

, RG2 = 1− 4
Nf

. (4.2)

We have performed the analysis up to rank-10 gauge groups for the following range of Nf ,
whose IR fixed point corresponds to either an interacting SCFT or a free theory:

N < N
SU(N)
f < 3N, (N − 2) < N

SO(N)
f < 3(N − 2), (N + 1) < N

Sp(N)
f < 3(N + 1)

2 < NE6
f < 6, 3 < NE7

f < 9, 1 < NE8
f < 3, 3 < NF4

f < 9, 4 < NG2
f < 12. (4.3)

Notice that they do not necessarily belong to the conformal window. By examining the
real and imaginary value of F , given as

F =
∑
s=±

s
( ∑
ρ∈adj

Li3(−es∆+isρ(~α))−Nf

∑
λ∈fnd

Li3(−es(1−R)∆+isλ(~α)) (4.4)

−Nf

∑
λ∈fnd

Li3(−es(1−R)∆+isλ(~α))
)

if G = SU(N), E6

8Generally, it is a challenging task to find the global minimum/maximum in a multi-dimensional space.
Mathematica’s NMinimize or NMaximize sometimes fails to identify the global extremum and only finds
local extrema. Whenever NMinimize identifies a minimum point ~p 6= 0, we checked ImF|~α=0 < ImF|~α=~p at
least.
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F =
∑
s=±

s
( ∑
ρ∈adj

Li3(−es∆+isρ(~α))− 2Nf

∑
λ∈fnd

Li3(−es(1−R)∆+isλ(~α))
)

if G = Sp(N)

F =
∑
s=±

s
( ∑
ρ∈adj

Li3(−es∆+isρ(~α))−Nf

∑
λ∈fnd

Li3(−es(1−R)∆+isλ(~α))
)

otherwise,

we find that the conditions (i) and (ii) are satisfied, thus α1 = · · · = α|G| = 0 being
the most dominant saddle point of (2.22). For rank-1 SQCD theories, (ReF , ImF)|∆=−iπ
are plotted in figure 1. See also figure 2 for the contour plots of Im(F)|∆=−iπ for rank-2
SQCDs.

N = 4 SYM and two adjoint N = 1 theory. Our next example is N = 4 SYM with
different gauge groups. This is the gauge theory with Na = 3 adjoint chiral multiplets.
The R-charge of the chiral multiplet is

R = 1− 1
Na

. (4.5)

Inspecting the real and imaginary value of

F =
∑
s=±

s
∑
ρ∈adj

(
Li3(−es∆+isρ(~α))−NaLi3(−es(1/Na)∆+isρ(~α))

)
, (4.6)

we find that (i) and (ii) hold at Na = 2, 3. This implies that α1 = · · · = α|G| = 0 is the
most dominant saddle point of the asymptotic integral (2.22). See figures 3 and 4 for the
plots of Im(F)|∆=−iπ for the rank-1 and rank-2 gauge theories.

ISS model. The ISS model [45] is an SU(2) gauge theory with one spin- 3
2 chiral multiplet,

which flows to an interacting fixed point in IR.9 The R-charge of the chiral multiplet is
R = 3/5. In figure 5a, we draw the real and imaginary value of

F =
∑
s,σ=±

s
(
Li3(−es∆+is·2σα))− Li3(−es(2/5)∆+is·σα)− Li3(−es(2/5)∆+is·3σα)

)
(4.7)

for α ∈ (−π, π). This shows that (i) and (ii) are true, therefore α = 0 is the most dominant
saddle point of the asymptotic integral (2.22).

BCI model. The BCI model [46] is an SO(N) gauge theory with a chiral multiplet in
the rank-2 symmetric, traceless representation. The R-charge of the chiral multiplet is

R = 4
N + 2 . (4.8)

They are asymptotically free for N ≥ 5 and flow to an interacting IR fixed point.

F =
∑
s=±

s

 ∑
ρ∈adj

Li3(−es∆+isρ(~α))−
∑

λ∈sym
Li3(−es(

N−2
N+2 )∆+isλ(~α))

 . (4.9)

We find that (i) and (ii) holds for 5 ≤ N ≤ 21. So α1 = · · · = α|G| = 0 is the most
dominant saddle point of (2.22). See figure 5b as the contour plot of Im(F)|∆=−iπ for the
SO(5) model.

9See [54, 55] on the discussion of its IR phase.
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(a) SU(3) Nf = 4 (b) SU(3) Nf = 5 (c) SU(3) Nf = 6 (d) SU(3) Nf = 7

(e) SU(3) Nf = 8 (f) SO(4) Nf = 3 (g) SO(4) Nf = 4 (h) SO(4) Nf = 5

(i) SO(5) Nf = 4 (j) SO(5) Nf = 5 (k) SO(5) Nf = 6 (l) SO(5) Nf = 7

(m) SO(5) Nf = 8 (n) G2 Nf = 5 (o) G2 Nf = 6 (p) G2 Nf = 7

(q) G2 Nf = 8 (r) G2 Nf = 9 (s) G2 Nf = 10 (t) G2 Nf = 11

Figure 2. The contour plots of ImF|∆=−iπ for rank-2 SQCDs. The brighter/darker region has
bigger/smaller value. The Sp(2) plots are omitted since FNfSp(2) − F

Nf
SO(5) = (const). The white

lines are located at the cusps at which the Li3 function jumps between the branches of (2.25). The
function is still smooth, and no additional saddle point exists on those lines.
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(a) SU(2) Na = 2 (b) SU(2) Na = 3

Figure 3. (ReF , ImF)|∆=−iπ of rank-1 SYM with Na = 2, 3 adjoint chiral multiplets.

(a) SU(3) Na = 2 (b) SU(3) Na = 3 (c) SO(4) Na = 2 (d) SO(4) Na = 3

(e) SO(5) Na = 2 (f) SO(5) Na = 3 (g) G2 Na = 2 (h) G2 Na = 3

Figure 4. Contour plot of ImF|∆=−iπ for rank-2 SYM with Na = 2, 3 adjoint chiral multiplets.

Magnetic Pouliot theory. This model is an SU(N) gauge theory (3 ≤ N ≤ 10)
with one symmetric and (N + 4) anti-fundamental chiral multiplets, plus a meson for
the SU(N + 4) flavor symmetry. It is dual to Spin(7) gauge theory with (N + 4) spinor
chiral multiplets [47]. The R-charge assignment of the chiral multiplets is

Rs = 2
N
, Raf = 5

N + 4 −
1
N
, Rs = 2− 10

N + 4 . (4.10)

Ignoring the contribution of gauge singlets, we study the real and imaginary values of

F =
∑
s=±

s
( ∑
ρ∈adj

Li3(−es∆+isρ(~α))−
∑

λ∈sym
Li3(−es(1−2/N)∆+isλ(~α))

− (N + 4)
∑
λ∈fnd

Li3(−es(
N2+4
N(N+4) )∆+isλ(~α))

)
.

(4.11)
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(a) SU(2) ISS model (b) SO(5) BCI model (c) SU(3) Pouliot model

Figure 5. ImF|∆=−iπ for SU(2) ISS model, SO(5) BCI model, and SU(3) Pouliot model.

Again we find that (i) and (ii) hold, thus α1 = · · · = α|G| = 0 being the most dominant
saddle point of (2.22). Figure 5c is the contour plot of Im(F)|∆=−iπ for the SU(3) model.

Argyres-Douglas theory. One can also study the N = 2 Argyres-Douglas (AD) theo-
ries using their N = 1 Lagrangian descriptions [51, 52, 56–60]. The (A1, A2N−1) AD theory
can be described by the SU(N) gauge theory with 1 fundamental, 1 anti-fundamental, and
1 adjoint chiral multiplets, plus a number of gauge singlets. Their R-charges are assigned
as follows:

Rf = Raf = 1 + (ε− 1)N, Ra = 1− ε, (4.12)

where ε = 3N+1
3N+3 . Ignoring the contribution of gauge singlets,

F =
∑
s=±

s
( ∑
ρ∈adj

Li3(−es∆+isρ(~α))−
∑
λ∈fnd

Li3(−es(1−ε)N∆+isλ(~α))

−
∑
λ∈fnd

Li3(−es(1−ε)N∆+isλ(~α))−
∑
λ∈adj

Li3(−esε∆+isλ(~α))
)
.

(4.13)

Similarly, the (A1, A2N )-type AD theory is described by the Sp(N) gauge theory with
two fundamental and one adjoint chiral multiplet, plus a number of gauge singlets. Their
R-charges are

Rf1 = 1 + ε

2 , Rf2 = (2N + 3
2)ε− (2N + 1

2), Ra = 1− ε, (4.14)

where ε = 6N+7
6N+9 . Correspondingly, we consider

F =
∑
s=±

s
( ∑
ρ∈adj

Li3(−es∆+isρ(~α))−
∑
λ∈fnd

Li3(−es((1−ε)/2)∆+isλ(~α))

−
∑
λ∈fnd

Li3(−es(2N+ 3
2 )(1−ε)∆+isλ(~α))−

∑
λ∈adj

Li3(−esε∆+isλ(~α))
)
.

(4.15)

We checked (i) and (ii) hold with (4.13) and (4.15) forN ≤ 10. So the most dominant saddle
point of the holonomy integral (2.22) is again at the origin. The plots of Im(F)|∆=−iπ for
N = 1, 2 theories are given in figure 6.
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(a) (A1, A2) AD theory (b) (A1, A3) AD theory (c) (A1, A4) AD theory (d) (A1, A5) AD theory

Figure 6. ImF|∆=−iπ for (A1, AN ) Agyres-Douglas theory with N ≤ 5.

We have also studied the N = 1 deformed version of the AD theory (which has the
smallest value of the central charge a among the known 4d SCFTs [60–62]) and found that
the most dominant saddle is at the origin.

SU(2)3 theory with trifundamentals. Let us consider SU(2)3 gauge theory coupled
via a pair of trifundamental chiral multiplets. If we add chiral multiplets in the adjoint
of each SU(2), this theory becomes N = 2 class S theory realized by wrapping 2 M5-
branes on a genus 2 Riemann surface [63]. If we do not have the adjoint chiral multiplets,
this belongs to N = 1 class S theory with the normal bundles of degree (1, 1) [64]. The
trifundamentals of N = 1 and N = 2 theory R-charge 1/2 and 2/3 respectively. Therefore,
the central charges are

aN=1 = 15
8 , cN=1 = 29

16 ,
aN=1
cN=1

= 30
29 ,

aN=2 = 53
24 , cN=2 = 13

6 ,
aN=2
cN=2

= 53
52 .

(4.16)

Notice that a/c > 1 for both cases. Quite generally, the class S theories corresponding to
higher genus (g ≥ 2) Riemann surface with no puncture exhibits a/c > 1.

We obtain

F =
∑
s=±

s

 ∑
ρ=±2,0,m=1,2,3

Li3(−es(∆+iραm))− 2
∑

w1,2,3=±
Li3(−es(

1
2 ∆+iwmαm))

 (4.17)

for the N = 1 theory and

F =
∑
s=±

s

 ∑
ρ=±2,0,
m=1,2,3

(
Li3(−es(∆+iραm))−Li3(−es(

1
3 ∆+iραm))

)
−2

∑
w1,2,3=±

Li3(−es(
1
3 ∆+iwmαm))


(4.18)

for the N = 2 theory. We plot the subspace of F with α2 = α3 in figure 7. We find that
the most dominant saddle is again at the origin.

5 Asymptotic entropy

Given the superconformal index I, the microstate degeneracy Ω(J1, J2, R) can be obtained
by taking an inverse Laplace transformation on I. However, if we consider the asymptotic
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(a) N = 1 theory (b) N = 2 theory

Figure 7. ImF|∆=−iπ for the SU(2)3 theories coupled via trifundamentals.

degeneracy at large angular momenta, i.e., J1 ∼ J2 � a, c, it suffices to take the Legendre
transformation on the Cardy free energy (2.29). So let us extremize the entropy function10

S(∆, ω1,2;R, J1,2) = 8(5a− 3c)
27ω1ω2

∆3 + 8π2(a− c)
3ω1ω2

∆ +R∆ + J1ω1 + J2ω2, (5.1)

under the constraint 2∆− ω1 − ω2 = −2πi. One should keep in mind that the Cardy free
energy (2.29) can be trusted only up to the O(ω−2) order. Following the interpretation
of [12, 13, 66], we take the real part of the extremized S as the asymptotic entropy of our
index. Note that Re(S) is still a priori a lower bound for the true entropy.

Extremizing S(∆, ω1,2;R, J1,2) in terms of ω1 and ω2 yields the following two equations:

J1 + R

2 = −16iπ3(3c− 2a)
27ω2

1ω2
+O(ω−2)

J2 + R

2 = −16iπ3(3c− 2a)
27ω1ω2

2
+O(ω−2)

(5.2)

Subtracting these two equations, we find

J1 − J2 = −16i (3c− 2a)π3

27ω1ω2

( 1
ω1
− 1
ω2

)
+O(ω−2). (5.3)

It is complicated to solve these equations generally, so we simplify our calculus by setting
the two angular momenta to be equal, i.e., J ≡ J1 = J2 and ω ≡ ω1 = ω2. Then (5.3)
becomes void. We denote the real and imaginary part of the chemical potential ω by ωR
and ωI , i.e., ω+ = ωR+iωI . Since J and R must be real-valued, the imaginary part of (5.2)
becomes

0 ≈ π(3c− 2a)ωR(ω2
R − 3ω2

I ). (5.4)

Demanding ωR to be real-valued, we identify three different solutions of (5.4).

ωR = 0, ±
√

3ωI . (5.5)
10This form of the entropy function was conjectured in appendix A of [65].
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Inserting these solutions back to (5.2), we find

J + R

2 ≈


2π3(3c− 2a)

27ω3
I

for the two solutions ωR = ±
√

3ωI ,

−16π3(3c− 2a)
27ω3

I

for the solution ωR = 0.
(5.6)

The BPS states captured by the superconformal index I should carry (J + R
2 ) > 0 as we

discussed in section 2. Thus the real part ωR of the chemical potential should also be
positive. The only solution among (5.5) which satisfies both requirements is

ωR '
√

3ωI for ωI > 0 . (5.7)

This solution makes Re(log I) to be

Re(log I) = 2π2(3c− 2a)
9
√

3ω2
I

+O(ω−1
I ) = 8π2(3c− 2a)

9
√

3β2 +O(ω−1
I ) , (5.8)

where ω = βeπi/6.
The extremized entropy S is generally complex-valued. As a consistency check, we

consider its real part Re(S) and check if the solution (5.7) makes Re(S) > 0. In fact,

Re(S) ≈ +2π3(3c− 2a)
3
√

3 ω2
I

> 0 (5.9)

always, thanks to the Hofman-Maldacena bound 1
2 < a

c <
3
2 for an interacting N = 1

SCFT. Expressing the entropy in terms of the (twisted) angular momentum J̃ ≡ J +R/2,
we obtain

Re(S) = +21/3 31/2 (3c− 2a)1/3 π · J̃2/3 +O(J̃1/3), (5.10)

which is positive as long as a/c < 3/2.

5.1 Free chiral/vector theories

It was noticed in [12–14] that the complexified chemical potentials are crucial to obstruct
the boson/fermion cancellation in the computation of the entropy at large angular mo-
menta. Especially for N = 4 SYM, the boson/fermion cancelation was maximally ob-
structed at the optimal value of chemical potentials, determined by the Legendre transfor-
mation. At least in the large N and strong-coupling limit, this entropy from I saturates
the upper bound, which is the true entropy given by the Bekenstein-Hawking entropy of
dual black holes that counts BPS states without (−1)F . However, to illustrate that Re(S)
from our index is in general only a lower bound of the true entropy Re(Strue) = log Ωtrue,
here we compute the true BPS degeneracy of the free system and compare it with (5.9).

The partition function (as opposed to the Witten index) of a free QFT can be evaluated
by counting the BPS operators satisfying δ− = 0. The chemical potentials are no longer
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subject to the index constraint. For a free chiral (with R-charge 2/3) and vector multiplet,

ZX = exp
( ∞∑
m=1

1
m

e−mβt−2m/3 + (−1)m+1e−3mβ/2tm/3

(1− e−mβpm)(1− e−mβqm)

)
, (5.11)

ZV = exp

 ∞∑
m=1

1
m

e−2mβ(pq)m + (−1)m+1tm
(
e−3mβ/2χ2(pmq−m)− e−5mβ/2(pq)m/2

)
(1− e−mβpm)(1− e−mβqm)

 .
Let us set ∆ = 0. In our asymptotic limit β/r � |ω1,2| � 1, they become

logZX = logZV = Li3(1)− Li3(−1)
ω1ω2

+O(ω−1) = 7ζ(3)
4ω1ω2

+O(ω−1). (5.12)

Taking the Legendre transformation, we find the entropy of a free vector/chiral multiplet as

Strue(J1, J2) = 7ζ(3)
4ω1ω2

+ J1ω1 + J2ω2

∣∣∣∣
ωi=ω∗i

' 4.467 (J1J2)1/3. (5.13)

On the other hand, the asymptotic entropy (5.10) captured in the index is

Re(S) =
{

2.995 J2/3 for a free chiral multiplet,
0 for a free vector multiplet.

(5.14)

at the equal momenta J1 = J2. Since Re(S) < Strue for these cases, we conclude that the
extremized entropy Re(S) from the index does not always exhibit the maximum degeneracy.
The above calculation means that turning on interactions can lift some of the BPS states
that the index does not count. It is still possible (but hard to prove or disprove) that
our Re(S) may equal to the asymptotic Strue for the interacting SCFTs as was in the case
of N = 4 SYM theory. It will be interesting to understand this issue better, perhaps by
studying more exotic BPS black holes in AdS5 beyond the known ones.

5.2 Holographic SCFTs and AdS5 black holes

Here, let us apply our asymptotic entropy formula (5.9) to holographic SCFTs. It is
natural to expect that this accounts for the Bekenstein-Hawking entropy of various BPS
black holes in asymptotic AdS5. For a precision check of this correspondence, here we
once again perform the Legendre transformation of the Cardy free energy at ω1 6= ω2 with
non-trivial flavor chemical potentials.

Our main example is a family of N = 1 superconformal quiver theory dual to type
IIB supergravity on AdS5 × Y p,p [23]. This gauge theory is obtained from N D3-branes
probing C3/Z2p orbifold. It has 2p gauge groups and 4p bifundamental chiral multiplets. In
addition to the U(1)R symmetry, there are flavor symmetries U(1)B, U(1)F , and SU(2)l.
All the bifundamental chiral multiplets are divided into three different species, denoted
as U , V , Y . For each type of multiplet, the number of fields and representation under
U(1)R × U(1)B × U(1)F × SU(2)L are summarized in the following table:

Number U(1)R U(1)B U(1)F SU(2)L
U p 2/3 −p 0 2
V p 2/3 p 1

2 2
Y 2p 2/3 0 −1

2 1
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We refer to [23] for a detailed description of Y p,q quiver gauge theory, for all 0 ≤ q ≤ p.
The Y p,q superconformal index in the large N limit agrees is shown to agree with the BPS
graviton index on AdS5 × Y p,q [67–69].

Let us introduce two flavor chemical potentials ∆B, ∆F , conjugate to U(1)B, U(1)F at
zero SU(2)L charge. This is the case in which the BPS black hole solutions are known in
AdS5×S5/Z2p [7–10] via a U(1)3 Kaluza-Klein reduction [70]. The non-vanishing anomaly
coefficients (in the large N limit) are

Tr(R3) = 16p
9 N2, Tr(RF 2) = −p3N

2, Tr(RB2) = −4p3

3 N2, (5.15)

Tr(RBF ) = −p
2

3 N
2, Tr(FB2) = p3N2, Tr(BF 2) = p2

2 N
2. (5.16)

We arrange the U(1)R×U(1)B×U(1)F chemical potentials into the following combinations:

∆1 ≡
2
3∆ + i

2xF , ∆2 ≡
2
3∆ + ipxB, ∆3 ≡

2
3∆− i

2xF − ipxB. (5.17)

Here, xB, xF are the chemical potentials associated to U(1)B and U(1)F respectively. They
are subject to the index constraint ∆1 + ∆2 + ∆3 − ω1 − ω2 = −2πi. The corresponding
entropy function S

(
∆1,2,3, ω1,2;R,F,B, J1,2

)
is given by (with B̃ ≡ 1

2pB)

S = pN2 · ∆1∆2∆3
ω1ω2

+ (R− F )∆1 + (R− B̃)∆2 + (R+ F + B̃)∆3 +
2∑
i=1

Jiωi. (5.18)

Now we extremize S under the constraint ∆1 + ∆2 + ∆3−ω1−ω2 = −2πi. This is exactly
the same type as was studied in [15]. Repeating the same procedure as in [12], we find the
following cubic equation in S:( S

2πi −R+ F
)( S

2πi −R+ B̃
)( S

2πi −R− F − B̃
)

= pN2
( S

2πi + J1
)( S

2πi + J2
)

(5.19)

This equation has 3 complex solutions in general. Any physically relevant solution that
represents a black hole should satisfy Re(S)/N2 > 0 with all the U(1)3 charges and two
angular momenta are of O(N2). Let us focus on the special case of Im(S) = 0.

In fact, BPS black holes in AdS5 × S5/Z2p are known in this circumstance [7–10].
Dividing the above equation (5.19) into the real and imaginary parts, we obtain

0 = (3R+ pN2)S2 − 4π2
(
(R− F )(R− B̃)(R+ F + B̃) + pN2J1J2

)
,

0 = S3 − 4π2S
(
3R2 − F 2 − B̃2 − B̃F − pN2(J1 + J2)

)
.

(5.20)

Solving for S, we get

S

2π =

√
(R− F )(R− B̃)(R+ F + B̃) + pN2J1J2

3R+ pN2

=
√

3R2 − F 2 − B̃2 − B̃F − pN2(J1 + J2) .

(5.21)

Compatibility of these two expressions implies the charge relation of the AdS5 black hole.
Especially at large angular momenta J � N2, the charge relation implies R,F,B '
O(J2/3). Once we insert the charge relation back to (5.21), we obtain the entropy as
S '

√
3 (pN2)1/3J2/3 +O(J1/3), which agrees with (5.10) at a = c = pN2/2.
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