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1 Introduction

The interest on a subregion is motivated by quantum information theory [1–4]. The domain

of dependence D(A) of a spacelike subregion A is a well defined spacetime and one can study

it as an independent system. Given the evolution equations, fields in D(A) are completely

determined by initial condition on Cauchy surface A. Operators inside D(A) form a closed

algebra. The most important operator of subregion D(A) is modular Hamiltonian ĤA

which generates modular flow [5]. Modular Hamiltonian is the logarithm of reduced density

matrix ρ̂A, ĤA = − log ρ̂A. Usually, it is highly non-local, only in special cases it has
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analytic form [6–9]. For a conformal field theory in a state which has a gravitational dual,

modular Hamiltonian is claimed [10, 11] to be an area operator of Ryu-Takayanagi (RT)

surface [12] with quantum corrections.

Operators in D(A) could be classified according to their eigenvalues under modular

transformation, [
ĤA, Q̂

(ω)
A

]
= ωQ̂

(ω)
A . (1.1)

From the point of view of quantum mechanics, operators whose commutator with modular

Hamiltonian vanish (ω = 0) are rather intersting since they may provide new quantum

numbers to classify operators. These operators are called zero modes of modular Hamil-

tonian [13, 14]. In holography [15], bulk fields close to AdS boundary are identified with

local CFT operators [16]. Correlation functions of local CFT operators are mapped to

correlators of dual bulk fields according standard dictionary of AdS/CFT [17, 18]. As a

generalization, zero mode is claimed to have a gravitational dual [14] which is an integral

of dual bulk field over RT surface. A nature question would be to understand correlators

of zero modes from both CFT and gravity side.

The first step in this direction has been taken by [19] recently. In that paper, connected

correlators of modular Hamiltonians are shown to be finite and universal for 2d CFTs. The

universal property is a direct consequence of Ward identity of stress tensor [20]. As a result,

correlators of modular Hamiltonians are free from quantum corrections in AdS3. In the

present work, zero modes are inserted into correlation functions. Connected correlation

functions with m zero modes inserted into region A and n zero modes in region B

〈Q̂A[O1] · · · Q̂A[Om]Q̂B[Om+1] · · · Q̂B[Om+n]〉c, m, n ≥ 1 (1.2)

will be called (m,n)-type. We will show that they are still finite for massless free scalar

theory. We will mainly focus on (m, 1)-type correlators.1 Any (m, 1)-type correlator may

be a conformal block up to a theory dependent coefficient

〈Q̂A[O1] · · · Q̂A[Om]Q̂B[O]〉c = cOGh(η), ∀m ≥ 1. (1.3)

We check this point numerically for 2d massless free scalar theory. Analytical results are

obtained up to m ≤ 3. We find the same conclusion using an OPE argument for general

CFT2. We obtain a universal formula for (2, 1)-type correlator, which is summarized

by (4.80). This formula has been checked for massless free scalar theory and could be

applied to general 2d CFTs for integer conformal weight.

Our result may be understood as a generalization of “geodesic Witten diagram” [21, 22]

from bulk. “Geodesic Witten diagram” is used as a bulk decomposition of Witten diagrams

into conformal blocks. It could be regarded as a bulk description of conformal block, where

the two geodesics in the bulk are disjoint. This is similar to (1, 1)-type correlator in

this paper. However, our work on (m, 1)-type correlator suggests that there are more

1In this work, when we mention (m,n)-type correlators, zero modes in these correlators are OPE

blocks [24, 25]. All statements on (m,n)-type correlators should be understood under this implicit as-

sumption. Since modular Hamiltonian commutes with itself, modular Hamiltonian is also a zero mode in

our convention.
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bulk descriptions of conformal block. We expect to extract OPE data from holographic

computation of similar geodesic Witten diagrams, where several geodesics coincide.

An outline of this paper is as follows. In section 2 we will review necessary background

to study connected correlation functions in 2d massless free scalar theory. In section 3, zero

modes of 2d massless free scalar theory are constructed in momentum space. Some of them

are identified to OPE blocks. Then connected correlators with zero modes insertion are

studied extensively in 2d massless free scalar theory in section 4. Correlators of (n, 1)-type

have been discussed. Universal correlators of (2, 1)-type are found for general 2d CFTs in

the same section. In section 5, we will briefly discuss operator product expansion(OPE)

of deformed reduced density matrix. We are able to interpret several universal correlators

using OPE approach. We will discuss the results and point out some future directions in

the last section.

2 Review

In this section we review basic results on modular Hamiltonian in momentum space. Con-

ventions used in this paper are also introduced at the same time. We refer the reader

to [19] for a detailed derivation. The system is in vacuum with Lagrangian

L =
1

2
∂µφ∂

µφ (2.1)

in 2d Minkowski spacetime. The signature of spacetime is (−,+), spacetime coordinates

are xµ = (t, z). The system can be factorized to left moving and right moving part, we

will only focus on right moving modes, fields are functions of t − z only. The two point

function is fixed to be

〈φ(x)φ(y)〉 = − 1

4π
log |x− y|, (2.2)

where x, y are right moving spacetime coordinates. The spacelike region A (B) we will

study is an interval with radius RA(RB) whose center is located at zA(zB),

A = {(0, z)|x2 ≤ z ≤ x1}, (2.3)

B = {(0, z)|x4 ≤ z ≤ x3}, (2.4)

where the end points of the intervals are

x1 = zA +RA, x2 = zA −RA, x3 = zB +RB, x4 = zB −RB. (2.5)

The theory can be quantized in D(A), the domain of dependence of A. More explicitly,

field φ in D(A) can be expanded as

φ =
∑
v

bvgv + b†vg
∗
v (2.6)

where {gv} is a complete set of positive frequency modes. Annihilation and creation oper-

ators bv, b
†
v satisfy commutation relations

[bv, bv′ ] = 0, [bv, b
†
v′ ] = δ(v − v′), [b†v, b

†
v′ ] = 0. (2.7)
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Vacuum in D(A) may be defined by

bv|0A〉 = 0, ∀ v > 0. (2.8)

Modular Hamiltonian of region A in real space is

ĤA = 2π

∫
|z−zA|≤RA

dz
R2
A − (z − zA)2

2RA
Ttt(z), (2.9)

where Ttt is the stress tensor of massless free scalar and is evaluated at t = 0 timeslice. By

transforming to momentum space, modular Hamiltonian becomes rather simple

ĤA = 2πRA
∑
v

vb†vbv + const. (2.10)

The constant term may be fixed by requiring the normalization of reduced density matrix

ρA = e−ĤA

trAρ̂A = 1. (2.11)

The field can also be quantized in Minkowski spacetime,

φ =
∑
ω

aωfω + a†ωf
∗
ω (2.12)

where {fω} forms a complete set of positive frequency modes in Minkowski spacetime.

Annihilation and creation operators aω, a
†
ω obey standard commutation relations. The

Minkowski vacuum is defined by

aω|0M 〉 = 0, ∀ ω > 0. (2.13)

We will denote it as | 〉 to simplify notation. Annihilation and creation operators in region

D(A) are related to those in Minkowski spacetime by Bogoliubov transformation

bv =
∑
ω

(
α∗vωaω − β∗vωa†ω

)
, b†v =

∑
ω

(
αvωa

†
ω − βvωaω

)
(2.14)

where the Bogoliubov coefficients are

αvω =
1

2π

√
ω

v
RAe

−iωzA
∫ 1

−1
dseiωRAs

(
1 + s

1− s

)−ivRA
,

βvω =
1

2π

√
ω

v
RAe

iωzA

∫ 1

−1
dse−iωRAs

(
1 + s

1− s

)−ivRA
.

(2.15)

They could be regarded as matrix elements of Bogoliubov matrices α,β. Any bounded

operator in D(A) may always be rewritten as a function of annihilation and creation oper-

ators bv, b
†
v. Field in D(B) can be studied in a similar way. The corresponding annihilation

and creation operators are denoted as bṽ, b
†
ṽ. A quadratic operator

Ĥ =
∑
I

xIb
†
IbI (2.16)
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has been studied extensively in [19]. The subscript I denotes possible quantum number. It

is v in region D(A) and ṽ in region D(B). Therefore Ĥ could be a multi-region operator.

Vacuum expectation value of the exponential of Ĥ is shown to be

〈ezĤ〉 =
1√

detT
, (2.17)

where the matrix T is

T =

(
1 + qβ∗βT qα∗β†

qβαT 1 + qββ†

)
. (2.18)

Matrix q is

q = 1− ezX (2.19)

with X = diag(x1, x2, · · · ). We extract finite correlators of modular Hamiltonians from

above results. However, the results actually don’t require Ĥ being linear superposition of

modular Hamiltonians. More explicitly, xI could be any reasonable function of quantum

number I. This sheds light on the study of zero modes in this paper.

3 Zero modes of modular Hamiltonian

Modular Hamiltonian of region D(A) will send operators O of region D(A) to another

operator Os by modular flow

Os = eiĤAsOe−iĤAs. (3.1)

In modular fourier space,

Oω =

∫ ∞
−∞

dse−isωOs, (3.2)

one finds the commutation relation

[ĤA,Oω] = ωOω. (3.3)

In the limit ω → 0, operator O0 belongs to zero modes of modular Hamiltonian since it

commutes with modular Hamiltonian. Zero mode is claimed to have a gravitional dual [14]

O0(x) = 4π

∫
RT
dYRT〈Φ(YRT)O(x)〉Φ(YRT) (3.4)

in the large N limit. Roughly speaking, zero mode can be expressed as an integral over

RT surface [12] of the bulk dual field where the integral kernel is the corresponding bulk-

to-boundary propagator. In the following subsections, we will construct zero modes of

modular Hamiltonian of interval A in massless free scalar theory in momentum space.

They have rather simple expressions and form an infinite dimensional algebra. Some zero

modes are actually OPE blocks. We establish the relationship between zero modes in

momentum space and OPE blocks at the end of this section.
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3.1 Two dimensional massless free scalar theory

A basis of operators in D(A) could be chosen to be

b†v1 · · · b
†
vmbvm+1 · · · bvm+n , m, n ≥ 0. (3.5)

The commutator between modular Hamiltonian and bv or b†v is standard,

[ĤA, bv] = −2πRAvbv, [ĤA, b
†
v] = 2πRAvb

†
v. (3.6)

Therefore the commutator

[
ĤA, b

†
v1 · · · b

†
vmbvm+1 · · · bvm+n

]
= 2πRA

(
m∑
k=1

vk −
m+n∑
k=m+1

vk

)
b†v1 · · · b

†
vmbvm+1 · · · bvm+n

(3.7)

vanishes if and only if
m∑
k=1

vk =

m+n∑
k=m+1

vk. (3.8)

Hence a complete set of zero modes is found for massless free scalar. We list first few zero

modes according to the degree of b and b†.

1. m = n = 0, zero mode is identity operator 1.

2. m+ n = 1, there is no zero mode.

3. m+ n = 2, zero modes are any linear superposition of b†vbv.

Q̂zm =
∑
v

f(v)b†vbv. (3.9)

The subscript “zm” denotes zero modes of modular Hamiltonian. An interesting fact

is that (3.9) is exactly the form of (2.16), therefore all the conclusions in previous

section can be applied to zero modes.

Zero modes with higher degree (≥ 3) may be useful in other context, however we will not

study them in this paper. We also mention that all zero modes{
b†v1 · · · b

†
vmbvm+1 · · · bvm+n |

m∑
k=1

vk =
m+n∑
k=m+1

vk

}
(3.10)

form an infinite dimensional algebra. Actually, from Jacobi identity

[ĤA, [Q̂1, Q̂2]] = −[Q̂1, [Q̂2, ĤA]]− [Q̂2, [ĤA, Q̂1]] = 0. (3.11)

Therefore, if Q̂1 and Q̂2 are two zero modes and their commutator is non-zero, then [Q̂1, Q̂2]

is also a zero mode.
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3.2 Two dimensional conformal field theory

In CFT2, one example of zero mode is the following OPE block,

Q̂A [O] = cA [O]

∫
|z−zA|≤RA

dz

(
R2
A − (z − zA)2

2RA

)h−1

O(z), (3.12)

where O(z) is a chiral primary operator with conformal dimension h. cA[O] is a normal-

ization constant. It appears in the OPE of two chiral operators inserted at the end points

of the interval A. Note that for interval B one can find the zero mode corresponding to

modular Hamiltonian ĤB

Q̂B [O] = cB [O]

∫
|z−zB |≤RB

dz

(
R2
B − (z − zB)2

2RB

)h−1

O(z). (3.13)

The correlation function of Q̂A[O] amd Q̂B[O] is completely fixed to conformal block

〈Q̂A[O]Q̂B[O]〉 = NA,B[O]Gh(η), (3.14)

where Gh(η) is two dimensional conformal block [26, 27] associated with conformal weight h

Gh(η) = ηh−1
2F1(h, h, 2h,−η). (3.15)

η is cross ratio

η =
x12x34

x14x23
, 0 < η <∞ (3.16)

with

xij = xi − xj . (3.17)

The total coefficient NA,B[O] is

NA,B[O] = cA[O]cB[O]N [O]× 22−4hπΓ(h)2

Γ(h+ 1
2)2

. (3.18)

The coefficient N [O] is the normalization constant of two point correlation function of

primary operator O,

〈O(z1)O(z2)〉 =
N [O]

(z1 − z2)2h
. (3.19)

3.3 Zero modes in momentum space

There are infinite many chiral primary operators [28] with spin s and conformal

weight h = s

Js =
s−1∑
k=1

Ask∂
kφ∂s−kφ∗ (3.20)

for two dimensional massless free boson. The coefficients Ask are fixed to be

Ask = (−1)kCks−1C
s−k
s−1 (3.21)

– 7 –



J
H
E
P
0
1
(
2
0
2
0
)
1
7
3

up to a k independent non-zero constant. The partial derivative operator is

∂ =
∂

∂y
, y = t− z. (3.22)

Since we are considering real boson, φ∗ = φ, odd spin currents Js vanish. The first few

currents are

1. s = 2,

J2 = −(∂φ)2 (3.23)

is proportional to stress tensor.

2. s = 4,

J4 = −3(2∂φ∂3φ− 3(∂2φ)2). (3.24)

3. s = 6,

J6 = −10(∂φ∂5φ− 10∂2φ∂4φ+ 10(∂3φ)2). (3.25)

For each even spin current, the corresponding zero mode is

Q̂A [Js] = cA [Js]

∫
|z−zA|≤RA

dz

(
R2
A − (z − zA)2

2RA

)s−1

Js(z). (3.26)

All zero modes (3.26) are quadratic in terms of b, b† using the quantization (2.6). Therefore,

they should be a linear superposition of quadratic zero modes

Q̂A[Js] = 2π
∑
v

fs(v)b†vbv + const. (3.27)

up to a constant. The constant term is proportional to identity which is also commute

with modular Hamiltonian, it may appear due to commutator [bv, b
†
v′ ]. To determine the

function fs(v), we notice2

Js =
∑
v,v′

[Cs(v, v
′)bvbv′ +Ds(v, v

′)bvb
†
v′ + (−1)sDs(v

′, v)b†vbv′ + C∗s (v, v′)b†vb
†
v′ ] (3.28)

where

Cs(v, v
′) =

s−1∑
k=1

Ask∂
kgv∂

s−kgv′ , (3.29)

Ds(v, v
′) =

s−1∑
k=1

Ask∂
kgv∂

s−kg∗v′ . (3.30)

Using the identity in appendix A and summation in appendix B, we find

Cs(v, v
′) = gvgv′(1− y2)−s(−2)sS(s; iv, iv′), (3.31)

Ds(v, v
′) = gvg

∗
v′(1− y2)−s(−2)sS(s; iv,−iv′). (3.32)

2We set RA = 1 from now on. The center zA will not affect the expression in momentum space, we can

choose zA = 0 to simplify computation.

– 8 –



J
H
E
P
0
1
(
2
0
2
0
)
1
7
3

The integral in (3.26) leads to Dirac delta function, then Cs(v, v
′) has no contribution and

one can read

fs (v) = cA [Js]

(
S(s; iv,−iv)

2πv

)
(3.33)

for even spin. We will choose the normalization coefficients cA[Js] such that

fs(v)→ vs−1,when v →∞ (3.34)

The first few functions fs(v) and normalization coefficients cA[Js] are

f2(v) = v, cA[J2] = −2π, (3.35)

f4(v) = v3 − v

5
, cA[J4] =

2π

15
, (3.36)

f6(v) = v5 − 5

3
v3 +

4

21
v, cA[J6] = − π

105
. (3.37)

4 Correlation functions with the insertion of zero modes

In [19], connected correlation functions of modular Hamiltonians are finite. This is still

true by inserting zero modes into connected correlation functions. In this section, we will

establish the general framework to extract these finite correlators. Then we will compute

several examples in massless free scalar theory. (n, 1)-type correlators are always conformal

blocks in these examples.

4.1 Generator of connected correlation functions

The first step is to generalize the reduced density matrix ρ̂A = e−ĤA to

ρ̂A(a, µ) =
e−aĤA−µQ̂A

〈e−aĤA−µQ̂A〉
. (4.1)

We will call it deformed reduced density matrix since it is deformed by zero mode Q̂A.

We still use ρ̂A though it is already not the usual reduced density matrix. The subscript

denotes the region. For simplicity, we just include one zero mode, the generalization to

multiple zero modes is straightforward.3 The generator of connected correlator is

TA∪B(a, µ; b, ν) = log〈ρ̂A(a, µ)ρ̂B(b, ν)〉. (4.3)

Connected correlators are defined as

〈Ĥm
A Q̂

n
AĤ

k
BQ̂

`
B〉c = T

(m,n,k,`)
A∪B =

∂m+n+k+`TA∪B(a, µ; b, ν)

∂am∂µn∂bk∂ν`
|a,µ,b,ν=0. (4.4)

3One can collect a set of zero modes as ~QA = (Q̂A[1], Q̂A[2], · · · , Q̂A[n]) and the deformed reduced

density matrix is

ρ̂A = e−~a·
~QA . (4.2)

Perhaps one subtlety is [Q̂A[i], Q̂A[j]] 6= 0 for some zero modes.
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This is the connected correlators of (m + n, k + `)-type with the insertion of zero modes.

Since A and B are disjoint, all the operators are commute with each other, the order is not

important. The generator is

TA∪B(a, µ; b, ν) =
∑

m,n,k,`≥0;m+n≥1;k+`≥1

1

m!n!k!`!
T

(m,n,k,`)
A∪B amµnbkν`. (4.5)

4.2 Correlators in two dimensional massless free scalar theory

We will set Q̂A to Q̂A[Js] for massless free scalar theory. Therefore similar computation

as [19] leads to

TA∪B(a, µ; b, ν) = −1

2
tr log

[
1−

(
A C
D B

)]
. (4.6)

The explicit form of A,B, C,D are

Avv′ =
η2

4

(
x13

x23

)i(x−x′) ∫ ∞
0

dyP
(
x, x′, y; a, µ; b, ν

)
F
(
x, x′, y

)
, (4.7)

Bvv′ =
η2

4

(
x13

x23

)−i(x−x′) ∫ ∞
0

dyP
(
x, x′, y; a, µ; b, ν

)
F
(
x′, x, y

)
, (4.8)

Cvv′ =
η2

4

(
x13

x23

)i(x+x′) ∫ ∞
0

dyP
(
x, x′, y; a, µ; b, ν

)
F
(
x,−x′, y

)
, (4.9)

Dvv′ =
η2

4

(
x13

x23

)−i(x+x′) ∫ ∞
0

dyP
(
x, x′, y; a, µ; b, ν

)
F
(
−x, x′, y

)
. (4.10)

The function P is

P (x, x′, y; a, µ; b, ν) =

√
xx′y sinhπf1 sinhπf2

sinhπx′ sinhπy sinhπ(f1 + x) sinhπ(f2 + y)
, (4.11)

with

f1 = ax+ µfs1(x), f2 = by + νfs2(y). (4.12)

We also replace v and v′ to x and x′, respectively. Expanding TA∪B(a, µ; b, ν) as

TA∪B(a, µ; b, ν) =

∞∑
n=1

Tn(a, µ; b, ν) =

∞∑
n=1

1

2n
tr

(
A C
D B

)n
. (4.13)

The first few orders of Tn are

T1(a, µ; b, ν) =
1

2
tr(A+ B), (4.14)

T2(a, µ; b, ν) =
1

4
tr(A2 + B2 + 2CD). (4.15)

They are

T1(a, µ; b, ν) =
η2

4

∫ ∞
0

dx

∫ ∞
0

dyP (x, y; a, µ; b, ν)F(x, x, y), (4.16)

T2(a, µ; b, ν) =
η4

32

∫ ∞
0

dx

∫ ∞
0

dx′
∫ ∞

0
dy

∫ ∞
0

dy′P2(x, x′, y, y′; a, µ; b, ν)F2(x, x′, y, y′),

(4.17)
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where

P (x, y; a, µ; b, ν) =
xy sinhπf1 sinhπf2

sinhπx sinhπy sinhπ(f1 + x) sinhπ(f2 + y)
, (4.18)

P2(x, x′, y, y′;µ; b, ν) = P (x, y; a, µ; b, ν)P (x′, y′; a, µ; b, ν), (4.19)

F(x, x, y) = |2F1(1 + ix, 1 + iy, 2,−η)|2 + |2F1(1 + ix, 1− iy, 2,−η)|2, (4.20)

F2(x, x′, y, y′) = F(x, x′, y)F(x′, x, y′) + F(x,−x′, y)F(−x′, x, y′). (4.21)

The function F(x, x′, y) is

F(x, x′, y) = 2F1(1 + ix, 1− iy, 2,−η) 2F1(1− ix′, 1 + iy, 2,−η)

+ 2F1(1 + ix, 1 + iy, 2,−η) 2F1(1− ix′, 1− iy, 2,−η). (4.22)

We define

T (m,n,k,`)
q =

∂m+n+k+`Tq(a, µ; b, ν)

∂am∂µn∂bk∂ν`
|a,µ,b,ν=0. (4.23)

Connected correlation functions are

T
(m,n,k,`)
A∪B =

min(m+n,k+`)∑
q=1

T (m,n,k,`)
q . (4.24)

Several examples are shown in the following. We will only include spin 4 operator and

restrict to m+ n+ k+ ` ≤ 4 in this work. Therefore all zero modes Q̂A[J4] is rewritten as

Q̂A to simplify notation.

4.2.1 Two zero modes

We evaluate three correlators.

〈ĤAĤB〉c =
1

72
G2(η), (4.25)

〈ĤAQ̂B〉c =
π2η2

4

∫ ∞
0

dx

∫ ∞
0

dy
x2y(y3 − 1

5y)

sinh2 πx sinh2 πy
F(x, x, y) = 0, (4.26)

〈Q̂AQ̂B〉c =
π2η2

100

∫ ∞
0

dx

∫ ∞
0

dy
x2y2(5x2 − 1)(5y2 − 1)

sinh2 πx sinh2 πy
F(x, x, y) =

3

49000
G4(η). (4.27)

The correlator of two zero modes is proportional to conformal block which has been men-

tioned in (3.14). The first correlator has been studied in [19]. The second correlator is

zero since the correlator of stress tensor and spin 4 primary operator is zero. (4.25)–(4.27)

are checked numerically. One can also check them analytically using the method in ap-

pendix C. The coefficients before conformal block (4.25) and (4.27) can also be fixed using

general results (3.14). The normalization constants N [Js] are

N [J2] =
1

8π2
,N [J4] =

135

2π2
, (4.28)

in our convention. Combining (4.28), (3.35), (3.36) and (3.18), then (4.25) and (4.27) can

match with (3.14), respectively.
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4.2.2 Three zero modes

Without losing generality, we insert only one zero mode into region B while other two

zero modes are inserted into region A. Therefore we could evaluate the following six

(2, 1)-type correlators.

〈Ĥ2
AĤB〉c = − 1

24
G2(η), (4.29)

〈ĤAQ̂AĤB〉c = − 1

180
G2(η), (4.30)

〈Q̂2
AĤB〉c = − 1

100
G2(η), (4.31)

〈Ĥ2
AQ̂B〉c = − 1

4200
G4(η), (4.32)

〈ĤAQ̂AQ̂B〉c = − 3

7000
G4(η), (4.33)

〈Q̂2
AQ̂B〉c = − 27

35000
G4(η). (4.34)

The correlators are proportional to conformal block. We will reproduce this property later.

4.2.3 Four zero modes

There are two cases according to the number of zero modes in region B.

1. (3, 1)-type correlators. We could find eight different correlators.

〈Ĥ3
AĤB〉c =

1

6
G2(η), (4.35)

〈Ĥ3
AQ̂B〉c =

3

1400
G4(η), (4.36)

〈Ĥ2
AQ̂AĤB〉c =

1

20
G2(η), (4.37)

〈Ĥ2
AQ̂AQ̂B〉c =

19

5250
G4(η), (4.38)

〈ĤAQ̂
2
AĤB〉c =

19

225
G2(η), (4.39)

〈ĤAQ̂
2
AQ̂B〉c =

36

4375
G4(η), (4.40)

〈Q̂3
AĤB〉 =

24

125
G2(η), (4.41)

〈Q̂3
AQ̂B〉 =

1233

43750
G4(η). (4.42)

As correlators of (2, 1)-type, four zero modes correlators of (3, 1)-type are also propor-

tional conformal block. This may indicate general properties of OPE of zero modes.

We will discuss this point later.

2. (2, 2)-type correlators. The correlators are not proportional to a single conformal

block, we don’t find exact result. However, one can evaluate them in the small cross
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ratio limit order by order. We will present the leading order and leave the discussion

on higher orders to another seperate paper.

〈Ĥ2
AĤ

2
B〉c ≈

1

8
η2, (4.43)

〈Ĥ2
AĤBQ̂B〉c ≈

1

60
η2, (4.44)

〈Ĥ2
AQ̂

2
B〉c ≈

3

100
η2, (4.45)

〈ĤAQ̂AĤBQ̂B〉c ≈
1

450
η2, (4.46)

〈ĤAQ̂AQ̂
2
B〉c ≈

1

250
η2, (4.47)

〈Q̂2
AQ̂

2
B〉c ≈

9

1250
η2. (4.48)

4.3 (n, 1)-type correlators

(n, 1)-type correlator may be always proportional to a conformal block as previous exam-

ples,

〈Q̂A[O1] · · · Q̂A[On]Q̂B[O]〉c = cOGh(η), ∀n ≥ 1. (4.49)

The coefficient cO may depend on the details of the theory. h is conformal weight of

primary operator O. The subscript O means that cO is the coefficient related to zero mode

Q̂B[O]. (4.49) is equivalent to the statement that the correlator of zero mode in region B

and deformed reduced density matrix in region A is

〈ρ̂A(a, µ)Q̂B[O]〉c = c̃OGh(η), (4.50)

where c̃O is a function of a, µ. It should be the generator of coefficients cO. For massless

free scalar theory,

〈ρ̂A(a, µ)ĤB〉c =
∂

∂b
T1(a, µ, b, ν)|b=ν=0

=
πη2

4

∫ ∞
0

dx

∫ ∞
0

dy
xy2 sinhπx(a+ µ(x2 − 1

5))

sinhπx sinh2 πy sinhπx(1 + a+ µ(x2 − 1
5))
F(x, x, y)

= c̃2G2(η), (4.51)

〈ρ̂A(a, µ)Q̂B〉c =
∂

∂ν
T1(a, µ, b, ν)|b=ν=0

=
πη2

4

∫ ∞
0

dx

∫ ∞
0

dy
xy2(y2 − 1

5) sinhπx(a+ µ(x2 − 1
5))

sinhπx sinh2 πy sinhπx(1 + a+ µ(x2 − 1
5))
F(x, x, y)

= c̃4G4(η). (4.52)

We check numerically that (4.51) and (4.52) indeed factorize for general positive a, µ, η.

Therefore we match the lowest order of η in (4.51) and (4.52),

c̃2 =
π

2

∫ ∞
0

dx

∫ ∞
0

dy
xy2 sinhπx(a+ µ(x2 − 1

5))

sinhπx sinh2 πy sinhπx(1 + a+ µ(x2 − 1
5))

, (4.53)

c̃4 =
π

24

∫ ∞
0

dx

∫ ∞
0

dy
xy2(y2 − 1

5)(11− x2 − y2 + 5x2y2) sinhπx(a+ µ(x2 − 1
5))

sinhπx sinh2 πy sinhπx(1 + a+ µ(x2 − 1
5))

. (4.54)
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They can be simplified to

c̃2 =
1

12

∫ ∞
0

dx
x sinhπx(a+ µ(x2 − 1

5))

sinhπx sinhπx(1 + a+ µ(x2 − 1
5))

, (4.55)

c̃4 =
1

1400

∫ ∞
0

dx
x(5x2 − 1) sinhπx(a+ µ(x2 − 1

5))

sinhπx sinhπx(1 + a+ µ(x2 − 1
5))

. (4.56)

The integrals are rather hard to evaluate for general a, µ, however, we can expand them

for small a and µ,

c̃2 =

∞∑
m,n=0

1

m!n!
c̃2(m,n)amµn, (4.57)

c̃4 =
∞∑

m,n=0

1

m!n!
c̃4(m,n)amµn. (4.58)

The first few orders are

c̃2(0, 0) = 0, c̃2(0, 1) = 0, c̃2(0, 2) = − 1

100
, c̃2(0, 3) =

24

125
, (4.59)

c̃2(1, 0) =
1

72
, c̃2(1, 1) = − 1

180
, c̃2(1, 2) =

19

225
, (4.60)

c̃2(2, 0) = − 1

24
, c̃2(2, 1) =

1

20
, (4.61)

c̃2(3, 0) =
1

6
, (4.62)

c̃4(0, 0) = 0, c̃4(0, 1) =
3

49000
, c̃4(0, 2) = − 27

35000
, c̃4(0, 3) =

1233

43750
, (4.63)

c̃4(1, 0) = 0, c̃4(1, 1) = − 3

7000
, c̃4(1, 2) =

36

4375
, (4.64)

c̃4(2, 0) = − 1

4200
, c̃4(2, 1) =

19

5250
, (4.65)

c̃4(3, 0) =
3

1400
. (4.66)

By definition,

〈Ĥm
A Q̂

n
AĤB〉c = c̃2(m,n)G2(η), (4.67)

〈Ĥm
A Q̂

n
AQ̂B〉c = c̃4(m,n)G4(η). (4.68)

We find that the results (4.59)–(4.66) are consistent with (4.25)–(4.27), (4.29)–(4.34)

and (4.35)–(4.42). Another interesting limit is a→∞ while µ is fixed,

c̃2|a→∞ =
1

288
, (4.69)

c̃4|a→∞ =
15ζ(4, 1+π

2π )− 2π2ζ(2, 1+π
2π )

5600π4
, (4.70)

where Riemann Zeta function is

ζ(s, a) =
∞∑

k=0,k+a 6=0

(k + a)−s. (4.71)
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The details of the integral can be found in appendix C. The deformed reduced density

matrix is still non-vanishing even when a → ∞. Usually, an exponential function e−aI(x)

vanishes when I(x) > 0 in the limit a → ∞. In free boson case, modular Hamiltonian

operator ĤA =
∑

v vb
†
vbv is non-negative,4

ĤA ≥ 0. (4.72)

All the modes with v > 0 should not contribute to deformed reduced density matrix in the

limit a→∞. The exception is the soft mode v → 0. We claim that soft mode contributes

this non-zero effect. We expect to return to this problem in the near future.

4.4 Universal correlators

In previous subsection, three zero modes correlators are always proportional to conformal

block. We will reproduce these results for general CFT2 and find universal correlators with

three zero modes in this subsection. (2, 1)-type correlators are

〈Q̂A[O1]Q̂A[O2]Q̂B[O3]〉c = −cA[O1]cA[O2]cB[O3]C12323−h1−h2−h3I[h1, h2, h3; η] (4.73)

where C123 is the coefficient of three point function

〈O1(z1)O2(z2)O3(z3)〉 =
C123

(z1 − z2)h1+h2−h3(z2 − z3)h2+h3−h1(z1 − z3)h1+h3−h2 . (4.74)

The integral I[h1, h2, h3; η] is

I[h1,h2,h3;η] =:

(
3∏
i=1

∫ 1

−1
dzi

)
(1−z2

1)h1−1(1−z2
2)h2−1(1−z2

3)h3−1

(z1−z2)h1+h2−h3(z1+z−z3)h1+h3−h2(z2−z3+z)h2+h3−h1 :

(4.75)

where “: · · · :” means one should regularize the integral since it has poles near z1 = z2.

The parameter z is related to cross ratio by

z = 2

√
1 +

1

η
. (4.76)

In small cross ratio limit,

z ∼ 2η−1/2 →∞, η → 0. (4.77)

We refer reader to reference [19] for more details on the parameter z and how to regularize

the integral. We check that the regularized integral is indeed proportional to conformal

block Gh3(η) for various integer h1, h2, h3 > 0. This is also supported by the explicit exam-

ples in previous subsection. Therefore one may assume the regularized integral is always

I[h1, h2, h3; η] = λ(h1, h2, h3)Gh3(η). (4.78)

4An operator is non-negative is understood as its expectation value in any state is non-negative.
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To fix the coefficient λ(h1, h2, h3) we expand both sides in the small cross ratio limit and

match the coefficient before ηh3 ,

λ(h1, h2, h3) =
1

22h3
:

3∏
i=1

∫ 1

−1
dzi

(1− z2
1)h1−1(1− z2

2)h2−1(1− z2
3)h3−1

(z1 − z2)h1+h2−h3 : (4.79)

=

√
πΓ(h3)

4h3Γ(h3 + 1
2)

:

∫ 1

−1
dz1

∫ 1

−1
dz2

(1− z2
1)h1−1(1− z2

2)h2−1

(z1 − z2)h1+h2−h3 :

=
π2Γ(h3)2Γ(h2)Γ(h1) cos π2 (h2 + h1 − h3)

4h3Γ(1
2 + h3)Γ(h1+h2+h3

2 )Γ(1+h1+h2−h3
2 )Γ(1+h1+h3−h2

2 )Γ(1+h2+h3−h1
2 )

It matches the regularized integration for general positive integer h1, h2, h3. We discuss

the regularization of this integral in appendix D. Therefore,

〈Q̂A[O1]Q̂A[O2]Q̂B[O3]〉c = −cA[O1]cA[O2]cB[O3]C12323−h1−h2−h3λ(h1, h2, h3)Gh3(η).

(4.80)

As a consistent check, the three point function coefficients are

C222 =
1

8π3
, C224 =

9

4π3
, C244 =

135

π3
, C444 =

10935

π3
(4.81)

for massless free scalar in our convention. Using (3.35), (3.36) and (4.81), we repro-

duce (4.29)–(4.34) from formula (4.80).

5 OPE of deformed reduced density matrix

One of the intriguing result in previous sections is the connected correlation function be-

tween deformed reduced density matrix and another OPE block is proportional to confor-

mal block

〈ρ̂A(a, µ)Q̂B[O]〉c = c̃OGh(η). (5.1)

This property may be true for general 2d CFTs. In this section, we will try to understand

this result from the point of view of OPE. Similar discussion can be found in [19]. The

normalized deformed reduced density matrix ρ̂A(a, µ) is an exponential operator, it is

a summation of different operators of corresponding CFT. They should be possible to

reorganized as a summation of complete orthogonal operators defined in region D(A) with

proper coefficients,

ρ̂A(a, µ) = 1 + · · ·+ dO(O + decendants) + · · · (5.2)

we single out the operator O since this is the unique primary operator which has nonvan-

ishing two point function with Q̂B[O]. The terms in “decendants” are fixed by conformal

symmetry. We also note (3.14) is proportional to conformal block exactly, therefore oper-

ator product expansion of deformed reduced density matrix may be

ρ̂A(a, µ) = 1 + · · ·+ dOQ̂A[O] + · · · (5.3)
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Then c̃O is fixed to be

c̃O = dONA,B[O]. (5.4)

One immediate consequence is that the correlator

〈ρ̂A(a, µ)ρ̂B(b, ν)〉 = 1 + · · ·+ sOGhO(η) + · · · (5.5)

with

sO = dOdONA,B[O]. (5.6)

We present the contribution of conformal block GhO(η). The formula (5.5) is conformal

block expansion of correlator 〈ρ̂Aρ̂B〉. It has similar structure to conformal block approach

to mutual information [29–31]. This is nature since conformal block is the object associ-

ated with four points and accommodate with conformal invariance. Several properties are

collected blow:

1. In the limit a→ 0, µ→ 0, ρ̂A(a, µ) should be identity operator, therefore dO can be

expanded around a = µ = 0 as

dO =
∑

m+n≥1

1

m!n!
dO(m,n)amµn. (5.7)

They are related to c̃O(m,n) by

c̃O(m,n) = dO(m,n)NA,B[O]. (5.8)

Then we find

sO =
∑

m+n≥1,k+`≥1

1

m!n!k!`!
sO(m,n, k, `)amµnbkν`, (5.9)

where

sO(m,n, k, `) = dO(m,n)dO(k, `)NA,B[O] =
c̃O(m,n)c̃O(k, `)

NA,B[O]
. (5.10)

As a polynomial of four variables a, µ, b, ν, it is at least degree of 2. For 2d massless

free scalar, the first few sO(m,n, k, `) are listed in the table 1 and 2.

2. In small cross ratio limit,

TA∪B(a, µ; b, ν) ≈ sŌGh̄(η) ≈ sŌηh̄, (5.11)

where Ō is the quasi-primary operator with lowest conformal dimension h̄ and c̃Ō 6= 0.

Therefore, the correlator

〈Ĥm
A Q̂

n
AĤ

k
BQ̂

`
B〉c ≈ sŌ(m,n, k, `)Gh̄(η) ≈ sŌ(m,n, k, `)ηh̄, m+ n ≥ 1, k + ` ≥ 1.

(5.12)

For 2d massless free scalar, they could match with results in previous section, espe-

cially (4.43)–(4.48). As an example, s2(1, 1, 1, 1) = 1
450 , it is the same to the coefficient

in (4.46).
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6 Discussion and conclusion

The correlator with the insertion of zero modes of modular Hamiltonians in 2d massless

free scalar theory has been studied. Connected correlators are still finite in the presence

of zero modes, this is a direct generalization of the observation in [19]. We mainly work

on 2d free boson, however, several results are univeral for any 2d CFT. Any (n, 1)-type

is a conformal block, which has been checked extensively in this paper. We also find a

formula (4.80) for (2, 1)-type correlator. A rigorous proof of this formula is still lacking. It

would be better to check this formula for non-integer conformal weight in the future.

To derive connected correlators, we used an exponential operator which is a deforma-

tion of reduced density matrix. It may be meaningful by itself. We briefly discussed its

OPE. It would be better understand it to higher order. The correlator of zero modes is a

rather interesting topic, there are many problems to be solved in this direction:

1. Gravitational dual. Zero mode of modular Hamiltonian in conformal field theory are

claimed to be dual to integral over RT surface in large N limit in the gravitatational

side, see (3.4). Correlator of zero modes may provide rich details on this conjecture.

In AdS/CFT correspondence, the gravitational dual of correlator of primary opera-

tors has been well established in [17, 18]. It would be interesting to understand how

to generalize the story to correlators of zero modes. Technically, the integral in the

bulk becomes messy and suffers divergent problem when there are more than two

zero modes on the same RT surface It is great to see how to fix these problems.

2. Quantum corrections. Connected correlation functions of modular Hamiltonians are

classical in the gravitional side [19]. This conclusion is not true when there are zero

modes inserted. In the theory with W symmetry [32], the four point correlator of

spin 3 current has O(1/c) correction [33]. Then it may provide an explicit example

of O(1/N) correction in the conjecture [14].

3. Zero modes which are not OPE blocks. In this case, the property (4.49) is not likely

to be true. From 2d massless free scalar theory, their connected correlation functions

are still finite. It would be better to generalize this point to other 2d CFTs.

4. It would be nice to generalize the discussion to higher dimensions.

Acknowledgments

J.L would like to thank Asia Pacific Center for Theoretical Physics (APCTP), where part

of this work was finished.

A Identity

In this section, we prove the identity between k-th derivative of gv to itself,

∂kgv = gv
(
1− y2

)−k
(−2)k [iv]k × 2F1

(
−k, 1− k, 1 + iv − k, 1− y

2

)
. (A.1)
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This can be shown as follows. In region D(A), positive frequency modes gv are

gv = Nv(1 + y)−iv(1− y)iv (A.2)

for right moving modes. Therefore,

∂kgv = ∂kyNv

(
−1 +

2

1− y

)−iv
= ∂kyNv

(
2

1− y

)−iv (
1− 1− y

2

)−iv
= Nv∂

k
y

(
1− y

2

)iv ∞∑
j=0

[−iv]j
j!

(
y − 1

2

)j
= Nv

∞∑
j=0

[−iv]j
j!

[j + iv]k (−1)j
(
−1

2

)k (1− y
2

)iv+j−k

= Nv (−1)k 2−iv (1− y)−k+iv [iv]k × 2F1

(
iv, 1 + iv, 1− k + iv,

1− y
2

)
. (A.3)

At the second step, we used the taylor expansion

(1 + x)a =

∞∑
j=0

[a]j
j!
xj , (A.4)

where

[a]j = a(a− 1) · · · (a− j + 1) =
Γ(a+ 1)

Γ(a− j + 1)
. (A.5)

[a]j is also equal to

[a]j = (a− j + 1)j , (A.6)

where

(a)j = a(a+ 1) · · · (a+ j − 1) =
Γ(a+ j)

Γ(a)
. (A.7)

At the last step, we used the identity

∞∑
j=0

[a]j [j + b]k(−1)j

j!
xj = [b]k × 2F1(−a, 1 + b, 1 + b− k, x). (A.8)

For positive integer k, the Hypergeometric function satisfies

2F1(a, b, b− k, z) = (1− z)−a−k2F1(−k,−a+ b− k, b− k, z). (A.9)

Therefore

∂kgv = gv
(
1− y2

)−k
(−2)k [iv]k × 2F1

(
−k, 1− k, 1 + iv − k, 1− y

2

)
. (A.10)
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B Summation

Assume k is a positive integer, then we will show

s−1∑
k=1

Ask[a]k[b]s−k × 2F1(−k, 1− k, 1 + a− k, x)2F1(−s+ k, 1− s+ k, 1 + b− s+ k, x)

= −a(s− 1)
Γ(1 + b)

Γ(2 + b− s)3F2(1− a, 1− s, 2− s; 2, 2 + b− s; 1). (B.1)

The summation is independent of x. To prove this point, we will assume

S(s;x) =
s−1∑
k=1

Ask[a]k[b]s−k× 2F1(−k, 1−k, 1+a−k, x)2F1(−s+k, 1−s+k, 1+b−s+k, x).

(B.2)

Therefore,

S′(s;x) =
s−1∑
k=1

Ask[a]k[b]s−k ×
[
−k(1− k)

1 + a− k 2F1(1− k, 2− k, 2 + a− k, x)

× 2F1(−s+ k, 1− s+ k, 1 + b− s+ k, x)

+ 2F1(−k, 1− k, 1 + a− k, x)
(−s+ k)(1− s+ k)

1 + b− s+ k

× 2F1(−s+ k + 1, 2− s+ k, 2 + b− s+ k, x)

]
=

s−2∑
k=1

(
Ask+1[a]k+1[b]s−k−1

k(k + 1)

a− k
+Ask[a]k[b]s−k

(s− k)(s− k − 1)

1 + b− s+ k

)
× 2F1(−k, 1− k, 1 + a− k, x)2F1(1− s+ k, 2− s+ k, 2 + b− s+ k, x)

= 0. (B.3)

At the first line, we used the identity of differentiation of Hypergeometric function

∂

∂x
2F1(a, b, c, x) =

ab

c
2F1(a+ 1, b+ 1, c+ 1, x). (B.4)

At the second line, we relabel k to k + 1 in the summation. At the last step, we used

the identity

Ask+1[a]k+1[b]s−k−1
k(k + 1)

a− k
+Ask[a]k[b]s−k

(s− k)(s− k − 1)

1 + b− s+ k
= 0. (B.5)

Therefore S(s;x) is independent of x, we can evaluate it at x = 0,

S(s;x) = S(s; 0) =
s−1∑
k=1

Ask[a]k[b]s−k

= −a(s− 1)
Γ(1 + b)

Γ(2 + b− s)3F2(1− a, 1− s, 2− s; 2, 2 + b− s; 1). (B.6)
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This is actually a polynomial function of a, b, we redefine

S(s; a, b) = −a(s− 1)
Γ(1 + b)

Γ(2 + b− s)3F2(1− a, 1− s, 2− s; 2, 2 + b− s; 1). (B.7)

The first few functions are

S(2; a, b) = −ab, (B.8)

S(3; a, b) = 2a(a− b)b, (B.9)

S(4; a, b) = −3ab(1 + a2 − 3ab+ b2), (B.10)

S(5; a, b) = 4ab(a− b)(5 + a2 − 5ab+ b2), (B.11)

S(6; a, b) = −5ab(8 + 15a2 − 40ab+ 15b2 + a4 − 10a3b+ 20a2b2 − 10ab3 + b4). (B.12)

It is even under the exchange of a, b for even spin and odd for odd spin

S(s; a, b) = (−1)sS(s; b, a). (B.13)

C Integrals

In this work, we will use the following integrals,

1. The results (4.25)–(4.27) are related to the basic integral

Kp[m,n] =

∫ ∞
−∞

dx
x2p

sinh2 πx
(1 + ix)m(1− ix)n, m, n ≥ 0, p ≥ 1. (C.1)

We use two identities

Γ(1 + ix)Γ(1− ix) = πxcschπx, (a)m =
Γ(a+m)

Γ(a)
, (C.2)

then

Kp[m,n] =
1

π2

∫ ∞
−∞

dxx2p−2Γ(1 + ix)Γ(1− ix)Γ(1 + ix+m)Γ(1− ix+ n). (C.3)

The integral can be evaluated iteratively.

(a) p = 1, then

K1[m,n] =
1

π2

∫ ∞
−∞

dxΓ(1 + ix)Γ(1− ix)Γ(1 + ix+m)Γ(1− ix+ n)

=
2

π

Γ(m+ 2)Γ(n+ 2)Γ(m+ n+ 2)

Γ(m+ n+ 4)
. (C.4)

At the second step, we used the integral [34]∫ ∞
−∞

dxΓ(α+ ix)Γ(β + ix)Γ(γ − ix)Γ(δ − ix)

= 2π
Γ(α+ γ)Γ(α+ δ)Γ(β + γ)Γ(β + δ)

Γ(α+ β + γ + δ)
, (C.5)

Re(α) > 0, Re(β) > 0, Re(γ) > 0, Re(δ) > 0.
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(b) p = 2,

K2[m,n] =
1

π2

∫ ∞
−∞

dx[Γ(2+ix)Γ(2−ix)−Γ(1+ix)Γ(1−ix)]Γ(1+ix+m)Γ(1−ix+n)

=
12

π

Γ(m+3)Γ(n+3)Γ(m+n+2)

Γ(m+n+6)
− 2

π

Γ(m+2)Γ(n+2)Γ(m+n+2)

Γ(m+n+4)
. (C.6)

We use these results to compute the integral (4.27) order by order. We use I[4, 4] to

denote the integral, then

I[4,4] =
π2η2

400

∫ ∞
−∞

dx

∫ ∞
−∞

dy
x2y2(5x2−1)(5y2−1)

sinh2πxsinh2πy
F(x,x,y)

=
π2η2

400

∫ ∞
−∞

dx

∫ ∞
−∞

dy
x2y2(5x2−1)(5y2−1)

sinh2πxsinh2πy

×
∑
m,n

(−η)m+n

(2)m(2)nm!n!
(1+ix)m(1−ix)n [(1+iy)m(1−iy)n+(1−iy)m(1+iy)n]

=
π2η2

200

∑
m,n

(−η)m+n

(2)m(2)nm!n!

[∫ ∞
−∞

dx
5x4−x2

sinh2πx
(1+ix)m(1−ix)n

]2

=
π2η2

200

∑
m,n

(−η)m+n

(2)m(2)nm!n!
{5K2[m,n]−K1[m,n]}2

=
∑
m,n

18(1+m)(1+n)(m2+(−1+n)n−m(1+3n))2(−η)2+m+n

25(2+m+n)2(3+m+n)2(4+m+n)2(5+m+n)2

=
3

49000
G4(η). (C.7)

2. Integrals (4.69) and (4.70) are related to the following integral,∫ ∞
0

xp cschπx e−x = 2−pπ−p−1Γ(p+ 1)ζ

(
p+ 1,

π + 1

2π

)
. (C.8)

D Regularization

In this section, we will discuss on how to regularize the integral

J [h1, h2, h3] =:

∫ 1

−1
dz1

∫ 1

−1
dz2

(1− z2
1)h1−1(1− z2

2)h2−1

(z1 − z2)h1+h2−h3 : . (D.1)

We will tackle this problem by trial and error using examples. The method has been used

in [19]. We just use one example, h1 = 2, h2 = 3, h3 = 3, to illustrate the regularization.

Then we will list other results below.

J [2, 3, 3] =:

∫ 1

−1
dz1

∫ 1

−1
dz2

(1− z2
1)(1− z2

2)2

(z1 − z2)2
:

=:

∫ 1

−1
dz2

[
−
(
1− z2

2

)2(
z1 +

1− z2
2

z1 − z2
+ 2z2 log |z1 − z2|

)]
|1−1 :

= −2

∫ 1

−1
dz2

(
1− z2

2

)2(
2 + z2 log

1− z2

1 + z2

)
= −32

9
. (D.2)
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At the first step, we integrate z1 as if it is an indefinite integral. Since −1 ≤ z2 ≤ 1, the

integral is actually divergent around z1 = z2. However, at the second step, we just ignore

the divergence and taking the integration bound directly. This is the regularization used

in this work. At the third step, the integral is well defined as usual. Then we get the final

result. The integral with h1 = h2 = δ, h3 = h is rather easy, the results are

J [1, 1, h] =
2h

h(h− 1)
κ, (D.3)

J [2, 2, h] =
2h+2

(h− 3)(h− 1)h(h+ 2)
κ, (D.4)

J [3, 3, h] =
2h+6

(h− 5)(h− 3)(h− 1)h(h+ 2)(h+ 4)
κ, (D.5)

J [4, 4, h] =
2h+8 × 9

(h− 7)(h− 5)(h− 3)(h− 1)h(h+ 2)(h+ 4)(h+ 6)
κ, (D.6)

J [5, 5, h] =
2h+14 × 9

(h− 9)(h− 7) · · · (h− 1)h(h+ 2) · · · (h+ 8)
κ, (D.7)

J [6, 6, h] =
2h+16 × 225

(h− 11)(h− 9) · · · (h− 1)h(h+ 2) · · · (h+ 10)
κ, (D.8)

J [7, 7, h] =
2h+20 × 2025

(h− 13)(h− 11) · · · (h− 1)h(h+ 2) · · · (h+ 12)
κ, (D.9)

where κ = (−1)h+1 which is zero when h is odd. These integrals are divergent superficially

when h being some odd integers. However, they are actually zero since κ is zero in these

cases. One could guess the general result to be

J [δ, δ, h] = 22δ+h−2

∏δ−1
i=1 i

2∏δ−1
i=0 (h− 2i− 1)(h+ 2i)

κ, ∀δ, h ∈ Z+. (D.10)

This expression matches (D.3)–(D.9). Now we will leave h1, h2, h3 arbitrary and regularize

the integral in another way,

J [h1,h2,h3] =:

∫ 1

−1
dz1

∫ 1

−1
dz2

(
1−z2

1

)h1−1 (
1−z2

2

)h2−1
(z1−z2)h3−h1−h2 :

=
√
πΓ(h2)

Γ
(
h2+ 1

2

) :

∫ 1

−1
dz1z

h3−h1−h2
1

(
1−z2

1

)h1−1

×2F1

(
h1+h2−h3

2
,

1+h1+h2−h3

2
,h2+

1

2
,

1

z21

)
:

=:
π3/2 cos π

2
(h1+h2−h3)Γ(h1)Γ(h2)

Γ
(
h1+ 1

2

)
Γ
(
h1+h2−h3+1

2

)
Γ
(
h2+h3−h1+1

2

)
×2F1

(
h1−h2−h3+1

2
,
h1+h2−h3

2
,

1

2
+h1,1

)
:

=
π3/2 cos π

2
(h1+h2−h3)Γ(h1)Γ(h2)Γ(h3)

Γ
(
1+h1+h2−h3

2

)
Γ
(
1+h1+h3−h2

2

)
Γ
(
1+h2+h3−h1

2

)
Γ
(
h1+h2+h3

2

) . (D.11)

Note to compute the integration of z2, we assume z1 > 1 and then try to continue it to

−1 ≤ z1 ≤ 1. To calculate the integration of z1, we assume h1 + h2 − h3 − 1 < 0 and

then continue it to other region of h3. At the third line, one should keep the integral to

be real since our original integration is real. To get the final result, we used the value of

hypergeometric function

2F1(a, b, c, 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, Re(c− a− b) > 0. (D.12)
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Interestingly, (D.11) reproduces (D.10) when h, δ are positive integers. This convinces us

that (D.11) is the correct result. As another check, J [2, 3, 3] = −32
9 which is exactly (D.2).

(D.2) is obtained using the regularization method of [19], this indicates that the result may

be indepedent of regularization method. In the text, we also test this general result by

matching it with free scalar theory.

Tables

This is a list of coefficients sO(m,n, k, `) for 2d massless free scalar. In the table, i is

an integer.

m n k ` s2(m,n, k, `) s4(m,n, k, `)

i 0 0 0 0 0

0 i 0 0 0 0

0 0 i 0 0 0

0 0 0 i 0 0

1 1 0 0 0 0

1 0 1 0 1
72 0

1 0 0 1 0 0

0 1 1 0 0 0

0 1 0 1 0 3
49000

0 0 1 1 0 0

2 1 0 0 0 0

2 0 1 0 − 1
24 0

2 0 0 1 0 − 1
4200

1 2 0 0 0 0

0 2 1 0 − 1
100 0

0 2 0 1 0 − 27
35000

1 0 2 0 − 1
24 0

0 1 2 0 0 − 1
4200

0 0 2 1 0 0

1 0 0 2 − 1
100 0

0 1 0 2 0 − 27
35000

0 0 1 2 0 0

1 1 1 0 − 1
180 0

1 1 0 1 0 − 3
7000

1 0 1 1 − 1
180 0

0 1 1 1 0 − 3
7000

Table 1. Coefficients s.
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m n k ` s2(m,n, k, `) s4(m,n, k, `)

3 1 0 0 0 0

3 0 1 0 1
6 0

3 0 0 1 0 3
1400

1 3 0 0 0 0

0 3 1 0 24
125 0

0 3 0 1 0 1233
43750

1 0 3 0 1
6 0

0 1 3 0 0 3
1400

0 0 3 1 0 0

1 0 0 3 24
125 0

0 1 0 3 0 1233
43750

0 0 1 3 0 0

2 2 0 0 0 0

2 0 2 0 1
8

1
1080

2 0 0 2 3
100

3
1000

0 2 2 0 3
100

3
1000

0 2 0 2 9
1250

243
25000

0 0 2 2 0 0

2 1 1 0 1
20 0

2 1 0 1 0 19
5250

2 0 1 1 1
60

1
600

1 2 1 0 19
225 0

1 2 0 1 0 36
4375

0 2 1 1 1
250

27
5000

1 1 2 0 1
60

1
600

1 0 2 1 1
20 0

0 1 2 1 0 19
5250

1 1 0 2 1
250

27
5000

1 0 1 2 19
225 0

0 1 1 2 0 36
4375

1 1 1 1 1
450

3
1000

Table 2. Coefficients s.
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