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1 Introduction

One of the most challenging and important open questions in string theory is to describe

its strong coupling limit, known as M-theory, whose basic degrees of freedom are not

strings but higher dimensional objects called M2 and M5-branes. At low energies, they

should be described by superconformal field theories with three-dimensional N = 8 and

six-dimensional (2, 0) supersymmetry, respectively. The lagrangian for an arbitrary number

of M2-branes, known as the ABJM theory, turns out to be a superconformal Chern-Simons

theory with N = 6 supersymmetry which becomes enhanced to maximal supersymmetry

quantum mechanically [1]. Although an interacting lagrangian with six-dimensional (2, 0)

supersymmetry does not appear to exist, progress has been made by reducing to five di-

mensions and interpreting the Kaluza-Klein modes as solitons. Indeed, one of the earliest

proposals, known as DLCQ, is to describe the dynamics of M5-branes via quantum me-

chanics on the moduli space of instantons associated with Kaluza-Klein modes of a null

direction [2]. Moreover, dimensionally reducing the six-dimensional (2, 0) theory along

a spacelike or timelike direction gives rise to maximal five-dimensional super-Yang-Mills,

which was conjectured to provide a complete description of the six-dimensional (2, 0) the-

ory nonperturbatively [3–5]. Null reductions were subsequently explored in [6] and shown

to provide a field theory description of the DLCQ proposal [7, 8].

It was recently shown that rescaling a supersymmetric field theory in a way that

breaks Lorentz invariance can induce a classical RG flow whose fixed point has enhanced
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superconformal symmetry. When applied to five-dimensional super-Yang-Mills, this gives

rise to a five-dimensional superconformal theory with 24 supercharges, which corresponds

to null reduction of the (2, 0) theory [9]. It was then shown that this mechanism has a

natural holographic realisation [10]. The basic idea is to consider M-theory on AdS7 × S4

and then write the AdS7 factor as a timelike fibration of a non-compact complex projective

space C̃P3
, which breaks one quarter of the supersymmetry and the isometry group from

SO(6, 2) to SU(3, 1) [11]. Flowing to the boundary then gives an Ω-deformed null reduction

of the (2, 0) theory with 24 superconformal symmetries and a Lifshitz scaling symmetry.

In this paper, we examine the bosonic symmetries of this theory and find that it has

additional boost-like and conformal symmetries which generate an SU(3, 1) group when

combined with the other bosonic symmetries, as expected from holography. In the Ωij → 0

limit, the theory reduces to the null reduction previously considered in [6, 9] and gains

two additional rotational symmetries. There is also a topological charge associated with

translations along the null direction, and we show that the Noether charges associated with

the new symmetries take a similar form, i.e. they involve integrals over the topological

density weighted by functions linear or quadratic in position. These symmetries act very

nontrivially on the fields and we obtain an intuitive derivation of them by lifting the five-

dimensional action to a six-dimensional diffeomorphism invariant one, although this is not

intended to be an action for the six-dimensional (2, 0) theory.

The rest of this paper is organised as follows. In section 2 we will give the details of the

field theories we are considering and also the (conformal) Killing vectors of the M-theory

background which gives rise to them. In section 3 we will construct new bosonic symmetries

for the case where the deformation Ωij = 0, corresponding to a null reduction of Minskowski

space. Although the results here follow from the Ωij → 0 limit of the later results, we find

it instructive to consider them separately. In section 4 we will repeat of analysis for the

more involved case of Ωij 6= 0. Section 5 contains our conclusions and a discussion. We also

include two appendices. In appendix A we give an intuitive derivation of the symmetries

found in the main section based on assuming a six-dimensional diffeomorphism invariant

action. In appendix B we explicitly show how the (conformal) Killing vectors we found

generate SU(3, 1), as expected from the AdS-dual geometry.

2 The field theories and background geometry

The fields in the theories we consider depend on four space dimensions xi, i = 1, 2, 3, 4

and a coordinate x−. Although x− originates as a null direction (x0 − x5)/
√

2 in eleven

dimensions it plays the role ‘time’ in the field theory. The action is

SΩ =

∫
dx−d4xLΩ

=
1

4π2R
tr

∫
dx−d4x

{
1

2
F−iF−i −

1

2
∇iXI∇iXI +

1

2
FijGij

− i

2
Ψ̄Γ+D−Ψ +

i

2
Ψ̄Γi∇iΨ−

1

2
Ψ̄Γ+ΓI [XI ,Ψ]

}
, (2.1)
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where I = 6, . . . , 10 is an R-symmetry index labeling five scalars, Gij is a self-dual Lagrange

multiplier field and the fermions are real 32-component spinors of Spin(1, 10) subject to the

constraint Γ012345Ψ = −Ψ and Γ± = (Γ0 ± Γ5)/
√

2. Here Ωij = −Ωji is a constant anti-

self-dual two-form with ΩikΩjk = R−2δij for some constant R. We have also introduced

∇i = Di −
1

2
Ωijx

jD−

Fij = Fij −
1

2
Ωikx

kF−j +
1

2
Ωjkx

kF−i , (2.2)

with Fij = ∂iAj − ∂jAi − i[Ai, Aj ] and F−i = ∂−Ai − ∂iA− − i[A−, Ai]. We can also take

the special case where Ωij = 0 to obtain

SM =

∫
dx−d4xLM

=
1

4π2R
tr

∫
dx−d4x

{
1

2
F−iF−i −

1

2
DiX

IDiX
I +

1

2
FijGij

− i

2
Ψ̄Γ+D−Ψ +

i

2
Ψ̄ΓiDiΨ−

1

2
Ψ̄Γ+ΓI [XI ,Ψ]

}
. (2.3)

These field theories arise, after dimensional reduction along x+, from M5-branes on a

spacetime whose metric is [7, 10]1

ds2 = −2dx+

(
dx− − 1

2
Ωijx

idxj
)

+ dxidxi . (2.4)

The motivation for considering this metric comes from considering M-theory on AdS7×S4,

and writing AdS7 as a timelike circular fibration over a non-compact complex projective

space C̃P3
[11]. Restricting to constant C̃P3

radius and taking it to infinity then results

in (2.4), where R corresponds to twice the AdS radius. Reducing along the fibre breaks

one quarter of the supersymmetry, so we expect the boundary theory to have 24 super-

charges. In [10] it was shown that this is indeed the case for SΩ, which is invariant under 8

supersymmetries and 16 superconformal supersymmetries. Moreover SM enjoys 16 super-

symmetries and 8 superconformal supersymmetries [7, 9]. For this, and other reasons that

will be clear below, we find it instructive to treat SM separately, even though it formally

arises as a special case of SΩ when Ωij = 0.

Here we wish to examine the bosonic symmetries of SΩ and SM . It is clear that these

actions are invariant under translations in x− and the 4 rotations of the xi coordinates

which preserve Ωij (SM is invariant under all 6 rotations of xi). Furthermore a little

thought shows that they are also invariant under translations in xi, provided that one also

shifts x−:

xi → xi + ci , x− → x− +
1

2
Ωijc

ixj . (2.5)

In each of these cases the fields transform as one would expect under translations and

rotations. In addition there is a Lifshitz-type scaling symmetry:

x− → λx− , xi → λ
1
2xi , (2.6)

1They can also be obtained from a non-Lorentzian rescaling of Yang-Mills gauge theory [9].
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where the fields transform as

XI → λ−1XI , Ψ+ → λ−
3
2 Ψ+ , Ψ− → λ−1Ψ−

A− → λ−1A− , Ai → λ−
1
2Ai , Gij → λ−2Gij , (2.7)

and Ψ± = − 1√
2
Γ±Γ0Ψ. Note that the bosonic symmetries described above form a closed

subgroup. Commuting translations along x1 and x3 gives an x− translation (this is also the

case when commuting x2 and x4 translations), but otherwise we obtain the usual algebra

of translations, rotations, and a scaling symmetry.

The large number of supersymmetries suggests that there will be additional bosonic

symmetries which, although manifest, are less obvious. The aim of this work is to find them.

For example although these actions do not seem to have a boost-like symmetry we will see

that in fact they do. The bosonic symmetries can also be anticipated from holography. In

particular, after reducing AdS7 along the timelike fibre, the bulk isometry group is broken

form SO(6, 2) to SU(3, 1). Remarkably, the bosonic symmetries we find indeed furnish a

representation of SU(3, 1). The translation, rotation and scaling symmetries mentioned

above then form a closed subalgebra of SU(3, 1).

We expect that the Killing and conformal Killing vectors of (2.4) lead to symmetries

of the M5-brane. Since we do not have a lagrangian description for a non-abelian theory

of M5-branes in six-dimensions we are forced to consider cases where none of the fields

depend the x+ direction. In this case the dynamics is described by five-dimensional super-

Yang-Mills and its variations. Thus we expect that only those symmetries which leave the

fields independent of x+ become symmetries of the reduced non-abelian theory SΩ.

Since the M5-brane theory is a conformal field theory we are therefore led to look for

solutions to the conformal Killing equation with ∂+k
λ = 0:

Lkgµν = kλ∂λgµν + ∂µk
λgλν + ∂νk

λgµλ = ωgµν . (2.8)

A vector that satisfies this is called Killing if ω = 0 and conformally Killing if ω 6= 0. We

will use the term (conformally) Killing to describe both cases. For the metric (2.4) we find

k+ =
1

4
ω2|x|2 + vix

i + b

k− =
1

2
ω2(x−)2 + x−

(
ω1 +

1

2
viΩijx

j

)
+ c+

1

2
ciΩijx

j − ω2

32
R−2|x|4 − 1

8
R−2|x|2xkvk

ki = −1

8
ω2Ωkix

k|x|2 − 1

2
xkvkΩlix

l + ci +Mijx
j +

1

2
ω1x

i +
1

2
vkxlΩklx

i − 1

4
|x|2vkΩki

+ x−
(
vi +

1

2
ω2x

i

)
ω = ω1 + viΩijx

j + ω2x
− , (2.9)

where b, c, ci,Mij , ω1, vi, ω2 are all constant independent parameters with M = −MT ,

[M,Ω] = 0. This corresponds to 1 + 1 + 4 + 4 + 1 + 4 + 1 = 16 (conformal) Killing vectors.

Recall that six-dimensional Minkowski space admits 21 Killing vectors and 7 conformal
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Killing vectors. The metric (2.4) is conformal to Minkowski space and so must also admit

a total of 28 (conformal) Killing vectors. We conclude that 12 must depend on x+.

In particular taking special cases we have the following types of x+-independent (con-

formal) Killing vectors:

type I (b,0,0,0,0,0)

type II (0, c,0,0,0,0)

type III
(

0,
1

2
ciΩijx

j , ci

)
type IV

(
0,0,Mijx

j
)

type V
(

0,ω1x
−,

1

2
ω1xi

)
type VI

(
vix

i,
1

2
x−viΩijx

j− 1

8
R−2|x|2xkvk,x−vi−

1

2
xkvkΩlix

l+
1

2
vkxlΩklx

i− 1

4
|x|2vkΩki

)
type VII

(
1

4
ω2|x|2,

1

2
ω2(x−)2− ω2

32
R−2|x|4,−1

8
ω2Ωki|x|2xk+

1

2
ω2xix

−
)
. (2.10)

The type I symmetry is a translation in x+ and acts trivially in the five-dimensional

lagrangian. Nevertheless we identify the associated conserved current with the topologi-

cal current

P−+ =
1

32π2R
εijkltr(FijFkl) , P i+ = − 1

8π2R
εijkltr(F−jFkl) . (2.11)

In particular the conserved charge, corresponding to momentum along x+, is identified

with the instanton number of the gauge field on R4

p+ =

∫
d4xP−+ =

1

32π2R
εijkl

∫
d4x tr(FijFkl) . (2.12)

Next we observe that type II, III and IV are Killing vectors with ω = 0. Type II and III

are the 5 remaining translations whereas type IV are the 4 rotations that preserve Ω. Type

V is the Lifshitz scaling symmetry with ω 6= 0. Thus the symmetries corresponding to

types I–V are easy to identify. However type VI and type VII are new non-trivial bosonic

symmetries. In appendix B, we derive the conformal Killing vectors in (2.10) from the

Killing vectors of AdS7 reduced along a timelike fibre. This construction implies that the

underlying symmetry group is SU(3, 1), which can be explicitly verified by computing Lie

derivatives of the conformal Killing vectors. One can also check that the Killing vectors

generated by type I–V close among themselves to form a subalgebra.

3 Minkowski space: Ωij = 0

Before we address the bosonic symmetries of SΩ it is worthwhile to first find the symmetries

of SM . In particular SM arises from dimensional reduction along x+ of Minkowski space

in the lightcone coordinates obtained from (2.4) (with Ωij = 0). If we simply set Ωij = 0

– 5 –
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in (2.10) we find the following (conformal) Killing vectors of Minkowski space

type I (b, 0, 0, 0, 0, 0)

type II (0, c, 0, 0, 0, 0)

type III (0, 0, ci)

type IV
(
0, 0,Mijx

j
)

type V

(
0, ω1x

−,
1

2
ω1xi

)
type VI

(
vix

i, 0, x−vi
)

type VII

(
1

4
ω2|x|2,

1

2
ω2(x−)2,

1

2
ω2x

−xi

)
. (3.1)

These should all lead to symmetries of SM . As before the first five types are simply

translations, rotations and a Lifshitz scaling. Note that now there are 6 rotations since the

constraint [M,Ω] = 0 is vacuous. Hence we find 16 Killing vectors and 2 conformal Killing

vectors that do not depend on x+. The associated generators form a subalgebra of the

six-dimensional conformal algebra that commute with P+ and were discussed in [2] within

the context of a DLCQ description of M5-branes.

As an aside we note that Minkowski space has 21 Killing and 7 conformally Killing vec-

tors. Therefore it follows from our derivation that the additional 10 (conformal) Killing vec-

tors which are not in (3.1) must depend on x+. Thus 2 of the 12 x+ dependent (conformal)

Killing vectors for Ωij 6= 0 become the additional x+-independent rotations when Ωij = 0

while the other 10 remain x+ dependent. Of these 5 are Killing vectors of Minkowski space

corresponding boosts in the (x+, x−) and (x+, xi)-planes:

type VIII
(
ax+,−ax−, 0, 0, 0, 0

)
type IX

(
0, uix

i, x+ui
)
. (3.2)

The remaining missing 5 conformal Killing vectors are easily obtained by swapping x− with

x+ in type V and type VII above:

type X

(
ω3x

+, 0,
1

2
ω3xi

)
type XI

(
1

2
ω4(x+)2,

1

4
ω4|x|2,

1

2
ω4x

+xi

)
, (3.3)

with ω = ω3 + ω4x
−. However we are not interested in any of these as they depend on x+

and hence cannot lead to symmetries of the five-dimensional action. What remains is to

show that types VI and VII lead to symmetries of the five-dimensional non-abelian theory.

3.1 Type VI

Let us look at type VI. This is a Killing vector and corresponds to the six-dimensional

diffeomorphism

x+ → x+ + vixi , x− → x− , xi → xi + vix− . (3.4)

– 6 –



J
H
E
P
0
1
(
2
0
2
0
)
1
6
6

These can be thought of as null boosts and in particular they are a part of the six-

dimensional Lorentz group. A traditional boost consists of combining a left-moving and a

right-moving null boost. To continue we assume that all the fields are independent of x+.

In this case we find the variations of a Galilean boost in five-dimensions:

δx− = 0 , δxi = vix− . (3.5)

In addition to this transformation we postulate a further tensor-like variation

δA− = −viAi
δAi = 0

δXI = 0

δGij = −2

(
F−[ivj] +

1

2
εijklF−kvl

)
δΨ =

1

2
vjΓ+ΓjΨ . (3.6)

An intuitive, six-dimensional, derivation of these expressions is given in appendix A. We find

δSM =
1

4π2R

∫
dx−d4x

{
1

2
εijkltr(FijF−l)vk

}
. (3.7)

This term can be identified with 1
2tr(F ∧ F ) ∧ v and hence is a total derivative. It is

interesting to note that, even in the abelian case, the action is only invariant under the

action of the six-dimensional Lorentz group up to the boundary term 1
2tr(F ∧ F ) ∧ v.

Using the standard formula the associated Noether current takes the somewhat un-

conventional form (we have set the fermions to zero for simplicity — the full results can

be found by setting Ωij = 0 in (4.7) and (4.8)):

P−(v) = − 1

4π2R
x−tr(F−iv

j∂jAi) +
1

32π2R
vmxmεijkltr(FijFkl)

P i(v) = − 1

8π2R
vmxmεijkltr(F−jFkl) +

1

4π2R
tr(F−iv

jAj)

− 1

4π2R
x−tr

(
−F−ivj∂jA− +Gikv

j∂jAk −DiX
Ivj∂jX

I
)
− x−viLM . (3.8)

This satisfies ∂−P
−(v) + ∂iP

i(v) = 0 on-shell. Since these are null boosts we associate the

conserved charge with a momentum along the xi-direction:

pi =

∫
d4xP−(vj = δij) =

1

32π2R

∫
x−=0

d4xxiεklmntr(FklFmn) , (3.9)

where, since pi is independent of x−, we have simplified the expression by evaluating it

at x− = 0.

3.2 Type VII

Next, let us consider the type VII transformation. In six-dimensions this is the diffeomor-

phism

x+ → x+ +
1

2
ω2|x|2 , x− → x− +

1

2
ω2(x−)2 , xi → xi +

1

2
ω2x

−xi . (3.10)

– 7 –
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Reducing to five dimensions we find

δx− =
1

2
ω2(x−)2 , δxi =

1

2
ω2x

−xi . (3.11)

In this case the measure is rescaled

δ(dx−d4x) = 3ω2x
−(dx−d4x) . (3.12)

We find we need a transformation that acts like a six-dimensional tensorial transformation

of the fields along with a Lifshitz rescaling:

δA− = −ω2x
−A− −

1

2
ω2x

iAi

δAi = −1

2
ω2x

−Ai

δXI = −ω2x
−XI

δGij = −2ω2x
−Gij − ω2

(
F−[ixj] +

1

2
εijklF−kx

l

)
δΨ = −1

4
ω2(5 + Γ−+)x−Ψ +

1

4
xjΓ+ΓjΨ . (3.13)

The action is now invariant, up to a total derivative. Indeed the main difference with the

type VI case is to replace vi with 1
2ω2x

i in the calculations. The conserved Noether current

now takes the form

K−=− 1

8π2R
x−tr(F−ix

j∂jAi)−
1

8π2R
x−tr(F−iAi)+

1

128π2R
|x|2εijkltr(FijFkl)+O((x−)2)

Ki =− 1

32π2R
|x|2εijkltr(F−jFkl)+

1

8π2R
tr(F−ix

jAj)+O(x−) , (3.14)

where we have omitted fermions and terms that are higher order in x− for simplicity. Again

the full results can be found by setting Ωij = 0 in (4.14) and (4.15). As above these are

not needed if one evaluates the charge at x− = 0. In particular the conserved charge is

k =

∫
d4xK− =

1

128π2R

∫
x−=0

d4x |x|2εijkltr(FijFkl) . (3.15)

4 Symmetries for Ωij 6= 0

For Ωij 6= 0 the conformal transformation

ds2 → ds2

cos2(x+/2R)
, (4.1)

maps the metric (2.4) to a flat metric. In particular points with x+ ∈ (−πR, πR) cover all

of six-dimensional Minkowski space. Thus for Ωij 6= 0, x+ naturally lies in a finite range

(but need not be periodic) whereas for Ωij = 0 restricting x+ to lie in a finite range in (2.4)

requires an ad hoc compactification. It was further suggested in [10] that one could double

– 8 –
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the range of x+ by imposing ‘reflecting’ boundary conditions to make the fields periodic

with period 4πR. In this case we should replace R→ R/2 in the action.

As mentioned in section 2, the metric in (2.4) arises from constructing AdS7 as a

timelike Hopf-fibration over a non-compact complex projective space and going to the

boundary [11]. Moreover, in appendix B, we show that the conformal Killing vectors

in (2.10) generate SU(3, 1), which is the residual isometry group of AdS7 after reducing

along the fibre. Verifying that they correspond to symmetries of the action in (2.1) therefore

provides a nontrivial check of the holographic correspondence.

In the rest of this section we extend our results above to the general case of Ωij 6= 0.

The expressions here are considerably more complicated but their motivation can be found

in appendix A. Otherwise the analysis is similar to the Ωij = 0 case above so we will be

more succinct in our discussion.

4.1 Type VI

In six-dimensions the conformal Killing vector leads to the following diffeomorphism

x+ → x+ + vix
i

x− → x− +
1

2
Ωijvix

jx− − 1

8
R−2|x|2vixi

xi → xi +
1

2
Ωjkvjx

kxi + vix
− +

1

2
Ωijvkx

jxk +
1

4
|x|2Ωijvj , (4.2)

so that upon reduction to five dimensions we find

δx− =
1

2
Ωijvix

jx− − 1

8
R−2|x|2vixi

δxi =
1

2
Ωjkvjx

kxi + vix
− +

1

2
Ωijvkx

jxk +
1

4
|x|2Ωijvj . (4.3)

This time we find that the measure is now rescaled

δ(dx−d4x) = 3Ωijx
ivj(dx−d4x) . (4.4)

Following appendix A we find

δA− = −1

2
Ωijvix

jA− − viAi

δAi = −1

2
Ωjkvjx

kAi +
1

2

(
Ωijvkx

k + Ωikvkx
j − Ωjk(vix

k + vkx
i)
)
Aj

+
1

8

(
R−2|x|2vi + 2R−2vjx

jxi + 4Ωijvjx
−)A−

δXI = −Ωijvix
jXI

δGij = −2Ωklvkx
lGij −

1

2

(
λkiGkj − λkjGki + εijklλ

mkGml

)
+ viF−j − vjF−i + εijklvkF−l

δΨ = −1

4
(5 + Γ−+)Ωijvix

jΨ +
1

2
viΓ+ΓiΨ +

1

4
λijΓijΨ , (4.5)

where

λij =
1

2

(
Ωijvkx

k + Ωikvkx
j − Ωjkvkx

i + Ωikvjx
k − Ωjkvix

k
)
. (4.6)
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The conserved Noether current now takes the form (where now i labels the four choices

for vj = δji )

P−i =
(
1

2
x−Ωijx

j− 1

8
R−2|x|2xi

)
LΩ (4.7)

+
1

4π2R
tr

[
1

8
xiεjklmFjkFlm−

1

4
R−2xiXIXI

+
(
F−j+

1

2
Ωklx

lGjk

)(
−1

2
Ωimx

mAj

+
1

2

(
Ωjmx

i−Ωijx
m−δijΩmnx

n+Ωimx
j
)
Am

+
1

8

(
δijR

−2|x|2+2R−2xixj−4Ωijx
−)A−

−
(
1

2
x−Ωimx

m− 1

8
R−2|x|2xi

)
∂−Aj

−
(
x−δim+

1

2
Ωmnx

nxi+
1

2
Ωinx

nxm− 1

4
Ωim|x|2

)
∂mAj

)
− 1

2
Ωjkx

k
(
∇jXI

)(
Ωilx

lXI+
(
1

2
x−Ωilx

l− 1

8
R−2|x|2xi

)
∂−X

I

+
(
x−δil+

1

2
Ωlmx

mxi+
1

2
Ωimx

mxl− 1

4
|x|2Ωil

)
∂lX

I

)
− i

2
Ψ̄
(

Γ++
1

2
Ωjkx

kΓj

)(
−1

4
Ωilx

l (5+Γ−+)Ψ+
1

2
Γ+ΓiΨ

+
1

8

(
Ωlmx

i+Ωlix
m−Ωmix

l+δmiΩlnx
n−δliΩmnx

n
)

ΓlmΨ

−
(
1

2
x−Ωilx

l− 1

8
R−2|x|2xi

)
∂−Ψ

−
(
x−δil+

1

2
Ωlmx

mxi+
1

2
Ωimx

mxl− 1

4
|x|2Ωil

)
∂lΨ

)]
,

P ji =
(
x−δij+

1

2
Ωjkx

kxi+
1

2
Ωikx

kxj− 1

4
Ωij |x|2

)
LΩ

+
1

4π2R
tr

[
− 1

2
xiεjklmF−kFlm−

1

2
ΩijX

IXI

+
(
F−j+

1

2
Ωklx

lGjk

)(
1

2
Ωimx

mA−+Ai

+
(
1

2
x−Ωimx

m− 1

8
R−2|x|2xi

)
∂−A−

+
(
x−δim+

1

2
Ωmnx

nxi+
1

2
Ωinx

nxm− 1

4
Ωim|x|2

)
∂mA−

)
+Gjk

(
− 1

2
Ωimx

mAk+
1

2

(
Ωkmx

i−Ωikx
m−δikΩmnx

n+Ωimx
k
)
Am

+
1

8

(
δikR

−2|x|2+2R−2xixk−4Ωikx
−
)
A−

−
(
1

2
x−Ωimx

m− 1

8
R−2|x|2xi

)
∂−Ak

−
(
x−δim+

1

2
Ωmnx

nxi+
1

2
Ωinx

nxm− 1

4
Ωim|x|2

)
∂mAk

)
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+
(
∇jXI

)(
Ωilx

lXI+
(
1

2
x−Ωilx

l− 1

8
R−2|x|2xi

)
∂−X

I

+
(
x−δil+

1

2
Ωlmx

mxi+
1

2
Ωimx

mxl− 1

4
Ωil|x|2

)
∂lX

I

)
+

i

2
Ψ̄Γj

(
− 1

4
Ωilx

l (5+Γ−+)Ψ+
1

2
Γ+ΓiΨ

+
1

8

(
Ωlmx

i+Ωlix
m−Ωmix

l+δmiΩlnx
n−δliΩmnx

n
)

ΓlmΨ

−
(
1

2
x−Ωilx

l− 1

8
R−2|x|2xi

)
∂−Ψ

−
(
x−δil+

1

2
Ωlmx

mxi+
1

2
Ωimx

mxl− 1

4
Ωil|x|2

)
∂lΨ

)]
. (4.8)

Then, ∂−P
−
i + ∂jP

j
i = 0 for each i = 1, 2, 3, 4.

4.2 Type VII

In six-dimensions the conformal Killing vector leads to the following diffeomorphism

x+ → x+ +
1

4
ω2|x|2

x− → x− +
1

2
ω2

(
x−
)2 − 1

32
ω2R

−2|x|4

xi → xi +
1

8
ω2Ωij |x|2xj +

1

2
ω2x

ix− . (4.9)

Upon reduction to five dimensions we find

δx− =
1

2
ω2

(
x−
)2 − 1

32
ω2R

−2|x|4

δxi =
1

8
ω2Ωij |x|2xj +

1

2
ω2x

ix− . (4.10)

Again the measure is rescaled

δ(dx−d4x) = 3ω2x
−(dx−d4x) . (4.11)

Following the discussion in appendix A we find

δA−=−ω2x
−A−−

1

2
ω2x

iAi

δAi =−1

2
ω2x

−Ai+
1

8
ω2R

−2|x|2xiA−+
1

8
ω2

(
Ωij |x|2−2Ωjkx

ixk
)
Aj

δXI =−ω2x
−XI

δGij =−2ω2x
−Gij−

1

2

(
λkiGkj−λkjGki+εijklλmkGml

)
+

1

2
ω2

(
xiF−j−xjF−i+εijklxkF−l

)
δΨ =−1

4
ω2x

−(5+Γ−+)Ψ+
1

4
ω2x

iΓ+ΓiΨ+
1

4
λijΓijΨ , (4.12)

where

λij =
1

4
ω2

(
Ωikx

kxj − Ωjkx
kxi
)

+
1

8
ω2Ωij |x|2 . (4.13)
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The conserved Noether current now takes the form

K− =
(
1

2

(
x−
)2 − 1

32
R−2|x|4

)
LΩ

+
1

4π2R
tr

[
1

32
|x|2εijklFijFkl −

1

8
R−2|x|2XIXI

+
(
F−i +

1

2
Ωjkx

kGij

)(
−1

2
x−Ai +

1

8
R−2|x|2xiA−

+
1

8

(
Ωil|x|2 − 2Ωlmx

mxi
)
Al

−
(
1

2

(
x−
)2 − 1

32
R−2|x|4

)
∂−Ai

−
(
1

2
xlx− +

1

8
Ωlmx

m|x|2
)
∂lAi

)
− 1

2
Ωijx

j
(
∇iXI

) (
x−XI +

(
1

2

(
x−
)2 − 1

32
R−2|x|4

)
∂−X

I

+
(
1

2
xkx− +

1

8
Ωklx

l|x|2
)
∂kX

I
)

− i

2
Ψ̄
(

Γ+ +
1

2
Ωijx

jΓi

)(
−1

4
x− (5 + Γ−+) Ψ +

1

4
xkΓ+ΓkΨ

+
1

32

(
2Ωkmx

mxl − 2Ωlmx
mxk + Ωkl|x|2

)
ΓklΨ

−
(
1

2

(
x−
)2 − 1

32
R−2|x|4

)
∂−Ψ

−
(
1

2
xkx− +

1

8
Ωklx

l|x|2
)
∂kΨ

)]
, (4.14)

Ki =
(
1

2
xix− +

1

8
Ωij |x|2xj

)
LΩ

+
1

4π2R
tr

[
−1

8
|x|2εijklF−jFkl +

1

4
Ωijx

jXIXI

+
(
F−i +

1

2
Ωjkx

kGij

)(
x−A− +

1

2
xlAl +

(
1

2

(
x−
)2 − 1

32
R−2|x|4

)
∂−A−

+
(
1

2
xlx− +

1

8
Ωlmx

m|x|2
)
∂lA−

)
+Gij

(
−1

2
x−Aj +

1

8
R−2|x|2xjA− +

1

8

(
Ωjk|x|2 − 2Ωklx

lxj
)
Ak

−
(
1

2

(
x−
)2 − 1

32
R−2|x|4

)
∂−Aj −

(
1

2
xkx− +

1

8
Ωklx

l|x|2
)
∂kAj

)
+
(
∇iXI

) (
x−XI +

(
1

2

(
x−
)2 − 1

32
R−2|x|4

)
∂−X

I

+
(
1

2
xjx− +

1

8
Ωjkx

k|x|2
)
∂jX

I
)

+
i

2
Ψ̄Γi

(
−1

4
x− (5 + Γ−+) Ψ +

1

4
xkΓ+ΓkΨ

+
1

32

(
2Ωkmx

mxl − 2Ωlmx
mxk + Ωkl|x|2

)
ΓklΨ

−
(
1

2

(
x−
)2 − 1

32
R−2|x|4

)
∂−Ψ

−
(
1

2
xkx− +

1

8
Ωklx

l|x|2
)
∂kΨ

)]
. (4.15)
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5 Conclusion

In addition to enjoying 16 supersymmetries and 16 superconformal symmetries, the (2, 0)

theory is invariant under 6 translations and the 15 generators of the six-dimensional Lorentz

group, i.e. the 21 generators of the six-dimensional Poincaré group. In addition there are

6 special conformal symmetries and 1 dilatation symmetry. The bosonic symmetries are

then just those of the six-dimensional conformal group SO(2, 6). In total these comprise

32 fermionic and 28 bosonic symmetries. We would like a description of the (2, 0) theory

that has as many of these symmetries manifest as possible.

Although the (2, 0) theory does not appear to have a six-dimensional lagrangian de-

scription in general, much can be learned by reducing the theory to five dimensions, where-

upon we obtain five-dimensional super-Yang-Mills theory which has been conjectured to

provide a complete description of the (2, 0) theory nonperturbatively [3, 4]. By reducing on

a spacelike (or timelike) circle we break all conformal and superconformal symmetries and

reduce the six-dimensional Poincaré group to the five-dimensional one with 15 generators.

In addition we still have translations in the compact direction as a symmetry too (albeit

trivially but one can still identify a conserved charge as the topological instanton number).

Thus we find 16 supersymmetries and 16 bosonic spacetime symmetries.

If we instead reduce on a null direction, then we preserve 16 supersymmetries, 8 super-

conformal symmetries, the 10 symmetries of the four-dimensional euclidean group, as well

as translations in x−, a scale transformation and the trivial translation in the reduced null

direction. We find that there are also 4 null boosts (type VI) and an additional conformal

symmetry (type VII). Thus we find 24 (conformal) supersymmetries and 18 bosonic sym-

metries. On the other hand, if we place the (2, 0) theory on the spacetime (2.4) which was

deduced by writing AdS7 as a timelike fibration over a non-compact complex projective

space C̃P3
and going to the boundary, then reducing along the null direction will give an

Ω-deformed theory with 8 supersymmetries and 16 superconformal symmetries. We also

find the 15 bosonic symmetries of SU(3, 1) (type II to VII) expected from holography, and

the trivial translation along the reduced null direction (type I). Thus we find 24 (confor-

mal) supersymmetries and 16 bosonic symmetries. Although we have lost two rotational

symmetries compared with straightforward null reduction there is an additional benefit

that we maintain a more direct link to the non-compact theory and AdS dual.

The existence of five-dimensional lagrangians with such high degrees of symmetry is

clearly remarkable. We therefore plan to investigate the following questions in order to

elucidate their mathematical structure and physical significance:

• In addition to having 24 supercharges and an SU(3, 1) symmetry, the theories we con-

sider have an Sp(4) ∼ SO(5) R-symmetry corresponding to the isometries of the S4

in the bulk geometry (this symmetry becomes manifest if we write our 32-component

spinors as 8-component spinors with Sp(4) indices). It is therefore natural to combine

all of these symmetries into a supergroup whose bosonic subgroup is SU(3, 1)×Sp(4).

This is not a superconformal group since SU(3, 1) is not equivalent to SO(p, q) for

any p+ q = 8, but it seems to be a Wick rotation of the supergroup OSp(6|4), which

is enjoyed by the ABJM theory and admits an infinite-dimensional extension known
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as Yangian symmetry (the superconformal group of N = 4 super-Yang-Mills also

exhibits such an extension, see [12] for a review). It would therefore be interesting

to investigate the supergroup structure of null reductions of the (2, 0) theory and

the possibility of an infinite-dimensional extension. A proposal for seeing Yangian

symmetry at the lagrangian level was recently described in [13] and demonstrated for

N = 4 super-Yang-Mills and the ABJM theory.

• Demonstrating SU(3, 1) symmetry of the Ω-deformed null reduction of the (2, 0)

theory provides an important test of the holographic duality, but it would be desirable

to go beyond matching symmetries by probing dynamics. As shown in [6–8], the

dynamics of the Ωij = 0 theories can be reduced to quantum mechanics on the moduli

space of instantons. Noting that the instantons correspond to Kaluza-Klein modes

along the null direction, it would therefore be interesting to work out the quantum

mechanical description of the Ω-deformed null reduction in the limit that the rank

of the gauge group goes to infinity and match it with the action for D0-branes in

C̃P3 × S4. Another important test of the duality would be to compute correlation

functions and match them with Witten diagrams in the bulk. Two-point functions of

chiral primary operators were computed in the original DLCQ proposal [2], although

the extension to higher-point functions appears to be challenging. On the other hand,

having a field theory description should make such calculations more tractable.

• The metric in (2.4) is a conformal compactification of six-dimensional Minkowski

space which can be generalised to other dimensions. It would therefore be of interest

to perform a similar null reduction of other superconformal field theories, such as

four-dimensional N = 2 super-Yang-Mills coupled to suitable matter and the N = 4

theory. In this case, one would put the theory on the following conformal compacti-

fication of Minkowski space:

ds2 =
−2dx+

(
dx− − i

2R(zdz̄ − z̄dz)
)

+ dzdz̄

cos2 (x+/2R)
, (5.1)

where z = x1 +ix2 and Ω12 = −Ω21 = 1/R. Again for a conformal field theory we can

neglect the denominator. The corresponding reduction in IIB string theory would

involve constructing AdS5 as timelike fibration over C̃P2
. Although not necessary we

could again reduce along the null direction to find an Ω-deformed three-dimensional

Yang-Mills theory. Such a reduction would break all the supersymmetry [11], unless

a suitable twisting by the R-symmetry can be introduced. It would nevertheless be

interesting to see how the well-known holographic dictionary becomes modified, and

how various important properties of super-Yang-Mills such as integrability and S-

duality are encoded in the three-dimensional description. It may also be possible to

relate this to the chiral algebra description of four-dimensional superconformal field

theory theories proposed in [14]. This would provide new insight into null reductions

of the (2, 0) theory and other conformal field theories and would also be interesting

in its own right.
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Ultimately, we hope that pursuing these directions will further our understanding of

the underlying dynamics of M-theory.
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A A six-dimensional origin for the symmetries

In this appendix we provide a six-dimensional origin for the symmetries found above. Of

course the main problem is that there is no known lagrangian for the (2, 0) theory in six

dimensions, nor is there expected to be one. However let us consider the following action

S6D =
1

8π3R2
tr

∫
d6x
√
−g
{
− 1

12
HµνρH

µνρ − 1

2
gµνDµX

IDνX
I

+
i

2
Ψ̄ΓµDµΨ− 1

2
V µΨ̄ΓµΓI

[
XI ,Ψ

]}
. (A.1)

Note that in this appendix we use Γµ to denote six-dimensional curved space Γ-matrices. In

the other sections of the paper all Γ-matrices are those of Minkowski space and as such can

be identified with the tangent frame Γ-matrices that appear in this appendix. Furthermore

here µ = {+,−, i} and we have introduced a three-form Hµνρ and vector field V µ.

We emphasise that we are not proposing S6D as a candidate for the (2, 0) theory.

Rather we merely wish to use it to motivate the symmetries of the reduced theory we

discussed in the main text above. In particular we will use two features of S6D: it has six-

dimensional diffeomorphism invariance and, using a suitable ansatz, it can be dimensionally

reduced to SΩ, up to a single topological term whose variation is a total derivative. We will

then see that the somewhat unusual transformations we used above have a more standard

interpretation within the context of S6D.

We have a vielbein eµµ satisfying eµµηµνe
ν
ν = gµν , where we choose lightcone coor-

dinates in the tangent frame, i.e. η+− = −1, η++ = η−− = 0, ηij = δij . Then, we have

Γµ = eµµΓµ and ΓI = δIIΓI , where
{

Γµ,ΓI
}

form a (real) basis for the eleven-dimensional

Clifford algebra. The gauge covariant derivative is Dµ = ∂µ− i [Aµ, . ], while on Ψ we have

DµΨ =

(
Dµ +

1

4
ω
µν
µ Γµν

)
Ψ . (A.2)

By construction S6D is invariant under six-dimensional diffeomorphisms. In particular

given a vector field kµ, the infinitesimal diffeomorphism generated by kµ is given by

δdx
µ = kµ

δdT
µ1...µr

ν1...νs = (∂ρk
µ1)T ρµ2...µrν1...νs + · · · − (∂ν1k

ρ)Tµ1...µrρν2...νs − . . .
= − (LkT )µ1...µrν1...νs + kρ∂ρT

µ1...µr
ν1...νs
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δdΨ =
1

4
λµνΓµνΨ

δde
µ
µ = − (∂µk

ρ) e
µ
ρ + λ

µ
νe
ν
µ

δdω
µν
µ = − (∂µk

ρ)ω
µν
ρ + λ

µ
ρ ω

ρν
µ + λνρ ω

µρ
µ − ∂µλµν , (A.3)

where Tµ1...µrν1...νs is a general (r, s)-tensor, and we’ve allowed for a local infinitesimal Lorentz

transformation λ
µ
ν in the tangent frame. We are assuming here that the components of kµ

in a given coordinate frame are small so that we need only consider the first order terms.

Note also that we are here regarding the diffeomorphism as a passive transformation.

Next we want to write S6D explicitly in a coordinate frame in which the metric is given

by (2.4). This metric admits the choice of vielbein e+
+ = 1, e−− = 1, e−i = 1

2Ωijx
j and

eij = δij , with all other components vanishing. We suppose that the vector V µ takes the

form V + = 1 with all other components vanishing. Furthermore we choose to turn off any

x+ dependance of the fields, and set A+ = 0, in turn implying F+µ = 0. We can then make

the identification

Fµν = Hµν+ . (A.4)

To match with the actions above we define

Gij = H−ij +
1

2
εijklH−kl . (A.5)

After performing the trivial x+ integral, we find that SΩ agrees with the reduced S6D up

to two additional terms:

SΩ =
1

4π2R
tr

∫
d5x

{
1

2
F−iF−i−

1

2
∇iXI∇iXI+

1

2
FijGij (A.6)

− i

2
Ψ̄Γ+D−Ψ+

i

2
Ψ̄Γi∇iΨ−

1

2
Ψ̄Γ+ΓI [XI ,Ψ]

}
=S6D+

1

4π2R
tr

∫
d5x

{
1

4
εijklFijH−kl

+
1

12

(
Hijk+

3

2
Ωl[i|H−|jk]x

l

)(
Hijk+

3

2
Ωm[i|H−|jk]x

m
)}

,

where, as above, ∇i = Di − 1
2Ωijx

jD− and Fij = Fij − 1
2Ωikx

kF−j + 1
2Ωjkx

kF−i. Lastly

we can impose the relation

Hijk = −3

2
Ωl[i|H−|jk]x

l . (A.7)

This ensures that the second line in (A.6) vanishes and as such we have

SΩ = S6D +
1

4π2R
tr

∫
d5x

1

4
εijklFijH−kl . (A.8)

Note that (A.7) differs from that used in the construction of [10]. However we emphasise

again that S6D should not be taken literally as an action for the (2, 0) theory. In particular

with the ansatz here Hµνλ is not self-dual.
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We now wish to construct a bosonic symmetry δ for SΩ that descends from the dif-

feomorphisms for S6D. In particular we start with a natural guess δtrial that comes from

diffeomorphisms which we then need to slightly correct using the scaling symmetry to find

the total variation δ. For a generic object Φ, we are free to replace Φ in S6D with an

explicit expression Φ(x) in some coordinate frame and preserve a passive diffeomorphism

kµ only if we have

δ̂Φ := kρ∂ρΦ− δdΦ = 0 . (A.9)

In other words the transformation of Φ, as induced by its dependence on xµ, must match

its transformation under δd. For a tensor field T , we have δ̂T = LkT , and so for kµ Killing,

we have δ̂gµν = 0. We will consider instead the more general space of conformal Killing

vectors with ∂+k
µ = 0, contained within kµ as given in (10). These satisfy Lkgµν = ωgµν ,

with ω = ω1 + Ωijvix
j + ω2x

−. So we choose to replace {gµν , eµµ, ω
µν
µ , V µ} with their

coordinate expressions. Then, δtrial is defined to act as kρ∂ρ on these fields, and as δd on

everything else. Equivalently, we have δtrial = δd + δ̂, where δ̂ as defined in (A.9) acts only

on {gµν , eµµ, ω
µν
µ , V µ}.

As we’ve already seen, we have δ̂gµν = ωgµν . Next, we note that the conformal Killing

equation implies that

kρ∂ρe
µ
µ + (∂µk

ρ) eµρ = λ
µ
νe
ν
µ +

1

2
ωeµµ , (A.10)

for local Lorentz transformation λ
µ
ν given by

λ
µ
ν = (∂µk

ν) eν
µeµν + kνeν

µ∂νe
µ
µ −

1

2
ωδ

µ
ν . (A.11)

One can show using the conformal Killing equation that this does indeed satisfy λµν+λνµ =

0. Then, choosing this λµν for the diffeomorphism δd, we have δ̂eµµ = 1
2ωe

µ
µ. Next we

find that for the spin connection term we have

δ̂

(
1

4
Ψ̄Γµ ω

νρ
µ ΓνρΨ

)
= 0 . (A.12)

Finally, we simply have δ̂V µ = 0.

To continue we observe that

δtrialSΩ = δ̂S6D +
1

4π2R
δ

[
tr

∫
d5x

1

4
εijklFijH−kl

]
,

where we have used δdS6D = 0. Note that once we impose (A.7) it is not necessary to also

require that

δtrial

[
Hijk +

3

2
Ωl[i|H−|jk]x

l

]
= 0 , (A.13)

to ensure that the variation of the second line in (A.6) vanishes since the right hand side is

quadratic in Hijk + 3
2Ωl[i|H−|jk]x

l. We also do not need to worry about the relation (A.5)

as this defines Gij and hence will define its variation.
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However we do require that the identification (A.4) is consistent with the diffeomor-

phism. Under a general diffeomorphism kµ we have

δtrialH+µν = −(∂µk
λ)H+λν − (∂νk

λ)H+µλ − (∂+k
λ)Hλµν

δtrialFµν = −(∂µk
λ)Fλν − (∂νk

λ)Fµλ . (A.14)

We see that δtrialFµν = δtrialH+µν only if ∂+k
µ = 0 and so (A.4) is invariant under this

restricted set of diffeomorphisms. Unsurprisingly this breaks the space of symmetries to

those kµ and λ
µ
ν that are independent of x+.

Thus we are led to the FijH−kl term. We find

δtrialFij = −ωFij −
(
δ
i
iλ
k
iδ
k
k

)
Fkj +

(
δ
j

jλ
k
jδ
k
k

)
Fki

δtrialH−kl = −2ωH−kl −
(
δ
k
kλ

i
kδ
i
i

)
H−il +

(
δ
l
lλ
i
lδ
i
i

)
H−ik

+
1

2

(
2vk + ω2x

k
)
F−l −

1

2

(
2vl + ω2x

l
)
F−k . (A.15)

Indeed, these forms follow almost immediately when one notes the forms of Fij and H−kl
in terms of tangent frame fields; Fij = H+ij , H−kl = H−kl. Then, noting that δtrial

(
d5x
)

=

3ωd5x and that the local Lorentz pieces exactly vanish, we find

1

4π2R
δtrial

[
tr

∫
d5x

(
1

4
εijklFijH−kl

)]
=

1

4π2R
tr

∫
d5x

1

2
εijkl

(
vk +

1

2
ω2x

k

)
FijF−l .

(A.16)

This term is essentially dk+∧tr (F ∧ F ), and so is a total derivative. In particular, we have

εijkl

(
vk +

1

2
ω2x

k

)
tr (FijF−l) =− ∂−

(
k+εijkltr (FijFkl)

)
+ 4∂i

(
k+εijkltr (F−jFkl)

)
.

(A.17)

Hence we are left with

δtrialSΩ = δ̂S6D +
1

4π2R
tr

∫
d5x

{
2ω

(
−1

2
∇iXI∇iXI

)
+

5

2
ω

(
− i

2
Ψ̄Γ+D−Ψ +

i

2
Ψ̄Γi∇iΨ

)
+

7

2
ω

(
−1

2
Ψ̄Γ+ΓI

[
XI ,Ψ

])}
. (A.18)

Lastly if we augment δtrial by a simple scaling by ω

δ′XI = −ωXI

δ′Ψ = −5

4
ωΨ , (A.19)

then for δ = δtrial + δ′, we have δSΩ = 0.
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In summary we have

δxµ = kµ

δA− = −
(
∂−k

−)A− − (∂−ki)Ai
δAi = −

(
∂ik
−)A− − (∂ikj)Aj

δXI = −ωXI

δGij = −2ωGij −
1

2

(
δ
i
iλ
k
iδ
k
k

)
Gkj +

1

2

(
δ
j

jλ
k
jδ
k
k

)
Gki −

1

2
εijkl

(
δ
k
kλ

m
kδ
m
m

)
Gml

+
1

2

(
2vi + ω2x

i
)
F−j −

1

2

(
2vj + ω2x

j
)
F−i +

1

2
εijkl

(
2vk + ω2x

k
)
F−l

δΨ = −5

4
ωΨ +

1

4
λµνΓµνΨ , (A.20)

where λµν = −λνµ and

λ−+ = −1

2
ω

λ−i = 0

λ+i = vi +
1

2
ω2x

i

λij = Mij +
1

2

(
Ωijvkx

k + Ωikvkx
j − Ωjkvkx

i + Ωikvjx
k − Ωjkvix

k
)

+
1

8
ω2

(
Ωij |x|2 + 2

(
Ωikx

kxj − Ωjkx
kxi
))

. (A.21)

Given the form for kµ specified in (2.9) we can compute an explicit expression for δ. From

the point view of the five-dimensional field theory one can decompose δ into a diffeo-

morphism contribution, a scale transformation (of the form (2.7)) as well as a tensor-like

transformation that mixes the various components of the fields.

B SU(3, 1) symmetry

In this appendix, we will derive the conformal Killing vectors of the boundary metric from

bulk Killing vectors following the method in [15, 16], which makes the underlying SU(3, 1)

symmetry manifest. The embedding coordinates for AdS7 with unit radius satisfy

Z̄ · η̃ · Z = −1 , (B.1)

where ZI ∈
{
Z0, . . . , Z3

}
and η̃ = diag(−1, 1, 1, 1). The embedding coordinates can be

written in terms of xµ =
(
x+, x−, xi, φ

)
as follows [11]:2

Z0 = eix+/2

(
coshφ/2 +

1

2
eφ/2

(
ix− +

1

4
x2
i

))
Z1 =

1

2
e(φ+ix+)/2 (x1 + ix3)

Z2 =
1

2
e(φ+ix+)/2 (x2 + ix4)

Z3 = eix+/2

(
sinhφ/2− 1

2
eφ/2

(
ix− +

1

4
x2
i

))
, (B.2)

2Our coordinates are related to the ones in [11] as follows: x+ = τ , x3 = y1, x4 = y2, x
− = χ− 1

2
(x1y1+

x2y2).
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and the metric is given by

ds2 = dZ̄ · η̃ · dZ . (B.3)

Moreover the Kahler form is given by J = dA where

A = −iZ̄ · η̃ · dZ . (B.4)

After reducing along the timelike fibre parameterized by x+, the SO(6, 2) symmetry is

broken to SU(3, 1), which is manifest in (B.1). The Killing vectors associated with the

remaining symmetries can be determined from

Kµ
A = Jµν∂νωA , (B.5)

where indices of the Kahler form are raised using the metric in (B.3). Here ωA are the 15

scalar functions

ωA = Z̄ · η̃ · TA · Z, A = 1, . . . , 15 , (B.6)

and TA are the generators of SU(3, 1):

T1 =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 T2 =


0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 T3 =


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0



T4 =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 T5 =


0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0

 T6 =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0



T7 =


0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

 T8 =
1√
3


1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0

 T9 =


0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0



T10 =


0 0 0 −i

0 0 0 0

0 0 0 0

−i 0 0 0

 T11 =


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 T12 =


0 0 0 0

0 0 0 −i

0 0 0 0

0 −i 0 0



T13 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

 T14 =


0 0 0 0

0 0 0 0

0 0 0 −i

0 0 −i 0

 T15 =
1√
6


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

 . (B.7)

Note that T1, . . . , T8 generate an SU(3) subgroup.

The metric (2.4) arises from (B.3) by setting dφ = 0 and taking φ → ∞. To obtain

the symmetries of the boundary theory we must therefore drop the ∂φ components. Fur-

thermore since we reduce along the x+ direction to obtain the field theory SΩ, we must
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also drop ∂+ components. We can then later reintroduce new ∂+ components to obtain

conformal Killing vectors of the boundary metric (2.4). It is not difficult to verify that

these Killing vectors generate an SU(3, 1) algebra via their Lie derivatives (indeed, this is

guaranteed by construction).

By taking appropriate linear combinations we can obtain the conformal Killing vectors

listed in section 2. In particular we find four translations along xi:

1

4
(K12 −K2),

1

4
(K14 −K5),

1

4
(K1 +K11) ,

1

4
(K4 +K13) , (B.8)

a translation along x−:

− 1

24
(3K3 +

√
3K8 + 6K9 + 2

√
6K15) , (B.9)

four rotations preserving the Ω-tensor:

1

2
K6,

1

2
K7,

1

2
√

3

(
K8 −

1√
8
K15

)
,

1

4

(
−K3 +

1√
3
K8 +

1√
6
K15

)
, (B.10)

a dilatation:

−1

4
K10 , (B.11)

four type VI conformal symmetries:

1

4
(K1 −K11),

1

4
(K4 −K13) ,

1

4
(K2 +K12) ,

1

4
(K5 +K14) , (B.12)

and the type VII conformal symmetry:

− 1

48
(3K3 +

√
3K8 − 6K9 + 2

√
6K15) . (B.13)
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