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1 Introduction

In [1], backgrounds of the form

AdS3 ×
(

S3 × T4
)
/Dn , (1.1)

were shown to have N = (2, 2) spacetime supersymmetry after orbifolding by dihedral

groups Dn, n = 1, 2, 3, 4, 6. Here the generators of Dn act geometrically on the two T2’s

in T4 ∼= T2 × T2, and the reflection generators of Dn rotate the S3 by 180 degrees. It was

furthermore proposed that the CFT dual of this string background should lie on the same

moduli space as

SymN

(
T4/Dn

)
, (1.2)

where the Dn action on T4 is the same as above.

Without the Dn orbifolds, the N = (4, 4) duality was originally proposed in [2], see [3]

for a review, and it was recently understood from a microscopic viewpoint in [4, 5]. To this

end the string background with pure NS-NS flux was considered, in which case an exact

worldsheet description is available [6–8] (for the generalisation to the supersymmetric setup

see also [9–12]) in terms of a WZW model based on sl(2,R). It was proposed in [4] that the

theory with k = 1 should be exactly dual to the symmetric orbifold of T4. The construction

of this model in the RNS language is a bit problematic, but can be made sense of in the

hybrid formalism of [13], where the worldsheet fields organise themselves (for pure NSNS
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flux) into a WZW model based on the superalgebra psu(1, 1|2)k. The latter was used in [5]

to demonstrate an exact agreement between the spacetime spectrum of the hybrid theory

and that of the symmetric orbifold of T4. Subsequently, it was shown in [14] that the

operator algebra of the symmetric orbifold can also be reconstructed from the worldsheet.

Again in this paper, it was noted that one may generalise the analysis to k > 1 for which

the long string spectrum of the string theory is matched with the symmetric orbifold of

(N = 4 Liouville theory) ×T4.

The aim of this paper is to perform a similar analysis for the orbifolds of the form (1.1).

We shall mainly concentrate on the case with k = 1, for which we expect again a direct

match to the symmetric orbifold in (1.2). The action of the Dn generators on the RNS

worldsheet fields was already worked out in [1]. The relation between these degrees of

freedom and those appearing in the hybrid formalism of [13] was spelled out in [14], and

this allows us to determine the Dn action on the fields of the hybrid string. It is then

straightforward to perform an analysis similar to [5], resulting again in an exact match of

the spectra. This gives strong evidence for the duality between (1.1) and (1.2).

The paper is organised as follows. In section 2 we show that the Dn action on the

fields in the RNS formalism can be expressed in terms of rotation generators of various

SU(2) symmetry groups of the background. This then allows us to translate the Dn action

to the hybrid formulation, see section 2.1. In order to keep track of the group action on the

full spectrum, we generalise the analysis of [5] by introducing the corresponding chemical

potentials in section 3. This is relatively straightforward, except for the behaviour of the

ghost fields which requires some explanation (see section 3.1). Section 4 is concerned with

calculating the spacetime spectrum of the world-sheet orbifold for k = 1, and we show that

this reproduces indeed the symmetric orbifold spectrum of (1.2). We explain in section 5

how our analysis generalises for k > 1, for which the dual symmetric orbifold is given

by (5.1), and we end in section 6 with some conclusions. There is one appendix in which

some aspects of the representation theory of Dn are summarised.

2 The Dn action

Let us begin by reviewing the description of the orbifold theory in the RNS formalism.

Before orbifolding the degrees of freedom of the world-sheet theory consist of

sl(2,R)
(1)
k [J, ψ] ⊕ su(2)

(1)
k [K,χ] ⊕ (T4)(1)[∂X, λ] ⊕ Fock[b, c, β, γ] , (2.1)

where the (1) superscript indicates that these are N = 1 superaffine models (with the

notation for the relevant fields in square brackets), and the (b, c) and (β, γ) denote the

conformal and superconformal ghosts, respectively.

The dihedral group generators act on the various world-sheet fields as follows. The

bosons and fermions of the T4 torus transform in the fundamental representation of SO(4),

and we can define the Dn action on them by using that Dn is naturally a subgroup of the

orthogonal group in two dimensions O(2), together with

Dn ⊂ O(2)diag ⊂ S
(
O(2)×O(2)

)
⊂ SO(4) , (2.2)
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where S
(
O(2)×O(2)

)
is the subgroup of O(2)×O(2) for which the product of determinants

is +1. In terms of the representation theory of Dn (that is reviewed in appendix A), this

means that both the bosons and the fermions transform in

[∂X, λ] ∈ ρ1 ⊕ ρ1 . (2.3)

The action of Dn on the Narain lattice Γ4,4 of momentum and winding states was discussed

in detail in [1], see in particular section 2.3 of that paper, and it turns out there are two

inequivalent choices D
(1,2)
n for n = 1, 2, 3. Finally, the fields associated to AdS3 are invariant

under Dn, while the generators of the sphere get rotated by 180 degrees if the generator of

Dn is a reflection generator (and are invariant otherwise).

For the following it will be convenient to write the above group actions in terms of

‘current’ generators (so that we can determine the trace with the insertion of a group

element in terms of the corresponding chemical potentials). Actually, it will be convenient

(and sufficient) to introduce chemical potentials only for all fermionic degrees of freedom, as

well as the bosonic degrees of freedom associated to AdS3×S3, since the bosonic torus modes

are unaffected by the transformation from the RNS formalism to the hybrid formalism (and

hence can be treated as in the original RNS case). For the (fermionic) torus degrees of

freedom, the relevant current algebra is so(4)1 that is generated by the bilinears of the four

real fermions. The corresponding zero mode algebra (that is relevant for this discussion)

decomposes as

so(4) ∼= su(2)+ ⊕ su(2)− , (2.4)

and we denote the two sets of su(2) generators by Ma
±. The Dn action given by ρ1⊕ρ1, see

eq. (2.3), actually takes values in SO(4), and hence can be written in terms of exponentials

of su(2)+ ⊕ su(2)− generators,

ρT4(P ) = Ad(eπi(M
1
++M1

−)) , ρT4(U) = Ad(e
4πi
n
M3

+) , (2.5)

where U is the rotation generator, and P the reflection generator of Dn. Here we work

with the convention that

eπiM
1

= −i

(
0 1

1 0

)
, e

4πi
n
M3

=

(
e

2πi
n 0

0 e−
2πi
n

)
, (2.6)

and it is easy to see that this describes (an equivalent representation to) ρ1 ⊕ ρ1, see

eq. (A.3) and [1, appendix A]. Note that this construction just reflects that the fundamental

representation 4 of so(4) corresponds to 4 ∼= (2,2) in terms of su(2)+ ⊕ su(2)−.

Finally, the rotation action on S3 (by 180 degrees for the case of P , and trivial in the

case of U) can be written in terms of the current generators associated to the su(2)
(1)
k alge-

bra (whose global algebra we shall refer to as su(2)R in the following with generators Ka)

ρ
su(2)

(1)
k

(P ) = Ad
(
eπiK

3
)
, ρ

su(2)
(1)
k

(U) = 1 . (2.7)

Thus the t3-valued currents (and fermions) are invariant, while the t±-valued currents (and

fermions) transform in the ρ− representation of Dn. Altogether the Dn action on the RNS

fields (except for the torus bosons) is therefore given by

ρRNS(P ) = Ad
(
eπi(K

3+M1
++M1

−)
)
, ρRNS(U) = Ad

(
e

4πi
n
M3

+

)
. (2.8)
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2.1 Translation to the hybrid fields

Next we want to translate these group actions to the hybrid fields. In the hybrid formalism

of [13], the RNS world-sheet CFT of (2.1) is reorganised as

psu(1, 1|2)k[J,K, S]⊕ T4
twisted[∂X,Ψ]⊕ Fock[b, c, ρ] , (2.9)

where the fermions of T4
twisted have conformal dimension h = 1 or h = 0 (‘topologically

twisted’), and ρ is a boson of negative metric and background charge Q = 3. (We are using

the conventions of [14]). More specifically, the reformulation only affects the fermions (and

the ghosts), but does not touch the (decoupled) bosonic generators of the RNS formalism.

The fermions of the hybrid description can be re-expressed in terms of the RNS fields as,

see section 3.2 of [14]

pAαβ = e
A
2
H1+α

2
H2+β

2
(H4+H5)+β

2
(AαH3−φ) , (2.10)

Ψµβ = e
µ
2

(H4−H5)+β
2

(H4+H5)+β(−φ+χ) , (2.11)

where 1
2A,

1
2α,

1
2µ,

1
2β ∈ {±

1
2} are the spins of these fermionic fields with respect to the

global sl(2,R)⊕ su(2)R⊕ su(2)+⊕ su(2)−, respectively. As a consequence, the pAαβ trans-

form in the (2,2,2) of sl(2,R)⊕ su(2)R⊕ su(2)−, while the Ψµβ transform in the (2+,2−)

of su(2)+ ⊕ su(2)−.1

The eight fields pAαβ can be separated into four fields pAα := pAα+ with conformal

weight h = 1, and their four conjugate fields θAα := pAα− with conformal weight h =

0. This defines four fermionic first order systems with λ = 1, which can be combined

with the bosonic currents of sl(2,R)k+2 ⊕ su(2)k−2 to produce a free field (Wakimoto)

representation of psu(1, 1|2)k. In particular, the supercurrents SAαβ transforming in the

(2,2,2) of sl(2,R)⊕ su(2)R ⊕ su(2)− are given by

SAα+ = pAα, (2.12)

SAα− = k∂θAα + Jaca(σa)
A
B θ

Bα −Ka(σa)
α
β θ

Aβ . (2.13)

These fields are uncharged with respect to su(2)+, and hence we find from (2.5) and (2.7)

that they transform under the Dn action as

ρpsu(1,1|2)k(P ) = Ad
(
eπi(K

3+M1
−)
)
, ρpsu(1,1|2)k(U) = 1 . (2.14)

The topologically twisted fermions Ψµβ transform in the (2+,2−) with respect to

su(2)+ ⊕ su(2)−, just like their RNS counterparts, and hence their action is also described

by ρT4 , see eq. (2.5). Altogether we therefore get the Dn action on the hybrid fields

ρ hybrid(P ) = Ad
(
eπi(K

3+M1
++M1

−)
)
, ρ hybrid(U) = Ad

(
e

4πi
n
M3

+

)
, (2.15)

which, by construction, agrees with that on the RNS fields, see eq. (2.8). Finally, while the

ρ-ghost is expressed in terms of T4 degrees of freedom,

∂ρ = −(∂H4 + ∂H5) + 2∂φ− ∂χ , (2.16)

1We will sometimes use the notation 2± and 2R to indicate with respect to which su(2) algebra the

relevant states transform.
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it remains invariant under the induced Dn action. (Note that ∂H4 + ∂H5 is the bilinear

fermionic current associated with M3
−.)

3 Introducing chemical potentials

In order to proceed it is convenient to introduce appropriate chemical potentials into the

original analysis of [5] since this will allow us to keep track of the various group actions

relatively easily. We will work with the conventions that

ch(u, v, z, t; τ) := tr e2πi(uM3
++vM3

−)yK
3
xJ

3
0 qL0− c

24 , (3.1)

where

q = e2πiτ , y = e2πiz , x = e2πit . (3.2)

In particular, the action of the Dn generators P and R inside the trace can be absorbed

into shifting the chemical potentials as2

P : (u, v, z, t) 7→
(
u+

1

2
, v +

1

2
, z +

1

2
, t

)
(3.3)

U : (u, v, z, t) 7→
(
u+

2

n
, v, z, t

)
, (3.4)

as follows directly from eq. (2.15).

We shall mainly be interested in the case where k = 1, for which the representation

theory of psu(1, 1|2)k is very restrictive, see [5, section 4.2] for a detailed analysis. In

particular, only the j = 1
2 continuous representations (at the ‘bottom’ of the continuum)

are allowed, together with their spectrally flowed versions. These representations are thus

labelled by the spectral flow parameter w, as well as λ ∈ [0, 1), defining the eigenvalues of

J3
0 modulo integers.

For the calculation of the characters (that possess many null-vectors) it will be conve-

nient to use the free field realisation of psu(1, 1|2)1 in terms of two complex fermions and

two pairs of symplectic bosons, see [5, section 4.5]. Here the symplectic boson bilinears

generate sl(2,R)1, the fermionic bilinears generate su(2)1, while the boson-fermion bilin-

ears define the supercharges. The Dn action given in (2.14) can be lifted to the free fields

by taking the symplectic bosons to be invariant, while the complex fermions transform

as (2R,2−) with respect to su(2)R ⊕ su(2)−. Then the relevant characters take the form,

see [15, section 5]

chw,λ(v, z, t; τ) =
∑

m∈Z+λ

q−mw+w2/2xm
ϑ1( t+z+v2 ; τ)ϑ1( t−z+v2 ; τ)

η(τ)4
. (3.5)

2Note that since the P action involves M1
±, it is convenient to work in the basis where M1

± rather than

M3
± is diagonal in P -twisted sectors, but for the calculation of the character this is immaterial.
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3.1 The ghost contribution

While the discussion so far is relatively straightforward, there is one subtle point we need

to explain in more detail. Naively, one may have guessed that the ghosts are invariant

under the Dn action, but this is, in some sense, not quite correct. The basic reason for this

can be read off from the DDF analysis of [14]. To be specific, let us for example consider

the DDF generators that correspond to the fermionic torus directions in the −1
2 picture

(cf. eqs. (5.8) and (5.9) of [14])

Λ
(− 1

2
)µα

r = k−
1
4

∮
dz
(
p+α−Ψµ−e−ργr+

1
2 + p−α−Ψµ−e−ργr−

1
2

)
, (3.6)

where pAαβ , Ψµβ and ρ were defined in eqs. (2.10), (2.11) and (2.16), respectively. The

original torus excitations, i.e. the Ψµβ , obviously only carry charge with respect to su(2)+⊕
su(2)−. However, after combining with the other hybrid fields to form DDF operators (that

map physical states to physical states), they acquire charge with respect to the su(2)R

symmetry coming from the S3, i.e. they now have an α index instead of a β index.3 If we

want to describe this effect in terms of ghosts (that eliminate the unphysical degrees of

freedom), then we must take the ghosts to have some effective charge with respect to the

various su(2)’s (despite the fact that, on the face of it, they are uncharged with respect to

any of these su(2)’s.)

In order to do this more quantitatively, we shall proceed as follows. We know that, at

least for k ≥ 2, the RNS formalism and the hybrid formalism are equivalent once physical

state conditions are imposed. We also know the su(2) transformation properties (and hence

those with respect to Dn) of the RNS and hybrid fields before imposing the physical state

condition. This will allow us to deduce how the hybrid ghosts behave ‘effectively’ with

respect to these su(2) charges, and hence also under the Dn action.

To start with, recall that in the RNS formalism the world-sheet fields consist of

sl(2,R)
(1)
k ⊕ su(2)

(1)
k ⊕ (T4)(1) ⊕ Fock[b, c, β, γ] , (3.7)

where the superscript (1) indicates that these are all N = 1 superconformal algebras.

After decoupling the fermions, imposing the physical state condition on the fermions (so

as to reduce their number from 10 to 8), and interpreting them from the spacetime per-

spective — this can be either done by using the abstruse identity, see e.g. the discussion

in [4, section 2.3], or by using the DDF construction from above — these degrees of freedom

transform as

sl(2,R)k+2 ⊕ su(2)k−2 ⊕ T4
bos ⊕ Fock[b, c]⊕ Fock[

(
(2R,2+)⊕ (2R,2−)

)
fermions] . (3.8)

This is to be compared with the analysis in the hybrid formalism where the degrees of

freedom transform as

psu(1, 1|2)k ⊕ T4
bos ⊕ Fock[b, c, ρ]⊕ Fock[(2+,2−) fermions] , (3.9)

3The su(2)R becomes the R-symmetry of the spacetime CFT, and the torus fermions of the spacetime

theory are indeed charged under it.
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where the last term comes from the topologically twisted fermions Ψµβ . Using the Waki-

moto representation of psu(1, 1|2)k that was described above, see the discussion around

eq. (2.13), the psu(1, 1|2)k factor corresponds to

psu(1, 1|2)k ∼= sl(2,R)k+2 ⊕ su(2)k−2 ⊕ Fock[2 · (2R,2−) fermions] . (3.10)

Thus the effective ghost contribution in the hybrid formalism must remove one set of

(2R,2−) fermions and one set of (2+,2−) fermions, and replace it by one set of (2R,2+)

fermions,

{eff. ghost} ∼ Fock[{(2R,2+) fermions}]
Fock[{(2R,2−) fermions}] · Fock[{(2+,2−) fermions}]

. (3.11)

In terms of characters it must therefore take the form

Zgh(u, v, z, t; τ) =
∣∣∣ η(τ)2

ϑ1( t+z+v2 ; τ)ϑ1( t−z+v2 ; τ)

∣∣∣2︸ ︷︷ ︸
Zgh
1

·
∣∣∣ϑ1( t+z+u2 ; τ)ϑ1( t−z+u2 ; τ)

ϑ1( t+u+v
2 ; τ)ϑ1( t−u+v

2 ; τ)

∣∣∣2︸ ︷︷ ︸
Zgh
2

. (3.12)

Obviously, this identification is only formal since the BRST cohomology will mix all the

fields together, and we cannot just extract the contribution from the additional ρ ghost in

this manner. However, on the level of characters this identity will be correct, and it will

allow us to keep track of the Dn transformation properties of the fields.

In particular, we see from this analysis that for k = 1, for which the psu(1, 1|2)1

character is given by eq. (3.5), the first factor Zgh
1 of the ghost contribution (3.12) cancels

all the oscillator contributions of psu(1, 1|2)1,

(
Zpsu(1,1|2)1 · Zgh

1

)
(v, z, t; τ) =

∣∣∣∣∣ ∑
m∈Z+λ

xmq−mw+w2

2

∣∣∣∣∣
2

. (3.13)

Thus we are only left with the zero mode sum that will be fixed by the mass-shell con-

dition. As a consequence, the AdS3 × S3 factor becomes ‘topological’ for k = 1, and all

the remaining degrees of freedom come from the T4 part of the theory, as already argued

in [5]. Finally, the second factor Zgh
2 of (3.12) makes sure that the resulting fermionic de-

grees of freedom have the correct charge by transmuting the topologically twisted fermions

transforming as (2+,2−), into the spacetime fermions transforming as (2R,2+).

4 Calculating the orbifold

As we have explained in section 2.1, the action of Dn on the hybrid fields can be described

in terms of group rotations, see (2.15) as well as (3.3) and (3.4). In order to respect these

group symmetries, the same action must then also be applied to the effective ghost contri-

bution, see eq. (3.12). As a consequence, the cancellation between Zgh
1 and the psu(1, 1|2)1

character at level k = 1 continues to hold also for the orbifold theory, see (3.13). Since the

resulting expression is independent of the chemical potentials (u, v, z), it is unaffected by

– 7 –
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the Dn action.4 It will therefore again be fixed by the mass-shell condition, exactly as in

the case without orbifold, see also below.

The other factor of the world-sheet partition function (before orbifolding) equals(
ZT4 · Zgh

1

)
(u, v, z, t; τ) = ZT4

bos(τ)ZT4

fer(u, z, t; τ) , (4.1)

where ZT4

bos and ZT4

fer are the bosonic and fermionic contribution coming from the T4, re-

spectively

ZT4

bos(τ) =
ZΘ(τ)

|η(τ)|4
, ZT4

fer(τ)(u, z, t; τ) =
∣∣∣ϑ1( t+z+u2 ; τ)ϑ1( t−z+u2 ; τ)

η2(τ)

∣∣∣2 . (4.2)

Here ZΘ(τ) is the lattice theta function of the torus (that accounts for the winding and

momentum excitations), and in the second term we have used that, because of the second

factor of (3.12), the fermions transform effectively in (2R,2+), see the discussion at the

end of the previous section.

It is now straightforward to calculate the various orbifold contributions of the off-shell

partition function. In particular, in the (h, g) sector (where h labels the twisted sector,

and g the insertion of the group element) we have

h�
g

(u, v, z, t; τ) =

∣∣∣∣∣ ∑
m∈Z+λ

xmq−mw+w2

2

∣∣∣∣∣
2

h�
g

T4,bos
(τ) h�

g

T4,ferm
(u, z, t; τ) . (4.3)

The orbifold contribution coming from the bosonic degrees of freedom on the torus can

be calculated directly from the Dn action on the torus lattice, and this works exactly as

in [1]. On the other hand, for the fermionic degrees of freedom we can keep track of the

Dn action by using (3.3) and (3.4), and this leads to

hl,β�
gk,α

T4, ferm
(u,z, t;τ) =Z ferm

T4

(
u+

(
β

2
+

2l

n

)
τ+

α

2
+

2k

n
, z+

β

2
τ+

α

2
, t ; τ

)
, (4.4)

where we have labelled an arbitrary group element in Dn by

gk,α = UkPα , k = 0, 1, . . . , n− 1 , α = 0, 1 , (4.5)

and similarly for hl,β . For h = e, i.e. l = β = 0, this follows directly from eqs. (3.3)

and (3.4), and most of the other cases can be obtained using the modular transformation

properties of these twisted twining characters,

τ → aτ + b

cτ + d
, h�

g
7→ hagb�

hcgd
, (4.6)

together with the modular properties of (4.2); in particular we need the identities

ϑ1

(
z

τ
;−1

τ

)
= −i

√
−iτ e

πiz2

τ ϑ1(z; τ) η

(
−1

τ

)
=
√
−iτ η(τ) ,

ϑ1(z; τ + 1) = ei
π
4 ϑ1(z; τ) η(τ + 1) = ei

π
12 η(τ) ,

(4.7)

4Recall that (2.14) describes the full Dn action on the psu(1, 1|2) superalgebra (including the action on

the bosonic degrees of freedom).
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see [5, appendix F] for our conventions. In fact, there is only one SL(2,Z) orbit of sectors

that is not fixed by this argument, containing the representatives

P�
Uk

T4, ferm
(u, z, t; τ) = Z ferm

T4

(
u+

τ

2
+

2k

n
, z +

τ

2
, t ; τ

)
. (4.8)

The expression for this sector can be obtained by noting that in the P -twisted sector two

of the four fermions are half-integer moded (while the other two have integer modes), and

that the Uk generators act as before.

The final step consists of imposing the physical state conditions L0 = 0 = L̄0, i.e.

picking out the term q0q̄ 0 in eq. (4.3). As in [5], only one term in the sum survives, namely

the one for which

m =
hT

4

w
+
w

2
, (4.9)

and similarly for the right-movers. Thus the (h, g) sector of the string partition function

becomes

Z
(h,g)
string(u, z; t) =

∞∑
w=1

x
w
2 x̄

w
2 h�

g

T4,bos
(
t

w

)
h�
g

T4,ferm
(
u, z, t;

t

w

)′
, (4.10)

where the prime indicates that only those states contribute for which m − m̄ ∈ Z. Using

the same theta function identitites as in [5, eq. (5.8)], we can then finally rewrite this as5

Z
(h,g)
string(u,z; t) =

∑
w∈2N

∣∣∣xw4 ∣∣∣2h�
g

T4,R
(
u,z;

t

w

)
+

∑
w∈2N−1

∣∣∣xw4 ∣∣∣2h�
g

T4,NS
(
u,z;

t

w

)
. (4.11)

This agrees exactly with the single particle (single cycle) part of the partition function of

the symmetric orbifold of T4/Dn, where w describes the length of the single cycle.

5 Some comments about k > 1

The analysis for k > 1 actually works very similarly. In that case we can directly use

the RNS description, and there is no need to introduce the hybrid fields. There are no

null-vectors for sl(2,R)k, so the underlying characters are the Verma module characters. If

we concentrate on the long string sector, the analysis of [14] (together with the refinement

explained in the previous section) goes through essentially unmodified, and the spacetime

spectrum turns out to match exactly with

SymN

([
(N = 4 Liouville at c = 6(k − 1))× T4

]
/Dn

)
. (5.1)

It remains to explain though how Dn acts on the seed theory. To this end we recall the

description of the world-sheet degrees of freedom from (3.8),

sl(2,R)k+2 ⊕ su(2)k−2 ⊕ T4
bos ⊕ Fock[b, c]⊕ Fock[

(
(2R,2+)⊕ (2R,2−)

)
fermions] . (5.2)

5Here the symbols R and NS describe the moding of the fermions before considering the h-twisted sector,

i.e. the twisting by h changes the moding of the fermions relative to an integer moding (for the case of R)

and a half-integer moding (for the case of NS).
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The fermions in the (2R,2+) combine with the bosons from T4
bos to give the supersymmetric

T4 theory, on which Dn acts as in (2.3). The (b, c) ghosts cancel two (of the three) bosonic

degrees of freedom from sl(2,R)k+2, and thus the remaining degrees of freedom are

free boson⊕ su(2)k−2 ⊕ Fock[(2R,2−) fermions] , (5.3)

which just give rise to N = 4 Liouville at c = 6(k − 1), see the discussion in [14, sec-

tion 6.2]. They transform under Dn as follows. First the free boson arises from sl(2,R)k+2,

and hence is invariant under Dn. On the remaining degrees of freedom, the action of Dn

can be read off from (2.8): the rotation generator U of Dn acts trivially (since none of

these fields are charged under su(2)+), while the reflection generator P rotates su(2)k−2

by 180 degrees (one of the currents, say K3, is invariant, while the other two pick up a

sign). As regards the fermions, we note that the reflection generator is embedded diago-

nally into su(2)R ⊕ su(2)−, see eq. (2.8). The fermions in (2R,2−) transform in the tensor

product 2⊗ 2 = 3⊕ 1 with respect to this diagonal su(2), and hence their transformation

property coincides with the geometric Dn action on S3. (This is to say that 3 of the four

fermions transform exactly as the currents Ka, while the remaining fermion is invariant.)

In particular, we can combine the spacetime fields of (5.3) into

su(2)
(1)
k ⊕ u(1)(1) , (5.4)

where the superscript (1) refers to the N = 1 superconformal affine algebra (for which the

fermions transform in the adjoint representation). The P generator of Dn then acts by

rotating the su(2)
(1)
k factor (including the fermions) by 180 degrees, while leaving u(1)(1)

invariant.6 This then defines the Dn action on the N = 4 Liouville factor in (5.1), and

hence specifies the dual CFT.

This analysis applies irrespective of whether k is even or odd. This is to be compared

with the original analysis of [1], where the duality only worked for k odd since the u(1)

charge quantisation did not match between world-sheet and dual CFT. The reason why

things are different here is that, unlike the case considered in [1], the symmetric orbifold

of the spacetime theory now also contains a Liouville factor which, in particular, includes

the su(2)
(1)
k algebra of eq. (5.4). As we have just seen, this algebra is also orbifolded, thus

providing an extra contribution to the charge quantisation in the twisted sector. As a

consequence the charges between the two descriptions now match irrespective of whether

k is even or odd.7

Finally, for k > 1 the DDF operators can be directly constructed in the RNS for-

malism [9, 14], and their Dn transformation properties follow directly from those of the

RNS fields. As in [14], see in particular sections 2.5 and 2.6, the relevant modes will be

w-fractionally moded in the w-spectrally flowed sector, exactly as one should expect for the

w-cycle twisted sector of the dual CFT. As a result, the operator algebra of the symmetric

orbifold (5.1) can also be reproduced from the world-sheet. It also seems to imply that

the spacetime theory is supersymmetric for any value of k, in contradiction to what was

argued in [1].

6This agrees with eq. (2.7), where now su(2)
(1)
k is part of the spacetime Liouville theory.

7We thank Lorenz Eberhardt for a useful discussion about this issue.
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6 Conclusions

In this paper we have shown that the duality between string theory on AdS3 × S3 × T4

with minimal NSNS flux (k = 1) on the one hand, and the symmetric orbifold of T4 [5] on

the other hand, extends also to the N = (2, 2) supersymmetric Dn orbifolds of these same

backgrounds studied in [1]. Our results give strong support to the duality proposal of [1],

and they also demonstrate that the techniques of [5] are more widely applicable.

It would be interesting to show that a similar analysis can be done for the N = (3, 3)

orbifold of [16]; this should follow from the duality for AdS3 × S3 × S3 × S1 that was first

proposed in [17] and then derived microscopically in [15].

More fundamentally, it would be helpful to make these dualities more manifest. In

this context it is curious to note that the Drinfel’d-Sokolov (or quantum Hamiltonian)

reduction of the psu(1, 1|2)k supergroup WZW model leads exactly to the same N = 4

Liouville theory (including its central charge) that appears for k > 1 in (5.1), see e.g. [18],

in particular the discussion around equation (19) of that paper with reference to table 1.8

If one could express the BRST charge of these Drinfel’d-Sokolov reductions in terms of the

worldsheet BRST operator, this should lead to a more conceptual (and less background

dependent) derivation of these dualities. It should also allow for a more direct derivation

of the “effective ghost” contribution of section 3.1.
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A The dihedral group and its representations

The dihedral groups Dn, n ∈ Z>0, can be defined as subgroups of O(2). The orthogonal

group has two connected components which we can write as

O(2) ≡ SO(2) ∪ P · SO(2),

= {U(θ)}θ∈[0,2π) ∪ {PU(θ)}θ∈[0,2π) , (A.1)

where U(θ) denotes a rotation by θ, while P is the reflection along the y-axis, say. The

generators P and U(θ) satisfy the relation PU(θ) = U(2π − θ)P , and they act on the

2-dimensional defining representation ρf (written in a complex basis) as

ρf(P ) = −

(
0 1

1 0

)
, ρf(U(θ)) =

(
eiθ 0

0 e−iθ

)
, θ ∈ [0, 2π) . (A.2)

8Incidentally, an analogous statement holds for the Drinfel’d-Sokolov reduction of d(2, 1;α) (also given

in [18]), and the Liouville factor in the AdS3 × S3 × S3 × S1 string spectrum of [15].
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Conjugacy Class [g] Elements of [g] Centralizer of g

[1] 1 D2p+1

[Uk]k=1,...,p Uk, U2p+1−k Z2p+1(U)

[P ] (U lP )l=0,1,...,2p Z2(P )

Table 1. Conjugate orbits and stabilizers of Dn for n odd.

Conjugacy Class [g] Elements of [g] Centralizer of g

[1] 1 D2p

[Up] Up D2p

[Uk]k=1,...,p−1 Uk, U2p−k Z2p(U)

[P ] (U2kP )k=1,...,p D2(U,Up)

[UP ] (U2k+1P )k=1,...,p D2(UP,Up)

Table 2. Conjugate orbits and stabilizers of Dn for n even.

The discrete subgroup obtained by restricting the rotations to Uk, U = U(2π
n ), defines the

dihedral group Dn, with a defining representation ρ1 given by

ρ1(P ) := −

(
0 1

1 0

)
, ρ1(U) :=

(
e

2πi
n 0

0 e−
2πi
n

)
. (A.3)

The structure of the group depends a little bit on whether n is even or odd.

A.1 Dn with n = 2p + 1

For n odd the conjugacy classes are described in table 1, and the irreducible representations

are the 1-dimensional representations ρ±, together with the 2-dimensional representations

ρj , j = 1, . . . , p. More explicitly, they are defined by

ρε(P ) = ε , ρε(U) = 1 , ε = ± , (A.4)

and

ρj(P ) = (−)j+1 ρ1(P ) , ρj(U) = ρ1(U)j , j = 1, . . . , p . (A.5)

A.2 Dn with n = 2p

In this case, the conjugacy classes are spelled out in table 2, and the irreducible represen-

tations consist now of four 1-dimensional representations

ρεη(P ) = ε , ρεη(U) = η , ε, η = ± , (A.6)

and (p− 1) 2-dimensional representations

ρj(P ) = (−)j+1 ρ1(P ) , ρj(U) = ρ1(U)j , j = 1, . . . , p− 1 . (A.7)
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