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1 Introduction

The study of generic quantum field theories (QFTs) is one of the main topics of interest

in present-day theoretical Physics. Perturbative and non-perturbative investigations in

the recent decades have shown that remarkable progress can be achieved when the system

under study is symmetric enough.

– 1 –



J
H
E
P
0
1
(
2
0
2
0
)
1
4
0

One major line of research that came as a by-product of the Maldacena conjecture [1],

is the study of supersymmetric and conformal field theories in diverse dimensions. Super-

conformal Field Theories (SCFTs) exist in space-time dimensions d < 7 [2]. The last two

decades witnessed a large effort in the classification of Type II or M-theory backgrounds

with AdSd+1 factors, see for example [3, 4]. The solutions are conjectured to be dual to

SCFTs in d dimensions with different amounts of SUSY. In the case in which we have eight

Poincaré supercharges major progress has been achieved (the number of real supercharges

doubles by the presence of the conformal partner supercharges).

For the case of N = 2 SCFTs in four dimensions, the field theories studied in [5]

have holographic duals first discussed in [6], and further elaborated (among other works)

in [7]–[12]. The case of five dimensional SCFTs was analysed from the field theoretical

and holographic viewpoints in [13]–[18], among many other interesting works. An infinite

family of six-dimensional N = (1, 0) SCFTs was discussed from both the field theoretical

and holographic points of view in [19]–[27]. For three-dimensional N = 4 SCFTs, the field

theories presented in [28] were discussed holographically in [29]–[32], among other works.

The case of two-dimensional SCFTs and their AdS duals is particularly attractive.

The interest that CFTs in two dimensions and AdS3 solutions present in other areas of

theoretical Physics (condensed matter systems, black holes, etc), and the power of the

2-d super conformal algebra present us with a perfect theoretical lab to test various ideas

explicitly. This motivated various attempts at finding classifications of AdS3 backgrounds

and studying their dual CFTs — for a sample of papers see [33]–[47].

In this work we add a new entry to the dictionary between SCFTs and string back-

grounds with an AdS-factor described above. We deal with N = (0, 4) (small algebra)

SCFTs. We define our SCFTs as the IR fixed points of N = (0, 4) UV finite QFTs. These

QFTs are described by quivers, consisting of two long rows of gauge groups connected by

hypermultiplets and Fermi multiplets. There are also global (flavour) symmetry groups,

joined with the gauge groups by Fermi multiplets. Quantum theories of this kind (with

some differences regarding the field content and R-symmetry charges) have been proposed

in the study of solitonic strings in six-dimensional N = (1, 0) SCFTs, see for example [41].1

We show that the new background solutions to massive IIA supergravity constructed re-

cently in [47] contain the needed isometries to be dual to our SCFTs. These backgrounds

may be trusted when the number of nodes of the quiver is large and so are the ranks of

each gauge group.2 We show that they reproduce the central charge of our SCFTs in the

holographic limit.

The contents of this paper are distributed as follows. In section 2 we summarise the

general massive Type IIA backgrounds that we constructed recently in [47], and find new

solutions, also presented in [48]. These backgrounds have the structure

AdS3 × CY2 × S2 × Iρ. (1.1)

By Iρ we denote an interval parametrised by a coordinate that we label ρ. There are warp

factors in front of each metric component (also for each of the RR and NS fluxes compatible

1See also [49] for realisations in terms of D3-brane boxes.
2See the recent paper [50] for long 5d quivers.
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with the isometries of the background). We discuss various observable quantities of these

backgrounds, like the Page charges, the explicit presence of branes (we map these data into

Hanany-Witten brane set-ups) and the holographic central charges. All these quantities

are described in terms of the functions that define the warp factors.

In section 3 we define the QFTs of our interest. In order to do this we take a small

detour through 2-d N = (0, 2) multiplets. In terms of them we write the field content of

our N = (0, 4) QFTs. We pay special attention to the cancellation of gauge anomalies.

We propose that these QFTs flow in the IR to strongly coupled N = (0, 4) SCFTs with

small superconformal algebra. We use this to link the R-symmetry anomaly (the level of

the Kac-Moody algebra) with the central charge (the leading coefficient in the OPE of

energy-momentum tensors). We finally propose a generic duality between our SCFTs and

the backgrounds discussed in section 2.

In section 4 (of pedagogical character), we present a detailed set of examples that

serve as tests of our proposed duality. In those examples we show how the supergravity

backgrounds (with the predicted number of colour and flavour branes) have the precise

combinatorics to be dual to long quivers with non-anomalous gauge symmetries and flavour

symmetries. We calculate the central charge in the SCFT and the holographic central

charge in the gravity background showing a clean matching between both descriptions.

We close the paper with a brief summary and some ideas for further research in sec-

tion 5. The presentation is complemented by appendices of technical nature.

2 The holographic backgrounds

In this section we start by discussing the solutions to massive IIA supergravity (with

localised sources) obtained in the recent work [47]. We propose that these backgrounds are

holographic duals to two dimensional CFTs preserving N = (0, 4) SUSY. The particular

CFTs will be discussed in section 3. The Neveu-Schwarz (NS) sector of these bosonic

solutions reads,

ds2 =
u√
ĥ4h8

(
ds2(AdS3) +

h8ĥ4

4h8ĥ4 + (u′)2
ds2(S2)

)
+

√
ĥ4

h8
ds2(CY2) +

√
ĥ4h8

u
dρ2,

e−Φ =
h

3
4
8

2ĥ
1
4
4

√
u

√
4h8ĥ4 + (u′)2, H =

1

2
d

(
−ρ+

uu′

4ĥ4h8 + (u′)2

)
∧ vol(S2) +

1

h8
dρ ∧H2,

(2.1)

here Φ is the dilaton, H = dB2 is the NS 3-form and ds2 is written in string frame. The

warping function ĥ4 has support on (ρ,CY2). On the other hand, u and h8 only depend

of ρ. We denote u′ = ∂ρu and similarly for h′8. The RR fluxes are

F0 = h′8, F2 = −H2 −
1

2

(
h8 −

h′8u
′u

4h8ĥ4 + (u′)2

)
vol(S2), (2.2a)

F4 =

(
d

(
uu′

2ĥ4

)
+ 2h8dρ

)
∧ vol(AdS3)

− h8

u
(?̂4d4ĥ4) ∧ dρ− ∂ρĥ4vol(CY2)− uu′

2(4h8ĥ4 + (u′)2)
H2 ∧ vol(S2), (2.2b)
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with the higher fluxes related to them as F6 = − ?10 F4, F8 = ?10F2, F10 = − ?10 F0. It

was shown in [47] that supersymmetry holds whenever

u′′ = 0, H2 + ?̂4H2 = 0, (2.3)

where ?̂4 is the Hodge dual on CY2. In what follows we will concentrate on the set of

solutions for which H2 = 0. The Bianchi identities of the fluxes then impose (away from

localised sources)

h′′8 = 0,
h8

u
∇2

CY2
ĥ4 + ∂2

ρ ĥ4 = 0.

A further restriction consists in assuming that ĥ4 = ĥ4(ρ). After this, the string frame

background reads,

ds2
st =

u√
ĥ4h8

(
ds2(AdS3) +

h8ĥ4

4h8ĥ4 + (u′)2
ds2(S2)

)
+

√
ĥ4

h8
ds2(CY2) +

√
ĥ4h8

u
dρ2,

e−Φ =
h

3
4
8

2ĥ
1
4
4

√
u

√
4h8ĥ4 + (u′)2, B2 =

1

2

(
−ρ+ 2πk +

uu′

4ĥ4h8 + (u′)2

)
vol(S2),

F̂0 = h′8, F̂2 = −1

2

(
h8 − h′8(ρ− 2πk)

)
vol(S2),

F̂4 =

(
∂ρ

(
uu′

2ĥ4

)
+ 2h8

)
dρ ∧ vol(AdS3)− ∂ρĥ4vol(CY2). (2.4)

We have written the Page fluxes F̂ = e−B2 ∧ F that are more useful for our purposes.

Notice that we have also allowed for large gauge transformations B2 → B2 + πkvol(S2),

for k = 0, 1, . . . , P . The transformations are performed every time we cross an interval

[2πk, 2π(k + 1)]. To motivate this consider the following: in the limit where ĥ4(ρ) and/or

h8(ρ) become large compared with u(ρ) the NS 2-form in the presence of k large gauge

transformations is approximately

B2 ∼
1

2
(−ρ+ 2πk)vol(S2) =⇒ b̂0 = − 1

(2π)2

∫
S2
B2 ∼

1

2π
(ρ− 2πk). (2.5)

This can be archived by tuning certain integration constants in the solutions presented

below, and in fact coincides with the limit of weak curvature where the supergravity ap-

proximation can be trusted. Demanding that b̂0 lies in the fundamental region b̂0 ∈ [0, 1)

partitions the real line spanned by ρ into segments of length 2π. A large gauge transforma-

tion (B2 → B2 +πvol(S2)) is required as one crosses between these segments, such that the

NS 2-form quoted in (2.4) is valid in the segment 2kπ ≤ ρ < 2π(k + 1) with k = 0, 1, 2 . . ..

The background in (2.4) is a SUSY solution of the massive IIA equations of motion if

the functions ĥ4, h8, u satisfy (away from localised sources),

ĥ′′4(ρ) = 0, h′′8(ρ) = 0, u′′(ρ) = 0. (2.6)

The three functions are thus linear. Various particular solutions were analysed in [47].

Here we will present an infinite family of solutions for which the functions are piecewise

continuous.

– 4 –
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2.1 The local solutions

We shall be interested in solutions that in the interval 2πk ≤ ρ ≤ 2π(k + 1) (for k = 0,

1, . . . , P ) are of the form,

ĥ
(k)
4 = Υ

(
αk +

βk
2π

(ρ− 2πk)

)
, h

(k)
8 = µk +

νk
2π

(ρ− 2πk), u(k) = ak +
bk
2π

(ρ− 2πk).

Here (Υ, αk, βk, µk, νk, ak, bk) are arbitrary constants whose physical meaning we shall dis-

cuss below. In particular, we impose that these three functions vanish at ρ = 0 (where

the space begins) and that the space ends at ρ = 2π(P + 1), by considering the situation

for which ĥ4 and/or h8 vanish at this point. These conditions leave us with functions of

the form,

ĥ4(ρ) = Υh4(ρ) = Υ


β0
2πρ 0≤ ρ≤ 2π

αk+ βk
2π (ρ−2πk) 2πk≤ ρ≤ 2π(k+1), k := 1, . . . ,P−1

αP + βP
2π (ρ−2πP ) 2πP ≤ ρ≤ 2π(P+1).

(2.7)

h8(ρ) =


ν0
2πρ 0≤ ρ≤ 2π

µk+ νk
2π (ρ−2πk) 2πk≤ ρ≤ 2π(k+1), k := 1, . . . ,P−1

µP + νP
2π (ρ−2πP ) 2πP ≤ ρ≤ 2π(P+1).

(2.8)

u(ρ) =


b0
2πρ 0≤ ρ≤ 2π

ak+ bk
2π (ρ−2πk) 2πk≤ ρ≤ 2π(k+1), k := 1, . . . ,P−1

aP + bP
2π (ρ−2πP ) 2πP ≤ ρ≤ 2π(P+1).

(2.9)

If the function ĥ4(ρ) vanishes at ρ = 2π(P + 1), ending the space there, we need that

αP = −βP . Similarly if h8

(
2π(P + 1)

)
= 0, we must impose that νP = −µP .

Demanding that the metric, dilaton and B2 field are continuous across the different

intervals imposes additional conditions on the various constants.3 The details are discussed

in appendix A. Here we quote one simple solution to these continuity equations,

µk =
k−1∑
j=0

νj , αk =
k−1∑
j=0

βj , bk = b0, ak = kb0. (2.10)

These conditions imply the continuity of the functions ĥ4, h8. Their derivatives can, how-

ever, present jumps. This will imply discontinuities in the RR sector, that we will interpret

as generated by the presence of branes in the background, that modify the Bianchi identi-

ties. In turn, notice that (2.10) implies that u(ρ) = b0
2πρ in all intervals, which is consistent

with the supersymmetry requirement (2.3) that u′′ = 0 globally.

These supergravity backgrounds can be trusted (with localised singularities) if the

numbers P, αk, µk are large. Indeed, the Ricci scalar only diverges at the points where the

sources are localised. Choosing the numbers νk, βk to be large controls this divergence. On

the other hand P is taken to be large to have these singularities separated enough that we

can trust the geometric description given here.

3We do not impose the continuity of H = dB2 since H = F (ρ)dρ ∧ vol(S2). This implies that dH = 0

and the continuity of H is not needed to avoid the presence of NS brane sources.
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2.2 The ρ-interval

Let us analyse more closely these solutions. The background functions defined in the first

interval [0, 2π] show that the space begins at ρ = 0 in a smooth fashion. On the other

hand, the ρ-interval ends at a generic point ρ = 2π(P +1) if any of the functions ĥ4 and/or

h8 vanish at that point. Let us analyse the behaviour of the metric and dilaton close to

the end of the space for the three possible cases:

• The space ends by virtue of the function ĥ4 whilst h8 is generically non-vanishing at

ρ = 2π(P + 1). In the last interval the functions defining the background are then

ĥ4 = Υ
(
αP −

αP
2π

(ρ− 2πP )
)
, h8 = µP +

νP
2π

(ρ− 2πP ), u =
b0
2π
ρ.

In this case, expanding the metric and the dilaton close to ρ = 2π(P + 1) we find, for

small values of x = 2π(P + 1)− ρ,

ds2 ∼ m1√
x
ds2(AdS3) +

√
x

m1

[
dx2 +m1m2ds

2(S2) +m3m1ds
2(CY2)

]
, e−4Φ =

m4

x
.

(2.11)

The numbers (m1, . . . ,m4) are written in terms of µP , αP , νP , b0,Υ. This asymptotic

behaviour indicates that close to the end of the space we have a D2 brane that

extends on AdS3 and is delocalised (or smeared) on CY2×S2 — see [47] for a generic

analysis of singularities. Note that one could also view this as an O2 plane smeared

on CY2×S2 or a superposition of both D2s and O2s.

• The space ends by virtue of the function h8 while ĥ4 is generically non-vanishing at

ρ = 2π(P + 1). In the last interval the functions are then

h8 = µP −
µP
2π

(ρ− 2πP ), ĥ4 = Υ

(
αP +

βP
2π

(ρ− 2πP )

)
, u =

b0
2π
ρ.

For small x = 2π(P + 1)− ρ, the metric and dilaton scale as,

ds2 ∼ 1√
x

[
n1ds

2(AdS3) + n3ds
2(CY2)

]
+

√
x

n1

[
dx2 + n1n2ds

2(S2)
]
, e−4Φ = n4x

3.

(2.12)

The numbers (n1, . . . , n4) are written in terms of µP , αP , βP , b0,Υ. This asymptotic

behaviour indicates that at ρ = 2π(P + 1) we have an O6 plane that extends on

AdS3×CY2.

• Finally, consider the more symmetric case for which the space is closed by the simul-

taneous vanishing of ĥ4 and h8 at ρ = 2π(P + 1). In this case the functions in the

last interval read,

h8 = µP −
µP
2π

(ρ− 2πP ), ĥ4 = Υ
(
αP −

αP
2π

(ρ− 2πP )
)
, u =

b0
2π
ρ. (2.13)

For small values of x = 2π(P + 1)− ρ, the metric and dilaton scale as,

ds2 ∼ s1

x
ds2(AdS3) + s3ds

2(CY2) +
x

s1

[
dx2 + s1s2ds

2(S2)
]
, e−4Φ = s4x

2. (2.14)

– 6 –
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The numbers (s1, . . . , s4) are written in terms of µP , αP , b0,Υ. Notice that each quan-

tity above is the product of those in (2.11)–(2.12). This indicates the superposition

of O2-O6 planes.

This more symmetric way of ending the space is the one on which we will concen-

trate our forthcoming analysis. An important observation is that, from the gravity

perspective, the behaviour we are finding close to the end of the interval is the least

healthy of the three analysed, as the O2s need to be smeared. We believe that the

presence of smeared O-planes is an artifact of the supergravity approximation.

To be used below, let us quote the explicit expressions for the different numerical

values of (s1, s2, s3, s4),

s1 =
4π2b0(P + 1)√

αPµPΥ
, s2 = 2π(P + 1)

√
αPµPΥ

b0
,

s3 =

√
ΥαP
µP

, s4 =
b20µ

3
P

210π6αP (P + 1)2Υ
. (2.15)

Notice that in order for the CY2 space to be large compared with the string size, we

need that ΥαP ∼ µP . Otherwise the gravity background is not trustable.

In the following section we study the Page charges and discuss the presence of branes

in our solutions. These are of the form given by eq. (2.4), with the functions (ĥ4, h8, u)

satisfying eq. (2.6), away from localised sources, and piecewise continuous, as in (2.7)–(2.9).

The condition for continuity of the defining functions ĥ4, h8 is given by (2.10). This implies

the continuity of the NS-sector of the solution. From all the possibilities to end the space

we focus on solutions whose last interval’s functions are given by (2.13). The non-compact

solution with ĥ4 ∼ h8 ∼ u ∼ ρ all over the space will be discussed in detail in [51].

2.3 Page charges

The Page charges are important observable quantities characterising a supergravity solu-

tion. Since they are quantised they imply the quantisation of some of the constants defining

the solution in (2.7)–(2.9). The Page charge of Dp-branes is given by the integral of the

magnetic part of the Page F̂8−p form. This is,

(2π)7−pgsα
′(7−p)/2QDp =

∫
Σ8−p

F̂8−p. (2.16)

In what follows, we choose units consistent with α′ = gs = 1. Also, we will use that

ĥ4 = Υh4, as seen in (2.7).

We find the following Page charges for our solutions in the interval [2πk, 2π(k + 1)],

QD8 = 2πF0 = 2πh′8 = νk. (2.17)

QD6 =
1

2π

∫
S2
F̂2 = h8 − h′8(ρ− 2πk) = µk.

QD4 =
1

8π3

∫
CY2

F̂4 = Υ
Vol(CY2)

16π4
βk,

QD2 =
1

32π5

∫
CY2×S2

F̂6 = Υ
Vol(CY2)

16π4
(h4 − h′4(ρ− 2πk)) = Υ

Vol(CY2)

16π4
αk.

– 7 –
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We have used that the magnetic part of F̂6 is

F̂6,mag = f̂6 =
Υ

2

(
h4 − h′4(ρ− 2πk)

)
vol(S2) ∧ vol(CY2). (2.18)

We also have one NS-five brane every time we cross the value ρ = 2πk (for k = 1, . . . , P ).

The total number of NS-five branes is QNS = 1
4π2

∫
ρ×S2 H3 = (P + 1).

In what follows, we choose the constant Υ to satisfy ΥVol(CY2) = 16π4. This implies

that the constants αk, βk are integer numbers (like νk, µk are). They are directly related

with the number of branes in the associated Hanany-Witten brane set-up.

To understand which branes are present in our backgrounds, let us study the Bianchi

identities for the Page fluxes.

2.3.1 Hanany-Witten brane set-up

We now calculate the Bianchi identities for the Page fluxes. The goal is to determine which

branes are actually present in our background solutions, either as sources or dissolved

into fluxes.

Let us start with the flux F0 = h′8(ρ). We calculate dF0 = h′′8(ρ)dρ. Now, at a generic

point of the ρ-coordinate we will have h′′8 = 0, according to (2.6). However, due to our

definition of the functions ĥ4 and h8 — see (2.7)–(2.8), something special occurs at the

points where the functions change slope. In fact, for both ĥ4 and h8 we find,

h′′8 =

P∑
k=1

(
νk−1 − νk

2π

)
δ(ρ− 2πk), ĥ′′4 = Υ

P∑
k=1

(
βk−1 − βk

2π

)
δ(ρ− 2πk). (2.19)

As a consequence of this we have,

dF0 =

P∑
k=1

(
νk−1 − νk

2π

)
δ(ρ− 2πk)dρ, (2.20)

dF̂4 = Υ
P∑
k=1

(
βk−1 − βk

2π

)
δ(ρ− 2πk)dρ ∧ vol(CY2),

indicating that at the points ρ = 2πk there may be localised D8 and semi-localised D4

branes. In fact, explicit D8 and D4 branes are present at ρ = 2πk when the slopes of h8, ĥ4

are different at both sides.

Let us investigate the same about D2 and D6 branes. For the magnetic part of the

Page fluxes, we compute in the interval [2πk, 2π(k + 1)]

dF̂2 =
1

2
h′′8 × (ρ− 2πk)dρ ∧ vol(S2), (2.21)

dF̂6 = df̂6 =
1

2
ĥ′′4 × (ρ− 2πk)dρ ∧ vol(S2) ∧ vol(CY2).

Using (2.19) and that xδ(x) = 0, we then find that there are no sources for D2 or D6

branes present. This is precisely because a large gauge transformation of the NS two-form

– 8 –
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0 1 2 3 4 5 6 7 8 9

D2 x x x

D4 x x x x x

D6 x x x x x x x

D8 x x x x x x x x x

NS5 x x x x x x

Table 1. 1
8 -BPS brane intersection underlying our geometry. The directions (x0, x1) are the

directions where the 2d CFT lives (dual to our AdS3). The directions (x2, . . . , x5) span the CY2,

on which the D6 and the D8-branes are wrapped. The coordinate x6 is the direction associated

with ρ. Finally (x7, x8, x9) are the transverse directions realising an SO(3)-symmetry associated

with the isometries of S2.

is performed at the loci of the D8 and D4s, were this not the case a source term for D6

and D2 would be induced as in section 5.1 of [47].4

This study suggests that the D2 and D6 branes will play the role of colour branes,

while the D4 and D8 branes that of flavour branes. The global symmetry in the dual CFT

is gravitationally realised by the gauge fields that fluctuate on the D4 or D8 branes.

Studying the associated Hanany-Witten [52] set-up, we find that in flat space the

branes are distributed as indicated in table 1. Our proposal is that the geometries described

by (2.4), capture the near horizon, or decoupling limit, of the brane configuration, once a

suitable large number of NS and D-branes is considered.

Using our result for the Page charges in (2.17) and the modified Bianchi identities

in (2.20), we find that the number of D-branes in the interval [2π(k− 1), 2πk] (in between

two NS-five branes) is,

N
[k−1,k]
D8 = νk−1 − νk, N

[k−1,k]
D4 = βk−1 − βk, (2.22)

N
[k−1,k]
D6 = µk =

k−1∑
i=0

νi, N
[k−1,k]
D2 = αk =

k−1∑
i=0

βi. (2.23)

We then have a Hanany-Witten brane set-up, that in the interval [2π(k−1), 2πk] (bounded

by NS-five branes), has N
[k−1,k]
D6 , N

[k−1,k]
D2 colour branes andN

[k−1,k]
D8 , N

[k−1,k]
D4 flavour branes.

See figure 1.

2.4 Holographic central charge

To close our study of the background in (2.4) we will calculate the holographic central

charge associated with these solutions. The idea is to compare with the central charge of

the proposed dual conformal field theory, that we study in the coming sections.

4The D8 and D4 can also be shown to be supersymmetric by a small modification of the argument in [47].

There, it was assumed that no gauge transformations are performed on the brane, which lead to D8 and

D4 world volume gauge fields being required by supersymmetry and the source corrected Bianchi identities.

Here these gauge fields have been absorbed by the large gauge transformation of the NS two-form. The

branes now restricted to lie at ρ = 2π(k + 1), k = 0, 1, 2 . . .. We give some details in appendix B.
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N
[0,1]
8 D8 N

[1,2]
8 D8

N
[0,1]
4 D4 N

[1,2]
4 D4

N
[0,1]
2 D2

N
[0,1]
6 D6 N

[1,2]
6 D6

N
[1,2]
2 D2

Figure 1. The generic Hanany-Witten set-up associated with our backgrounds. The vertical lines

are NS-five branes. The horizontal lines represent D2 and D6 branes. The crosses indicate D4 and

D8 branes.

The central charge is one of the important observables for conformal field theories. It

appears when calculating the trace of the energy-momentum tensor, for a theory defined on

a curved space. In the case of two dimensional conformal field theories, there is only one rel-

evant quantity — denoted by “c” — that appears when computing < Tµµ >= − c
24πR. Here

R is the Ricci scalar of the manifold on which the CFT is defined and c is the central charge.

The holographic calculation of this quantity has a very interesting history. It was first

obtained in [53] (before the Maldacena conjecture was formulated), then calculated in [54].

In the context of AdS-supergravity, it was holographically computed in [55] and [56]. In [57]

generic supergravity solutions were considered that were later generalised in [58]. This is

the formalism we will use. It basically boils down to computing the volume of the internal

space (excluding AdS3).

In a putative compactification to an effective 3-d supergravity this volume is the inverse

of the 3-d Newton constant. However, in general, it needs to be weighted by factors of the

dilaton and other warp factors. In fact, for a generic dilaton and background of the form,

ds2 = a(r, ~θ)(dx2
1,d + b(r)dr2) + gij(r, ~θ)dθ

idθj , Φ(r, ~θ), (2.24)

one should calculate the auxiliary quantity [58]

Ĥ =

(∫
d~θ

√
e−4Φ det[gij ]a(r, ~θ)d

)2

.

With this, one computes the holographic central charge (see [58, 59] for the derivation)

to be,

chol = 3× dd

GN

b(r)d/2(Ĥ)
2d+1

2

(Ĥ ′)d
. (2.25)

The factor of “3” in (2.25) is introduced as a normalisation, to coincide with the standard

result of [53].
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For the case at hand, comparing with the solutions in (2.4) and using Poincaré coor-

dinates for AdS3, we have

a(r,~θ) =
u√
ĥ4h8

r2, b(r) =
1

r4
, d= 1,

det[gij ] =u

√
ĥ7

4

h8

sin2χ(
4ĥ4h8)+(u′)2

)2 ,
√
e−4Φ det[gij ]a=

r

4
ĥ4h8 sinχ, (2.26)

Ĥ =N 2r2, N =πVol(CY2)

∫ 2π(P+1)

0
ĥ4h8dρ.

We then obtain,

chol =
3

2GN
N =

3π

2GN
Vol(CY2)

∫ 2π(P+1)

0
ĥ4h8dρ =

3

π

∫ 2π(P+1)

0
h4h8dρ, (2.27)

where in the last equality we have used — see below (2.18),

ΥVol(CY2) = 16π4, ĥ4 = Υh4, GN = 8π6.

It is useful to express the holographic central charge in terms of the constants αk, βk,

µk, νk defining the solution,

chol =

P∑
j=0

(
6αjµj + 3αjνj + 3βjµj + 2βjνj

)
. (2.28)

We shall come back to these expressions in section 4 when we discuss the matching be-

tween the holographic quantities studied in this section and the field theory observables

discussed below.

3 The N = (0, 4) SCFTs

As we advanced in the Introduction, the idea of this work is to propose a duality between

the new background solutions in massive IIA found in [47] (summarised in section 2) and

a set of CFTs. These CFTs are thought to be arising as low energy fixed points in the RG

flows of well defined N = (0, 4) two dimensional quantum field theories.

In this section we discuss the weakly coupled UV description of such quantum field

theories.

3.1 The UV description

Let us start with a brief discussion of the fields involved in the weakly coupled description.

It is usual to describe N = (0, 4) SUSY in terms of N = (0, 2) superfields. In this paper we

will not use the detailed structure of each (0, 2) multiplet. We shall content ourselves with

listing the degrees of freedom together with the R-charges for the fermions involved. As

we explain below, these are the details we need to discuss cancellation of gauge anomalies,

the R-charge anomaly and the central charge of the IR CFT.
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The superfields of N = (0, 2) two-dimensional SUSY are well described in various

references. We found particularly clear and enlightening the papers [60]–[64]. They contain

some of the results we summarise in this section.

As we advanced, instead of going into the details of the (0, 2) supermultiplets we

describe the degrees of freedom involved in each of them:

• Vector multiplet, U . It contains a gauge field Aµ and one left moving fermion λ−.

• Chiral multiplet, Φ. It consists of a complex scalar ϕ and a right moving fermion

ψ+. By the context, we hope the reader will be able to distinguish between the chiral

multiplet and the dilaton in massive IIA, that we denote with the same character Φ.

• Fermi multiplet, Θ. This is a constrained superfield for which only a left handed

fermion ψ− propagates. The constraint defining the Fermi superfield generates inter-

actions between the Fermi and the chiral multiplets. The field strength multiplet is

an example of a Fermi multiplet. It being constrained agrees with the fact that in

two dimensions, a gauge field has no propagating degrees of freedom.

We are interested in theories for which the amount of SUSY is N = (0, 4). In this case the

quantum field theories are formulated in terms of combinations of (0, 2) superfields. For

(0, 4) SUSY we have:

• (0, 4) vector multiplet. It is expressed as a combination of a (0, 2) vector multiplet

and a (0, 2) Fermi multiplet. There are two left handed fermions λa− with a = 1, 2

and a gauge field Aµ.

• (0, 4) hypermultiplet. Defined as the combination of two chiral multiplets. The de-

grees of freedom are two complex scalars and two right handed fermions ψa+.

• (0, 4) twisted hypermultiplet. Also written as a superposition of two chiral multiplets.

The degrees of freedom are two right handed fermions ψ̃a+ and two complex scalars.

The difference with the (non-twisted) hypermultiplet discussed above is in the R-

charge assignment. This is reflected in the interactions with other multiplets.

• (0, 4) Fermi multiplet. It is the superposition of two (0, 2) Fermi multiplets. As such,

it contains two left handed fermionic degrees of freedom, ψa−.

• (0, 2) Fermi multiplet. As explained in [61], it is compatible with (0, 4) SUSY to have

the single left handed fermion of the (0, 2) Fermi multiplet.

The couplings between these multiplets and the constraints on some of them determine the

interactions. These can be derived from a superpotential. See [60]–[62] for the details.

In a similar vein one can write the N = (4, 4) SUSY field content in terms of N = (0, 4)

fields. Notice that in both (0, 4) hypers, we have right handed fermions and in the (0, 4)

vector multiplet left handed ones. In fact, a (4, 4) vector multiplet contains a (0, 4) vector

multiplet and a (0, 4) twisted-hypermultiplet (this is: a vector, a Fermi and two chirals of
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(0,2) SUSY). A N = (4, 4) hypermultiplet contains a (0, 4) hypermultiplet and a (0, 4)

Fermi multiplet, hence containing two Fermi and two chiral multiplets of (0, 2) SUSY.

The R-symmetry of N = (0, 4) field theories is SU(2)L×SU(2)R. We single out a U(1)R
inside SU(2)R and quote the U(1)R charge of each fermion in the above multiplets. This

will be used below to calculate the anomaly of the global R-symmetry. See equation (3.13)

in the paper [63] for the same charge assignment.

For the (0, 4) vector multiplet we have that the left handed fermion inside the vector

has R[λv−] = 0 while the left handed fermion inside the Fermi multiplet has R[λf−] = 1.

Similarly, for the (0, 4) twisted hypermultiplet we have that for both right handed fermions

R[ψ̃a+] = 0. For both right handed fermions inside the (0, 4) hypermultiplet we have

R[ψa+] = −1. Finally, the fermion inside the (0, 2) Fermi multiplet (allowed in theories

with (0, 4) SUSY) is such that R[λf−] = 0.

Now, we explore the condition for cancellation of gauge anomalies.

3.2 Anomaly cancellation

We are dealing with chiral theories. Their consistency requires one to be careful with the

field content, so that gauge anomalies are vanishing. In this work we only need to use that

the anomaly of a (gauged or global) non-Abelian symmetry is given by the correlator of the

symmetry currents, < JAµ (x)JBν (x) >∼ kδA,Bδµν . Notice that there is no mixing between

non-Abelian currents. On the other hand, Abelian currents can mix. The coefficient k is

calculated by computing Tr[γ3JSU(N)JSU(N)]. This should be read as the difference between

the right handed fermions times their charge squared and the left handed fermions times

their charge squared. Let us study in detail the contribution to the SU(N) anomaly coming

from the various N = (0, 2) multiplets mentioned above:

• Chiral multiplets. If they are in the adjoint representation of the symmetry group

SU(N), they contribute with a factor N . If they transform in the (anti) fundamental,

they contribute with a factor 1
2 .

• Fermi multiplets. If they are in the adjoint representation of the symmetry group

SU(N), they contribute with a factor −N . If they transform in the (anti) fundamen-

tal, they contribute with a factor −1
2 .

• Vector multiplets. They are in the adjoint representation of the symmetry group

SU(N). They contribute with a factor −N .

3.3 Building block of our theories

Let us discuss now what will be the ‘building block’ of our quantum field theories. See

figure 2. We have an SU(N) gauge group. In the gauge group the matter content is that

of a (4, 4) vector multiplet, namely — in (0, 2) notation, a vector, two twisted chirals and

a Fermi multiplet in the adjoint representation of SU(N). This gauge group is joined with

other (gauged of global) symmetry groups SU(P̂ ), SU(R) and SU(Q). The connection with

the SU(P̂ ) symmetry group is mediated by (4, 4) hypers. In (0, 2) notation, 2×N×P̂ Fermi

multiplets and 2 × N × P̂ chiral multiplets run over the black solid line. The connection
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Figure 2. The building block of our theories. The solid black line represents a (4, 4) hypermultiplet.

The grey line represents a (0, 4) hypermultiplet. The dashed line represents a (0, 2) Fermi multiplet.

Inside the gauge group SU(N) run (4, 4) SUSY vector multiplets. The groups SU(P̂ ), SU(Q) and

SU(R) can be gauge or global.

with the SU(R) symmetry group is via (0, 4) hypermultiplets. In (0, 2) notation 2×N ×R
chiral multiplets propagate over the grey lines. Finally, over the dashed line run N × Q
Fermi multiplets in (0, 2) notation. Notice that a similar (but not the same!) field content

to this was proposed in [41], in the study of the field theories associated with tensionless

strings in N = (0, 1) six-dimensional SCFTs.

Let us now calculate the anomaly of the gauged SU(N) symmetry group and impose

that it vanish. We focus only on the gauged SU(N) group, but a similar job should be

done for all other gauged symmetry groups. Let us spell the various contributions:

• The contribution of the adjoint fields is 2N − N − N = 0. This is expected, as the

field content is that of a (4, 4) vector multiplet.

• The contribution of the bifundamentals connecting with SU(P̂ ) is (1
2 −

1
2)2P̂N = 0.

Again, this vanishing contribution is expected as we are dealing with (4, 4) hypers.

• The link with the symmetry SU(R) contributes a factor 2×N ×R× 1
2 = NR.

• Finally the bifundamentals running on the link with the SU(Q) symmetry group

contribute −1
2NQ.

Thus, in order to have a non anomalous gauged symmetry we need to impose that the four

contributions above add to zero, that is

2R = Q . (3.1)

This mechanism should apply to all other gauged symmetry groups. When we construct our

gauge theories, they will be represented by quivers obtained by ‘assembling’ the building

blocks of figure 2.

3.4 U(1) R-symmetry anomaly

It is instructive to compute the R-symmetry anomaly for our ‘building block’. Once again,

we focus the attention on the SU(N) gauge group. We use the values for the U(1)R
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charges quoted near the end of section 3.1. We find that the U(1)R anomaly, following

from Tr[γ3Q
2
i ] is given by the sum of various contributions. In detail, we have,

• For the fields in the adjoint of the SU(N) gauge group, the only contribution is

from the fermions inside the Fermi multiplet (all the other fermions have zero U(1)R
charge). The contribution of these particular left handed fermions is −(N2−1). This

coincides with (minus) the number of (0, 4) vector multiples in SU(N).

• The contribution from the bifundamentals joining SU(N) with SU(P̂ ) is N× P̂ . This

is the number of (0, 4) hypermultiplets in that link.

• The contribution coming from the fields running over the grey line, joining SU(N)

with SU(R), is N × R, once again, counting the number of (0, 4) hypers running on

the link.

• Finally, the fields running over the dashed line do not contribute as the R-charge of

the left handed fermion is zero, as we discussed above.

In summary, we find that

Tr[γ3Q
2
i ] ∼ (nhyp − nvec). (3.2)

Thus, the R-symmetry anomaly is proportional to the number of (0, 4) hypers minus the

number of (0, 4) vectors.

3.5 Central charge, R-anomaly and the superconformal algebra

Up to this point, we have found the condition for our building block to be non-anomalous,

see (3.1), and the contribution of the matter charged under SU(N) to the U(1)R anomaly,

see (3.2). If the theory becomes conformal and strongly coupled — as we shall propose

our quivers do when flowing to low energies — the coefficients for the anomalies cannot be

computed by summing over fermions at the conformal point (as we do not have a particle-

like description of the CFT). But since these coefficients are ‘t Hooft anomalies, they are

invariants under RG-flow. Hence UV-QFT calculations are good for the same IR-CFT

quantity (we are assuming that the proposed R-symmetry does not mix in the IR with

other Abelian symmetries). We propose that our quivers become conformal in the IR and

then the central charge of the quiver and the R-symmetry anomaly get related by the

superconformal algebra.

In our case the relevant superconformal algebra is the small N = (0, 4) algebra. This

consists of eight operators: the energy momentum tensor T (z), four fermionic superpartners

Ga(z) and three Kac-Moody currents J i(z). The dimensions of these operators are (2, 3
2 , 1)

respectively. The modes of these operators satisfy an algebra that can be derived from the

OPE’s of the small N = (0, 4) algebra. In particular among the various relations we have,

T (z)T (0) ∼ c

z4
+ 2

T (0)

z2
+
∂T

z
+ regular, J i(z)J l(0) ∼ kil

z2
+ regular.
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A relation between c and kil = kδil appears by virtue of the algebra of (anti) commutators.

The relation is that c = 6× k. In other words, for our building block

c = 6(nhyp − nvec). (3.3)

This relation — also derived in [63], is of importance to us. Let us briefly discuss it, as

well as the proposed duality and its implications.

3.6 The proposed duality

In what follows we shall define N = (0, 4) SUSY quiver field theories. These quivers

will consist of colour and flavour groups joined by hypermultiplets or N = (0, 2) Fermi

multiplets as indicated in our building block. We must be careful to have all anomalies of

gauged groups vanishing. We will also calculate the R-symmetry anomaly and the ‘central

charge’ via the relation in (3.3).5 The calculation will be performed in the weakly coupled

description of the field theory, in the UV before the conformal point is attained. But as we

mentioned, these are ‘t Hooft coefficients, hence invariants of the RG flow. Importantly,

we assume that there is no mixing between the R-symmetry and other global symmetries.

If such mixing were to exist, an extremisation procedure like the one devised in [65, 66]

would be needed. It would be nice to prove that for our quivers there is no mixing between

the R-symmetry and other global symmetries. As a plausible argument for the non-mixing,

notice that the non-Abelian R-symmetry SU(2) cannot mix with U(1) global symmetries

in two dimensions. There is no other non-Abelian global R-symmetry to mix with. Let us

then focus on the end of the RG flow to low energies.

As advanced, we propose that our quivers flow to a strongly coupled CFT with

N = (0, 4) SUSY and central charge given by (3.3), as enforced by the superconformal

algebra. The second part of our proposal is that the holographic backgrounds are dual to

these CFTs. The holographic central charge calculated in (2.27) should coincide with the

result of (3.3), in the case of long quivers with large ranks (as this is the regime in which

we can trust the supergravity solutions).

Another check of our proposal will be the matching of global symmetries on both sides

of the duality. In fact the SCFTs have SO(2, 2) space-time and SU(2) R-symmetries. The

backgrounds in (2.4) match these with the isometries of AdS3 and S2 respectively. Also

eight supercharges are preserved both by the CFT and the background. Indeed, there

are four space-time (Q’s) and four conformal (S’s) supercharges. More interestingly, the

flavour symmetries of the SCFT are matched by the presence of ‘flavour branes’ in the

background (giving place to Bianchi identities modified by the presence of sources). The

counting of Page charges also coincides with the ranks of the colour and flavour groups,

or, analogously, with the numbers of (D2,D6) colour branes and (D4,D8) flavour branes in

the associated Hanany-Witten brane set-ups.

Let us be more concrete. A generic background of the form in (2.4) is defined by the

functions ĥ4, h8, u. In the type of solutions we consider in this paper (those where the

5Strictly speaking, we should not call this quantity central charge as (in the UV) we are not at a fixed

point of the RG flow. The relation in (3.3) is only valid at the fixed point.
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β0 + β1 β0 + β1 + β2 αK

ν0 + ν1 ν0 + ν1 + ν2 µK

β0

ν0

F0 F1 F2 FK−1

F̃0 F̃1 F̃2 F̃K−1

Figure 3. A generic quiver field theory whose IR is dual to the holographic background defined by

the functions in (3.4)–(3.5). As before, the solid black line represents a (4, 4) hypermultiplet. The

grey line represents a (0, 4) hypermultiplet and the dashed line represents a (0, 2) Fermi multiplet.

N = (4, 4) vector multiplets are the degrees of freedom in each gauged node.

space ends at ρ∗ = 2π(P + 1), where we have ĥ4(ρ∗) = h8(ρ∗) = 0), we generically have —

see (2.7)–(2.8) and (2.13),

ĥ4(ρ) = Υh4(ρ) = Υ



β0
2πρ 0≤ ρ≤ 2π

β0+ β1
2π (ρ−2π) 2π≤ ρ≤ 4π

(β0+β1)+ β2
2π (ρ−4π) 4π≤ ρ≤ 6π

(β0+β1+. . .+βk−1)+ βk
2π (ρ−2πk) 2πk≤ ρ≤ 2π(k+1), k := 3, . . . ,P−1

αP− αP
2π (ρ−2πP ) 2πP ≤ ρ≤ 2π(P+1).

(3.4)

h8(ρ) =



ν0
2πρ 0≤ ρ≤ 2π

ν0+ ν1
2π (ρ−2π) 2π≤ ρ≤ 4π

(ν0+ν1)+ ν2
2π (ρ−4π) 4π≤ ρ≤ 6π

(ν0+ν1+. . .+νk−1)+ νk
2π (ρ−2πk) 2πk≤ ρ≤ 2π(k+1), k := 3, . . . ,P−1

µP− µP
2π (ρ−2πP ) 2πP ≤ ρ≤ 2π(P+1).

(3.5)

and

u =
b0
2π
ρ.

The background in (2.4) for the functions ĥ4, h8, u above is dual to the CFT describing the

low energy dynamics of a two dimensional quantum field theory encoded by the quiver in

figure 3 and the Hanany-Witten set-up of figure 4.

Let us see how the correspondence works. For the first two gauge groups SU(ν0) and

SU(β0), the cancellation of gauge anomalies in (3.1) implies that,

F0 + ν0 + ν1 = 2ν0 → F0 = ν0 − ν1, F̃0 + β0 + β1 = 2β0 → F̃0 = β0 − β1. (3.6)

This is precisely the number of flavour D8 and D4 branes predicted by the Bianchi identities

in the interval [0, 2π] — see (2.22) for k = 1. Similarly, the ranks of the first two gauge
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ν0D6

β0D2

F0D8 F1D8 F2D8 FPD8

F̃0D4 F̃1D4 F̃2D4 F̃PD4

(β0 + β1)D2

(ν0 + ν1)D6 (ν0 + ν1 + ν2)D6

(β0 + β1 + β2)D2 αPD2

µPD6

NS1 NS2 NS3 NS4 NSP NSP+1

Figure 4. Hanany-Witten set-up associated with our generic quiver in figure 3. The vertical lines

denote NS five branes, horizontal lines D2 and D6 colour branes. The crosses, D4 and D8 flavour

branes.

groups, namely β0 and ν0, are precisely the numbers of D2 and D6 colour branes predicted

by eq. (2.23) in the first interval (for k = 1).

This works similarly for all other entries in the quiver. For example, for the SU(αk)

colour group, we obtain that in the interval [2π(k−1), 2πk] of the associated Hanany-Witten

set up in figure 4, there are αk D2 branes, with

αk =
k−1∑
j=0

βj .

The cancellation of gauge anomalies for the SU(αk) gauge group imposes that,

Fk−1 + µk+1 + µk−1 = 2µk → Fk−1 = νk−1 − νk, (3.7)

which, according to (2.22), is precisely the number of flavour D8 branes in the [2π(k−1), 2πk]

interval of the brane set-up. Things work analogously if we replace D2 for D6 (or αk → µk)

and D8 for D4 (νk → βk) and deal with the lower-row gauge group SU(µk).

We can calculate the field theory central charge by counting the number of (0, 4)

hypermultiplets, the number of (0, 4) vector multiplets and using (3.3). We find,

nvec =

P∑
j=1

(
α2
j + µ2

j − 2
)
, nhyp =

P∑
j=1

αjµj +

P−1∑
j=1

(
αjαj+1 + µjµj+1

)
,

c = 6×

 P∑
j=1

(
αjµj − α2

j − µ2
j + 2

)
+

P−1∑
j=1

(
αjαj+1 + µjµj+1

) . (3.8)

When the number of nodes is large P � 1, and the ranks of each gauge group αi, µi are large

numbers, the supergravity backgrounds are trustable and the holographic central charge

calculated according to (2.27) should coincide at leading order in these large parameters

with (3.8).

For pedagogical purposes, in the next section we present some explicit examples (in

increasing level of complexity) of quiver-supergravity dual pairs. We shall check the can-

cellation of gauge anomalies and the leading order matching of (2.27) and (3.8).
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Figure 5. The quiver encoding our first example of quantum field theory. The conventions for the

fields running along the different lines are the same as those in section 3.

4 Various checks of our proposed duality

In this section we discuss various examples of dual holographic pairs. We check anomaly

cancellation and the leading order matching of the CFT and holographic central charges.

We start from the simplest possible example of a quiver field theory flowing to a supercon-

formal N = (0, 4) SCFT that admits a viable supergravity dual, and move on to examples

of increasing complexity. These will provide stringent checks of our proposal.6

4.1 Example I

Consider the quiver of figure 5, where we depict P gauge groups SU(ν) and P gauge

groups SU(β). They are joined by bifundamentals, all complemented by flavour groups

(rectangular boxes). This quiver encodes the kinematical content of our first field theory.

We propose that this QFT flows in the IR to a CFT. Let us focus on the first gauge group

of the top row, SU(ν). We compare with our building block in figure 2 to find that,

P̂ = ν, Q = 2β, R = β. (4.1)

This is precisely what our formula (3.1) requires for the cancellation of the SU(ν) gauge

anomaly. For the first SU(β) gauge group in the lower row, we have P̂ = β,Q = 2ν,R = ν

and (3.1) is also satisfied.

Similarly, one can calculate for the top and bottom gauge groups at the right end of the

figure and check that all of them satisfy (3.1). Finally, for any intermediate SU(ν)-node,

we have P̂ = ν, Q = 2β, R = β. Analogous statements hold true for the lower row groups.

Hence all of the gauge symmetries are non-anomalous.

We can now calculate the number of (0, 4) hypermultiplets and vector multiplets with

a view on computing the central charge of the IR CFT. We find,

nvec = P (ν2 + β2 − 2), nhyp = (P − 1)(ν2 + β2) + Pνβ.

c = 6(nhyp − nvec) = 6νβP

(
1 +

2

βν
− β

νP
− ν

βP

)
∼ 6νβP. (4.2)

In the last approximation we used that the ranks are large numbers (ν, β) → ∞ and that

the quiver is long enough, hence P � 1, to meaningfully compare with the dual massive

IIA solution.
6In the examples that follow we write the function h4(ρ). As discussed above, the function that appears

in the background is ĥ4 = Υh4. The value ΥVol(CY2) = 16π4 is used to have well quantised charges in

terms of the integer numbers (αk, βk, µk, νk).

– 19 –



J
H
E
P
0
1
(
2
0
2
0
)
1
4
0

The holographic background dual to this CFT is given in terms of the functions u = b0
2πρ

and

h8(ρ) =


ν
2πρ 0 ≤ ρ ≤ 2π

ν 2π ≤ ρ ≤ 2πP
ν
2π (2π(P + 1)− ρ) 2πP ≤ ρ ≤ 2π(P + 1).

(4.3)

h4(ρ) =


β
2πρ 0 ≤ ρ ≤ 2π

β 2π ≤ ρ ≤ 2πP
β
2π (2π(P + 1)− ρ) 2πP ≤ ρ ≤ 2π(P + 1).

(4.4)

The holographic central charge is found by the simple calculation in (2.27),

chol =
3

π

(∫ 2π

0

βν

4π2
ρ2dρ+

∫ 2πP

2π
βνdρ+

∫ 2π(P+1)

2πP

βν

4π2
(2π(P + 1)− ρ)2dρ

)

chol = 6βνP

(
1− 1

3P

)
∼ 6Pβν. (4.5)

This coincides with the field theoretical result in (4.2). Finally, notice that the number

of D4 and D8 flavour branes, dictated by (2.22), precisely provide the flavour symmetries

at the beginning and end of the quiver. One finds the same by inspecting (2.23) for the

number of colour branes, coinciding with the ranks of the gauge groups of our quiver.

4.2 Example II

Let us slightly complicate our previous example. We consider now a quiver with two rows

of linearly increasing colour groups. These two rows are finished after P nodes by the

addition of a flavour group for each row. See figure 6. This type of quivers can be used as

a completion of the background obtained via the application of non-Abelian T-duality on

AdS3×S3×CY2, inspired by the treatments in [67]–[70]. See [51] for a careful discussion

of this. The anomalies of each of the gauge groups can be easily seen to vanish. In fact,

for any of the intermediate gauge nodes, say SU(kν) and referring to our building block

in figure 2, we have Q = 2kβ,R = kβ. This implies that (3.1) is satisfied and a generic

intermediate gauge group is not anomalous. If we refer to the last gauge group in the

upper-row SU(Pν) we have that Q = (P + 1)β + (P − 1)β = 2Pβ and R = Pβ. As a

consequence (3.1) is satisfied and the gauged group SU(Pν) is not anomalous. The same

occurs for the lower-row gauge groups.

We can easily count the number of (0, 4) hypers and the number of (0, 4) vector

multiplets,

nvec =

P∑
j=1

(
j2(ν2 + β2)− 2

)
, nhyp =

P−1∑
j=1

j(j + 1)(ν2 + β2) +

P∑
j=1

j2νβ. (4.6)

The central charge of the IR CFT is,

c = 6(nhyp − nvec)

= 6νβ

(
P 3

3
+
P 2

2
+
P

6

)
− 3(ν2 + β2)(P 2 + P ) + 12P ∼ 2νβP 3. (4.7)
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Figure 6. The quiver encoding our second example. There are P gauged nodes with increasing

rank in each row. The conventions for the fields running along the different lines are the same as

those in section 3.

The holographic description of this system is in terms of the functions,

h8(ρ) =

{
ν
2πρ 0 ≤ ρ ≤ 2πP

νP
2π (2π(P + 1)− ρ) 2πP ≤ ρ ≤ 2π(P + 1).

(4.8)

h4(ρ) =

{
β
2πρ 0 ≤ ρ ≤ 2πP

βP
2π (2π(P + 1)− ρ) 2πP ≤ ρ ≤ 2π(P + 1).

(4.9)

Using (2.27), we calculate the holographic central charge,

chol =
3

π

(
βν

4π2

)(∫ 2πP

0
ρ2dρ+

∫ 2π(P+1)

2πP
P 2(2π(P+1)−ρ)2dρ

)
= 2νβP 3

(
1+

1

P

)
∼ 2νβP 3.

(4.10)

Again, we observe that in the limit of a long quiver, there is matching for the central charge

in the CFT — see (4.7), with that of the dual description — see (4.10).

Let us now discuss a more involved example, providing us with a much stringent check

of our proposed duality.

4.3 Example III

In this case we consider the more involved field theory encoded by the quiver in figure 7.

In this quiver we have a line of linearly increasing nodes SU(ν)×SU(2ν)×. . .×SU(Kν)

followed by q × SU(Kν) nodes. The gauge groups SU(Gl) have ranks

Gl = Kν

(
1− l

P + 1−K − q

)
, l = 1, . . . , P −K − q. (4.11)

For the lower row we have analogous kinematics: Linearly increasing ranks SU(β) ×
SU(2β) × . . . × SU(Kβ), followed by q × SU(Kβ) nodes. The gauge groups SU(G̃l)

have ranks,

G̃l = Kβ

(
1− l

P + 1−K − q

)
, l = 1, . . . , P −K − q. (4.12)

Let us analyse anomalies for the upper row groups (the lower row ones work anal-

ogously). The linearly increasing chain is non-anomalous like our previous example in

section 4.2 was. Namely, for a generic SU(jν) node, we have Q = 2jβ and R = jβ.

The chain of q SU(Kν) groups works exactly as any intermediate group in section 4.1,

namely for any generic (intermediate) node we have Q = 2Kβ andR = Kβ, satisfying (3.1).
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Figure 7. The quiver encoding our third example. There are K gauged nodes with linearly

increasing ranks in each row. These are followed by q − SU(Kν) (top row) and q − SU(Kβ) nodes

(lower row). The ranks of the next SU(Gi) and SU(G̃i) nodes is given in the text. The conventions

for the fields running along the different lines are the same as those in section 3.

More interesting are the first and last of these q-nodes. For the first node we have

Q = F1 + (K − 1)β +Kβ and R = Kβ. Observe that (3.1) forces

F1 = β.

For the last of these q-nodes we have Q = Kβ+ G̃1 +F2 and R = Kβ. Then the vanishing

of the gauge anomaly forces

F2 =
Kβ

P + 1−K − q
.

For any generic group SU(Gi) we have Q = G̃i−1 + G̃i+1 and R = G̃i. Using (4.12) we find

that Q = 2R as imposed in (3.1) for the vanishing of the gauge anomalies.

Analogously, for the lower row groups, we find that the vanishing of the gauge anomalies

imposes

F̃1 = ν, F̃2 =
Kν

P + 1−K − q
. (4.13)

To calculate the CFT central charge we need to compute the number of (0, 4) hypers and

vectors. We find

nvec =

K∑
j=1

(
j2(ν2 + β2)− 2

)
+ q(K2(ν2 + β2)− 2)

+

P−K−q∑
j=1

(
K2(ν2 + β2)

(
1− j

P + 1−K − q

)2

− 2

)
,

nhyp =
K−1∑
j=1

j(j + 1)(ν2 + β2) +
K∑
j=1

j2βν +K2q(ν2 + β2 + βν)

+

P−K−q−1∑
j=0

K2(β2 + ν2)

(
1− j

P + 1−K − q

)(
1− j + 1

P + 1−K − q

)

+

P−K−q∑
j=1

K2βν

(
1− j

P + 1−K − q

)2

. (4.14)
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The field theory central charge is after a lengthy calculation,

c = 6(nhyp − nvec)

∼


2βνK2P + 12P +O(1, 1/P ), if P � 1,

4βνK2q +O(1, 1/q), if q � 1,

2βνK2(1 + 2q + P ) +O(1, 1/K), if K � 1.

(4.15)

We have expanded the exact result for the three possible ways in which the quiver may be

considered to be ‘long’. We also need to take (ν, β) to be large numbers.

Now, let us compare with the holographic description. The functions h4 and h8 for

this case read,

h8(ρ) =


ν
2πρ 0 ≤ ρ ≤ 2πK

νK 2πK ≤ ρ ≤ 2π(K + q)
νK

2π(P+1−K−q)(2π(P + 1)− ρ) 2π(K + q) ≤ ρ ≤ 2π(P + 1).

(4.16)

h4(ρ) =


β
2πρ 0 ≤ ρ ≤ 2πk

βK 2πK ≤ ρ ≤ 2π(K + q)
βK

2π(P+1−K−q)(2π(P + 1)− ρ) 2π(K + q) ≤ ρ ≤ 2π(P + 1).

(4.17)

The holographic central charge is given by (2.27), that after some algebra yields

chol = 2βνK2(P + 2q + 1) =


2βνK2P if P � 1

4νβK2q if q � 1

2βνK2(P + 2q + 1) if K � 1.

(4.18)

The comparison with (4.15) shows that this is a very stringent check of our proposal.

Finally, the reader can check, using (2.22), that the numbers of flavour D8 and D4

branes coincide with the numbers F1, F2 and F̃1, F̃2 quoted above — see (4.13). The same

happens with the gauge groups and the numbers of D2 and D6 branes in the associated

brane set-up calculated using (2.23), and comparing with (4.11)), (4.12).

Let us now study a qualitatively different example. It will raise a puzzle with an

instructive resolution.

4.4 Example IV: a puzzle and its resolution

Qualitatively, the QFTs discussed above share the fact that the lower row gauge groups

‘mirror’ the behaviour of the upper row ones. The groups both grow, stabilise and decrease

at the same points. It is interesting to consider an example for which this is not the case.

Let us consider the quiver in figure 8.

We can easily calculate the number of (0, 4) hypermultiplets, vector multiplets and the

central charge,

nvec = P (β2 − 1) +

P∑
j=1

(
j2ν2 − 1

)
, nhyp =

P∑
j=1

jβν +

P−1∑
j=1

j(j + 1)ν2 + β2(P − 1),

c = 3P 2(βν − ν2) + (12 + 3βν − 3ν2)P − 6β2. (4.19)
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Figure 8. The quiver encoding our fourth example. The conventions for the fields running along

the different lines are the same as those in section 3.

We can anticipate troubles with the holographic description. Indeed, if we were to take

ν > β and large P , we could get a negative central charge.

Let us write the functions h4, h8 describing holographically the IR dynamics of this

quiver (as usual u = b0
2πρ),

h8(ρ) =

{
ν
2πρ 0 ≤ ρ ≤ 2πP

νP
2π (2π(P + 1)− ρ) 2πP ≤ ρ ≤ 2π(P + 1).

(4.20)

h4(ρ) =


β
2πρ 0 ≤ ρ ≤ 2π

β 2π ≤ ρ ≤ 2πP
β
2π (2π(P + 1)− ρ) 2πP ≤ ρ ≤ 2π(P + 1).

(4.21)

The holographic central charge is calculated using (2.27). After some algebra this results in,

chol = 3P 2βν

(
1 +

2

3P
− 1

3P 2

)
∼ 3P 2βν. (4.22)

Comparing the expressions for the field theoretical and holographic central charges

in (4.19), (4.22), we see a mismatch if we keep the leading order in P, ν, β. This raises a

puzzle. The resolution to this puzzle is given by (2.15). The last interval of the functions

h4, h8 in this example is written as

hP,P+1
4 =

αP
2π

(2π(P + 1)− ρ), αP = β,

hP,P+1
8 =

µP
2π

(2π(P + 1)− ρ), µP = Pν.

Using (2.15), this implies that the CY2 space is of sub-stringy size, for large P . This

invalidates the supergravity solution which does not include the dynamics of massless

states due to strings or branes wrapping the CY2 — see the comment below (2.15). The

way out of this puzzle is to decouple these light states (by making them heavy and hence

the supergravity solution valid). To do this, one must scale β ∼ β̂×P . Then, both the field

theoretical and the holographic central charges in (4.19), (4.22) coincide to c ∼ 3β̂νP 3.

We close this section here. A more involved example is discussed in appendix C.
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5 Conclusions

This paper presents a new entry in the mapping between SCFTs and AdS-supergravity

backgrounds, for the particular case of two-dimensional small N = (0, 4) SCFTs and

backgrounds with AdS3×S2 factors. The most general solutions of this type that support

an SU(2)-structure on the internal space were recently classified in [47].

We have constructed new solutions of the type AdS3×S2×CY2, belonging to class

I in the classification in [47], with compact CY2, whose defining functions are piecewise

continuous. We elaborated on their regime of validity and on various general aspects of their

mapping with SCFTs. In particular, we matched the background isometries and the global

symmetries (both space-time and flavour) of the SCFTs. We computed Page charges and

put them in correspondence with the putative colour and flavour branes in the Hanany-

Witten set-ups associated to our SCFTs. The CFTs are defined as the IR limit of UV

well-behaved long quivers with (0, 4) SUSY, that generalise 2-d (0,4) quivers previously

discussed in the literature — see [41, 49]. Our (0, 4) quivers consist of two families of

(4, 4) quivers coupled by (0, 4) and (0, 2) matter fields. The (4, 4) quivers are associated

to D2-NS5-D4 and D6-NS5-D8 brane systems, the latter wrapped on the CY2, which by

themselves do not give rise to 2d CFTs in the IR. Our work shows that the coupling

between the two families of quivers through matter fields that reduce the supersymmetry

to (0, 4) renders a 2d CFT in the IR, which admits an AdS3 dual. After presenting our

proposed duality we discussed a number of examples of increasing complexity that together

constitute a stringent test of our proposal. These examples exhibit perfect agreement

between the holographic and field theoretical central charges (in the regime where both

descriptions are valid), gauge-anomaly cancellation and matching between isometries and

‘flavour’ symmetries on both sides of the duality.

It is clear that this paper just scratches the surface of a rich line of work. In the

forthcoming paper [51] we will apply the developments in this paper to (among other

things) construct a symmetric solution that can be thought of as a completion of the

background obtained via non-Abelian T-duality on AdS3×S3×CY2. Indeed, non-Abelian

T-duality has been one of the inspirations of the exhaustive classification presented in [47],

and further discussed in this work. This classification provides one more example that

shows the huge impact of non-Abelian T-duality as a solution generating technique in

supergravity — see for example [71]–[77]. One can speculate that an approach similar to

the one in [47] can be used to classify generic backgrounds in different dimensions and with

different amounts of SUSY from particular solutions generated through this technique.

More related to the present paper a number of interesting problems can be tackled.

For example, operators of spin two have been studied in correspondence with certain fluc-

tuations of the background metric [78, 79]. It would be interesting to study the analog

operators in our CFTs. Similarly, long operators like those in [18] should exist in our

CFTs and their associated backgrounds. An obvious open problem is to discuss the CFTs

dual to the solutions terminated by the two types of boundary conditions discussed in

section 2, not tackled in this paper. In the same vein, it would be interesting to explore

the CFT duals of the solutions referred as class II in [47], where the CY2 is replaced by a
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4-d Kahler manifold. It would be nice to explore other tests and (more interestingly) find

predictions of our proposed duality. The richness of the 2-d SCFTs suggests that stringy

tests and mappings along the lines of [80]–[85] should be possible. We hope to report on

these projects soon.
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A Continuity of the NS sector of our solutions

In this section we study the conditions imposed by the continuity of the NS-sector, on

the constants (ak, bk, αk, βk, µk, νk) defining our solutions in section 2.1. In particular, we

consider solutions that in the interval [2πk, 2π(k + 1)] are given by,

ĥ
(k)
4 = Υ

(
αk +

βk
2π

(ρ− 2πk)

)
, h

(k)
8 = µk +

νk
2π

(ρ− 2πk), u(k) = ak +
bk
2π

(ρ− 2πk).

(A.1)

Below, we quote the value of each component of the metric, e−4Φ and B2-field when cal-

culated at the point ρ = 2π(k + 1) in terms of the general decomposition

ds2 = e2Ads2(AdS3) + e2Cds2(S2) + e2Dds2(CY2) + e−2Adρ2, B = B0vol(S2). (A.2)

If using the solution in (A.1) we denote them with a superscript −. Then, we calculate the

NS quantities at the same point ρ = 2π(k + 1), but using the solution in the next interval

(with αk → αk+1, etc), we denote this with a supra-index +. Imposing the continuity

of each element of the metric and other NS fields, we find conditions for the numbers

(ak, bk, αk, βk, µk, νk).
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In more detail, we find,

e2A−
=

(ak+bk)√
Υ(αk+βk)(µk+νk)

, e2A+
=

ak+1√
Υαk+1µk+1

. (A.3)

e2D−
=

√
Υ(αk+βk)

(µk+νk)
, e2D+

=

√
Υαk+1

µk+1
.

e2C−
= 4π2 (ak+bk)

√
Υ(αk+βk)(µk+νk)

b2k+16π2Υ(αk+βk)(µk+νk)
, e2C+

= 4π2 ak+1

√
Υαk+1µk+1

b2k+1+16π2Υαk+1µk+1
.

e−4Φ−
=

(µk+νk)
3
[
b2k+16π2Υ(αk+βk)(µk+νk)

]2
256π4Υ(αk+βk)(ak+bk)2

,

e−4Φ+
=

(µk+1)3
[
b2k+1+16π2Υαk+1µk+1

]2
256π4Υαk+1(ak+1)2

.

B−0
π

=
akbk−16π2Υ(αk+βk)(µk+νk)

b2k+16π2Υ(αk+βk)(µk+νk)
,

B+
0

π
=
ak+1bk+1−b2k+1−16π2Υαk+1µk+1

b2k+1+16π2Υαk+1µk+1
.

Continuity across ρ = 2π(k+ 1) imposes the matching of the analog quantities above. One

possible solution is,

ak+1 = ak + bk, bk = bk+1 = b0, αk+1 = αk + βk, µk+1 = µk + νk. (A.4)

These are precisely the same conditions that result from imposing the continuity of ĥ4, h8, u

across each interval. Notice that (A.4) is equivalent to (2.10).

B A general analysis of Bianchi identities and counting branes in our

Hanany-Witten set-ups

In this appendix we study the charges of D2 and D6 branes induced on D8 and D4 flavour

branes. We finish by presenting expressions to calculate the total number of D8, D6, D4

and D2 branes in a generic Hanany-Witten set-up.

As in the main body of the paper, we denote by fp the magnetic part of the form Fp
and with f̂p the magnetic part of the Page field strength F̂p = F ∧ e−B2 . In the presence

of N4 D4 and N8 D8 branes on which we switch a gauge field strength f̃2 and form the

combination F2 = B2 + 2πf̃2. The Bianchi identities read,

dF0 =
N8

2π
δ(ρ−ρ0)dρ, (B.1)

df2−H3F0 =
N8

2π
δ(ρ−ρ0)F2∧dρ,

df4−H3∧f2 = (2π)3N4δ(ρ−ρ0)δ4(~y−~y0)dρ∧d4~y+
1

2

N8

2π
δ(ρ−ρ0)F2∧F2∧dρ,

df6−H3∧f4 = (2π)3N4δ(ρ−ρ0)δ4(~y−~y0)F2∧dρ∧d4~y+
1

6

N8

2π
δ(ρ−ρ0)F2∧F2∧F2∧dρ.

The D8 branes are localised in the ρ-direction at the point ρ0, as indicated in the first line

of (B.1). The D4 branes are localised at ρ = ρ0 and at a point ~y0 inside the CY2 space

(we denote by d4~y = vol(CY2) its volume form).
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The explicit definition of the Page field strengths (we only quote the magnetic part

here) is,

f̂2 = f2 −B2F0, f̂4 = f4 −B2 ∧ f2 +
1

2
B2 ∧B2F0,

f̂6 = f6 −B2 ∧ f4 +
1

2
B2 ∧B2 ∧ f2 −

1

6
B2 ∧B2 ∧B2F0. (B.2)

Combining (B.1) with (B.2), we find

df̂2 = N8δ(ρ− ρ0)f̃2 ∧ dρ. (B.3)

In the case in which there is no gauge field switched on in the D8 branes, there is no

induced D6-brane charge, as implied by the first line in (2.21). Otherwise D6-flavour

charge is induced, as indicated by (B.3). A similar analysis shows that,

df̂4 = (2π)3N4δ(ρ− ρ0)δ4(~y − ~y0)dρ ∧ d4~y + 2πN8δ(ρ− ρ0)f̃2 ∧ f̃2 ∧ dρ. (B.4)

This indicates that D4 brane charge might originate from either localised D4 branes, or on

localised D8 branes with a gauge field strength f̃2 switched on, such that f̃2 ∧ f̃2 ∧ dρ is

non-zero. For our background, we have, consistently with (2.20)

df̂4 = (2π)3N4δ(ρ− ρ0)δ4(~y − ~y0)dρ ∧ d4~y. (B.5)

The analogous expression for f̂6 is obtained combining the expressions in (B.1)–(B.2),

df̂6 = (2π)4N4δ(ρ−ρ0)δ4(~y−~y0)f̃2∧dρ∧d4~y+
1

6
(2π)2N8δ(ρ−ρ0)f̃2∧f̃2∧f̃2∧dρ. (B.6)

We thus have df̂6 = 0, in agreement with (2.21).

To close this appendix, let us present simple expressions counting the total number of

D branes in the Hanany-Witten set-ups associated with our gauge theories and holographic

backgrounds. These formulas are similar to those derived in [11, 24] for CFTs in four and

six dimensions. They read,

N total
D8 = 2π

[
h′8(0)− h′8(2π(P + 1))

]
, N total

D4 = 2π
[
h′4(0)− h′4(2π(P + 1))

]
, (B.7)

N total
D6 =

1

2π

∫ 2π(P+1)

0
h8dρ, N total

D2 =
1

2π

∫ 2π(P+1)

0
h4dρ.

These can be successfully checked in all the examples in section 4 and in appendix C.

C A more stringent check of the duality

In this appendix we work out the details of a more complicated, generic and demanding

example, shown in figure 9. Extending the examples studied in the body of the paper, we

consider a quiver that starts with linearly increasing nodes. This is followed by q-nodes

with SU(Gl), SU(G̃l) gauge groups in the top and lower row respectively, where

Gl =
Ĝ0

q
l + νK

(
1− l

q

)
, G̃l =

Ĝ0

q
l + βK

(
1− l

q

)
, l = 1, . . . , q (C.1)
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β 2β Kβ

G1 G2 Ĝ0

G̃1 G̃2 Ĝ0

Ĝ1 Ĝ2

ĜP−K−q

Ĝ1 Ĝ2

ĜP−K−q

F1

F̃1

F2

F̃2

K nodes q nodes (P −K − q) nodes

Figure 9. A more complicated quiver with K linearly increasing rank nodes in each row, followed

by q nodes with SU(Gl) and SU(G̃l) gauge groups in the top and lower rows, respectively, and

ending with (P −K − q) nodes with SU(Ĝi) gauge groups in both rows.

Following them, there are (P −K − q) SU(Ĝl) gauge groups with ranks

Ĝi =
Ĝ0

P −K − q + 1
(P −K − q + 1− i), i = 1, . . . , (P −K − q) (C.2)

in both rows.

As in the examples studied in the main body of the paper, the gauge anomaly vanishes

in the linearly increasing rows. Following the logic of section 3, for the SU(Kν) node we

have Q = F1 + G̃1 + (K − 1)β and R = Kβ. A vanishing gauge anomaly for the SU(Kν)

node, see (3.1), forces

F1 = Kβ + β − G̃1 =
β

q
(K + q)− Ĝ0

q
. (C.3)

Similarly, for the SU(Kβ) node the condition is F̃1 = Kν + ν −G1 = ν
q (K + q)− Ĝ0

q .

For the next gauge group, SU(G1), we have the contibutions R = G̃1 and Q = Kβ+G̃2.

The gauge anomaly then implies 2G̃1 − G̃2 − Kβ = 0, which is true in virtue of (C.1).

For all SU(Gl) and SU(G̃l) gauge groups we also have a vanishing gauge anomaly. In the

SU(Ĝ0) gauge group — q-steps forward in the top row — the contributions are R = Ĝ0

and Q = F2 + G̃q−1 + Ĝ1, where (3.1) is satisfied whenever

F2 = 2Ĝ0 − Ĝ1 − G̃q−1 = Ĝ0

(
1

q
+

1

P + 1−K − q

)
− βK

q
. (C.4)

The same is true for the SU(Ĝ0) lower gauge group, in this case F̃2 = 2Ĝ0 − Ĝ1 −Gq−1 =

Ĝ0(1
q + 1

P+1−K−q )− νK
q . Considering (C.2), the gauge anomaly vanishes similarly for the

rest of the gauge groups.

To calculate the central charge we compute the number of (0, 4) hypers and vectors

nvec =

K∑
j=1

(
j2(ν2 + β2)− 2

)
+

q∑
j=1

(G2
j + G̃2

j − 2) +

P−K−q∑
j=1

2(Ĝ2
j − 1),

nhyp =

K∑
j=1

j2βν +

K−1∑
j=1

j(j + 1)(ν2 + β2) +

q∑
j=1

GjG̃j +

q−1∑
j=0

(GjGj+1 + G̃jG̃j+1)+

+

P−K−q∑
j=1

Ĝ2
j +

P−K−q−1∑
j=0

2ĜjĜj+1, (C.5)
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where for the number of hypers we are considering G0 = νK, G̃0 = βK and Ĝ0 = Gq = G̃q.

As in the previous examples, we are interested in the case of a long quiver. To leading

order the central charge, in the three possible limits, is

c = 6(nhyp − nvec)

=


2Ĝ2

0P + 12P +O(1, 1/P ), if P � 1,

(2νβK + (β + ν)Ĝ0)Kq +O(1, 1/q), if q � 1,

2βνK3 +O(1, 1/K), if K � 1.

(C.6)

Now, we can compare the result in (C.6) with the holographic central charge. The h8 and

h4-profiles are given by

h8(ρ) =


ν
2πρ 0 ≤ ρ ≤ 2πK

νK + Ĝ0−νK
2πq (ρ− 2πK) 2πK ≤ ρ ≤ 2π(K + q)

Ĝ0 − Ĝ0
2π(P−K−q+1)(ρ− 2π(K + q)) 2π(K + q) ≤ ρ ≤ 2π(P + 1).

(C.7)

h4(ρ) =


β
2πρ 0 ≤ ρ ≤ 2πK

βK + Ĝ0−βK
2πq (ρ− 2πK) 2πK ≤ ρ ≤ 2π(K + q)

Ĝ0 − Ĝ0
2π(P−K−q+1)(ρ− 2π(K + q)) 2π(K + q) ≤ ρ ≤ 2π(P + 1).

(C.8)

The holographic central charge, using (2.27), results into

chol = 2βνK2(K + q) + (β + ν)KqĜ0 − 2Ĝ2
0(K − P − 1)

=


2Ĝ2

0P if P � 1,

(2νβK + (β + ν)Ĝ0)Kq if q � 1

2βνK3 if K � 1.

(C.9)

We can then easily see that (C.9) is in complete agreement with the output of (C.6).
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Klebanov-Witten as a N = 1 linear quiver from M5-branes, JHEP 09 (2017) 038

[arXiv:1705.09661] [INSPIRE].

[70] Y. Lozano, N.T. Macpherson and J. Montero, AdS6 T-duals and type IIB AdS6 × S2

geometries with 7-branes, JHEP 01 (2019) 116 [arXiv:1810.08093] [INSPIRE].
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