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Abstract: We study the quantum complexity of time evolution in large-N chaotic sys-

tems, with the SYK model as our main example. This complexity is expected to increase

linearly for exponential time prior to saturating at its maximum value, and is related to

the length of minimal geodesics on the manifold of unitary operators that act on Hilbert

space. Using the Euler-Arnold formalism, we demonstrate that there is always a geodesic

between the identity and the time evolution operator e−iHt whose length grows linearly

with time. This geodesic is minimal until there is an obstruction to its minimality, after

which it can fail to be a minimum either locally or globally. We identify a criterion —

the Eigenstate Complexity Hypothesis (ECH) — which bounds the overlap between off-

diagonal energy eigenstate projectors and the k-local operators of the theory, and use it to

argue that the linear geodesic will at least be a local minimum for exponential time. We

show numerically that the large-N SYK model (which is chaotic) satisfies ECH and thus

has no local obstructions to linear growth of complexity for exponential time, as expected

from holographic duality. In contrast, we also study the case with N = 2 fermions (which

is integrable) and find short-time linear complexity growth followed by oscillations. Our

analysis relates complexity to familiar properties of physical theories like their spectra and

the structure of energy eigenstates and has implications for the hypothesized computational

complexity class separations PSPACE * BQP/poly and PSPACE * BQSUBEXP/subexp,

and the “fast-forwarding” of quantum Hamiltonians.
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1 Introduction

In recent years the late time dynamics of general relativity have been examined through

various lenses. Two of the most prominent directions in this subject deal with quantities

whose classical behavior cannot possibly continue to hold into the asymptotic future due

to fundamental quantum-mechanical obstructions. The first is the exponential decay of

a CFT two-point function computed using classical gravity in an AdS black hole, which

could break down at a time as early as t ∼ S (where S is the entropy of the black hole) as a

consequence of the unitarity of quantum mechanics [1]. The second is the linear growth of

the Einstein-Rosen bridge in the two-sided eternal AdS wormhole geometry, which led to a

conjecture relating bulk volume/action and boundary quantum circuit complexity [2, 3].1 If

this conjecture is correct, then the extrapolation of the gravity result to times beyond t ∼ eS
is expected to break down due to quantum effects in a finite-dimensional quantum gravity

1Here “circuit complexity” measures the minimum number of simple, perhaps locally acting, gates

necessary to construct a desired state or operator from a fixed reference.
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Hilbert subspace. Various studies of both quantum circuit complexity and correlation

function behavior have explored these observations [4, 5]. However, in the case of circuit

complexity, despite the plethora of analytic results from gravity calculations (see [6–15]

and references therein) assuming the volume/action conjecture, there has been little non-

perturbative progress towards a first principles calculation of circuit complexity in CFT. In

this paper, we seek to remedy this situation by studying the complexity of time evolution

with chaotic Hamiltonians (which are expected to have gravity duals), especially with an

eye towards the late-time behavior.

At present, the most accessible method to compute complexity in continuum quantum

systems is Nielsen’s geometric formulation [16–19].2 In this approach, the circuit complex-

ity of a unitary operator U is the length of the minimal geodesic on the unitary group

joining the identity to U . One begins by classifying the Lie algebra of the unitary group

into “local” or “easy” directions, represented by operators Tα, and “non-local” or “hard”

directions Tα̇. Typically, the local directions will consist of operators with less than k-body

interactions, for some k. One then picks a right-invariant metric on the group U with

the appropriate cost factors built in, such that motion along hard directions is disincen-

tivized. The geodesic length with such a metric was shown to be polynomially equivalent

to the usual notion of circuit complexity, which involves counting elementary unitary gates,

provided the cost factors are chosen to scale exponentially with the Hilbert space dimen-

sion [18]. Heuristically, one can think of the circuit as a sequence of gates which corresponds

to a sequence of geodesic segments on the unitary manifold; the geodesic in the geometric

framework is then an everywhere-smooth approximation to this piecewise-smooth curve

(figure 1). In this work, we will be interested in this geodesic notion of complexity.

This technique has been applied by various authors to compute complexity in several

physical systems [22–25] (see also [21, 26–36] for related work, particularly on time evolu-

tion of complexity). However, most applications so far have computed geodesics within a

subspace of states or circuits, instead of dealing with the entire unitary group manifold.

For instance, much recent work has focused on the subspace of Gaussian states, which

are relevant in the context of free quantum field theories. This is because in continuum

quantum-mechanical systems, the Hilbert space is often infinite-dimensional and it is diffi-

cult to define a tractable algebra of operators which generate the entire unitary group on

the Hilbert space. Prior work which attempted to deal with the global structure of the

unitary group relied on toy models [4, 37] of Lie group geometry. These models were con-

structed using metrics of strictly negative sectional curvature (or a discretization thereof, in

the case of [37]) in order to ensure chaotic behavior of geodesics on the unitary manifold [4].

Here, we approach the problem of circuit complexity by studying aspects of geodesics on

the complete group manifold SU(2N/2), which is the unitary group acting on the Hilbert

space of N/2 qubits. Our primary motivation is to study complexity growth in chaotic

quantum systems as opposed to free field theories. To this end, we will use the (gener-

alized) Sachdev-Ye-Kitaev (SYK) model as a specific example of a chaotic Hamiltonian,

although most of our arguments are general and should apply to any chaotic system.

2But see [20, 21] for proposed path integral approaches, which have not been shown to be polynomially

equivalent to quantum circuit complexity.
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Figure 1. Schematic of the unitary manifold (gray disk). A geodesic path (black) is depicted from

the identity to some target unitary U . The red straight lines represent construction of a circuit

using some elementary gates gi, and the final unitary is U = g3g2g1. The geodesic approximates

the circuit smoothly by varying a control velocity V (s), analogous to an infinitesimal elementary

gate, where s parametrizes the curve.

Recall that the SYK model is a quantum-mechanical system comprising N Majorana

fermions ψi with the Hamiltonian

H =
∑

i1<···<iq

Ji1...iqψi1 . . . ψiq , (1.1)

where the couplings Ji1...iq are drawn at random from a Gaussian distribution with mean

zero and variance σ2

σ2 =
(q − 1)!J 2

N q−1
, (1.2)

where J is a parameter setting the variance [38]. This model is expected to be chaotic

and holographically dual to 2D quantum gravity [39–42] (see also [43] for a review and

additional references). From the SYK perspective, the group SU(2N/2) is the group of

unitary operations (modulo an overall phase) acting on the Hilbert space of the N Majorana

fermions (with N even) ψi. Our main tool in studying the complexity in this model will

be the Euler-Arnold equation [19, 44, 45], which was also used in a simpler setting in [46].

From physical considerations and holographic as well as complexity-theoretic argu-

ments, the complexity in chaotic systems has been conjectured [4] to grow linearly in time

until a time of order eN , after which it is expected to saturate to (and fluctuate around)

its maximum value of Cmax ∼ poly(N)eN (see figure 2), where by poly(N) we mean Nα
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Figure 2. The complexity in chaotic systems is conjectured [4] to grow linearly in time until a

time of order eN , after which it saturates to (and fluctuates around) its maximum value of Cmax.

At doubly exponential time, the complexity is expected to exhibit recurrences.

for some α ≥ 0. Here N is the number of fermions in the SYK model, but more generally

it should be taken to be log of the dimension of the Hilbert space. The motivation of the

present work is to better understand the origin of this behavior and the various time scales

involved from a field theory perspective, within the geodesic complexity framework. One

of our main results will be to establish the existence and local minimality of a geodesic

between the identity and e−iHt whose length grows linearly with time t. The existence of

such a geodesic only relies on general features such as the Hamiltonian being local (i.e.,

it should be built from easy generators), and uniformity of the cost factor in the easy

directions. However, this is not the whole story — the linear geodesic is not guaranteed

to be a local minimum of the distance function (i.e., it could be a saddle point), much less

a global minimum. As such, it may not be the relevant geodesic for complexity. In this

paper, we will investigate in depth the question of local minimality of the linear geodesic

by studying conjugate points along it. Roughly, we say that we have a conjugate point at

time t if we can deviate infinitesimally from the linear geodesic at time t = 0 (i.e., deform

the initial velocity infinitesimally) and return to it at time t along an infinitesimally nearby

curve which satisfies the geodesic equation linearized to first order. The original geodesic

stops being minimizing past the first conjugate point (i.e., it is a saddle point thereafter),

and so for the physical considerations explained in figure 2 to be correct, it is necessary

(but not sufficient) that the no conjugate points appear along the linear geodesic at times

sub-exponential in N . We will give an argument that this is indeed the case for “sufficiently

chaotic” Hamiltonians (such as the SYK model) and for an appropriate choice of the cost

factors. Therefore, the linear geodesic is at least locally minimizing for times exponential

in N , consistent with the expectations in figure 2. Our proof will involve a new criterion

on the Hamiltonian from the vantage point of circuit complexity which we will call the

eigenstate complexity hypothesis (ECH):

Eigenstate Complexity Hypothesis (ECH): let H be the Hamiltonian with energy

eigenstates |m〉, |n〉 etc., Tα be the local generators in the Lie algebra, and Tα̇ be the

– 4 –



J
H
E
P
0
1
(
2
0
2
0
)
1
3
4

non-local generators. Define

Rmn =

∑
α |〈m|Tα|n〉|2∑

α |〈m|Tα|n〉|2 +
∑

α̇ |〈m|Tα̇|n〉|2
. (1.3)

We will say that the Hamiltonian and the gate set satisfy the eigenstate complexity

hypothesis, if for Em 6= En in the large-N limit,

Rmn = e−2Spoly(S) rmn, (1.4)

where S is the log dimension of the Hilbert space (i.e., N
2 ln 2 for the SYK model)

and rmn are O(1) numbers which do not scale with S.

In words, ECH is the condition that off-diagonal eigenstate projectors of the form

|m〉〈n| which map one energy eigenstate of the Hamiltonian to a different eigenstate should

have e−S suppressed overlaps with the easy/local/simple directions in the gate set, or equiv-

alently, such off-diagonal energy eigenstate projectors must necessarily be “complex” (i.e.,

complicated).3 For Hamiltonians which satisfy the ECH, the conjugate point analysis sim-

plifies greatly, and the exponential bound on conjugate points can be analytically argued.

We will provide numerical evidence to show that the SYK model indeed satisfies the ECH.

The rest of this paper is organized as follows: in section 2, we will begin by briefly

reviewing the geodesic complexity framework and setting up the Euler-Arnold formalism

for studying the complexity of local Hamiltonians in the Lie algebra su(2N/2) for even N .

In sections 2.1 and 2.2, we study the simple case of N = 2 where all the geodesics between

identity and e−iHt can be worked out and the complexity calculated using analytic and

numerical techniques. In section 2.3, we will switch to general N and show the existence

of a geodesic whose length grows linearly with time. In section 3, we will explore the local

minimality of the linear geodesic by studying conjugate points. We will end with some

remarks on late-time saturation, complexity classes, and quantum chaos in the Discussion

(section 4).

2 Geometry of SU(2N/2)

The Hilbert space of N/2 qubits has a natural tensor factorization

H = C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
N/2

. (2.1)

We wish to study the geometry of the set of (unit-determinant) unitary operators U(H)

that acts on this Hilbert space. In this case, this set is

U(H) = U(C2N/2) = SU(2N/2). (2.2)

In order to study the differential geometry of SU(2N/2) from the quantum computation

viewpoint, we must pick a basis for the Lie algebra with some notion of locality, i.e., we

3We discuss the relationship with the well-known Eigenstate Thermalization Hypothesis (ETH) [47, 48]

in the main text.
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should be able to identify some generators in the Lie algebra as local or “simple”, and

the rest as “complex”. In quantum computation, we usually choose some simple unitary

operators as the elementary gates to be used in building circuits. On the other hand, in

the geodesic framework, it is natural to choose a k-local subspace of the Lie algebra of

the unitary group manifold to correspond to “simple directions”. We may think of the

elementary gates of the quantum computation viewpoint as being exponentials of these

simple generators. For general H, there is no guarantee that we can choose a basis for

the unitary Lie algebra which respects any sort of locality. Luckily, for the qubit case

SU(2N/2), there are a couple of natural ways to proceed. We could pick the “Pauli basis”,

namely products of Pauli matrices acting on individual qubits, as our basis of generators.

However, there is a second choice which is more natural from the point of view of the SYK

model: consider the gamma matrices γa with a ∈ {0, . . . , N − 1} which satisfy the Clifford

algebra (with γ†a = γa):

{γa, γb} = 2δab. (2.3)

Now consider distinct ordered products Ta1···am = γa1 . . . γam with m ∈ {1, . . . , N} and

ap < aq for p < q. We will often denote these operators as simply Ti, where i stands for the

multi-index a1 · · · am. The total number of such ordered products is
∑N

m=1

(
N
m

)
= 2N − 1.

This is precisely the dimension of the Lie algebra su(2N/2). It is simple to make such

ordered products of gamma matrices Hermitian by inserting appropriate factors of i. We

claim this construction is a basis for su(2N/2), and we leave the proof to appendix A. We

can endow the gamma matrix basis with a natural notion of locality as follows: k-local

generators of the Lie algebra are simply those involving k or fewer gamma matrices. This

is precisely the natural notion of locality in the SYK model — from this point of view,

the gamma matrices above correspond to the Majorana fermion operators ψa in the SYK

model.

The basic idea in the geodesic framework is to model circuit complexity [19] in terms

of a minimal-length geodesic on SU(2N/2) with respect to a right-invariant metric chosen

such that it disincentivizes motion in the directions of nonlocal unitary operators. This

corresponds to a choice of gate set in the quantum computation picture, where we allow

up to k-local gates (i.e., exponentials of k-local generators in the Lie algebra) in our circuit

but do not allow more nonlocal gates. In our context, we want to disincentivize motion

in directions which correspond to generators involving products of more than k gamma

matrices. Let us begin by constructing such a right-invariant metric. We can use the

gamma matrix basis for su(2N/2) to compute the structure constants fij
` of the Lie algebra,

defined as4

[Ti, Tj ] = ifij
`T`, (2.4)

where recall that the Ti = γa1 · · · γam are generators built from products of gamma matrices

(or equivalently, products of the SYK fermion operators) labelled by the multi-index i =

4When sums are not written explicitly, the Einstein summation convention is adopted. We caution the

reader that there will be expressions in which repeated indices appear three times, but this will not cause

any ambiguities because the three matching indices will always be summed over together.

– 6 –



J
H
E
P
0
1
(
2
0
2
0
)
1
3
4

(a1 · · · am). Using these, we calculate the Cartan-Killing form

Kij = − 1

h∨
fim

`fj`
m, (2.5)

(where h∨ is the dual Coxeter number) which is a positive-definite5 bilinear form. In order

to build in the notion of simple and hard directions in the Lie algebra, we construct a new

positive-definite bilinear form on su(2N/2)

Gij =
ci + cj

2
Kij , (2.6)

where the numbers ci are “cost factors”. Then a right-invariant metric g can be defined at

an arbitrary point U on SU(2N/2) by simply taking

gU (X,Y ) = G(XU−1, Y U−1), (2.7)

where we have used the group structure to transport the tangent vectors X and Y from

U back to the identity and then applied (2.6). The cost factors ci encode the information

about our choice of local and nonlocal directions, i.e. our notion of k-locality. We will

generally take ci = 1 if the generator Ti consists of k or fewer gamma matrices, and

ci = 1 + µ with µ� 1 otherwise; we will specify how large µ has to be shortly. Note that

if we chose cost factors ci = 1 for all i, the metric (2.7) would actually be bi-invariant.

Here bi-invariant means that the metric is both left and right invariant. The restriction to

right-invariance arises by choosing at least one cost factor to be ci 6= 1 (or more generally

by choosing a symmetric bilinear form for the metric which is not proportional to the

identity).

Having chosen our cost factors, the geodesic equation on SU(2N/2) with metric (2.7) is

given in terms of the Lie algebra metric (2.6) and structure constants (2.4) by the Euler-

Arnold equation [44]6

Gij
dV j

ds
= fij

pV jGp`V
`, (2.8)

where the velocities V i(s) control the unitary path the geodesic follows via

U(s) = P exp

(
−i
∫ s

0
ds′V i(s′)Ti

)
, (2.9)

and we have made use of the path-ordered exponential to solve the matrix equation for the

unitary operator
dU

ds
= −iV i(s)TiU(s). (2.10)

Finally, we impose the boundary condition

U(1) = Utarget (2.11)

5Some definitions of the Cartan-Killing form instead yield a negative-definite form for compact Lie

algebras. We are only interested in this form up to overall sign and normalization since our only use for it

is to define a right-invariant Riemannian metric on SU(2N/2).
6The original article is in French, but an English summary can be found in [45].
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for some target unitary whose circuit complexity we wish to study. This complexity is

given by the geodesic length

C(Utarget) = min

∫ 1

0
ds
√
GijV i(s)V j(s) (2.12)

where the minimization is over all geodesics from the identity to Utarget. Throughout this

paper, we will be interested in Utarget = e−iHt, where H is a suitable k-local Hamiltonian.

Before moving on to calculations, we would like to specify how large the cost factor

µ needs to be. The essential reason for choosing µ large is that it prevents the geodesic

from wandering off in the hard, i.e., non-k-local directions, and we can then take such a

geodesic to be a reasonable approximation to the true minimal circuit built only out of the

allowed k-local gates (more precisely, gates of the form gα = eiεTα for k-local Tα). Now

imagine that we start with our minimal geodesic U(s), and then define a new curve Ũ(s)

by simply projecting out from its velocity V (s) all the hard directions. Having done so,

this new curve would deviate from the target unitary by some amount, which we would

like to be smaller than some fixed error tolerance. It was shown in [18] that7

||Utarget − Ũ(1)||op. ≤
eS/2√
1 + µ

C(Utarget). (2.13)

If we pick 1 + µ = 1
ε2
eSC2, then the right hand side above can be made smaller than ε.

Therefore, for any target unitary with polynomial complexity,8 we need to take the cost

factor to be µ ∝ eS , where the proportionality factor may scale at most polynomially in S.

2.1 Analytics for N = 2

We will mainly be interested in studying the complexity for a large-N chaotic Hamiltonian,

with the SYK model as a specific example. However, as a warm up, we will begin with the

case of an SYK-like model with N = 2 fermions. The algebra for the N = 2 case is simply

the familiar su(2) (see also [49]). There are three generators, built from the Hermitian

matrices γa.

T1 = γ1,

T2 = γ2,

T3 ≡ T12 = iγ1γ2.

(2.14)

We can compute the structure constants by using the algebra (2.3).

[T1, T2] = −2iT3,

[T2, T3] = −2iT1,

[T3, T1] = −2iT2.

(2.15)

7In lemma 1 of [18] a weaker inequality was proven with the coefficient of the right hand side being eS

as opposed to eS/2. However, one can do better by using the fact that the operator norm is upper bounded

by the Frobenius norm in step 3 of the derivation found in the appendix of [18].
8Our arguments should work more generally for any target unitary with sub-exponential complexity. For

e.g., when t scales sub-exponentially with S, then e−itH necessarily has at best sub-exponential complexity,

as will become clear later.
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We see that, even though we have chosen a slightly unusual basis for the algebra, the

structure constants are still fij
k = −2εij`δ

`k; this is essentially the usual angular momentum

algebra up to a minus sign and a factor of 2. This fact will allow us to solve the Euler-Arnold

equation directly. The Cartan-Killing form is given by9

Kij = δij . (2.16)

Let us pick c1 = c2 = 1 and c3 = 1 + µ, where µ is a large suppression factor to dis-

courage motion in the T3 direction. This corresponds to enforcing k = 1 locality. The

equations (2.8) then reduce to

dV 1

ds
= −2µV 2V 3,

dV 2

ds
= 2µV 3V 1,

(1 + µ)
dV 3

ds
= 0,

(2.17)

and this system can be solved to find the unique solution with integration constants vi.

V 1(s) = v1 cos
(
v3µs

)
− v2 sin

(
v3µs

)
,

V 2(s) = v2 cos
(
v3µs

)
+ v1 sin

(
v3µs

)
,

V 3(s) = v3/2.

(2.18)

Thus far we have solved the geodesic equation at the level of the Lie algebra, which allows

us to obtain the tangent vector at any point along the geodesic given an initial direc-

tion. In fact, we can already compute the complexity of a path connecting U(0) = 1 to

U(1) = Utarget:

C =

∫ 1

0
ds
√

(V 1)2 + (V 2)2 + (1 + µ)(V 3)2

=

√
(v1)2 + (v2)2 +

1 + µ

4
(v3)2.

(2.19)

We see that the integrand is actually independent of s, leading to a simple result. All the

information about the path length is contained in the magnitude of the tangent vector at

the identity.

We really would like to know the geodesic for fixed boundary conditions U(0) = 1

and U(1) = Utarget in order to fix the initial tangent vector viTi. The unitary U(s) along

the geodesic path from the identity with tangent vector V i(s)Ti is given by the path-

ordered exponential (2.9). Now, we want to explicitly evaluate what the final unitary

U(1) looks like as a function of the initial velocity vi, and then implement the boundary

condition U(1) = e−iHt for some local, Hermitian Hamiltonian, in order to solve for vi.

9We will always normalize the Cartan-Killing form to δij , regardless of the coefficient obtained by

using (2.5).
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However, solving this would require us to brute-force deal with the path-ordering in (2.9),

which is a famously difficult problem and is solved in quantum mechanics (where there

is a time-ordering rather than a path-ordering) using perturbation theory. We would

like a more nonperturbative approach, and we might hope that one exists since we are

only dealing with finite-dimensional matrices rather than the infinite-dimensional Hilbert

spaces familiar from other quantum systems like the harmonic oscillator. Indeed, such

a nonperturbative method for finite-dimensional matrix equations was found in [50]. We

employ their construction here. Given the velocity along the geodesic

V (s) = V i(s)Ti =

(
−v3/2 (v1 − iv2)e−iv

3µs

(v1 + iv2)eiv
3µs v3/2

)
, (2.20)

we wish to solve (2.10) subject to U(0) = 1 without the use of the path-ordering P. Let us

define the frequency

ω2 = (v1)2 + (v2)2 +
1

4
(1 + µ)2(v3)2, (2.21)

and the function

ϕ(s) = e−
i
2
v3µs, (2.22)

then the solution is

U(s) =

ϕ(s)
(

cosωs+ iv
3(1+µ)

2ω sinωs
)

−iϕ(s) (v1−iv2)
ω sinωs

−iϕ(−s) (v1+iv2)
ω sinωs ϕ(−s)

(
cosωs− iv3(1+µ)

2ω sinωs
) . (2.23)

Note that this is a completely coordinate-free description of a path on the unitary manifold

SU(2); although SU(2) happens to have a convenient interpretation as S3, the higher groups

SU(2N/2) are nontrivial fiber bundles, so a coordinate patch-based method is likely difficult

to implement.

We can now solve for vi (and hence compute the complexity of time evolution) by

implementing the boundary condition U(1) = e−iHt for some Hamiltonian H, which we

decompose as H =
∑

i JiTi. The time evolution operator can be exactly computed with a

simple matrix exponential, yielding (letting J =
√
J2

1 + J3
2 + J2

3 )

e−iHt =

(
cos Jt+ iJ3

J sin Jt −iJ1−iJ2
J sin Jt

−iJ1+iJ2
J sin Jt cos Jt− iJ3

J sin Jt

)
. (2.24)

We can easily see that, if we had chosen all the metric cost factors to be ci = 1 (i.e. taken

µ = 0 in (2.23)), the time evolution operator would itself define a geodesic curve. This is

because, for bi-invariant metrics, the matrix exponential coincides with the (Riemannian)

exponential map. In the next section, we will solve the boundary condition

U(1) = e−iHt (2.25)

for the velocities vi in terms of the Hamiltonian couplings Ji, for each value of t, using

numerical techniques. There will be, in general, multiple solutions to any such equation

which correspond to different geodesics in SU(2) which begin at the identity and end at

e−iHt. We must of course find the one with minimal complexity.
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Figure 3. Complexity over time in appropriate dimensionless units with sample parameters J1 = 1,

J2 = 2, J3 = 0, 1
1+µ = 0.09. The complexity demonstrates an initial linear growth with the

slope J =
√
J2

1 + J2
2 + J2

3 , attaining a maximum value of π, followed by linear oscillations (with

slopes ±J).

2.2 Numerics for N = 2

The matrix equation (2.25) reduces to a system of three independent transcendental equa-

tions in the velocities v1, v2, v3. These can be solved numerically by brute force. Choosing

the Hamiltonian to consist only of easy (1-local) operators, we work in the special case

J3 = 0. The numerical solution for the complexity (2.19) as a function of time t is pre-

sented in figure 3.

At early times, we find the expected linear growth of complexity, with slope J =√
J2

1 + J2
2 + J2

3 . At later times, however, one does not see the plateau predicted from

holographic considerations; rather, there is an immediate linear decay of the complexity

that may be considered to be a Poincaré recurrence. This behavior may be attributed to

the simplicity of the group manifold SU(2) ' S3 and may be visualized most easily on the

two-sphere (figure 4). After a certain maximum distance from the identity, the minimal

length path on the sphere switches direction, i.e. the velocities v1, v2 change in sign. This

maximum distance is equal to π, the maximum of the complexity in figure 3, as follows

from results in [51].

In the higher groups SU(2N/2), we expect a quite nontrivial topology that results in a

plateau in the complexity as many different geodesics exchange dominance at late enough

times. In the simple case of N = 2 fermions, we obviously do not see this effect, because

the geodesic does not have sufficient space on the unitary group to wander around, away

from its starting point. However, if we disorder average over the couplings J1,2 in the

Hamiltonian, then this is equivalent to considering an ensemble of systems where after

the initial linear growth, we would expect to find “cancellations” between the various

oscillating geodesic distances, thus leading to a plateau. In the SYK model, the couplings
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Figure 4. The geodesic γ1 (red) lies on a great circle of S2, connecting U(0) and U(1). At

the antipodal point p, the geodesic γ2 oriented oppositely along the same great circle exchanges

dominance with γ1. This effect leads to the linear decrease in complexity in S3, i.e. in SU(2).

J are drawn from a Gaussian distribution of zero mean with a variance chosen to simplify

the large-N limit, and the disorder average is performed during evaluation of correlation

functions [39]. Here we will simply disorder average the complexity directly, taking the

couplings in the Hamiltonian J1, J2 to be drawn from Gaussian distributions of mean zero

and some variance σ2.

The result of this averaging procedure is displayed in figure 5. Specifically, we are

plotting the disorder-averaged complexity:

C̄(t) =

∫ ∞
0

dJ f4(t)
J

σ2
e−

J2

2σ2 (2.26)

where f4(t) refers to the triangle wave plotted in figure 3 and we have used the fact that
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Figure 5. Disorder-averaged complexity (blue) as a function of time. At early times the complexity

grows linearly with slope
√

π
2σ (green), while at late times it approaches the asymptotic value π/2

(orange).

J =
√
J2

1 + J2
2 is drawn from a Rayleigh distribution when J1, J2 are Gaussian-distributed.

We see that the disorder average works beautifully in producing a complexity plateau, and

that the complexity continues to grow linearly at early times, albeit with a modified slope√
π
2σ. Heuristically, we see that even on as simple a manifold as S3, the disorder average

causes a kind of interference between many different random samples of the couplings

J1, J2. In terms of the triangle waves seen in figure 3, if one imagines a large number of

copies of the system with different values of J , after the copy with the maximum value

of J hits the first peak the various triangle waves begin to interfere destructively. At any

fixed late time, the height of any one copy of the system is uniformly distributed between

0 and π and therefore the average complexity at long times is π/2.10 It is straightforward

to prove the late-time limit using the Fourier expansion of the triangle wave. Namely, the

Fourier expansion of the triangle wave with slope J can be written

f4(t) =
π

2
− 4

π

∞∑
n=1

1

(2n− 1)2
cos((2n− 1)Jt) . (2.27)

The disorder average can be performed term-by-term following (2.26) assuming the inte-

gration can be exchanged with the infinite sum, and the result is

C̄(t) =
π

2
− 4

π

∞∑
n=1

1

(2n− 1)2

(
1−
√

2 tσ(2n− 1)F
[
tσ√

2
(2n− 1)

])
(2.28)

where F [x] = e−x
2 ∫ x

0 e
y2
dy is Dawson’s integral. If we allow ourselves to exchange the

long-time limit with the infinite sum and use the identity limx→∞ xF [x] = 1
2 , one finds

from (2.28) that limt→∞ C̄(t) = π
2 . In the large-N SYK model, we expect that the geometry

of SU(2N/2) is sufficiently involved that there is a “self-averaging” effect on complexity,

10We thank Clélia de Mulatier for discussion on this point.
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Figure 6. Disorder-averaged complexity (blue) choosing the magnitude J of the couplings to be

Gaussian-distributed rather than Rayleigh-distributed. The peak of figure 5 is eliminated and the

slope at early times is modified to
√

2
πσ (green), though the plateau value of π/2 (orange) remains

the same.

namely that the late-time complexity saturation occurs in a single realization of the SYK

model (without disorder averaging). This is further discussed in section 4.1.

It is also of interest to find the time scale for the onset of the plateau. Previous

discussions of complexity in holography [4] have noted that in large-N chaotic systems

this time scale ought to be exponential in the size of the system/number of qubits. The

N = 2 model studied in this section is neither large-N , nor chaotic; nevertheless it is

useful to check that our results are compatible with an exponential time scale if N were

increased. Since the disorder-averaged complexity scales at early times like σt, the plateau

begins approximately upon reaching the asymptotic value at t ∼ Cmax
σ . Assuming that

Cmax ∼ poly(N)eN and using the fact that in the SYK model, 1/σ is typically taken to

scale polynomially in N , one finds a result t ∼ poly(N)eN that is indeed consistent with

the holographic expectation for the onset of the plateau.

Lastly, we remark that the existence of a peak in figure 5 appears to be a peculiarity

of taking J1, J2 to be Gaussian-distributed as our source of disorder; if one chose J to be

Gaussian-distributed rather than Rayleigh-distributed, the peak vanishes and the average

complexity smoothly approaches a plateau, albeit with slope
√

2
πσ (figure 6).

2.3 Linear geodesic for arbitrary N

For general N , the algebra su(2N/2) is quite complicated. We have collected some facts,

including a derivation of the structure constants, in appendix A. However, the most im-

portant points for us are the following: firstly, the structure constants in the basis Ti
(corresponding to ordered products of gamma matrices) are fully antisymmetric by virtue

of orthogonality in the trace norm. Secondly, fij
` is nonzero if and only if

fij
` 6= 0⇔ i⊕ j = `, qiqj + qi∧j ≡ 1 mod 2. (2.29)
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Here we are thinking of the multi-indices i, j · · · as binary numbers; for instance (in the

ordering convention of appendix A), the operator T3 = iγ1γ2 corresponds to the binary

number 00 · · · 0011, T5 = iγ1γ3 corresponds to the binary number 00 · · · 0101 etc. Further,

qi is the number of ones (i.e., the number of fermions) in i, ⊕ stands for the bitwise XOR

and ∧ stands for bitwise AND. The (suitably normalized) Cartan-Killing form follows after

a short computation11

Kij = δij . (2.30)

For convenience, we will label operators with k or fewer fermions with undotted Greek

indices α, β . . . and those with more than k fermions with dotted Greek indices α̇, β̇ . . .,

where k < N is arbitrary for now. We choose the easy directions, i.e., operators with k

or fewer fermions, to have cost factors cα = c and the hard directions, i.e., operators with

more than k fermions, to have cost factors cα̇ = c̄. The Euler-Arnold equation can then be

written schematically (since we have not determined overall sign)

ci
dV i

ds
= 2(c̄− c)

∑
j,` s.t qjq`+qj∧`∈2Z+1

j⊕`=i

±V jV `, (2.31)

where we have explicitly written out the sums, and the index i on the left-hand side is not

to be summed over. There is an interesting structure to (2.31) that emerges when we split

into local and nonlocal directions. We first observe that fαα̇
β = −fβα̇α. So, if a nonlocal

direction with index α̇ appears in a local direction β’s velocity equation, it also appears in

the velocity equation of the local direction α which multiplies it in β’s equation. A similar

story occurs for fα̇α
β̇ = −fβ̇αα̇ for the nonlocal directions β̇ and α̇. The local direction

α will occur in both of their velocity equations, appearing with opposite sign. We can

introduce antisymmetric matrices Ṁα
β and M α̇

β̇ and rewrite (2.31) as

c
dV α

ds
= 2(c̄− c)Ṁα

β (V γ̇)V β

c̄
dV α̇

ds
= 2(c̄− c)M α̇

β̇(V γ)V β̇ ,

(2.32)

where Ṁ(V ) is a matrix with local indices which depends linearly on the nonlocal directions’

velocities and M(V ) is a matrix with nonlocal indices that depends linearly on the local

directions’ velocities. Though this system is tricky to even write at arbitrary N , we can

find a simple solution to it within the local subspace using the ansatz:

V α(s) = vα,

V α̇(s) = 0,
(2.33)

which solves (2.32) because Ṁ = 0. The complexity is then

C =

√∑
α

(vα)2, (2.34)

11The appropriate normalization factor in the general case with our choice of generators is 2−(N+1).
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where we have no contribution from the nonlocal directions. This is in accord with our

intuitions about quantum circuit construction, where we do not just suppress nonlocal gates

but completely disallow them. Since the velocities in (2.33) are constant, the path-ordering

in (2.9) is trivial and the unitary path is

U(s) = eiv
αTαs. (2.35)

If we take our target state to be Utarget = eiHt where H is a k-local Hamiltonian

H = JαTα, (2.36)

we can solve the boundary condition (2.25) to find one easy solution12

vα = Jαt. (2.37)

We will refer to this geodesic as the linear geodesic. Assuming that the linear geodesic is

the correct minimum, we find that the complexity (2.34) is

C = t

√∑
α

(Jα)2 = t

√√√√e−S
eS∑
m=1

E2
m, (2.38)

where in the second equality we have rewritten the coefficient in terms of the energy eigen-

values Em by relating the expressions inside the square roots to trH2. The linear growth of

the complexity in (2.38) matches expectations from holographic calculations of complexity

as well as old observations about complexity growth in the geodesic formalism [4, 18]. Our

task now is to investigate the validity of the assumption that the linear geodesic is the

correct minimum to consider.

3 Conjugate points and the eigenstate complexity hypothesis

One might wonder where the late-time behavior (i.e., late-time saturation) of complexity

is going to appear from the previous discussion. The point, of course, is that the linear

geodesic cannot be minimal for all times. After all, SU(2N/2) is a compact manifold, and

no geodesic path on a compact manifold can globally minimize the length between the

identity and U = e−iHt for all t. In general, there are two ways a geodesic can become

non-minimizing in a Riemannian manifold M :

1. Conjugate points: given a geodesic U(s) : [0, 1] → M , there exists a variation

through curves U(η, s) : [−δ, δ] × [0, 1] → M such that U(η, s) obeys the geodesic

equation at first order in η, U(0, s) = U(s), U(η, 0) = 1 and U(η, 1) = U(1)+O(η2).13

12One might think that the ambiguity in the logarithm gives multiple solutions here, but this is not the

case, because generically the “other solutions” obtained from the log will not be entirely along the easy

directions, and so are not admissible.
13See [52] for a recent discussion of conjugate points in general relativity.
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2. Geodesic loops: given a geodesic U(s) : [0, 1] → M there is another geodesic

Ũ(s) : [0, 1]→M such that U and Ũ have the same length L[U ] = L[Ũ ], U(0) = Ũ(0),

and U(1) = Ũ(1).

These two conditions can roughly be thought of as local and global obstructions to mini-

mality, respectively. This is because conjugate points along a geodesic segment mean that

the segment is a saddle point,14 not a minimum; the number of conjugate points along

the segment is equal to the number of “downward directions”. Therefore, conjugate points

are an obstruction to a geodesic segment being locally minimizing. On the other hand,

the absence of conjugate points but presence of geodesic loops indicates that the geodesic

segment is locally minimizing but not globally minimizing. We will address the issue of

conjugate points in this section. We will not prove the nonexistence of geodesic loops, but

see the Discussion (section 4) for some further comments.

Prior studies of complexity using toy models have largely avoided the question of

conjugate points (although see [19], where the importance of conjugate points in circuit

complexity was emphasized previously) roughly by assuming all sectional curvatures are

negative, so that geodesics originating at the same point generically diverge [4, 37]. How-

ever, this assumption is worrisome, because it is well-known that any unimodular Lie group

with left- or right-invariant metric must possess some strictly positive sectional curvature,

or else be completely flat [54]. If the sectional curvature cannot be everywhere bounded

above by zero, one cannot rule out the existence of conjugate points on general grounds.

Therefore, it is crucial to understand conjugate points on the full group manifold in the

complexity metric (2.7). Here we will show a lower bound on the distance from the origin

to the first conjugate point along the linear geodesic V = Ht. We will call the time at

which the linear geodesic develops this first conjugate point tc.

In order to find conjugate points, we look for a velocity perturbation δV (s), also called

a Jacobi field,15 which obeys a first order differential equation known as the Jacobi equation,

with particular boundary conditions which we will state precisely later. In section 3.1, we

solve the Jacobi equation for the velocity perturbation δV (s). In section 3.2, we compute

the first order change δU in the target unitary due to a velocity perturbation which obeys

the Jacobi equation. Setting this to zero gives a boundary condition for the Jacobi equation,

which corresponds to having a conjugate point. In section 3.3, we will show that with the

bi-invariant choice of metric (i.e., with the same cost factors for all generators in the Lie

algebra), the linear geodesic has a large number of conjugate points. In particular the first

conjugate point appears at tc = 2π
Emax−Emin

, where Emax/min are the largest and smallest

eigenvalues of the Hamiltonian respectively. In section 3.4, we will then return to the

right-invariant case with a large cost factor for the hard directions in the set of generators.

We will argue that at large-N and for Hamiltonians which satisfy what we will call the

eigenstate complexity hypothesis (ECH), the linear geodesic segment from the identity to

e−iHt does not have any conjugate points for sub-exponential times, and thus the linear

geodesic is at least locally minimizing until times exponential in N .

14We mean here a saddle point of the energy functional on the space of paths [53].
15More precisely, the Jacobi field is the first order deformation of the original geodesic, and δV (s) is its

derivative pulled back to the identity. We will sometimes loosely refer to δV itself as the Jacobi field.
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Figure 7. An illustration of a conjugate point, shown as the red point.

3.1 Solving the Jacobi equation

In order to discover a conjugate point, we must deform the base geodesic with a veloc-

ity perturbation δV (s) which solves the geodesic equation to first order; this first order

equation for δV (s) is called the Jacobi equation. The Jacobi equation in our context is

obtained by studying the first order correction to the Euler-Arnold equation (around the

original, unperturbed geodesic V = Ht) under a velocity perturbation Ht → Ht + δV (s)

(see figure 7 for an illustration). We will confine our attention to the case with all the

easy cost factors being c = 1 and all the hard cost factors being c̄ = 1 + µ (where µ ∼ eS

as explained previously), but it would be interesting to generalize our analysis to the case

where the cost factors along the hard directions vary with the scale of non-locality. We can

then write the Jacobi equation as

i
dδVL(s)

ds
= µt[H, δVNL(s)]L

i
dδVNL(s)

ds
=

µt

1 + µ
[H, δVNL(s)]NL

(3.1)

where the subscripts L (local) and NL (nonlocal) denote projection into the local and

nonlocal subspaces, i.e.

δVL =
1

2N/2

∑
α

tr(δV Tα)Tα

δVNL =
1

2N/2

∑
α̇

tr(δV Tα̇)Tα̇

(3.2)

where Tα, Tα̇ are bases for the local and nonlocal subspaces respectively.

Let AL denote the vector space spanned by the local generators in the Lie algebra,

and ANL denote the vector space spanned by the non-local generators. In order to solve

the Jacobi equation, note that the second equation in (3.1) involves the super-operator

C : ANL → ANL defined by

C(X) = [H,X]NL . (3.3)
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The nonlocal equations can be solved by introducing a new basis T̃α̇ for the nonlocal

subspace such that C is diagonal:16

C(T̃α̇) = [H, T̃α̇]NL = λα̇T̃α̇. (3.4)

In this basis, we can write δVNL =
∑

α̇ δṼ
α̇T̃α̇, where we note that the δṼ α̇ are numbers

(i.e., the coefficients) while T̃α̇ are hard/non-local operators in the Lie algebra. The nonlocal

equations become (in components)

i
dδṼ α̇

ds
=

µt

1 + µ
λα̇δṼ

α̇, (3.5)

with no summation over α̇ on the right-hand side. The solution is therefore

δṼ α̇(s) = exp

(−iµtλα̇s
1 + µ

)
δṼ α̇(0). (3.6)

Plugging this into the local equations, we have

i
dδVL
ds

= µt
∑
α̇

exp

(−iµtλα̇s
1 + µ

)
δṼ α̇(0)[H, T̃α̇]L. (3.7)

The local solution is

δVL(s) = δVL(0)− iµt
∑
α̇

exp
(
−iµtλα̇s

1+µ

)
− 1

−iµtλα̇
1+µ

δṼ α̇(0)[H, T̃α̇]L. (3.8)

3.2 Conjugate points as zero modes

We wish to use (3.6) and (3.8) to determine whether there are conjugate points. This can

be done by understanding the first order perturbation to the final unitary U(1) induced by

δV . The exact final unitary and first order perturbation are, recalling (2.9),

U(1) = P exp

(
−i
∫ 1

0
ds(Ht+ δV (s))

)
= e−iHt − iδU(1), (3.9)

where the δU term is obtained by expanding the path-ordering in a Dyson series and taking

the first term,

U−1δU(1) =

∫ 1

0
ds eiHtsδV (s)e−iHts. (3.10)

We now define a super-operator Y(µ) : δV (0)→ U−1δU(1) which acts by

Y(µ)(δV (0)) =

∫ 1

0
dseiHts

δVL(0)− iµt
∑
α̇

exp
(
−iµtλα̇s

1+µ

)
− 1

−iµtλα̇
1+µ

δṼ α̇(0)[H, T̃α̇]L

+
∑
α̇

exp

(−iµtλα̇s
1 + µ

)
δṼ α̇(0)T̃α̇

 e−iHts,
(3.11)

16This is always possible since C is Hermitian viewed as a matrix acting on ANL, and the spectral theorem

of linear algebra states that Hermitian matrices may always be unitarily diagonalized with real eigenvalues.
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where we have inserted our solution for δV (s) into equation (3.10). A conjugate point, in

this formalism, is given by the condition

U−1δU(1) = 0, (3.12)

and therefore corresponds to a zero mode of the super-operator (3.11). So, our approach

to finding conjugate points will be to study the spectrum of Y(µ) and check for when

it develops zero modes. While this super-operator, as it appears in our analysis, is a

linear operator on the Lie-algebra su(2N/2), it is convenient to view Y(µ) as acting on the

complexification of this vector space, i.e., on sl(2N/2,C), and study the spectrum in this

complexified space. The reason for doing this is that our Lie algebra is a vector space over

a non-algebraically-closed field R, and so the eigenvalues of Y(µ) need not be real, and the

eigenvectors need not be real combinations of the elements of the Lie algebra. (This is true

for essentially the same reason that solutions to x2 + 1 = 0 only exist in C even though

the equation involves coefficients only in R.) Of course, in order for a true conjugate point

to appear for some values of t and µ, the zero mode must be Hermitian and traceless. In

other words, it must indeed be a valid element of su(2N/2).

3.3 Conjugate points in the bi-invariant case

Solving for the conjugate points at general values of µ is analytically hard. We will only

be able to do it approximately in section 3.4 for large-N Hamiltonians which satisfy a

certain complexity criterion on their eigenstates. But before doing that, it is useful to look

at the much simpler case of µ = 0 where we can obtain all the conjugate points exactly.

This is because at µ = 0, where all generators are considered computationally “easy”,

equation (3.11) simplifies greatly, and we get

Y(0)(δV (0)) =

∫ 1

0
ds eiHtsδV (0)e−iHts. (3.13)

It is easy to guess the eigenvectors of this super-operator: they are simply the energy

eigenstate projectors |m〉〈n|, where |m〉 and |n〉 are eigenstates of the Hamiltonian with

energies Em and En respectively. Indeed, we find

Y(0)(|m〉〈n|) =

∫ 1

0
ds ei(Em−En)ts|m〉〈n| = φmn(t)|m〉〈n|, (3.14)

where the eigenvalue φmn(t) is given by17

φmn(t) ≡ ei∆mnt − 1

i∆mnt
, ∆mn = (Em − En). (3.15)

The eigenvalue φmn (for Em 6= En) becomes zero at

tmn =
2π

∆mn
Z. (3.16)

17Notice that diagonal projectors |n〉〈n| have constant eigenvalue 1 and therefore cannot lead to conjugate

points in the bi-invariant case.
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Indeed, at these times, the eigenvalues corresponding to both |m〉〈n| and |n〉〈m| become

zero, and we can construct two Hermitian linear combinations out of these. Therefore,

the linear geodesic develops a large number of conjugate points at the times given by

equation (3.16), for all the possible choices of Em and En. The first time t > 0 at which it

develops a conjugate point is

tc =
2π

Emax − Emin
≡ 2π

∆max
. (3.17)

In the SYK model, the maximum separation is known to be ∆max ∼ N , and so the

linear geodesic stops being minimal after tc ∼ 2π
N . However, this model is expected to be

chaotic, so how is it that the conjugate points are appearing at a time of O(1/N)? The

resolution of course lies in the fact that the bi-invariant metric is not the correct Riemannian

metric for complexity. To understand physically relevant conjugate points we need to select

a notion of locality for our generators. In other words, we need to choose which operators

in the theory are “simple”. By choosing the bi-invariant metric on the generators we have

allowed arbitrary operators as local, but this is definitely not a physically sensible choice.

However, the above calculation emphasizes the importance of conjugate points, and the

need to make sure that they are absent if we are to establish the minimality of a geodesic.

We now turn to the question of what happens to conjugate points for chaotic systems

when a suitable notion of locality has been established by turning on cost factors in the

complexity metric.

3.4 Turning on cost factors

We will turn on a finite cost factor µ, which will separate “easy” and “hard” computational

directions, or, more physically, operations that we will consider “local” or “non-local”. Our

aim is to show that the linear geodesic is locally minimizing for times exponential in N ,

and so contains no conjugate points till such time. As stated previously, we do not have an

exact solution for the spectrum of Y(µ) (although it is possible to calculate this spectrum

perturbatively in µ, see appendix B). However, if the Hamiltonian is sufficiently chaotic,

then the situation simplifies greatly. More precisely, if the off-diagonal eigenstate projectors

|m〉〈n| of the Hamiltonian are “complex”, in the sense that their overlaps with the local

generators are exponentially suppressed in N , then we can give an approximate formula

for the spectrum of the super-operator Y(µ) at finite µ. We will call this criterion the

eigenstate complexity hypothesis, or ECH for short:

Eigenstate Complexity Hypothesis (ECH): let H be the Hamiltonian with energy

eigenstates |m〉, |n〉 etc., Tα be the local generators in the Lie algebra, and Tα̇ be the

non-local generators. Define

Rmn =

∑
α |〈m|Tα|n〉|2∑

α |〈m|Tα|n〉|2 +
∑

α̇ |〈m|Tα̇|n〉|2
. (3.18)

We will say that the Hamiltonian and the gate set satisfy the eigenstate complexity

hypothesis, if in the large-N limit for Em 6= En,

Rmn = e−2Spoly(S) rmn, (3.19)
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Figure 8. (Left) A visualization of the matrix Rmn for the SYK model at N = 14, k = 4, q = 3,J =

1, for a single realization. Note that off-diagonal elements are suppressed. The vast majority of the

off-diagonal matrix elements are close to ∼ 0.09, which is precisely the number of local generators

divided by the total number of generators. The diagonal elements seem to be enhanced compared

with the rest. (Right) A histogram of rmns defined in equation (3.21) for N = 12, k = 3, q = 3 for

100 realizations.

where S is ln dim of the Hilbert space (i.e., S = N
2 ln 2 for the SYK model), poly(S)

is some polynomial in S, and rmn are O(1) numbers which do not scale with N . We

can equivalently state this as

|| |m〉〈n|L || = O(e−Spoly(S)), (3.20)

where recall that the subscript L indicates projection to the local/easy subspace in

the Lie algebra and the operator norm is defined by ||X|| = [Tr(X†X)]1/2.

The physical intuition behind this criterion is that off-diagonal projectors of the form

|m〉〈n| map the energy eigenstate |n〉 to a different eigenstate |m〉. For chaotic Hamil-

tonians, this operation should be complex from the point of view of local generators in

the Lie algebra, since we expect these energy eigenstates to differ in their fine-grained mi-

crostructure. Another reason to expect ECH is that for sufficiently chaotic Hamiltonians,

off-diagonal projectors like |m〉〈n| tend to have a uniformly distributed overlap with the

generators in the Lie algebra (see figure 11 in appendix C), and since there are exponen-

tially many non-local generators and only polynomially many local generators (assuming

k does not scale with N), the projection of |m〉〈n| onto the local directions should be

exponentially suppressed in N , as per equation (3.19).

The interacting SYK model satisfies the ECH. To demonstrate this, we have shown an

array-plot of the matrix Rmn for a single realization in the left panel of figure 8, for the

SYK model at N = 14, J = 1 and k = 4, q = 3. We see that the off-diagonal elements of

Rmn are indeed exponentially suppressed. Taking

Rmn =
neasy

2N
rmn, (3.21)

where the N -dependent coefficient is the number of easy generators divided by the total

number of generators, we have shown the distribution P (rmn) of all the rmns (including
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diagonals) over 100 realizations of the SYK model in the right panel of figure 8 (with

N = 12 for convenience). The rmns are distributed with a (sample) mean of r̄s = 1, and

(sample) standard deviation of σs = 0.14.18 We have also checked other values of N and

(k, q) (with q < k) and found similar behavior. One novelty for q even (see appendix C

for further discussion) is that the Hamiltonian has a fermion number symmetry (which

additionally is diagonal in the basis involving products of fermions), and this leads to

an O(1) splitting of the distribution P (rmn) into two distributions, corresponding to the

off-diagonal projectors which either preserve or reverse the fermion number symmetry.

So far, we have presented some numerical evidence to show that the SYK model satisfies

the ECH. More generally, we expect chaotic Hamiltonians to satisfy ECH (provided an

appropriate choice is made for the k-local generators) as a consequence of a form of the

eigenstate thermalization hypothesis (ETH), which is believed to be true in general chaotic

quantum systems [47, 48, 55] (see [56–58] for discussion of ETH in the SYK model). ECH

is of course very reminiscent of the ETH. In fact, we can see how the two are related in

the SYK model. If we take the generators to be Ti ∼ ψa1 · · ·ψam , the denominator in the

definition (equation (3.18)) of Rmn is equal to eS = 2N/2; this just follows from the fact that

|m〉〈n| has operator norm one, while each of the generators Ti has norm eS/2. Now, if we

further assume that the local/easy generators satisfy ETH, then each term in the numerator

of Rmn is also O(e−S).19 Since there are at most polynomially many local/easy generators

(assuming k does not scale with N), we deduce that Rmn = O(poly(S)e−2S), provided

the easy generators satisfy ETH. From this perspective, we may view ECH as saying that

the easy generators in our choice of the gate set should satisfy ETH, but where our easy

generators are k-local, and so involve multi-site operators (not simply 1-local operators).

On the other hand, ECH is a logically independent criterion from ETH; it requires that

the off-diagonal outer products |m〉〈n| have small projection onto the easy/local directions,

i.e., that they are complex, or alternatively that they are uniformly distributed in terms of

their overlaps with all the e2S generators of the gate-set. We expect that large-N integrable

Hamiltonians should violate ECH, but it would be interesting to study this in greater

detail. Certainly, off-diagonal operators of the form |m〉〈n| in integrable systems tend to

have overlaps with a far smaller subset of the e2S generators in the gate set (see figure 12

in appendix C.) Since the norm of |m〉〈n| is one, this naturally requires the individual

overlaps 〈n|Ti|m〉 to be larger. For instance, in appendix C we show numerical evidence

that for q = 2 (quadratic) SYK-like Hamiltonians, the individual overlaps 〈n|Ti|m〉 are all

O(1), and hence Rmn only has an e−S suppression, as opposed to e−2S in the chaotic case

(or equivalently || |m〉〈n|L|| ∼ e−S/2 as opposed to e−S). Indeed, our arguments below for

complexity growth will crucially rely on this enhanced suppression in chaotic systems.

18It is easy to show from the definition of rmn that their mean is one: 1
2N

∑
m,n rmn = 1. The distribution

P (rmn) can be roughly approximated by the normal distribution with mean r̄ ' 1 and standard deviation

σ ' 0.098. A slightly better approximation is provided by Student’s t-distribution with the parameters

r̄ = 0.994, σ = 0.093 and the number of degrees of freedom ν = 6.
19More precisely, the ETH suppression to Rmn is e−S(Ē) where Ē = (Em+En)/2, but we expect eS−S(Ē)

to be polynomial in S.

– 23 –



J
H
E
P
0
1
(
2
0
2
0
)
1
3
4

Let us now return to the problem of conjugate points at finite cost factor. If we take

the statement (3.20) of ECH as given, then we have

C(|m〉〈n|NL) = [H, |m〉〈n|NL]NL

= [H, |m〉〈n|]NL − [H, |m〉〈n|L]NL

= ∆mn|m〉〈n| − [H, |m〉〈n|L]NL −∆mn|m〉〈n|L
= ∆mn|m〉〈n|+O(e−Spoly(S)), (3.22)

where in the last line we have used ECH together with the fact that the Hamiltonian is a lin-

ear combination of only polynomially many generators, and so the norm of [H, |m〉〈n|L]NL
can at most get a polynomial enhancement over the exponentially suppressed norm of

|m〉〈n|L. This implies that if we take our initial velocity to be δV (0) = |m〉〈n|, then the

solution (3.6), (3.8) to the Jacobi equation simplifies substantially

δVmn(s) = exp

(
− iµt∆mns

1 + µ

)
|m〉〈n|+ · · · . (3.23)

Below, we will carefully justify that the corrections to equation (3.23), denoted as · · ·
above, are exponentially suppressed in N , but for now we will proceed with the main

argument. With equation (3.23) in hand, we can evaluate the action of the super-operator

Y(µ) on |m〉〈n|:

Y(µ)(|m〉〈n|) =

∫ 1

0
ds eiHtsδVmn(s)e−iHts

=

∫ 1

0
ds exp

(
it∆mns

1 + µ

)
|m〉〈n|+ · · · , (3.24)

where, once again, the correction terms are exponentially suppressed in N , as will be

justified below. Performing the s integration, we find

Y(µ)(|m〉〈n|) =
exp

(
i∆mnt
1+µ

)
− 1

i∆mnt
1+µ

|m〉〈n|+ · · · = φmn

(
t

1 + µ

)
|m〉〈n|+ · · · . (3.25)

(Note that the function φmn was defined in (3.15).) Therefore, under the assumption (3.20),

the super-operator Y(µ) is a diagonal matrix in the |m〉〈n|-basis with the diagonal entries

given by φmn

(
t

1+µ

)
. The diagonal entry corresponding |m〉〈n| becomes zero at

tmn(µ) ' 2π(1 + µ)

∆mn
Z, (3.26)

up to O(e−Spoly(S)) corrections.20 Therefore, as we crank up the cost factor µ, all the

diagonal entries become approximately equal to one. Indeed, the first time at which one

20Each conjugate point is two-fold degenerate at leading order in N , and the exponentially suppressed

corrections may split this two-fold degeneracy.
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Figure 9. As we crank up µ from µ = 0 (blue curves) to finite non-zero values, the conjugate

points corresponding to |m〉〈n| (zeros of φmn) move towards larger times. The orange and green

curves on the left correspond to µ = 0.2 and µ = 0.5 respectively, while the orange curve on the

right corresponds to µ = 10. We have taken ∆mn = 1 for simplicity.

of these diagonal entries becomes zero moves to later and later time (see figure 9) is now

approximately located at

tc '
2π

∆max
(1 + µ). (3.27)

If we take the cost factor to be

µ ∼ e(1−ε)S ,

where ε is some small positive number (as will become clear shortly, the above argument

works when µt� eS which is satisfied by this choice at any sub-exponential time), then Y

will be approximately the identity matrix for any time sub-exponential in S, and so we do

not expect it to have zero modes. Of course, there is an important caveat here — although

the corrections to Y are exponentially small, the matrix in question is exponentially large

and so one might worry that the eigenvalues of Y get corrected at O(1). We will address

this issue below.

Here we have assumed that ∆max does not scale exponentially with N . Indeed, for the

SYK model ∆max = O(N). This shows that the linear geodesic segment from the identity

to e−iHt is locally minimizing for times exponential in N . To be precise, we have shown

that all the low-lying conjugate points which were present in the bi-invariant case have

moved to exponential time upon turning on the cost factor µ = e(1−ε)S . In the bi-invariant

case, all the diagonal projectors |m〉〈m| are eigenvectors of the super-operator Y(0) with

unit eigenvalue and do not correspond to conjugate points. We can argue from continuity

that this is still the case when we turn on the cost factor µ: since conjugate points are

zero modes of Y(µ), they cannot simply appear out of nowhere; as we can see in figure 9,

they can only move smoothly along the time axis. Therefore, no new conjugate points

should appear at finite time with a finite cost factor. This argument can be formalized

using Morse theory [53].

We also note here that if there is an off-diagonal projector |m〉〈n| which violates ECH

“maximally”, namely that is has an almost unit overlap with the easy/local directions and

a small overlap with the hard/non-local directions, then one can similarly show that such

a projector corresponds to an approximate eigenvector of Y(µ) with the eigenvalue φmn(t).
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In this situation, we may expect to find conjugate points at the O(1) times t = 2π
∆mn

Z,

provided ∆mn is not exponentially small, and if so the linear geodesic would stop being

minimizing early on in time evolution. We expect this behavior to be present at small N .

Bounding the correction terms. Now we wish to carefully justify that all the cor-

rection terms which were ignored above are indeed exponentially suppressed. To this

end, let δVmn(s) be the Jacobi field along the linear geodesic with the initial condition

δVmn(0) = |m〉〈n|, and define

δVmn(s) = c(s)|m〉〈n|+ δW (s), (3.28)

where c(s) = e
− iµts∆mn

1+µ , and δW (s) is the correction to the leading order result in equa-

tion (3.23). We insert this into the Jacobi equation to obtain the differential equations

satisfied by δW :

i
dδWL(s)

ds
= µt[H, δWNL(s)]L + SL(s),

i
dδWNL(s)

ds
=

µt

1 + µ
[H, δWNL(s)]NL + SNL(s),

δW (0) = 0,

(3.29)

where the source term S above is given by

S(s) =
µ2t

1 + µ
c(s)∆mn|m〉〈n|L − µtc(s) [H, |m〉〈n|L]L −

µt

1 + µ
c(s) [H, |m〉〈n|L]NL . (3.30)

As long as µt� eS , say for instance µt ∼ e(1−ε)S , then the source terms have an exponen-

tially suppressed norm by ECH:

||S|| = O(e−εSpoly(S)), (3.31)

where S = N
2 ln(2), and we are using the Frobenius norm ||X||2 = Tr(X†X). For polyno-

mial times, we can therefore take µ ∼ e(1−ε)S , and the source terms will still be suppressed;

beyond this value of µ our arguments here will break down.21 Expressing δW in terms

of the basis (Tα, T̃α̇) introduced previously and solving the second equation in (3.29), we

obtain for the non-local piece of δW :

δWNL(s) = −i
∫ s

0
ds′
∑
α̇

e
iµt(s−s′)λα̇

1+µ Sα̇T̃α̇. (3.32)

Therefore, the norm of this correction term is given by

||δWNL(s)|| ≤
∫ s

0
ds′||S|| = O(e−εSpoly(S)), (3.33)

21Note that for integrable systems, weaker suppression implies that our argument breaks down at µ ∼
eS/2, that is far before the required value of eS for the cost factor. For chaotic systems, we can push the

cost factor to e(1−ε)S , which is almost the required value.
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where we have used ||
∫
X|| ≤

∫
||X||. Repeating the same argument for the local directions,

we see that in fact

||δW (s)|| = O(e−εSpoly(S)). (3.34)

Now coming to the action of the super-operator on |m〉〈n|, we have the exact statement

Y(µ)(|m〉〈n|) =

∫ 1

0
ds eiHtsδVmn(s)e−iHts

= φmn

(
t

1 + µ

)
|m〉〈n|+

∫ 1

0
ds eiHtsδW (s)e−iHts. (3.35)

We can bound the norm of the second term above by once again using ||
∫
X|| ≤

∫
||X||,

together with equation (3.34):∣∣∣∣∣∣∣∣∫ 1

0
ds eiHtsδW (s)e−iHts

∣∣∣∣∣∣∣∣ ≤ ∫ 1

0
ds ||eiHtsδW (s)e−iHts||

=

∫ 1

0
ds ||δW (s)||

= O(e−εSpoly(S)). (3.36)

This completes our justification that the corrections to equation (3.25) are indeed exponen-

tially suppressed in N . The upshot of these arguments is that, for the parameter regimes

we are interested in, the functions φmn

(
t

1+µ

)
remain close to one and all other contribu-

tions are suppressed. Therefore, no zero modes of the super-operator can develop before

at least one φmn has dropped away from 1, and this does not occur until times exponential

in N .

We will now address a possible caveat in the above discussion: we have shown that

the superoperator Y is an approximately diagonal matrix with the diagonal entries being

approximately one at times much smaller than tc, and exponentially suppressed off-diagonal

entries. So let us write

Y = Φ + δY, (3.37)

where Φ is the diagonal part and δY is the off-diagonal part. Equation (3.36) shows

that the L2 norm of any row in δY is bounded by an exponentially small quantity. One

might worry that, since there are exponentially many of these rows, they may combine

to lead to significant deviations in the eigenvalues of Y compared to Φ.22 The point,

however, is that the constraint on the norm of the individual rows of δY is strong enough

that almost all the exponentially many eigenvalues can only receive exponentially small

corrections, while only an O(1) number of eigenvalues can be affected significantly. We

can see this by estimating the average magnitude of the eigenvalues of δY,23 which is

exponentially suppressed because of (3.36). Furthermore, the variance in the distribution

22We thank Daniel Ranard for emphasizing this point to us.
23Note that we can focus on the eigenvalues of δY because Φ is approximately the identity matrix, up

to exponentially small diagonal corrections. To be more systematic, we can absorb these corrections inside

δY, and then make the remainder of the argument. By the Cauchy-Schwarz inequality, the rows of this

newly defined δY also obey a bound on their norms.
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of the eigenvalues can also similarly be shown to be exponentially small. Thus, almost all

the eigenvalues of Y will be unaffected by the correction term δY, and thus be bounded

away from zero, i.e., almost all the conjugate points (which were present at small µ) will

get lifted. It is nevertheless true that this argument does not preclude large corrections

to a small number of the eigenvalues, and thus does not completely rule out “accidental”

conjugate points; it will be interesting to see if this can be accomplished by using more

detailed properties of δY.

We emphasize that the potential remaining conjugate points discussed above are “acci-

dental” from the perspective of a random family of Hamiltonians in the following sense: in

quantum circuit complexity, we are concerned with families of Hamiltonians and therefore

with families of conjugate points. In the bi-invariant analysis, we found that conjugate

points were very generic close to the identity, and specifically that any family of random

Hamiltonians will have a family of conjugate points in the bi-invariant metric with distances

from the identity set by the total spectral range. If the entries of the Hamiltonian have

mean zero and unit variance, this conjugate point family is actually moving closer to the

identity as we increase N . The “accidental” conjugate points above are not generic in this

way, and require some fine tuning of the matrix δY. Therefore, we do not expect them to

exist in families (i.e. for arbitrary N), and even if we are unfortunate enough to encounter

such a family, we expect that a small perturbation of the Hamiltonians will destroy them.

4 Discussion

In this paper, we study the quantum circuit complexity of unitary time evolution in qubit

systems. Here, complexity measures the minimum amount of “simple” (or k-local) op-

erations needed to build the time evolution operator U(t) = e−iHt. Our main tool is a

geometrization of complexity in terms of geodesics on the unitary group manifold [19],

which we study using the Euler-Arnold equation [46]. Using this approach, we directly

relate complexity growth in a physical theory to its spectral properties, and thus to phe-

nomena like chaos and integrability. We propose the Eigenstate Complexity Hypothesis

as a criterion on the energy eigenstates of the theory as a condition for linear complex-

ity growth for exponential times, modulo global obstructions, that would be expected in

chaotic dynamics. We apply these ideas to the SYK model. First, for N = 2 fermions

where the theory is integrable, we solve exactly and show that complexity grows linearly

at initial times but then oscillates. For large-N , where the SYK theory is chaotic, we show

numerically that ECH is satisfied, thus giving evidence that complexity grows linearly for

exponential time, as predicted by the duality of SYK theory with the physics of black

holes [38, 39].

Various features of the complexity plot in figure 2 can be understood as arising from

distinct traits of the underlying quantum system. For example, the appearance of a plateau

has nothing to do with a notion of complexity, but rather comes from competition between

various geodesics on the unitary group manifold and a self-averaging effect at large-N ,

which both occur even in the bi-invariant geometry where all operators are considered
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simple.24 On the other hand, the location in time of the start of the plateau depends

strongly on what we select as “simple” (local) vs. “complex” (nonlocal) operations; for

example, if all operators are considered “simple” (corresponding to a bi-invariant metric

on the unitary group) the complexity plateau starts at a polynomial time in N , rather than

at exponential time when only k-local operators are considered simple. Similar statements

apply for the complexity ramp and the length of the ramp, respectively. Additionally,

large-N features like the ramp and plateau can be discovered at small N (even N = 2)

by utilizing disorder-averaging which appears in, e.g., the SYK model. However, doubly

exponential features like the Poincaré recurrences of complexity will be washed out by

disorder and so are only present for a single instantiation of the model at large-N . The

upshot of all this is that the disorder-averaging commonly employed in studies of the SYK

model acts as a sort of crutch which replicates large-N features. These features should

properly be interpreted as the effects of self-averaging, which occur even in a single model

instance as long as the Hamiltonian is chaotic. Furthermore, the qualitative features of the

complexity plot are present without any notion of easy/hard (local/nonlocal) operations,

but the particular time scales which appear hinge crucially on the introduction of such a

notion (defined, say, through cost factors in the complexity metric on the unitary group).

4.1 Late-time saturation

From physical considerations, it is expected that for quantum systems with gravity duals,

the complexity will grow linearly until some time exponential in N , after which it will

saturate [60]. Conceptually, in any theory with a UV and IR cutoff this saturation will

occur because of the finite dimension of the group of unitary operators acting on the Hilbert

space. This saturation of complexity is expected to arise in the geometric framework

when the linear geodesic on the unitary manifold from the reference operator to the time

evolution operator stops being globally minimizing. At this point other geodesics take over.

Above, we demonstrated criteria for local minimality of the linear geodesic, i.e. under what

conditions we can exclude other geodesics that are deformations of the linear one. However,

since the unitary group is compact, globally there may be geodesic loops, and we have not

studied these. In the simple case with a bi-invariant metric on the unitary group, i.e.

setting the cost µ = 0 to take all operators to be “simple”, we can get a glimpse of the

relevant physics.25 In this case, the geodesic equation and boundary conditions are

d

ds
V (s) = 0, e−iV (0) = e−iHt. (4.1)

The solutions are given by

V~k(s) =

2N/2∑
n=1

(Ent+ 2πkn)|n〉〈n|, (4.2)

24Recall that a similar dip-ramp-plateau pattern in correlation functions appeared in integrable theories

without disorder as studied in [59].
25See [61] for a different interpretation of the physics of the bi-invariant situation.
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Figure 10. The complexity (plotted upto an overall coefficient) in the bi-invariant case (µ = 0) as

a function of time for ten different realizations of the SYK model at N = 8, q = 3, J = 1.

where |n〉 are the energy eigenstates of the Hamiltonian, and ~k = (k1, · · · , k2N/2) are

integers which sum up to zero because of the traceless condition. Therefore, the complexity

is given by

C(t) = min~k

[
e−S

∑
n

(Ent+ 2πkn)2

]1/2

, (4.3)

where the minimization is over all integer vectors ~k subject to the constraint that they sum

up to zero. In figure 10 we show a numerical plot26 of C(t) for ten different realizations

of the SYK model with N = 8, q = 3 and J = 1. In all the cases, complexity grows

linearly with time for a while, but then saturates at a time of order t ∼ 2π/∆max, which

recall is precisely the time when conjugate points appear in the bi-invariant case! Another

important feature to note here is the saturation for each individual SYK realization, arising

from different geodesics (i.e., different integer vectors ~k) dominating the complexity at late

times. In section 2.2, we found similar saturation behavior in the N = 2 case after disorder

averaging; at larger N , each individual realization seems to “self-average” to produce a

plateau, as is evident from the sum in equation (4.3).

We can think of the minimization problem in equation (4.3) as being roughly equivalent

to a particle moving uniformly on a 2N/2-dimensional torus T 2N/2 , starting from some initial

point with the velocity (E1, · · · , E2N/2). The complexity is then simply the distance of the

particle from its starting point. If the energy eigenvalues are suitably commensurate, then

the distance from the starting point will grow linearly with time for some time, but then the

particle will return to its origin, and this will result in an oscillating complexity. However,

if the energy eigenvalues are incommensurate, then the particle will move away linearly,

but will not come back to its origin in a short amount of time. Indeed, it will typically

wander around the high-dimensional torus at a fixed average distance from the origin, thus

leading to a saturation in the complexity.

26We used the function NMinimize in Mathematica to make this plot. We cannot guarantee that numerical

minimization has converged to the true global minimum, and so these plots should be regarded as upper-

bounds on the true complexity.
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It would be interesting to extend this analysis to the physically interesting situation

where only k-local operators are taken to be “simple” (µ = 0), with cost 1+µ = 1+e(1−ε)S

for all other operators. A possible general strategy to make progress is to analyze the

appearance of the complexity plateau for theories that satisfy our Eigenstate Complexity

Hypothesis.

4.2 Quantum computation

As discussed above, to show that the linear solution is the global minimizer for an exponen-

tial time we need to globally exclude other geodesics. In the bi-invariant geometry (µ = 0,

all operators regarded as “simple”), all geodesics which reach the unitary U = e−iHt from

the identity have initial velocity vectors equal to log U . The ambiguity in taking this log-

arithm gave a family of geodesics indexed by ~k ∈ Z2N/2 with
∑

n kn = 0, as explained in

the previous section. Now consider some of the operators as “non-local” by turning on a

cost factor in the metric for these directions in the unitary group. For large enough N we

expect all geodesics that appeared in the bi-invariant analysis other than the linear one

will have nonvanishing components along the non-local directions. Thus, when µ 6= 0 these

trajectories should no longer be geodesics. Perturbatively, it is obvious that their length

increases with µ, but a complete analysis requires a resummation of the perturbative ex-

pansion that accounts for the change in the geodesic trajectory as the metric is changed.

The goal should be to demonstrate that, at large enough N , all of the non-trivial geodesic

loops (if they still exist when 1 + µ ∼ 2N ) have greater length than the linear solution for

any t ∼ poly(N), where poly(N) is a polynomial of any degree.

A precise argument to this effect could be combined with our results to demonstrate a

novel complexity class separation.27 This is due to a theorem of Aaronson and Susskind [63],

who showed that the complexity class separation PSPACE * BQP/poly is true if and only

if the time evolution operator e−iHt in general has complexity which grows linearly with

t for a time greater than any polynomial in N .28 Of course, we expect such growth only

for chaotic Hamiltonians, and not in integrable systems. Furthermore, following theorem 2

in [63], if the geodesic loop argument outlined above can be made for exponential times (or,

more precisely, for times greater than any subexponential29), then our results (which show

27Hamiltonian simulation has been studied in the context of complexity classes previously in quantum

computation [62].
28PSPACE is the class of problems that can be solved given polynomial space and BQP is the class of

problems that can be solved in polynomial time by a family of quantum circuits that is constructed by

a classical algorithm in polynomial time. Next, BQP/poly is the class of problems that can be solved in

polynomial time by a family of quantum circuits, given a polynomial size string of “advice” for each problem

size which can be used when constructing the corresponding circuit. The advice string can be different for

different problem sizes. Here “BQP” stands for Bounded-error Quantum Polynomial time, where, because

quantum computations are effectively probabilistic, we must require that errors occur with a probability

less than some bound ε. Finally, BQSUBEXP is the class of quantum computations that can be done in

a subexponential time, t ∈ O(eN
α

) (for all α > 0), and BQSUBEXP/subexp is the same class but with

subexponential size advice strings.
29Note that some authors disagree on the definition of the subexponential class, effectively over whether

it includes times like 2N
1/3

(more generally, 2o(n)) or whether it only includes times strictly less than 2N
α

for all α > 0. Our bound on conjugate points holds for a truly exponential time tc ∼ eεN , so the discussion
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there are no conjugate points up to exponential time tc ∼ eεN ) would actually imply the

even stronger statement PSPACE * BQSUBEXP/subexp. It would be interesting (and

necessary for the aforementioned class separations to be established) to see if there is a

relationship between our ECH criterion, which is central to the argument for complexity

growth, and the complexity-theoretic assumption in [63] where the time evolution step

e−iH was taken to implement one step of a reversible computationally-universal classical

cellular automaton.30

When conjugate points exist in our analysis they can be interpreted in terms of “fast-

forwarding” of the Hamiltonian, and of time evolution regarded as a quantum computation.

Fast-forwarding of a Hamiltonian H occurs when time evolution with respect to H for a

time t can be simulated on a quantum computer, using a different Hamiltonian, in a time

much smaller than t [65]. General Hamiltonian simulation algorithms are well-studied in

the quantum computation literature [65–71]. In particular [65] shows the existence of a

family of Hamiltonians (based on Shor’s algorithm) where an exponential fast-forwarding

does happen. In our language, this means that there is shorter path from the identity to

the operator e−iHt than simply following the linear geodesic on the unitary manifold. The

existence of a conjugate point does not signal a parametrically faster algorithm, as in the

definition of [65], but the absence of a conjugate point is certainly necessary to rule out

such speedups. Perhaps there is a connection between the existence of conjugate points (or

maybe the failure of ECH) and violations of the computational time-energy uncertainty

principle defined in [65] to detect speedups.

4.3 Quantum chaos

We have proposed the eigenstate complexity hypothesis (ECH) as a criterion for complex-

ity growth for exponential time, a phenomenon that we should expect in chaotic theo-

ries, but not in integrable theories. ECH states, roughly, that the off-diagonal projectors

of eigenstates should have exponentially small overlap with k-local operators. We have

demonstrated that ECH is indeed satisfied in chaotic systems such as the SYK model.

Physically, ECH is satisfied in these cases because a given projector |m〉〈n| has nonzero

overlap with all the e2S operators in the eS dimensional Hilbert space, which guarantees

that the overlap with a given small set of k-local generators must be small by unitarity

(see figure 11, appendix C).

But what about integrable systems, such as the free Ising model H = −J∑i ZiZi+1?

All spin configurations are eigenstates of this model. A spin configuration can be turned into

another by the action of local raising and lowering operators at some sites and the action of

any number of Zs. Because of this there are ∼ eS generators which will have overlaps with

a given eigenstate projector with a few spin flips such as | . . . , 1, . . . , 0, . . .〉〈. . . , 0, . . . , 1, . . . |.
Unitarity then suggests that the overlap of this projector with any given k-local operator

of BQSUBEXP/subexp in the main text holds for whichever definition was used by [63]. In the previous

footnote we assumed the weaker SUBEXP =
⋂
α>0 DTIME(2N

α

).
30It is an empirical observation in complexity theory that universality in cellular automata is not difficult

to achieve; on the contrary, it is quite difficult to avoid [64]. We consider it very likely that a generic chaotic

Hamiltonian like the SYK model implements such an automaton via its time evolution steps.
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(effectively the square root of (3.18)) will be ∼ e−S/2. This does not satisfy the ECH crite-

rion as we stated it, but suggests there should be more refined criteria separating theories

that have, e.g., O(1), O(poly) and various weaker exponential overlaps between the eigen-

state projectors and the k-local generators. More generally, we see in figure 13 (appendix C)

that when a system has conserved charges which act diagonally on the generators of the

gate set, there are superselection sectors in the Hilbert space for the overlaps between the

eigenstate projectors and the k-local operators. It is plausible that this phenomenon could

be shown to generally lead to ECH violation in integrable models.

All of our results were developed in the context of finite dimensional systems. These

could be understood as a discretization of continuum field theories with both an IR and a

UV cutoff. It would be interesting to understand how to recover the continuum limit as

the cutoffs are removed.
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A Majorana Fermion basis for su(2N/2)

We begin with a set of Majorana fermion operators γi which obey the commutation rela-

tions31

{γi, γj} = 2δij , (A.1)

and also obey γ†i = γi (the Majorana condition). We can interpret these objects as 2N/2 ×
2N/2 Hermitian matrices, and they are precisely the generalized gamma matrices of the

Clifford algebra C`N (R). The basis for su(2N/2) is constructed by taking products of

γi with appropriate factors of i to ensure Hermiticity. Specifically, we consider ordered

products γi1 . . . γin with i1 < · · · < in. To be Hermitian, such a product needs a factor of

i if n(n− 1)/2 is odd. We can now write the set of generators compactly using the set of

binary strings of length N , b ∈ BN . The bits of the string are b = bN . . . b1, and let qb be

the number of nonzero bits in b. We write

Tb = i(
qb
2 )γb11 . . . γbNN , (A.2)

and we then have

su(2N/2) = span ({Tb | b ∈ BN \ {0}}) . (A.3)

31Note that we are labeling gamma matrices with i, j, etc., whereas in the main text we used a, b, etc.

The reason for this is that here we reserve early alphabet letters for the binary form of base-10 integers

which form an equally valid labeling of the generators that we employ in calculations.
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We now show these generators are traceless. By construction, the gamma matrices indi-

vidually are traceless, so we have tr γi = 0. Additionally, an even number of them will be

traceless since we have anticommutation and cyclicity of the trace:

tr γi1 . . . γi2k = 0. (A.4)

For an odd number, we use the gamma matrix construction in terms of tensor products of

Pauli matrices. That is, given a set of N − 2 gamma matrices γ
(N−2)
a , we may create a set

of N γ
(N)
i by taking

γ(N)
a = γ(N−2)

a ⊗ σ3,

γ
(N)
N−1 = 1⊗ σ1,

γ
(N)
N = 1⊗ σ2.

(A.5)

There are four cases for tr γi1 . . . γi2k+1
. First, neither γ

(N)
N−1 nor γ

(N)
N appear in the product.

In that case, we have γ
(N)
i1

. . . γ
(N)
i2k+1

= γ
(N−2)
i1

. . . γ
(N−2)
i2k+1

⊗ σ2k+1
3 , and since trA ⊗ B =

trA trB and trσ2k+1
3 = trσ3 = 0, we have the required result. The second case is when

either γ
(N)
N−1 or γ

(N)
N appear in the product, but not both. Then the final tensor factor

is either σ1 or σ2, and similarly we have tr σ1 = trσ2 = 0 so again the entire trace

vanishes. The interesting case is when we have both γ
(N)
N−1 and γ

(N)
N in the product. Then

we have tr γ
(N)
i1

. . . γ
(N)
i2k+1

= − tr γ
(N−2)
i1

. . . γ
(N−2)
i2k−1

trσ1σ2σ3. We now repeat the argument

for tr γ
(N−2)
i1

. . . γ
(N−2)
i2k−1

, since these smaller gamma matrices have a similar tensor product

structure. Again the only interesting case is when both γ
(N−2)
N−3 and γ

(N−2)
N−2 both appear.

Following this chain, we end up with only a single gamma matrix in the first part of the

tensor structure, and the trace of any single gamma always vanishes. So we conclude

tr γi1 . . . γi2k+1
= 0. (A.6)

Thus, all generators are traceless as desired.

trTb = 0. (A.7)

We now turn to linear independence. Notice first that, given generators Ta and Tb with

a 6= b, we have TaTb = αTc for some α ∈ C and some c ∈ BN \ {0}. Now assume for the

sake of contradiction that we have
∑

b αbTb = 0 for some constants αb ∈ R. Solve for a

specific Ta with nonzero coefficient and write αaTa = −∑b 6=a αbTb. Multiply both sides

by whatever multiple of Ta we need to get the identity on the left hand side. We now

have 1 ∝∑b 6=a αbTaTb ∝
∑

c 6=a βcTc. However, if we now take the trace of both sides, the

left hand side is tr 1 = 2N/2 but the right hand side is
∑

c αc trTc = 0, so they cannot be

proportional. Thus, all the generators must be linearly independent.

Note that it is a basic fact of Lie algebras that the structure constants fab
c are fully

antisymmetric since we have chosen a basis in which tr TaTb ∝ δab. This can be seen by

noticing trTa[Tb, Tc] = trTafbc
dTd ∝ fbc

dδad = fbc
a, and also by cyclicity of the trace we
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have

trTa[Tb, Tc] = trTaTbTc − trTaTcTb

= tr trTaTbTc − trTbTaTc

= tr[Ta, Tb]Tc

= fab
d trTdTc

∝ fabdδdc
= fab

c,

therefore we have

fbc
a = fab

c, (A.8)

and this combined with the fact that fab
c = −fbac implies full antisymmetry. Now recall

qi is the number of nonzero bits in the binary expression of index a, i.e. qa is the number

of fermions appearing in generator a. Let a ⊕ b be the bitwise “exclusive-or” of a and b.

Let a ∧ b be the bitwise “and” of a and b. Then a lengthy calculation shows

fab
c 6= 0⇔ a⊕ b = c, qaqb + qa∧b ≡ 1 mod 2. (A.9)

Furthermore, the magnitude of any nonzero structure constant is precisely |fabc| = 2.

The exact sign is more difficult to determine with simple calculations, but it will not be so

important for our analysis. One may wonder how this description of the structure constants

is consistent with the properties we claimed before. For instance, if a⊕b = c and qaqb+qa∧b
is odd, do we have (by total antisymmetry) b⊕ c = a and qbqc + qb∧c odd? Indeed we do,

by properties of ⊕ and ∧:

a⊕ b = c

a⊕ (a⊕ b)⊕ c = a⊕ c⊕ c
b⊕ c = a.

Another computation shows the parity of qaqb + qa∧b matches that of qbqc + qb∧c.

qaqb + qa∧b ≡ 1 mod 2

qaqb + qbqc + qa∧b + qb∧c ≡ 1 + qbqc + qb∧c mod 2

(qa + qc)qb + qa∧b + qb∧c + 1 ≡ qbqc + qb∧c mod 2

(qa + qa⊕b)qb + qa∧b + qb∧(i⊕b) + 1 ≡ qbqc + qb∧c mod 2

(qa + qa + qb − 2qa∧b)qb + qa∧b + qb − qa∧b + 1 ≡ qbqc + qb∧c mod 2

q2
b + qb + 1 ≡ qbqc + qb∧c mod 2

qb(qb + 1) + 1 ≡ qbqc + qb∧c mod 2

1 ≡ qbqc + qb∧c mod 2.

This serves as a consistency check on our condition (A.9). Notice that the condition (A.9)

acts as a nontrivial selection rule for which velocities can appear in the Euler-Arnold
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equation (2.8). Let us see how this works. For a local direction a, in order for V bV c to

appear on the right hand side of (2.8), we must have (without loss of generality) qb ≤ k

and qc > k for some choice of k-locality of the gate set. Then, since qc = qa + qb − 2qa∧b,

we must have k > 2qa∧b. For k = 2, this implies qa∧b = 0. Combining with qaqb + qa∧b ≡ 1

mod 2, we see qaqb ≡ 1 mod 2. This is quite a nontrivial condition; näıvely we may have

imagined in a k = 2 model that there exist nonzero commutators between generators a and

b that had qa = qb = 2 and qa∧b = 0, but this cannot be the case because then qaqb ≡ 0

mod 2. Similarly, we might have expected nonzero commutators for qa = 1 and qb = 2

yielding qc = 3 with qa∧b = 0, but this also does not occur by the selection rules (A.9). The

conclusion of this analysis is that, in a k = 2 model, the local velocities evolve via dV α

ds = 0.

B Conjugate points in perturbation theory

In the main text it was argued that the bi-invariant metric (with c = c̄ = 1) has conjugate

points at t?mn = 2π
∆mn

Z, where ∆mn = (Em−En) are differences between energy eigenvalues

of the Hamiltonian. In this appendix, we will perturbatively track the behavior of these

conjugate points when we turn on an infinitesimal cost factor c̄ = 1 + ε along the heavy

directions. Recall that the equation for the Jacobi field (i.e., the Euler-Arnold equation

linearized around the linear geodesic) takes the form

c
d

ds
δVL(s) = −it(c̄− c) [H, δVNL(s)]L , (B.1)

c̄
d

ds
δVNL(s) = −it(c̄− c) [H, δVNL(s)]NL . (B.2)

Here the subscripts L and NL stand for projections of the corresponding operators along

local and non-local directions respectively. We wish to check whether there exists some

initial boundary condition δV (0) and some value of t, such that

U−1δU(1) =

∫ 1

0
dseitsHδV (s)e−istH = 0. (B.3)

If so, then the corresponding value of t constitutes a conjugate point along the original

linear geodesic Ulinear(s) = e−istH , at which point the linear geodesic stops being globally

minimizing.

We take c = 1 and c̄ = 1 + ε, and expand

δV (s) = δV (0)(s) + εδV (1)(s) + ε2δV (2)(s) · · · . (B.4)

Expanding equations (B.1) and (B.2) at zeroth order, we find that δV (0)(s) = δV (0)(0),

i.e., it is s-independent. Indeed, this is the bi-invariant Jacobi field, which gives the family

of conjugate points at

t?(m,n) =
2π

∆mn
Z, δV (0)(0) = z|m〉〈n|+ z̄|n〉〈m|, (B.5)

for any pair of distinct eigenvalues m and n of the Hamiltonian with ∆mn = (Em − En),

and any non-zero complex number z. We can set the absolute value of z to one by choice
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of normalization, but its phase is not determined at this order. This implies a two-fold

“degeneracy” in all the bi-invariant conjugate points.

At first order in ε, we find the equations

d

ds
δV

(1)
L (s) = −it

[
H, δV

(0)
NL(0)

]
L
, (B.6)

d

ds
δV

(1)
NL(s) = −it

[
H, δV

(0)
NL(0)

]
NL

, (B.7)

which can be solved to obtain

δV (1)(s) = δV (1)(0)− ist
[
H, δV

(0)
NL(0)

]
. (B.8)

From equation (B.3), we then find that the final displacement at the present order is

given by

〈m′|U−1δU(1)|n′〉 =

∫ 1

0

dseits∆m′n′
[
〈m′|(δV (0)(0)+εδV (1)(0))|n′〉

− iεst∆m′n′〈m′|δV (0)
NL(0)|n′〉

]
+O(ε2) (B.9)

= φm′n′(t)〈m′|δV (0)(0)+εδV (1)(0)|n′〉−εt∂tφm′n′(t)〈m′|δV (0)
NL(0)|n′〉+O(ε2),

where found it more convenient to write the matrix elements of U−1δU(1) in the energy

eigenstates |m′〉, |n′〉, and we have defined the function

φm′n′(t) =
eit∆m′n′ − 1

it∆m′n′
.

Let us now return to the conjugate points t?mn = 2π
∆mn

Z we had obtained at zeroth order.

From equation (B.9), it is clear that their locations have now moved at linear order in ε,

which we can keep track of systematically in perturbation theory:

t?mn = t?,(0)
mn + εδ(1)t?mn + ε2δ(2)t?mn + · · · , (B.10)

where t
?,(0)
mn = 2π

∆mn
Z denotes the bi-invariant conjugate points. Substituting this expansion

in equation (B.9) and demanding that the result vanish for m′ = m and n′ = n,32 we deduce

the shifts in the conjugate points:

δ(1)t?mn = t?,(0)
mn

〈m|δV (0)
NL(0)|n〉

〈m|δV (0)(0)|n〉 = t?,(0)
mn

(
1− 〈m|δV

(0)
L (0)|n〉

〈m|δV (0)(0)|n〉

)
. (B.11)

Note that the numerator on the right hand side involves the projection of δV (0)(0) to the

non-local subspace, which makes the above expression somewhat non-trivial to evaluate.

Importantly, however, δV (0)(0) at the zeroth order was only determined up to an arbitrary

complex number z:

δV (0)(0) = z|m〉〈n|+ z̄|n〉〈m|. (B.12)

32Of course, we should also demand that the matrix elements of U−1δU(1) vanish for m 6= m′ and n 6= n′;

these constraints partially determine δV (1)(0).
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Requiring that our expression for δ(1)t?mn is real determines precisely two possible choices of

z, which we may call z±. (Actually, only the phase of z is determined. The absolute value

can be set to one by choice of normalization.) Corresponding to these two fixed numbers

z±, we then have the two conjugate points at their respective locations t
?,(0)
mn +εδ(1)t?mn(z±),

given by (B.11). Therefore, we find that at linear order in ε, the two-fold “degeneracy”

in conjugate points splits. Nevertheless, they continue to exist and we have tracked their

locations at O(ε) above.

This analysis can be repeated order by order in perturbation theory to determine

the location of conjugate points. In the main text, it was shown that for the cost factor

c̄ = 1 + µ, the conjugate points move to t ∼ t(0)(1 + µ), assuming ECH. We see that the

perturbative results derived here are consistent with this. In particular, we reproduce the

formula in the main text if we drop the δV
(0)
L term in equation (B.11).

C Some more details on ECH

Here we provide some more numerical evidence for ECH in the SYK model. First, let us

consider writing a generic off-diagonal eigenstate projector |m〉〈n| in the SYK model in

terms of the generators Ta = (Tα, Tα̇) consisting of products of fermions:

|m〉〈n| = 1

2N/2

∑
a

caTa, ca = 〈n|Ta|m〉, (C.1)

where a runs over all the directions, easy and hard. We can get some heuristic understand-

ing of why ECH is true in the SYK model by looking at the distribution of the ca. We see

from the left panel of figure 11 that the ca are more or less uniformly distributed over all

the e2S generators. Since Rmn is the weight in the easy directions, the uniformity in the

distribution of ca implies that Rmn will be proportional to the number of easy directions

divided by the total number of directions, which is precisely what ECH requires. A related

comment is that if we build the distribution of the cas by pooling together these coefficients

for all choices of m and n, then we find a distribution with an exponential tail (see the right

panel of figure 11). Since the tail is exponential, and the Rmns correspond to normalized

sums over the easy coefficients, we expect the distribution over Rmns to be Gaussian in

the large-N limit, by the central limit theorem. This is consistent with the distribution in

figure 8. In figure 12 we have shown the distribution of the ca for a typical projector of

an integrable Hamiltonian H = ψ1ψ2. Note that in this case, the overlaps are distributed

in a much smaller subset of the generators. Nevertheless, there seem to be overlaps with

about eS generators (as opposed to e2S in the SYK model), suggesting a milder suppression

of Rmn.

We have mainly focused on k = 3, q = 3 in our presentation. But similar results also

apply to k = 4, q = 4, with slight modifications. The main novelty is that for q = 4,

the Hamiltonian has a fermion-number symmetry. As a consequence, the eigenstates of

the Hamiltonian carry an extra quantum number, namely the fermion number which acts

diagonally on the generators involving products of fermions. This means that the off-

diagonal projectors |m〉〈n| are of two types: 1. “Bosonic” or fermion number preserving,
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Figure 11. (Left) The absolute values of the coefficients ca for all the generators Ta, for a typical

projector |m〉〈n| in the SYK model. Red dots are the easy generators while blue dots are the hard

ones. Here N = 10, k = 3, q = 3. (Right) The probability distribution of |ca|2 for all a, m, n.
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Figure 12. The absolute values of the coefficients ca for all the generators Ta for a typical projector

|m〉〈n| of the Hamiltonian H = iψ1ψ2. Red dots are the easy generators while blue dots are the

hard ones. Here N = 10, k = 3.
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Figure 13. For k = 4, q = 4 and N = 12, the distribution of rmns splits into two distributions

corresponding to the bosonic (right) and fermionic (left) energy eigenstate projectors.

2. “Fermionic” or fermion number reversing. As a consequence of this, the distribution

of rmns in this case splits into two well-localized distributions, see figure 13. Since the

fermionic projectors cannot have any overlap with the four-fermion operators in the easy

part of the Lie algebra, the corresponding rmns are slightly suppressed (their distribution

has moved to the left). On the other hand, since the average is constrained to one, this
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forces the bosonic rmns to be slightly enhanced (their distribution has moved to the right).

However, these effects are polynomial in N , and do not affect the overall exponential

suppression of all the Rmns.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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