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Abstract: We consider the effective field theory of multiple interacting massive spin-2

fields. We focus on the case where the interactions are chosen so that the cutoff is the

highest possible, and highlight two distinct classes of theories. In the first class, the mass

eigenstates only interact through potential operators that carry no derivatives in unitary

gauge at leading order. In the second class, a specific kinetic mixing between the mass

eigenstates is included non-linearly. Performing a decoupling and ADM analysis, we point

out the existence of a ghost present at a low scale for the first class of interactions. For

the second class of interactions where kinetic mixing is included, we derive the full Λ3-

decoupling limit and confirm the absence of any ghosts. Nevertheless both formulations

can be used to consistently describe an EFT of interacting massive spin-2 fields which, for

a suitable technically natural tuning of the EFT, have the same strong coupling scale Λ3.

We identify the generic form of EFT corrections in each case. By using Galileon Duality

transformations for the specific case of two massive spin-2 fields with suitable couplings,

the decoupling limit theory is shown to be a bi-Galileon.
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1 Introduction

The search for all possible consistent field theories for various spins is a longstanding and

ongoing research topic of fundamental importance. Although renormalizable theories only

exist for s ≤ 1, effective field theories (EFTs) can be constructed for higher spin values,

notably for spin-2. As well as the formal interest in constructing such theories, there

is significant phenomenological interest. For instance effectively spin-2 states may play

a role in dark matter models [1–3] or if chosen sufficiently light in effective field theory

descriptions of cosmic acceleration [4]. Spin-2 particles appear as bound states of QCD

and in some particle physics models of physics beyond the Standard Model [5]. Theories of

multiple spin-2 fields have a wide range of applications in physics. For example, an infinite

number of spin-2 fields appears in Kaluza-Klein (KK) tower of states from dimensional

reduction of higher dimensional gravity (see, e.g., [4, 6] for a review) and massive spin-2

states arise in the spectrum of string theory. An important question from the effective

field theory viewpoint is to understand the consistency of the mutual interactions of the

multiple massive spin-2 fields appearing in the KK tower. For instance in recent work it

is noted that scattering amplitudes of the KK modes grow much slower than anticipated

from the individual components [7] as a consequence of the underlying higher dimensional

symmetry which explains in part how the cutoff of the KK theory is higher than that

typically expected for an interacting theory of massive spin-2 states. In the condensed

matter context, EFTs for spin-2 states have been used to describe a gapped collective

excitation in fractional quantum Hall effect [8].

The action for free massless gauge fields of any spin is well known [9, 10] and in recent

years there has been significant progress in constructing interacting higher-spin theories

albeit on anti-de Sitter spacetime [11, 12]. As is well known, in the case of massless spin-

1 particles, adding interactions between different species of fields uniquely leads to the

Yang-Mills theory as the low energy description. For a single massless self-interacting

spin-2 field the only possible two-derivative action is the Einstein-Hilbert action and it

is known to be impossible to have interacting multiple species of massless spin-2 fields

(gravitons) [13]. Extensions to higher spin typically need infinite towers of spin states

precluding a straightforward local low energy EFT description for the massless case. A

review on massless higher-spin gauge theories with s > 2 can be found in [14–16] with

much progress being made also in the recent years.

Adding mass to the various fields have turned out to be a non-trivial problem in itself.

In general no straightforward analogue of the (super-)Higgs mechanism is known.1 It is

however possible to construct Stückelberg type EFTs that can be viewed as low energy

EFTs of some unknown (partial) UV completion. In the case of spin-1 fields, the free

theory is described by the Proca action, and the EFT interactions may be organized in

1It is known that a weakly coupled Higgs mechanism for which the high energy behaviour of scatter-

ing amplitudes is improved to lims→∞A(s, t) < s2 at fixed t would require an infinite number of spin

states [17, 18] and so is very different from the usual spin-1 Higgs. This is confirmed by explicit attempts

using s ≤ 1 [19]. These arguments do not preclude a strongly coupled Higgs mechanism. Explicit UV

completion in AdS has been proposed recently in [20–22]. For related discussion on constraints on UV

completion of spin-2 see [23].
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several ways depending on the choice of additional symmetries for the Stückelberg field

(see for example the discussion in [17]). Massive spin-1 generalizations to the classic Proca

action that restrict to second order equations of motion have been studied, for example,

in [24–27], but general EFTs allow for infinitely more interactions. A novel shift-symmetric

extension to interacting massive spin-1 theories in de Sitter and anti-de Sitter spacetimes

has recently been made in [28]. In the case of a single massive spin-2 which can be coupled

to matter, the most general ghost-free (two derivative, five propagating degrees of freedom)

nonlinear theory in four spacetime dimensions is the de Rham-Gabadadze-Tolley theory of

massive gravity [29]. When viewed as an effective field theory, this is the theory with the

highest energy cutoff, with perturbative unitarity broken at the scale Λ3 = (m2M)1/3. The

spin-2 interaction scale M here is associated with the Planck mass MPl via a dimensionless

weak coupling constant g∗ � 1 needed to satisfy ‘improved’ (loop corrected) positivity

bounds [30–32]. Specifically in four dimensions M2
Pl = M2/g2

∗ and positivity bounds impose

g∗ . m/Λ3 � 1 [32, 33]. More general interactions are allowed, but lead to a lower cutoff

scale (signalled by the presence of a massive ghost). Interestingly it has recently been

found that the application of non-forward limit positivity bounds derived in [34] assuming

a standard UV completion impose some of the tunings necessary to raise the cutoff to this

special case [17].

These ‘ghost-free’ or ‘highest cutoff’ effective field theories can be easily generalized to

a theory of arbitrary number of interacting spin-2 fields in an arbitrary number of space-

time dimensions D, as proposed in [35]. The allowed interactions take a very simple form

in the vierbein formalism where the interactions can be written as wedge products be-

tween the various vierbeins. Each interaction vertex can thus contain up to D interacting

vierbeins. However, it is known that the theories presented in [35] are only ghost-free for

pairwise couplings between the spin-2 fields. The reason for this is (partially) the loss of

equivalence between the vierbein and metric formulations of the interactions which occurs

where there are cycles of interactions [36]. The equivalence between the two formulations

is usually recovered by the so-called symmetric vierbein condition that arises dynamically

once the additional Lorentz transformations (present in the vierbein language) are inte-

grated out. In the case of either tri- (tetra-, etc.) metric interaction vertices as well as

for cyclic trimetric interactions [35, 36] if we begin in an unconstrained vierbein formula-

tion, for which all 16 components of each vierbein are independent, the symmetric vierbein

condition is lost signalling a potential pathology. In [37] it was shown that these specific

unconstrained vierbein multi-gravity theories contain the Boulware-Deser (BD) ghost [38]

otherwise absent in the theories introduced based on the ghost-free interactions [4, 29, 39].

A similar result is obtained from working in the metric (or constrained vierbein) formu-

lation as we shall see below. These results preclude the existence of a ‘ghost-free’ (at all

scales) interacting theory of multiple massive spin-2 particles with (what we will refer to

as) cycle interactions. We shall demonstrate this explicitly in what follows through both a

standard ADM and decoupling limit (DL) analysis. However, when viewed in EFT terms,

they remain consistent and can be interpreted as a particular realization of the EFTs for

multiple massive spin-2 particles. The behaviour of the strong coupling scale in various

classes of multi-gravity graphs (not cycles) was explored in [40].
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Spin-2 particles may also arise in non-gravitational theories, where we expect the sym-

metry that is spontaneously broken by the mass to simply be linearized diffeomorphisms,

sometimes called spin-2 gauge invariance [41]. Interacting theories of single and multiple

spin-2 fields with this breaking have been considered recently in [42–45]. These theories are

considerably easier to analyze due to the linearity of the underlying gauge symmetry, and

so will be free from many of the issues to be discussed below. We refer to [45], for a related

discussion of interactions between multiple such spin-2 fields. Although sometimes referred

to as pseudo-linear massive gravitons, such spin-2 states cannot couple to the stress energy

by standard arguments [41] and so these are best thought of as non-gravitational theories.

In the present work we shall focus on the EFT of multiple interacting massive spin-

2 fields, whose masses arising from breaking nonlinear diffeomorphism symmetry — a

case that so far has not been explored in detail using the EFT methodology — with

the interactions chosen such that the EFT has the highest possible cutoff. This latter

assumption significantly reduces the allowed number of interactions, and will allow us in a

forthcoming work to derive strong statements about the possibility of UV completion [46].

To be concrete we shall focus most attention on the case of two massive spin-2 fields,

although many of the results will easily generalize.

The rest of this paper is organized as follows. In section 2 we first introduce the

EFT of two interacting massive spin-2 fields that will be our main focus in the rest of this

work. This will be constructed in the ‘metric’ formulation, meaning that each spin-2 field

is described by a 10 component tensor. However for reasons of calculational simplicity,

it is helpful to write the metric in terms of a constrained symmetric vierbein which also

has 10 components. Nevertheless, this formulation differs from the so-called unconstrained

vierbein formulation where all 16 components of the vierbein are allowed to vary in the

action. We perform the ADM constraint analysis of this theory in subsection 2.3 which

will lead to the same conclusion as found in the analogous (but different) unconstrained

vierbein formulation that interactions between the two massive spin-2 particles lead to a

ghost at some scale. By itself the ADM analysis is blind to the scale of the ghost, which

should really be interpreted as the cutoff scale of the low energy effective theory. To rectify

this, in section 3 we perform the DL analysis for the theory with cycle of interactions.

Doing this both clearly identifies the presence of the ghost and its associated energy scale,

and hence determines the overall cutoff of the two massive spin-2 effective theory. In fact

our DL analysis is equally valid for unconstrained and constrained vierbein formulations.

We establish the strong coupling scale of our EFT of cycle interactions in section 4 and

determine the appropriate technically natural tuning, that puts the cutoff at the highest

possible scale for two massive spin-2 particles, namely the Λ3 = (m2M)1/3 scale, the same

as that for individual self-interactions. For the cycle of interactions, the main conclusions

of this analysis are:

1. The helicity-zero/helicity-two interactions occur at the scale Λ3.

2. The cutoff of the theory is set be the helicity-one/helicity-zero interactions. Those occur

at the scale Λ7/2 unless (a) the cubic interactions vanish in which case the scale is Λ10/3,

or (b) generic quadratic mass mixings are included which lower the scale to Λ4, or (c)
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the mixed interactions are suppressed by m/Λ3, in which case, interactions arise at the

scale Λ3.

3. The BD ghosts in the ADM analysis of the constrained and unconstrained cycle theories

are clearly associated with the new mixed interactions which are not of a two-derivative

nature, and give a non-zero contribution to the scattering amplitude.

The decoupling limit of the theory with a line of interactions is then analyzed in section 5,

confirming the expected result that the cutoff scale remains as Λ3, and this remains true for

all helicity interactions. In section 6 we show that the decoupling limit of a subclass of two

interacting spin-2 line theories is described by a bi-Galileon theory [47], making significant

use of the Galileon Duality transformations [48–51]. We generalize these arguments to

multiple massive spin-2 fields in section 7. We conclude in section 8. Some technical

results are reserved for appendices A, B and C.

2 The EFT of interacting massive spin-2 fields

In this section we shall introduce the relevant EFT for interacting massive spin-2 fields

where our goal is to construct the theory with the ‘highest cutoff’ or strong coupling2 scale

as proposed in [35] following the construction of [29]. We focus on the case of two spin-2

fields to start with, and generalize to multiple interacting spin-2 fields in section 7. As

is well known, without any particular tunings, the generic theory for a single interacting

massive spin-2 has a cutoff at the scale Λ5 = (m4M)1/5, where m is the mass of the

(lightest) spin-2 field and M the scale of nonlinearities (bearing in mind that the EFT only

makes sense if m � M) [53]. In what follows we make the implicit assumption that in

considering two massive spin-2 particles, the hierarchy between the two masses m1 and m2

is negligible relative to the hierarchy between m1 and M . This does not necessarily imply

that the masses are similar, only that it is consistent to neglect corrections suppressed by

m1/M or m2/M while keeping terms scaling as m1/m2. Stated differently, this allows us

to consider the scaling or decoupling limit M → ∞ where the ratio m1/m2 is kept fixed.

For this reason we will generally denote the common mass scale via m = m2.

It is clear that in order to raise the cutoff to a scale larger than Λ5, one should tune

the operators that enter the EFT Lagrangian. In particular the self-interactions should be

tuned similarly as is done for the single spin-2 case leading to the ghost-free theory [29, 54]

with the strong coupling scale Λ3 = (m2M)1/3. As for the mixing between both fields, it

will become transparent when taking the decoupling limit in sections 3 and 5 that keeping

the same-type of structure for the mixed interactions (as will be done in what follows) is

what leads to the highest strong coupling scale. Indeed we will see that in the helicity-

zero/helicity-two sector decoupling limit alone, this choice will be sufficient to ensure that

the multi spin-2 system has a cutoff at the scale Λ3. However, we shall see that in some cases

2See [52] for a discussion on the distinction between those two scales. In principle the strong coupling

scale may not be related to the cutoff of the theory or the onset of new physics to be included, but in this

work we shall adopt a standard ‘weakly coupled’ EFT picture where new physics enters at or below the

strong coupling scale.
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Figure 1. Different interacting topologies [35]. For free fields both models are equivalent (after

diagonalization), but the models differ nonlinearly. In terms of the mass eigenstates, the cycle

of interactions [left] only includes potential interactions, while the line of interactions [right] also

includes a specific class of kinetic mixing.

choosing the double-epsilon interactions is not sufficient to maintain the Λ3 strong coupling

scale in the presence of the mixing between the two spin-2 fields due to the interactions

in the helicity-zero/helicity-one sector. In what follows we will then show explicitly that

by further tuning the interactions we can raise the cutoff of the effective field theory to a

parametrically larger scale that will be determined in section 4.

2.1 Cycle vs. line of interactions

Cycle of interactions — mass eigenstates. For free fields, the most natural way to

describe two spin-2 massive particles hµν and fµν is simply to consider the sum of two inde-

pendent (diagonalized) copies of the Fierz-Pauli action, coupled to their own sources Tµν1,2

LFP =− hµνEαβµν hαβ −
1

2
m2

1

(
[h2]− [h]2

)
+

1

M1
hµνT

µν
1 (2.1)

− fµνEαβµν fαβ −
1

2
m2

2

(
[f2]− [f ]2

)
+

1

M2
hµνT

µν
2 ,

where E is the standard Lichnerowicz operator defined as (linearized Einstein tensor)

Eαβµν hαβ = −1

2

[
�hµν − ∂α∂µhαν − ∂α∂νhαµ + ∂µ∂νh− ηµν

(
�h− ∂α∂βhαβ

)]
. (2.2)

In this form h and f are seen to be mass eigenstates with no kinetic mixing between them.

We recall that we are just dealing with (massive) spin-2 fields living on Minkowski, and all

indices are naturally raised and lowered with respect to the Minkowski metric. Interactions

(mixing) between the two interacting spin-2 fields can then be realized nonlinearly by

considering purely potential interactions of the form hnf `, with n+ ` > 2. Nonlinearly this

corresponds to theories with cycles of interactions as in figure 1.

– 5 –



J
H
E
P
0
1
(
2
0
2
0
)
1
3
1

Line of interactions — mass mixings. An alternative approach to that considered

previously in eq. (2.1), is to have the mass for the second spin-2 field f̃µν arising from a

mixing with h̃µν ,

Lline =− h̃µνEαβµν h̃αβ −
1

2
m̃2

1

(
[h̃2]− [h̃]2

)
+

1

M1
h̃µν T̃

µν
1 (2.3)

− f̃µνEαβµν f̃αβ −
1

4
m̃2

2

(
[(f̃ − h̃)2]− [f̃ − h̃]2

)
+

1

M2
f̃µν T̃

µν
2 ,

leading (in this formulation) to a non-diagonal mass matrix of the form

Mab =

(
m̃2

1 + m̃2
2/2 −m̃2

2/2

−m̃2
2/2 m̃2

2/2

)
. (2.4)

For free fields, the theory can be diagonalized by performing an appropriate rotation in

field space leading to a formulation which is equivalent to (2.1), with

m2
1,2 =

1

2

(
m̃2

1 + m̃2
2 ±

√
m̃4

1 + m̃4
2

)
, (2.5)

and the mass eigenmodes given by (h, f) = Rθ (h̃, f̃), where Rθ is the rotation matrix with

angle θ given by

cos2 θ =
1

2

(
1 +

m̃2
1√

m̃4
1 + m̃4

2

)
. (2.6)

An essential difference with the previous construction of (2.1), is that accounting for this

field space rotation inevitably leads to non-trivial kinetic term mixing at the nonlinear level.

The explicit construction of the nonlinear theory is most clear in this non-diagonalized

formalism, where it corresponds to a line of interactions (figure 1), but the kinetic mixing

is intrinsic throughout the construction and will be an essential element of the EFT, for

instance in determining low energy scattering amplitudes [46].

The field space rotation also affects the coupling to external sources. In terms of the

mass eigenstates hµν and fµν , the coupling to matter is given by

Lsources
line = hµν

(
cos θ

M1
T̃µν1 +

sin θ

M2
T̃µν2

)
+ fµν

(
cos θ

M2
T̃µν2 −

sin θ

M1
T̃µν1

)
. (2.7)

At this stage one may be inclined to simply redefine the external sources, for instance,

M−1
1 T1 = M−1

1 cos θ T̃1 + M−1
2 sin θ T̃2 so that hµν would only couple to T1 (and similarly

for T2 and fµν). However such a procedure would be impossible as soon as one would

consider dynamical fields in T̃1,2.

Diffeomorphisms versus spin-2 gauge invariance. In constructing an interacting

theory, we need to distinguish two cases. A free massless spin-2 field admits a copy of

spin-2 gauge invariance (i.e. linearized diffeomorphisms)

hµν → hµν + ∂µξν + ∂νξµ . (2.8)

– 6 –
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This symmetry is spontaneously broken by the mass term already at the linear level.

Nonlinearly, there are only two nonlinear completions of the symmetry, full nonlinear dif-

feomorphisms, or the identical same spin-2 gauge invariance [41]. Thus in the interacting

theory, it is natural to imagine that the local symmetry which is broken by the mass term

is either (a) Diffeomorphism symmetry, or (b) Spin-2 gauge symmetry. The construction of

the nonlinear theory will be different in each case, in particular how we choose to introduce

Stückelberg fields to describe the EFT in the broken state is different, and hence how we

choose to organize the EFT expansion is different. The case of spin-2 gauge invariance is

significantly simpler, and we refer to [45] for a recent discussion of interactions between

multiple such spin-2 particles. We note in particular, that for this case the distinction

between what we refer to as cycle and line interactions is minor, since the linear trans-

formation which diagonalize the quadratic action can easily be performed within the full

nonlinear action, and simply mixes allowed interactions into each other. In what follows, we

focus exclusively on the more involved case where the symmetry broken is diffeomorphism

symmetry, i.e. where the spin-2 particles may appropriately be called gravitons.

Spin-2 fields as perturbations of metric-like objects. Any two massive spin-2 fields

hµν , fµν , which arise from breaking a diffeomorphism symmetry, may be considered as the

perturbations of ‘would-be’ metrics g(1) and g(2). The particular relation we will find useful

is g
(1)
µν = (ηµν + hµν/M1)2, and g

(2)
µν = (ηµν + fµν/M2)2 where (Aµν)2 ≡ Aµαη

αβAβν . For

instance, within the context of multi-gravity, the interacting theory we are considering here

would arise as the decoupling limit M3 →∞ of tri-gravity where both metrics g
(1)
µν and g

(2)
µν

couple to one another and couple to a third metric g
(3)
µν = (ηµν + h

(3)
µν /M3)2. This was for

instance one of the scenarios considered in [37], corresponding to a ‘cycle’ of interactions

as defined in [35, 36], see figure 1 [left]. At the linear level h and f only couple to ηµν , but

nonlinearly h and f directly couple to one another hence leading to a cycle of interactions.

2.2 Vierbein formalism for two fields

In this and the following subsections we present the highest cutoff EFTs separately for

cycle and line interactions. Independently of whether we are dealing with a cycle or a

line of interactions, the EFT with the highest cutoff scale is that inspired by the single

Λ3 spin-2 field [29, 54] (we review it in appendix A.1). This is immediately clear by

performing the decoupling limit analysis in the helicity-zero/helicity-two sector as we do

in sections 3.1 and 5.1. In this sector, the key requirement is that the helicity-zero mode

interactions have the double-epsilon structure which ensures that the helicity zero modes

have second order equations of motion and that the cutoff scale is raised to Λ3, at least for

these interactions. In considering the interactions of N massive spin-2 modes, we have N

helicity-zero modes, and each should interact via the same double-epsilon terms. Precisely

how those interactions occur depends on whether we are dealing with a line or a cycle of

interactions as we shall see.

For the purposes of this paper, it is most convenient to work in the vierbein formulation

of Λ3 theories [35] (for earlier work using vierbeins in massive gravity see [55, 56]). In

particular, the nonlinear action for two interacting spin-2 fields h and f can be written

– 7 –



J
H
E
P
0
1
(
2
0
2
0
)
1
3
1

directly in the vierbein form with the respective vierbeins defined as3

Eaµ ≡ δaµ +
haµ
M

, F aµ ≡ δaµ +
faµ
M

, (2.9)

related to the ‘would-be’ metrics g(1) and g(2) through g
(1)
µν = EaµE

b
νηab and g

(2)
µν = F aµF

b
νηab.

Since a vierbein contains 16 components in four dimensions, but a spin-2 needs only to be

described by a 10 component tensor, the remaining 6 components for each vierbein must

either be fixed by auxiliary equations, or by constraints. Depending on choice, this will

lead us to different formulations.

Each of the vierbeins is equipped with its own Einstein-Hilbert term

g2
∗Skinetic =

M2
1

8

∫
εabcdE

a ∧ Eb ∧Rcd[E] +
M2

2

8

∫
εabcd F

a ∧ F b ∧Rcd[F ] , (2.10)

and we have introduced the weak coupling parameter g∗, which distinguishes the Planck

scales M1,2/g∗ from the interaction scales M1,2. Although for massive fields, this form

of kinetic term is not protected by any symmetry, in practice corrections to it must be

suppressed in order not to introduce ghosts/irrelevant operators at a lower scale [57, 58].

The allowed form of corrections that preserves the highest cutoff nature of the EFT is

specified in sections 4.6 and 5.3. In addition, improved positivity bounds [30–32] require

that in order for the full effective field theory (with the interaction terms included) to admit

a standard UV completion we need g∗ � 1. In the context of the Λ3 theory this condition

is effectively [32, 33]

g∗ .
m

Λ3
� 1 . (2.11)

Since the improved positivity bounds apply equally well in the case of two interacting spin-

2 fields, we will assume the same scale of weak coupling throughout. The precise scale of

the weak coupling is however not important in what follows.

If the symmetric vierbein conditions

ηE = (ηE)T , ηF = (ηF )T (2.12)

equivalent to Eaµ = Eµa and Faµ = Fµa, are satisfied (or imposed) this implies that haµ =

hµa and faµ = fµa thus providing an equivalent mapping between the vierbein and metric

formulations. These particular conditions will follow automatically if we separately give

masses to E and F with no interactions between them. That is, for two decoupled copies

of massive gravity, the unconstrained vierbein and constrained vierbein formulations with

conditions (2.12) imposed are equivalent. We shall discuss the origin of these conditions

in more detail below, see also [59]. Henceforth, we shall use the term constrained vierbeins

whenever these (or related (2.23)) symmetric vierbein conditions are imposed from the

outset in our theory, and unconstrained vierbeins when all 16 components of the vierbein are

taken to be independent. The constrained vierbein formulations can all be written explicitly

in metric form and are discussed in detail in appendices A.2 and A.3. The constrained and

unconstrained formulations of cycle of interactions are known not to be equivalent [35] and

the existence of ghosts in the unconstrained vierbein was proven in [37]. We shall recover

these results below, in particular the inequivalence is discussed in appendix B.

3For future convenience we will normalize with a common interaction scale M .
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2.2.1 Cycle of interactions

The most general non-derivative interactions between the two spin-2 fields suitable for

describing the cycle of interactions and leading to the highest EFT cutoff reads [35, 54]:

g2
∗Snon-der =

m2M2

4

∫
d4x

4∑
n=0

4−n∑
m=0

κnm εεI
4−(n+m)(E − I)n(F − I)m , (2.13)

where m and M are some mass scales that depend on our choice of normalization. For the

double-epsilon mass potentials we use the short-hand notations as, for example,

κ21

∫
d4x εεI(E − I)2(F − I) ≡ κ21

∫
εabcdI

a ∧ (E − I)b ∧ (E − I)c ∧ (F − I)d . (2.14)

The cycle of interactions between the spin-2 fields hµν and fµν was defined in section 2.1

as the case when at linear level both fields are decoupled and start interacting at nonlinear

level only. Having the identification (2.9) in mind we see that this situation is described

by the action (2.13) with κ11 = 0. We find that it is more intuitive to keep the individual

mass terms separate from the interactions between the dynamical vierbeins, Ea and F a.

We therefore split the above action as:

g2
∗Snon-der =

m2
1M

2
1

4

∫
d4x

4∑
n=0

κ(1)
n Un(I, E − I) +

m2
2M

2
2

4

∫
d4x

4∑
n=0

κ(2)
n Un(I, F − I)

+
m2M2

4

∫
d4x

4∑
n=1

4−n∑
m=1

κnm Unm(I, E − I, F − I) , (2.15)

where κ11 = 0 and we have introduced the notations

Un(I, E − I) ≡ εεI4−n(E − I)n ,

Unm(I, E − I, F − I) ≡ εεI4−(n+m)(E − I)n(F − I)m .
(2.16)

The mass coefficients are in turn expressed as

κ(1)
n =

m2M2

m2
1M

2
1

κn0 , κ(2)
n =

m2M2

m2
2M

2
2

κ0n , (2.17)

and mi and Mi are the corresponding masses and Planck masses of the two spin-2 fields.

In the following we shall fix the mass scalings as

m2 ≡ m,
m1

m2
≡ x ; M2 ≡M ,

M1

M2
≡ γ . (2.18)

Let us emphasize again that written this way the action (2.15) together with the Einstein-

Hilbert terms (2.10) can be used to describe a theory of two dynamical unconstrained

vierbeins Ea and F a coupled to a reference vierbein Ia. In the parlance of the standard

vierbein formulation of theories of interacting spin-2 fields this is a cycle theory of three

interacting vierbeins E,F, I.

A different theory, and the one which shall be our main focus, can be easily obtained

from (2.15) by imposing the symmetric vierbein conditions (2.12) from the outset. These
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conditions together with the definition (2.9) allow us to make the identification with the

‘would-be’ metric perturbations defined as

g(1)
µν ≡

(
ηµν +

hµν
M

)2

, g(2)
µν ≡

(
ηµν +

fµν
M

)2

. (2.19)

With this identification the vierbein action (2.15) together with the corresponding kinetic

terms becomes a nonlinear action describing two massive spin-2 fields hµν and fµν . The

resulting action in the metric notation is given in appendix A.2. For this cycle of interac-

tions, there is no kinetic mixing in terms of the mass eigenstates. However it was shown

in [35, 37] that the constrained and unconstrained formulations for this cycle are not equiv-

alent and the unconstrained formulation carries a ghost. In what follows, we shall show

that also the distinct constrained formulation carries a ghost, however it can still be used

as a consistent EFT, and with suitable technically natural rescalings the strong coupling

scale remains as Λ3.

2.2.2 Line of interactions

Here we give the explicit action for the theory describing a line of interactions, as defined

in section 2.1 and depicted on the right of figure 1. In the metric language this means

that only one of the dynamical metrics, g(1), couples to the reference metric η, while the

second dynamical metric, g(2), only couples to g(1) both at linear and nonlinear level. This

situation is most conveniently captured by the vierbein action written as (A.20) with only

pairwise interactions between the three vierbeins, however, avoiding forming a cycle when

mixing them. In doing so it is also more convenient for this analysis to keep working in

terms of the mixed fields rather than the physical mass eigenstates which couple through

both potential and kinetic interactions nonlinearly.

The theory we consider is described by constraining the coefficients in (A.20) as β0m =

0 and βnm = 0 for n+m < 4 giving:

g2
∗Snon-der =− m2

1M
2
1

2

∫
d4x

4∑
n=0

β̃
(1)
n

n!(4− n)!
Un(I, E)

− m2M2

2

∫
d4x

4∑
n=1

β̃
(2)
n

n!(4− n)!
Un(E,F ) ,

(2.20)

with the coefficients β̃
(i)
n related to βnm’s through (A.28) and (A.29). Written in this form

we recognize the first term as the standard mass term for a spin-2 field with vierbein E

with respect to a flat reference vierbein while the second term is the standard mass term

for a spin-2 field with vierbein F with respect to the vierbein E.

For later use, let us note that the action above can be rewritten in a different form

by factoring out the determinant of the vierbein E from the last three terms, as was done

in [35]. Indeed, each particular interaction term between the vierbeins E and F can be

expressed as, e.g.

εabcdE
a ∧ F b ∧ F b ∧ F c = d4x (detE) εµναβε

µ′ν′α′β′
δµµ′
(
E−1F

)ν
ν′

(
E−1F

)α
α′

(
E−1F

)β
β′

= d4x (detE) U3

(
I, E−1F

)
. (2.21)
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This leads to

g2
∗Snon-der =− m2

1M
2
1

2

∫
d4x

4∑
n=0

β̃
(1)
n

n!(4− n)!
Un(I, E) (2.22)

− m2M2

2

∫
d4x (detE)

4∑
n=1

β̃
(2)
n

n!(4− n)!
Un
(
I, E−1F

)
.

Symmetric vierbeins. Let us emphasize that the vierbeins E and F can be viewed as

constrained or unconstrained just as was considered for cycle of interactions. However, in

this case, a slightly different version of the symmetric vierbein conditions is a direct conse-

quence of the equations of motion, thus ensuring the equivalence between the unconstrained

vierbein and metric formalisms. These conditions read:

ηE = (ηE)T , ET ηF = F T ηE , (2.23)

and imply that the vierbein E satisfies the symmetric vierbein condition with respect to I

while F obeys the symmetric condition with respect to E. Crucially (2.23) is not the same

as (2.12). This means however that the previous identification, given in (2.9) for the cycle

of interactions, of the two vierbeins with the metric perturbations defined as in (2.19) is

not suitable for this case anymore. Instead, we shall use

g(1)
µν ≡ (ηµν + h̃µν)2 , g(2)

µν ≡ (g(1)
µα + f̃µα)gαβ(1)(g

(1)
βν + f̃βν) . (2.24)

Due to the symmetric vierbein condition (2.23), we can relate the vierbeins E and F to

the metric perturbations h̃µν and f̃µν as:

Eaµ = δaµ + h̃aµ ,
(
E−1F

)µ
ν
≡ EµaF aν = δµν +

(
g−1

(1) f̃
)µ
ν
, (2.25)

where we have introduced the inverse vierbein defined through gµν(1) = EµaEνb η
ab. This

makes it straightforward to express the potential (2.22) in the metric formalism. We give

the result in appendix A.3.

As mentioned previously, the theory considered in (2.22) is an alternative approach in

building the EFT for two interacting massive spin-2 fields based on the nonlinear comple-

tion of (2.3). In particular, it is different from the cycle of interactions described by the

action (2.15). The key difference with the previous approach is that the second spin-2 field

f̃µν cannot directly couple to the reference Minkowski metric and only acquires a mass

through its mixing with h̃µν . As eluded in subsection 2.1 (see eq. (2.3)), in this represen-

tation the two fields h̃µν and f̃µν mix already at the linear level and therefore h̃µν and

f̃µν are not the diagonalized mass eigenstates. Similarly the quantities m,m1 here do not

represent the physical masses and M,M1 do not present the physical coupling scales. To

determine the physical scales one should first diagonalize the free fields. This will imply

further mixing between both fields nonlinearly, including kinetic term mixing. We shall

refer to the construction (2.22) as the ‘line of interactions’ for massive spin-2 field or mas-

sive spin-2 field interacting theory that includes specific type of nonlinear kinetic mixing

between the mass eigenstates.
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2.3 ADM constraint analysis

As the first consistency check of the theories (2.15) and (2.22) we discuss the ADM phase

space constraint analysis of these systems. In fact, the ADM analysis for both cycle and

line theories in the unconstrained vierbein form was already done in [35, 37]. It was found

that the theory of cycle interactions between unconstrained vierbeins is inequivalent to the

theory of constrained vierbeins and that the former one carries a ghost. The theory of line

interactions between unconstrained vierbeins was found to be healthy and equivalent to its

metric formulation. In the following we therefore focus on the yet unexplored case of cycle

of interactions between constrained vierbeins.

We present the analysis for the action written in the metric form given in (A.25) with

two of the quartic interaction terms absent, i.e. with κ31 = κ13 = 0. In the absence of

interactions between the two metrics, it is known that the ghost-free mass terms ensure

the existence of two Hamiltonian constraints — one for each metric (this was proven in [29]

for specific dimensions and for special cases in four dimensions, generalizing the proof for

generic cases in four-dimensions was performed in [39]). In a Lorentz invariant theory this is

sufficient to claim the absence of the BD ghosts. Thus, in a theory of two non-interacting

massive spin-2 fields there are in total 2 × 5 = 10 degrees of freedom. By allowing the

interactions between the fields there is a potential danger of reintroducing either one or

both of the BD ghosts leading to at most 2× 6 = 12 degrees of freedom. To check whether

this happens in our theory we count the number of degrees of freedom using the ADM

language as often used in the context of massive gravity [29, 39, 60, 61]. The existence

of a constraint would manifest itself as the vanishing of the determinant of the Hessian

defined as [61]:

Lµν =
∂2H

∂Nµ∂Nν
, (2.26)

where H is the Hamiltonian and Nµ = {N,M,N i,M i} are two sets of the canonical ADM

variables of the lapses and shifts. The Hessian is thus an 8 × 8 matrix. For a vanishing

determinant there must be one or more zero eigenvalues signalling the presence of a con-

straint. The number of constraints coincides with the degree of the zero eigenvalue. The

total number of degrees of freedom in this theory is then equal to 2×6−(# of constraints).

Another equivalent way to determine whether the system contains constraints is to first

integrate over both sets of shifts (being auxiliary variables this is always possible), and then

inspect whether the lapses are Lagrange multipliers generating two primary second class

constraints (i.e. whether the resulting Hamiltonian is linear in the lapses or possibly a

combination of them). We do so perturbatively and use the following ADM decomposition

for both metric perturbations [62]:

g(1)
µν dxµdxν = −(1 + εδN)2dt2 + (δij + εγij)(dx

i + εδN idt)(dxj + εδN jdt)

= (ηµν + hµν)2dxµdxν ,

g(2)
µν dxµdxν = −(1 + εδM)2dt2 + (δij + εσij)(dx

i + εδM idt)(dxj + εδM jdt)

= (ηµν + fµν)2dxµdxν ,
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where ε has been introduced as a bookkeeping parameter, counting the order in perturba-

tion theory. The total Hamiltonian for the theory can be schematically written as (ignoring

overall g2
∗ factor)

H = HGR(h) +HGR(f)− x2γ2m2M2

4

4∑
n=0

κ(1)
n Un

[
η−1h

]
− m2M2

4

4∑
n=0

κ(2)
n Un

[
η−1f

]
− m2M2

4
(κ21 Lhhf + κ12 Lhff + κ22 Lhhff ) , (2.27)

where HGR(h, f) are the Hamiltonians derived from Einstein-Hilbert action. They are

linear in their respective lapses and shifts due to the diffeomorphism invariance,

HGR(h) = ε2δNH0(γ, pγ) + ε2δNiR
i
h(γ, pγ) , (2.28)

HGR(f) = ε2δMH0(σ, pσ) + ε2δMiR
i
f (σ, pσ) , (2.29)

where H0 and Ri are non-trivial functions of the three-dimensional metric perturbations

and their associated conjugate momenta as well as their spatial derivatives. They each

start at first order in perturbations. Expressing hµν in terms of the ADM perturbations

{δN, δNi, γij} and similarly for fµν in terms of {δM, δMi, σij}, we can now solve for all

the shifts δNi and δMi perturbatively in ε and substitute these auxiliary variables back in

the Hamiltonian,

Hred(γ, pγ , σ, pσ, δN, δM) =

∫
DδNi

∫
DδMi H(γ, pγ , σ, pσ, δN, δM, δNi, δMi) . (2.30)

Up to quintic order in ε, the resulting Hamiltonian remains linear in both lapses (with no

mixing between both lapses). It therefore follows that both lapses generate one primary

second-class constraint each,4 and up to that order in perturbation theory the constraints

are satisfied. In particular, it implies that the trivial vacuum solution 〈hµν〉 = 〈fµν〉 = 0 is

ghost-free (since the constraints are satisfied at second order in ε).

However, upon following the same procedure to higher order we see the following

operator entering the reduced Hamiltonian,

Hred⊃̃ −
(1 + x)ε6

32m2x3

(
δM Rih − xδN Rif

) (
δM Rjh − xδN Rjf

)(
ζki ζkj − 2ζijζ

k
k + ζkk ζ

`
`δij

)
,

(2.31)

where we have defined the following tensor ζij = (κ21γij + κ12σij)/2. Hence as soon as the

cubic couplings between both spin-2 fields are introduced, i.e. κ21, κ12 6= 0, the resulting

4In the case of a single field, for a Lorentz invariant and parity preserving system, the existence of a

primary second class constraint automatically implies the existence of a secondary constraint removing a

whole physical degree of freedom since there cannot be half-propagating number of degrees of freedom, [4].

In this two-field system, one may a priori worry that both half-degrees of freedom could combine to give

a full degree of freedom. However, since a secondary constraint exists related to each of the lapses in the

case of the one-field system, one is guaranteed that the primary constraint does not commute with the

Hamiltonian. Adding a mixing term between each metric cannot change this result and the existence of

secondary constraints is therefore automatic.
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reduced Hamiltonian is quadratic in both lapses, spoiling both5 second-class constraints.

Nonlinearly the theory therefore carries not one but two BD ghosts, and we refer to section 3

and 4 to determine the scale at which those ghosts would come in. However we emphasize

here that so long as we treat the theory as an EFT, and the mass of the ghosts as the

cutoff, there is no issue working with this EFT. The existence of ghostly operators is

simply signalling the failure of the EFT at the cutoff scale [63, 64]. In principle we could

set κ12 = κ21 = 0 and just have both fields interacting through the quartic interactions,

however this interaction also carries a ghost. The above ADM analysis can also easily be

extended to include κ31, κ13 with similar conclusions.

3 Decoupling limit for the cycle of interactions

In this section we work out the decoupling limit Lagrangian of two interacting spin-2 fields

described by the action for cycle interactions given by the non-derivative interactions (2.15)

together with the Einstein-Hilbert kinetic terms (2.10). We start by presenting the general

framework and some technical points that will be equally useful also for the decoupling

limit of line interactions in section 5. We generalize our conclusions to arbitrary number

of interacting spin-2 fields in section 7.

We take a double scaling limit

m→ 0 , M →∞ , (3.1)

while maintaining the lowest strong coupling scale that arises fixed. This will automat-

ically zoom in on the dominant interactions in the theory. At the moment it is as yet

unclear, which scale this would be so we will make no assumptions, and for every family

of interactions we focus on the operators that arise at the lowest possible energy scale. We

will use the standard notation

Λn ≡
(
mn−1M

)1/n
, (3.2)

in particular, Λ3 = (m2M)1/3. We derive the full nonlinear decoupling limit for both the

helicity-0/helicity-2 and helicity-0/helicity-1 sectors of interactions by using the vierbein

Stückelberg language presented below. This, in addition to the standard diffeomorphism

Stückelberg fields, also includes Lorentz Stückelberg fields that can either be constrained

by the symmetric vierbein conditions (“constrained” vierbein) or treated as auxiliary fields

(“unconstrained” vierbein). We shall state clearly the difference between the two ap-

proaches when appropriate.

For the case of cycle interactions we find that the helicity-0/helicity-1 interactions

break perturbative unitarity at a scale lower than Λ3 in general. These new interactions

are responsible for the two BD ghosts in the two spin-2 system that are absent when

interactions are switched off between the two spin-2 fields. We discuss the new scale and

how to make sense of a Λ3 EFT in section 4.

5Indeed one can easily see from the way the lapses enter, quadratically in the vector δM Rih − xδN Rif ,

that one could never simply redefine one of the lapses so as to keep the Hamiltonian linear in the second

lapse. Hence both constraints are ruined.
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Stückelberg fields. Beginning with the non-derivative cycle interactions given in the

vierbein form in eq. (2.15), together with the kinetic terms (2.10), we now restore the local

Lorentz invariance and the diffeomorphism invariance of the action. For this we follow

closely the formalism of [59] and introduce two sets of Stückelberg fields φa and ψa for

diffeomorphisms and two sets of fields Λa
b and Γa b for the Lorentz transformations. In

the action this amounts to replacing

Eaµ → Ẽaµ = Λa bE
b
c(φ)∂µφ

c , F aµ → F̃ aµ = Γa bF
b
c (ψ)∂µψ

c . (3.3)

In order to compute the decoupling limit interactions to all orders, we then use the following

decomposition for the two helicity-2 modes and the two sets of Stückelberg fields:

Eaµ = δaµ +
haµ
M

, F aµ = δaµ +
faµ
M

,

Λa b = eω̂
a
b = δab + ω̂a b +

1

2
ω̂a c ω̂

c
b + . . . , Γa b = eσ̂

a
b ,

ω̂a b =
ωa b
Λ2

2

, σ̂a b =
σa b
Λ2

2

,

φa = xa +
Aa

Λ2
2

+
∂aπ

Λ3
3

, ψa = xa +
Ba

Λ2
2

+
∂aχ

Λ3
3

,

Π̂µ
ν ≡

∂µ∂νπ

Λ3
3

, X̂µν ≡
∂µ∂νχ

Λ3
3

.

(3.4)

After inserting this decomposition in Ẽaµ = Λa bE
b
c(φ)∂µφ

c, we have

Ẽa µ = δaµ + Π̂a
µ +

1

Λ2
2

(
∂µA

a + ωa µ + ωa bΠ̂
b
µ

)
+

1

M

(
haµ(φ) + haν(φ)Π̂ν

µ

)
+

1

Λ4
2

(
ωa b∂µA

b +
1

2
ωa b ω

b
µ +

1

2
ωa b ω

b
c Π̂c

µ

)
+O

(
1

MΛ2
2

,
1

Λ6
2

)
.

(3.5)

We have neglected terms further suppressed by powers of Λ2 as we already know from the

standard double-epsilon structure of the helicity-2/helicity-0 interactions that the strong

coupling scale is at most Λ3. Hence in the decoupling limit we will necessarily have Λ2 →∞.

Schematically, the above decomposition of the vierbein takes the form (we drop the

tilde in the following):

E = I + Π̂ +
1

Λ2
2

(
∂A+ ω + ω · Π̂

)
+

1

M

(
h(φ) + h(φ) · Π̂

)
+

1

Λ4
2

(
ω · ∂A+

1

2
ω · ω +

1

2
ω · ω · Π̂

)
+O

(
1

MΛ2
2

)
.

(3.6)

Similarly, we decompose also the other vierbein according to (3.4). This gives

F = I + X̂ +
1

Λ2
2

(
∂B + σ + σ · X̂

)
+

1

M

(
f(ψ) + f(ψ) · X̂

)
+

1

Λ4
2

(
σ · ∂B +

1

2
σ · σ +

1

2
σ · σ · X̂

)
+O

(
1

MΛ2
2

)
.

(3.7)
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Constrained vierbein. In the vierbein decomposition (3.4), the symmetric vierbein

conditions (2.12) become constraints on the Lorentz Stückelberg fields ω and σ [59]. In-

deed, (2.12) written in index notations becomes:

∂aAb − ∂bAa = 2ωab −
(
ωdaΠ̂

d
b − ωdbΠ̂d

a

)
,

∂aBb − ∂bBa = 2σab −
(
σdaX̂db − σdbX̂da

)
.

(3.8)

By introducing the short-hand notation (Π̂ · ω)[ab] ≡ Π̂c
aωcb − Π̂c

bωca and defining Fab ≡
∂aAb − ∂bAa and Jab ≡ ∂aBb − ∂bBa these can be written as

2ωab = Fab − (Π̂ · ω)[ab] , 2σab = Jab − (X̂ · σ)[ab] . (3.9)

We wish to emphasize that when imposing these conditions we are implicitly making

the choice to work in the “metric” language (even though we may not necessarily be dealing

with a gravitational theory). In this case, using the vierbein inspired decomposition (3.4)

is merely a convenient choice of variables for what are otherwise 10 component constrained

symmetric vierbeins. However, the non-derivative interactions as given in eq. (2.15) (and,

similarly, in eq. (2.20) for the line of interactions) are written in the unconstrained vierbein

form with each of the vierbeins Eaµ and F aµ having 16 a priori arbitrary components that

can be treated as auxiliary fields. Only when the symmetric vierbein conditions (2.12)

(or (2.23) for the line interactions) are imposed do we recover the metric formulation of

the interactions. As we shall see below, most of our analysis and main results are in fact

independent on whether we work with the constrained or unconstrained vierbeins.

Finally, let us remark that the symmetric vierbein condition (2.12) also implies that

the following combination is symmetric:

haµ(φ) + haν(φ)Π̂ν
µ = hµa(φ) + hµν(φ)Π̂ν

a . (3.10)

We shall see in subsection 3.1 that this condition is automatically imposed by the decoupling

limit theory.

3.1 Helicity-two/helicity-zero sector

In order to study the decoupling limit interactions between the helicity-0 and helicity-2

modes it is sufficient to truncate the decompositions (3.6) and (3.7) of the two vierbeins as

E = I +
Π

Λ3
3

+
1

M

h [x+
∂π

Λ3
3

]
+
h
[
x+ ∂π

Λ3
3

]
·Π

Λ3
3

 ,

F = I +
X
Λ3

3

+
1

M

f [x+
∂χ

Λ3
3

]
+
f
[
x+ ∂χ

Λ3
3

]
· X

Λ3
3

 ,

(3.11)

where the square brackets denote the argument of h and f . This decomposition captures

all interactions that survive in the decoupling limit in this sector. Note that we have

reintroduced the Λ3
3 scale by redefining Π = Π̂Λ3

3 and X = X̂Λ3
3, and use the shorthand

(h ·Π)aµ ≡ haνΠν
µ.
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Self-interactions. In the absence of interactions between the two vierbeins, the ac-

tion (2.15) reduces to two decoupled massive spin-2 fields. Let us therefore start by re-

viewing the decoupling limit of a single massive graviton described by the action

g2
∗S=

γ2M2

8

∫
εabcdE

a∧Eb∧Rcd[E]

+
m2M2

4
γ2x2

∫ [
εabcdI

a∧Ib∧(Ec−Ic)∧(Ed−Id)

+κ
(1)
3 εabcdI

a∧(Eb−Ib)∧(Ec−Ic)∧(Ed−Id)

+κ
(1)
4 εabcd(E

a−Ia)∧(Eb−Ib)∧(Ec−Ic)∧(Ed−Id)

]
.

(3.12)

It is known that in the decoupling limit the action above contains seemingly dangerous

operators for the scalar field π that arise as:

4g2
∗

γ2x2
LDL ⊃

1

m2
εεIIΠΠ +

κ
(1)
3

Λ5
5

εεIΠΠΠ +
κ

(1)
4

Λ8
4

εεΠΠΠΠ , (3.13)

where Λ5
5 ≡ m4M , Λ4

4 ≡ m3M and we have also introduced the shorthand notations

εεIΠΠΠ ≡ εµναβεµ
′ν′α′β′

δµµ′Π
ν
ν′Π

α
α′Π

β
β′ . (3.14)

One can easily check that these contributions are actually total derivatives and there are

therefore no physical interactions neither at the scale Λ5 nor Λ4. The first interactions

occur at the scale Λ3 and are given by [29, 54, 65]

g2
∗LDL = −γ2hµνEαβµν hαβ +

γ2x2

4
εε

(
h [..] +

h [..] ·Π
Λ3

3

)(
2Π +

3κ3

Λ3
3

Π2 +
4κ4

Λ6
3

Π3

)
, (3.15)

where the Lichnerowicz operator is defined in (2.2). The notation h [..] reminds us that the

field hµν is evaluated at h
[
x+ ∂π

Λ3
3

]
.

Mixed-interactions. In the presence of interactions between the two spin-2 fields there

are new interactions mixing the two helicity-0 modes. Similarly, naively the leading order

ones seem to appear at the scales Λ5 and Λ4:

g2
∗LDL⊃

1

4

(
κ21

1

Λ5
5

εεIXΠΠ+κ12
1

Λ5
5

εεIXXΠ+κ22
1

Λ8
4

εεXXΠΠ+κ31
1

Λ8
4

εεXΠΠΠ+κ13
1

Λ8
4

εεXXXΠ
)

(3.16)

where, as before, Πµν ≡ ∂µ∂νπ and Xµν ≡ ∂µ∂νχ. One can easily verify that all these

interactions are total derivatives, e.g.

εεIXΠΠ ≡ εµναβεµ
′ν′α′βXµµ′Π

ν
ν′Π

α
α′ = ∂µ

(
εµναβε

µ′ν′α′β∂µ′χΠν
ν′Π

α
α′

)
. (3.17)

As a result, the total decoupling limit for the helicity-zero and helicity-two interactions

only has the following Λ3 interactions:

g2
∗LDL =− γ2hµνEαβµν hαβ +

1

4

(
haµ [..] +

haν [..] Πνµ

Λ3
3

)
Xµ
a [Π,X]

− fµνEαβµν fαβ +
1

4

(
faµ [..] +

faν [..]Xνµ
Λ3

3

)
Y µ
a [Π,X] ,

(3.18)
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where Xµ
a can be split as

Xµ
a [Π,X] ≡ (X(1))µa + (X(2))µa + (X(3))µa , (3.19)

with the different X(n)’s defined as:

(X(1))µa = 2γ2x2 (εεIIΠ)µa

(X(2))µa = γ2x2 3κ
(1)
3

Λ3
3

(εεIΠΠ)µa+
2κ21

Λ3
3

(εεIXΠ)µa+
κ12

Λ3
3

(εεIXX)µa , (3.20)

(X(3))µa = γ2x2 4κ
(1)
4

Λ6
3

(εεΠΠΠ)µa+
2κ22

Λ6
3

(εεXXΠ)µa+
3κ31

Λ6
3

(εεXΠΠ)µa+
κ13

Λ6
3

(εεXXX)µa .

We also have similarly introduced

Y µ
a [Π,X] ≡ Xµ

a

[
Π↔ X ; κ(1)

n ↔ κ(2)
n ; κnm with n↔ m ; γ = x = 1

]
, (3.21)

and the corresponding splitting in Y (n)’s. We note that it is the combination

haµ

[
x+

∂π

Λ3
3

]
+
haν

[
x+ ∂π

Λ3
3

]
Πνµ

Λ3
3

, (3.22)

that mixes with Xµ
a and not hµν(x) as in the standard derivation of the decoupling limit

(see, e.g. [54]).

There are two subtleties that need to be clarified regarding this. First, the above

combination is only symmetric if the symmetric vierbein condition (3.10) is imposed and

one might wonder whether the symmetric vierbein condition is anyhow necessary for these

interactions to be healthy. However, due to the fact that Xµa is itself symmetric these

interactions automatically pick up the symmetric part of (3.22).

Second, the field h is seemingly non-local due to the fact that it is evaluated at x+ ∂π
Λ3
3
.

This can be undone by the Galileon duality transformation [48–50]. This amounts to

redefining the coordinate as x′ = x + ∂π(x)/Λ3
3 and introducing the dual Galileon field

π′ through the inverse transformation x = x′ + ∂′π′(x′)/Λ3
3 (and similarly for χ), as was

pointed out in [48–50]. The relevant steps are closely analogous to those performed in

section 6. However there is a crucial difference between the line and cycle theories. On

comparing our result for the cycle theories (3.18) with that for the line theories (5.12)

and (5.15), we see that in the latter case f only couples directly to χ, whereas in (3.18)

both helicity-2 modes couple to both helicity-0 modes. One consequence of this is that in

attempting to repeat the procedure outlined in section 6, it is necessary to perform two

separate Galileon duality transformations to render both h and f as functions of the same

x. The transformation on f taking the form x′ = x + ∂χ(x)/Λ3
3. On doing so the χ and

π interactions generated from mixing with h will be non-locally related to those that arise

from f by virtue of effectively being in two different duality frames. Thus even when we

can demix the helicity-2 mode fluctuations, the resulting effective two scalar Lagrangian

will be non-local, i.e. it will contain an infinite number of derivative interactions. This is
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in stark contrast to the line theories where the resulting Lagrangian is that of a (local)

bi-Galileon as discussed in section 6. Nevertheless, since the scale of non-locality is the Λ3

scale, there remains no inconsistency in viewing these interactions perturbatively. Hence,

putting the helicity-1 modes aside, this cycle theory decoupling limit, as given in (3.18), is

exact and has no higher order contributions, and by itself is a consistent EFT for helicity-2

field and helicity-0 modes with a strong coupling scale Λ3 which is the highest scale possible

in a Lorentz invariant theory of (hard) massive gravity. The real difficulties arise in fact in

the helicity-1 sector, which we turn to now.

3.2 Helicity-one/helicity-zero sector

In order to derive the decoupling limit interactions involving the helicity-1 fields we follow

the formalism developed in [59] (see also [66]). We shall work in terms of the vierbeins

defined above in (3.6) and (3.7). As will become clear below, most of our analysis and main

results are in fact independent on whether we work with the constrained or unconstrained

vierbeins. In this subsection we focus on the constrained vierbein theory. We discuss the

unconstrained case later in section 4.5.

For interactions between the helicity-0 and helicity-1 fields, the relevant Stückelberg

expansion of the vierbeins simplifies to:

E= I+Π̂+
1

Λ2
2

(
∂A+ω+ω ·Π̂

)
+

1

Λ4
2

(
ω ·∂A+

1

2
ω ·ω+

1

2
ω ·ω ·Π̂

)
+O

(
h

M

)
, (3.23)

F = I+X̂+
1

Λ2
2

(
∂B+σ+σ ·X̂

)
+

1

Λ4
2

(
σ ·∂B+

1

2
σ ·σ+

1

2
σ ·σ ·X̂

)
+O

(
f

M

)
, (3.24)

where we have neglected the subleading haµ(φ)/M and faµ(ψ)/M corrections. Indeed the

helicity-2 modes are 1/M suppressed and can be set to zero when discussing the Lorentz

Stückelberg fields and the helicity-1/helicity-0 decoupling limit.

Self-interactions. Using the above decompositions (3.23), (3.24) for the self-interaction

terms in (2.15) gives the following:

g2
∗LDL, self =

γ2x2

4
εε

{[
I2 + 3κ

(1)
3 IΠ̂ + 6κ

(1)
4 Π̂Π̂

]
(∂A+ ω + ω · Π̂)2 (3.25)

+
[
2I2 + 3κ

(1)
3 IΠ̂ + 4κ

(1)
4 Π̂Π̂

]
Π̂

(
ω ·A+

1

2
ω · ω +

1

2
ω · ω · Π̂

)}
+
(

1↔ 2, Π̂↔ X̂, A↔ B,ω ↔ σ , γ = x = 1
)
.

A few remarks are in order. First, let us point out that only terms at most quadratic in ω

(or σ) appear in the decoupling limit action. This is due to the fact that any higher powers

of ω are suppressed by powers of Λ2 and we already know from the helicity-2/helicity-0

interactions that in the decoupling limit one will necessarily have Λ2 → ∞. Second, we

observe that the leading interactions of the Lorentz Stückelberg fields arise, in fact, from
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the quadratic mass term as follows

m2M2

∫
εabcdI

a∧Ib∧(Ec−Ic)∧(Ed−Id) = 2mM

∫
d4x εεI2Π̂

(
∂A+ ω + ω · Π̂

)
+O(1) .

(3.26)

It is straightforward to see that these potentially dangerous higher derivative terms are

actually harmless. Indeed, the first term is a total derivative while all the rest vanish

because of the antisymmetry of ω. Indeed, one can write

εεI2Π̂ω = 2
([

Π̂
]

[ω]−
[
Π̂ω
])

, (3.27)

εεI2Π̂ω · Π̂ = 2
([

Π̂
] [

Π̂ω
]
−
[
Π̂2ω

])
, (3.28)

where as before we use the square brackets to denote the traces as
[
Π̂
]

= Π̂a
a ,
[
Π̂ω
]

=

Π̂a
b ω

b
a, etc. All the contractions above vanish. The cubic and quartic mass terms give

similar trace structures, all of which vanish. We show below that this holds only in the

case when interactions between the vierbeins Ea µ and F a µ are absent.

Finally, as we show in appendix B, in the absence of interactions between the two

spin-2 fields, if we were in the unconstrained vierbein formalism and were to consider the

Lorentz Stückelbergs ωa b (and σa b) as auxiliary fields, their equations of motion would

be independent on the self-interaction parameters κ
(i)
3,4 and would be equivalent to the

symmetric vierbein conditions (3.8). Indeed, the equation of motion for ω derived from the

quadratic mass term and using the variation law

δωab

δωcd
=

1

2
δabcd ≡

1

2
(δac δ

b
d − δadδbc) (3.29)

reads (
δca −

[
Π̂
]
δca + 2Π̂c

a

)(
2ωcb − Fcb + (Π̂ · ω)[cb]

)
− (a↔ b) = 0 . (3.30)

This demonstrates the equivalence between the constrained and unconstrained vierbein

formalism in the absence of interactions between the two spin-2 fields.

Mixed-interactions. The mixed interaction terms give the following leading order in-

teractions

g2
∗LDL, int =

mM

4
εε

[
κ21I

(
2Π̂X̂ω + Π̂2σ + 2Π̂X̂ω · Π̂ + Π̂2σ · X̂

)
+ κ12I

(
2Π̂X̂σ + X̂2ω + 2Π̂X̂σ · X̂ + X̂2ω · Π̂

)
+ 2κ22

(
Π̂X̂2ω + Π̂2X̂σ + Π̂X̂2 ω · Π̂ + Π̂2X̂σ · X̂

)
+ κ31

(
Π̂3σ + 3Π̂2X̂ω + Π̂3σ · X̂ + 3Π̂2X̂ω · Π̂

)
+ κ13

(
X̂3ω + 3X̂2Π̂σ + X̂3ω · Π̂ + 3X̂2Π̂σ · X̂

)]
.

(3.31)

We have neglected the total derivative interactions in the above expression. Together with

the self-interaction terms the total decoupling limit action for the vector fields and Lorentz
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Stückelberg fields is given by

LDL,vec = LDL,self + LDL,int . (3.32)

It is important to emphasize that there are no higher order terms contributing to the

decoupling limit action for the Lorentz Stückelberg fields at this energy scale. Moreover, due

to the prefactor mM , the terms coming from the interactions (3.31) arise at a higher scale

(we determine the scale in section 4) than the terms coming from the mass terms (3.25). We

shall therefore focus our attention on the contribution arising from the mixed terms (3.31).

Let us start by analyzing the first two terms appearing on each of the lines of (3.31).

These are all similar in structure, so that one of the Lorentz Stückelberg fields, ω or σ,

is contracted with some combination of the helicity-0 fields Π̂ and X̂ directly through the

epsilon structure:

εεIΠ̂X̂ω = εabcdε
µναβ δaµΠ̂b

νX̂cαωd β . (3.33)

By using the fact that the double-epsilon structure is invariant under the transpose together

with (ωT )a b = −ωa b, we see that all interactions of this type vanish

εεIΠ̂X̂ω = εε(IΠ̂X̂ω)T = −εεIΠ̂X̂ω = 0 . (3.34)

For the same reason also εεIΠ̂2σ = εεIX̂2ω = εεΠ̂X̂2ω = εεΠ̂2X̂σ = 0. As a result, the

surviving interactions are

g2
∗LDL, int =

mM

4
εε

[
κ21I

(
2Π̂X̂ω · Π̂ + Π̂2σ · X̂

)
+ κ12I

(
2Π̂X̂σ · X̂ + X̂2ω · Π̂

)
+ 2κ22

(
Π̂X̂2 ω · Π̂ + Π̂2X̂σ · X̂

)
+ κ31

(
Π̂3σ · X̂ + 3Π̂2X̂ω · Π̂

)
+ κ13

(
X̂3ω · Π̂ + 3X̂2Π̂σ · X̂

)]
.

(3.35)

These are the leading interactions arising in the decoupling limit. Supplemented with the

symmetric vierbein conditions (3.9) the expressions above give the full decoupling limit

helicity-1 interactions in a closed form. In what follows we shall determine the physical

scale of those interactions and determine at which scale the ghosts enter in this cycle of

interactions. We point out that while the existence of at least one ghost was pointed

out in [37], the precise scale at which the (what turns out to be two) ghosts enter was

not established. In what follows we shall see that the ghosts in the cycle of interactions

typically enter below the scale Λ3 unless a specific (stable) tuning is considered.

4 Strong coupling scale for cycle of interactions

We now turn to the cycle of interactions (2.15) coming from the quartic helicity-1 and

helicity-0 interactions presented in (3.35). These give, for example,

mMεεIΠ̂X̂(ω · Π̂)→ 1

Λ7
7/2

εεI∂2π ∂2χ (ω · ∂2π) , (4.1)
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with Λ
7/2
7/2 = m5/2M . This scale, Λ7/2, is lower than Λ3 and is the true strong coupling

scale at which the leading derivative interactions involving the helicity-1 fields arise if the

cubic couplings κ21, κ12 are assumed to be of order unity. This is a new result and has no

analogue in the case of a single or two decoupled massive spin-2 theories. It is only because

there are two helicity-0 modes entering, namely χ and π, that this term is not simply zero

as in the case of (3.28).

4.1 Physical interaction

To establish whether this interaction introduces higher order derivatives in the equations of

motion, it is sufficient to work perturbatively and use the leading order symmetric vierbein

condition (3.9). This gives for the above interaction:

εεI∂2π ∂2χ (ω · ∂2π) =
1

2
εµabcε

µαβγ∂a∂απ ∂
b∂βχ (F · ∂2π)c γ

=
1

2
εµabcε

µαβγ∂a∂απ ∂
b∂βχ (∂cAd − ∂dAc)∂d∂γπ .

(4.2)

Such an interaction term in the Lagrangian will introduce higher order derivatives in the

equations of motion. One can see it, for example, by varying the above term with respect

to the vector field Aν :

δS

δAν
⊃ −1

2
εµabcε

µαβγ∂a∂απ ∂
b∂βχ∂

c∂γ∂νπ +
1

2
εµabνε

µαβγ∂d
(
∂a∂απ ∂

b∂βχ∂d∂γπ
)
. (4.3)

We note however that although troublesome, those do not necessarily imply the existence

of ghost(s) at that order. Indeed when multiple fields are involved, higher derivatives are

not necessarily linked with an Ostrogradsky instability [61] (see also [67]).

One can in fact prove that the interaction (4.2) is not simply a redundant one, re-

movable by a field redefinition (as was the case of the lower scale interactions found in

the helicity decomposition of a single massive spin-2 field, [65]). Indeed, computing the

contribution to the scattering process Aπ → π χ allowed by the interaction vertex (4.2) for

a generic choice of polarization for the massless vector field, εµ = (0, a, b, 0), and scattering

angle θ, we find for the non-vanishing scattering amplitude:

A ∼ 2g2
∗a

p7

Λ7
7/2

sin(2θ) . (4.4)

This result shows that this vertex clearly gives a non-vanishing contribution at the scale

Λ7/2 thus confirming that the interaction above is physical and could not be removed

by a field redefinition. As a result, we conclude that Λ7/2 ≡ (m5/2M)2/7 is the actual

strong coupling scale in the theory of two interacting massive spin-2 fields given by the

action (2.15) provided κ21, κ12 are of order unity and at least one is non-vanishing (one can

easily check that any higher order operator of the form εεF Π̂kX̂`, with k + ` > 2 would

necessarily enter at a higher energy scale.)
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4.2 Ghost in the DL and ADM

Since this interaction is physical and since it involves higher than second order equations

of motion, the absence of ghosts at that scale is not guaranteed (and indeed from the ADM

analysis we had found the existence of a ghost in the full theory). Let us recall however

that the ADM analysis of section 2.3 showed that the primary constraint removing the BD

ghost only disappeared at the sixth order in perturbations. A natural question that arises

is how is this compatible with the fact that we see higher derivative interactions appearing

already at quartic order. The reason for this becomes clear when considering the dynamics

of the time component of the vector field, A0. The quadratic decoupling limit action for

the helicity-one modes, (3.25), after imposing the symmetric vierbein constraint (3.9) gives

the standard Maxwell kinetic term for the vector field, meaning that there appear no time

derivatives of A0 at quadratic level. However, the time derivatives of A0 do arise in the

dangerous interaction (4.2). Indeed, due to its double-epsilon structure it contains the

time-derivatives of A0 as

εµ0ijε
µ0i′j′ π̇ ∂i∂i′χ∂

jȦ0 ∂j′ π̇ . (4.5)

To see how this affects the order at which the primary constraint removing the BD ghost

disappears it is instructive to consider a purely schematic analogous example of a pertur-

bative Lagrangian

L[x, z] =
1

2
ε2ẋ2 + ε4ẋ3ż . (4.6)

By looking at the Hessian with respect to the time derivatives defined as

Lij ≡
∂2L

∂ẋi∂ẋj
=

(
ε2 3ẋ2ε4

3ẋ2ε4 0

)
, (4.7)

we see that the two eigenvalues are λ1 = ε2 + 9ẋ4ε4 and λ2 = −9ẋ4ε6. Hence we see that

the vanishing eigenvalue, λ2, responsible for the primary constraint becomes non-zero at

sixth order in perturbations although the interaction responsible for it appeared at the

quartic order in the action. This is exactly what is happening also in our case and thus

reconciles the findings of this section with the ADM analysis.

4.3 Correct scaling of the EFT

There are a few specific configurations, worth mentioning, in which the strong coupling

scale can be changed. We discuss these in the following. First, let us point out that the

interactions that appear at the Λ7/2 energy scale are the ones quartic in fields in (3.35)

and arise due to the cubic operators κ21εεIhhf , κ12εεIhff . Setting these two coefficients

to zero the relevant operators would arise from the quartic interaction, κ22εεhhff , (and

also from κ31, κ13) and lead to a higher strong coupling scale. Indeed, one has

κ22mM εεΠ̂X̂2 ω · Π̂→ κ22

(m7/3M)3
εε ∂2π (∂2χ)2(ω · ∂2π) , (4.8)

corresponding to a strong coupling scale Λ10/3 ≡
(
m7/3M

)3/10
> Λ7/2.
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There is however a far more interesting possibility that is consistent and technically

natural for raising the strong coupling scale. Instead of making the assumption that the

mixed cubic and quartic interactions determined by κnm’s are of order unity, we rescale

them in the following manner

κnm →
m

Λ3
κnm , κnm = {κ12, κ21, κ22, κ13, κ31} . (4.9)

After restoring the original fields in the decomposition (3.4), this gives for the problematic

interaction terms

g2
∗S

(4)
DL, int =

1

4

∫
d4x

[
κ21

Λ7
3

εεI
(
2∂2π ∂2χω · ∂2π + (∂2π)2σ · ∂2χ

)
+
κ12

Λ7
3

εεI
(
2∂2π ∂2χσ · ∂2χ+ (∂2χ)2ω · ∂2π

)
+

2κ22

Λ10
3

εε
(
∂2π (∂2χ)2 ω · ∂2π + (∂2π)2 ∂2χσ · ∂2χ

)
+
κ31

Λ10
3

εε
(

(∂2π)3 σ · ∂2χ+ 3(∂2π)2 ∂2χω · ∂2π
)

+
κ13

Λ10
3

εε
(

(∂2χ)3 ω · ∂2π + 3(∂2χ)2 ∂2π σ · ∂2χ
) ]

.

(4.10)

We see that, indeed, the dangerous interactions are now shifted to Λ3 thus restoring the

validity of the Λ3 decoupling limit. However, by doing so we have also rescaled the mixed

helicity-0/helicity-2 interactions presented in section 3.1. As a result, effectively we are

looking at the limit when κnm � κ
(i)
n ∼ O(1) in the original action (2.15). Moreover, there

are now additional Λ3 interactions contributing to the helicity-1/helicity-0 decoupling limit

arising from the self-interaction terms κ
(i)
n in (2.15). These are of the same structure as

derived for self-interactions below in (5.22). When compared to the interactions in (4.10),

we see that at each order in fields the decoupling limit is dominated by the self-interactions.

For instance, comparing the quartic operators in (4.10) and (5.22) we see that these are

operators of mass dimensions 11 and 10 respectively.

That this tuning is technically natural is simply because once it has been made, there

are no other interactions that arise at a lower energy scale, and nothing to arise at any

loop order that will push the cutoff scale down. Note that this statement is manifest in the

Stückelberg formalism. In unitary gauge, one may worry about dangerous 1/m2 and 1/m4

terms that arise in the unitary gauge propagator for a massive spin-2 particle leading to a

less straightforward EFT power counting (see [32] for more details on this power counting

in the single spin-2 case), however the stability of the tuning is of course valid in any

formulation, and the Stückelberg one makes it manifest. These arguments do not rely on

the non-renormalization theorem that arises for the double-epsilon interactions by virtue

of the Galileon form of the decoupling limit which applies to the self-interactions [68, 69].

As we have seen the leading mixed interactions described in (4.10) are not of the standard

Galileon form for which those non-renormalization theorems apply.

Where the non-renormalization theorems [68, 69] do come into play is when we choose

to focus on the Λ7/2 theory, i.e. we do not make the rescaling given in (4.9). In this case it
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remains technically natural to keep the self interactions κ
(i)
n at the same scale, with their

associated Λ3 interactions. These Λ3 interactions are not driven down to Λ7/2 at any order

in loops by virtue of the non-renormalization theorems.

4.4 Quadratic mixing

Let us also remark that even the quadratic interaction term (though absent in our

model (2.15)) contains interactions that appear at an energy scale lower than Λ3. In

fact, the quadratic interaction term gives

m2M2

∫
εabcdI

a ∧ Ib ∧ (Ec − Ic) ∧ (F d − Id)

= mM εεI2
[
X̂
(
∂A+ ω + ω · Π̂

)
+ Π̂

(
∂B + σ + σ · X̂

)]
+O(1) .

(4.11)

It is straightforward to see that the interactions involving the vector fields A,B are total

derivatives while there are terms

εεI2X̂ ω · Π̂ = 2
([

X̂
] [

Π̂ω
]
−
[
Π̂X̂ω

])
= −2

[
Π̂X̂ω

]
6= 0 , (4.12)

εεI2Π̂σ · X̂ = 2
([

Π̂
] [

X̂σ
]
−
[
Π̂X̂σ

])
= −2

[
Π̂X̂σ

]
6= 0 . (4.13)

By restoring the Λ3
3 hidden in our definition of Π̂ , X̂ this gives non-vanishing interactions

at the scale

mMεε I2X̂ω · Π̂→ 1

Λ4
4

εε ∂2χ (ω · ∂2π) . (4.14)

This is the lowest of the scales appearing in the discussion above, so that we have Λ4 <

Λ7/2 < Λ10/3 < Λ3 (the scale Λn with arbitrary n was defined in (3.2)). As in the previous

case, choosing the coefficient of this operator to be m/Λ3 suppressed rather than order

unity rescales this to a Λ3 interaction:

m

Λ3

1

Λ4
4

εε ∂2χ (ω · ∂2π) =
1

Λ4
3

εε ∂2χ (ω · ∂2π) . (4.15)

However, this quadratic term mixing between the vierbeins E and F gives a coupling with

hµν and fµν at a linear level already and is thus not part of cycle interactions in the sense

described in section 2.1. We therefore do not consider it any further here.

Summary. To summarize the conclusions of the analysis of this and the previous sections,

the cycle theories do in general have ghosts from the perspective of an ADM analysis, but

are consistent as EFTs with a cutoff scale that is at most Λ3, which can be determined from

the analysis of the helicity-2/helicity-0 sector alone. Interactions in the helicity-1/helicity-

0 sector can occur at a parametrically lower scale, ranging from Λ4 to Λ7/2 to Λ10/3, but

with a suitable rescaling of the mixed interactions between the two spin-2 states, these

interactions may in turn be put at the Λ3 scale.
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4.5 Decoupling limit for unconstrained vierbein theory

Although our principle focus has been the metric-like (constrained vierbein) formulation

of the EFT for the interaction of multiple spin-2 fields, the above analysis gives us for free

the decoupling limit also for the unconstrained vierbein formulation of the theory. As we

have discussed the difference between the two is that in the latter, the Lorentz Stückelberg

fields are determined by their equations of motion, and as a consequence of the interactions

between the two spin-2 fields, the usual symmetric vierbein constraint is lost [35, 37]. The

new condition is discussed explicitly in appendix B for the full theory of cycle interactions

of two spin-2 fields. Since the above decoupling limit analysis was performed effectively

in vierbein notation, the resulting DL actions are the same with the only difference being

that ω and σ are viewed as independent fields and are not fixed by the equations (3.9).

Thus we may immediately draw all of the same conclusions as above (i.e. the points 1– 3

from the Introduction) about the unconstrained vierbein theory of cycle interactions. We

stress once again that, while these theories are different nonlinearly, from the decoupling

limit perspective they are extremely similar.

4.6 Higher derivative EFT corrections for cycle theories

Up to now we have defined the cycle theories to be those given by the action with kinetic

terms (2.10) and non-derivative interactions (2.13). However, these are just the leading

terms in an EFT expansion which contains an infinite number of higher derivative opera-

tors. The generic form of the higher derivative corrections for multiple massive spin-2 fields

follows closely the discussion for the single massive spin-2 case (see for instance [32]).

4.6.1 Λ3 theory

Provided we make the scaling given in eq. (4.9), we have established that the lowest inter-

action scale from the leading interactions is Λ3. At leading order in the decoupling limit

M →∞, m→ 0 we have

Eaµ = ηaµ +
∂a∂µπ

Λ3
3

+ . . . (4.16)

Faµ = ηaµ +
∂a∂µχ

Λ3
3

+ . . . . (4.17)

Thus any function of these two vierbeins will, at leading order in the decoupling limit,

be a dimensionless function of operators suppressed by the Λ3 scale. Further derivatives

of these functions should also be suppressed by the scale Λ3. By contrast, the Riemann

curvature constructed from each of these vierbeins will necessarily come suppressed by

an additional power of M , since the above vierbeins are at leading order equivalent to

Minkowski spacetime in a non-standard coordinate system, i.e. if the tensors are set to

zero, we have Ea = Λabdφ
b, which is just a generic parameterization of Minkowski for

which R[E] = 0. Hence it is the next order 1/M corrections to E that determine the

leading corrections to the Riemann tensor, and so very schematically

R[E]abcd ∼
∑ 1

M
∂∂h

(
∂∂π

Λ3
3

)m(m∂A
Λ3

3

)n( h

M

)p
, (4.18)
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and similarly for R[F ]abcd, where R[E]abcd/R[F ]efgh denote the standard components of

the Riemann tensor associated with the vierbein’s Eaµ/Fbµ.

In the general helicity-2/helicity-0 decoupling limit, we have seen that there are in-

teractions between the helicity-2 modes and scalars of the form Λ3
3hΠ̂Π̂Π̂ ∼ 1

Λ6
3
hΠΠΠ etc.

It is known from the case of single spin-2 massive gravity that these interactions are not

removable with a local field redefinition. They will give rise to an hπππ four point vertex

of the form (for a general discussion of interactions in the DL theory see [69])

1

Λ6
3

εabcdεABCDeaA(k1)kb2k
B
2 k

c
3k
C
3 k

d
4k

D
4 =

1

Λ6
3

εabcdεABCDeaA(k1)kb2k
B
2 k

c
3k
C
3 k

d
1k

D
1 , (4.19)

where eaA(k1) is the helicity-2 polarization and we have made use of momentum conser-

vation k4 = −(k1 + k2 + k3). In general this interaction vertex is non-zero for off-shell

π, even when the helicity-2 mode is on-shell k2
1 = 0, and will lead at three-loop level to

a contribution to the hhhh vertex (i.e. the 2–2 graviton scattering amplitude) which will

require counter-terms of the very schematic form (multiplied by appropriate powers of g∗)

1

Λ24
3

∂24h4 . (4.20)

Crucially, these counterterms come in at the scale Λ3, and are not M suppressed. In other

words, if in the theory there are non-trivial interactions between the helicity-2 modes and

the helicity-0 modes already at the Λ3 scale, then it is necessary in the EFT to allow for all

possible such interactions at the Λ3 scale, if only to act as counter-terms in loop diagrams. It

is however not possible to build counter-terms of the form (4.20) directly out of Eaµ without

further qualification, since h enters E with an additional M suppression. If we multiply

by M we will introduce helicity-0 interactions at the scale m, since M(E − I) ∼ ∂∂π/m2.

The solution is that such counterterms will arise from operators build out of the Riemann

tensor, for which the dangerous helicity-0 interactions drop out by virtue of diffeomorphism

invariance. Now since ∂∂h ∼ Λ3
3, ∂∂f ∼ Λ3

3 when

MR[E]abcd or MR[F ]abcd ∼ Λ3
3 , (4.21)

the EFT Lagrangian must contain combinations of the Riemann curvature in the combina-

tion MR[E]abcd/Λ
3
3 and MR[F ]efgh/Λ

3
3 with any additional derivatives suppressed by Λ3.

For instance an operator of the form (4.20) will arise from an interaction

Λ4
3

(
M
∂a∂b∂c∂dRefgh[E]

Λ7
3

)4

. (4.22)

Putting this together, unlike the leading interactions, whose form relies on special properties

of total derivative combinations, the generic higher derivative corrections will arise at their

naive interaction scale. This is when (in unitary gauge)

g2
∗Shigher-der =

∫
d4xΛ4

3F
[
Eaµ, F

b
µ,
∂ρ
Λ3
,
MR[E]abcd

Λ3
3

,
MR[F ]efgh

Λ3
3

]
, (4.23)
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where F denotes the superposition of all Lorentz scalar combinations of the arguments,

with dimensionless order unity coefficients.

In fact, the situation is typically better than that. When the coefficients of the self- and

mixed-interactions are chosen so that the hΠΠΠ/fXXX/hΠXX etc. terms vanish (i.e. when

X(3) = Y (3) = 0), then it is possible to diagonalize/demix the interactions between the

helicity-2 modes and the helicity-0 modes as we will do in section 6, eq. (6.18) for the case of

line interactions. In this case there are no pure Λ3 interactions containing helicity-2 modes.

Thus if we focus on only those terms in the EFT that are needed to renormalize loops of light

fields, any contribution from helicity-2 states will come suppressed by additional powers of

the spin-2 interaction scale M . In this case the more appropriate power counting is

g2
∗Shigher-der =

∫
d4xΛ4

3F
[
Eaµ, F

b
µ,
∂ρ
Λ3
,
R[E]abcd

Λ2
3

,
R[F ]efgh

Λ2
3

]
, (4.24)

so that at leading order in the M → ∞ limit with fixed Λ3 the helicity-2 states do not

enter in any of the higher derivative EFT corrections. This is the scaling considered for

example in [32].

As an illustrative example, the types of non-minimal kinetic terms considered in [57, 58]

are allowed in the EFT context, however they come in at a parametrically smaller scale.

For instance, with the worse case choice (4.23), we are allowed the kinetic term

g2
∗∆Skinetic ∼MΛ3

∫
εabcdI

a ∧ Eb ∧Rcd[E] + αMΛ3

∫
εabcdI

a ∧ Ib ∧Rcd[E] (4.25)

but see that it is suppressed by Λ3
M relative to the leading kinetic term. In this way, the

ghost implied by the analysis [57, 58] is moved to the cutoff scale of the EFT rendering it

harmless. With the scaling (4.23) this situation is only improved.

As a second example, we note that the double-epsilon structure of the leading non-

derivative interactions is itself not stable under loop corrections. However, the corrections

that are expected to arise to this structure are suppressed [69, 70]. For either choice of

scaling (4.23) or (4.24), the non-double-epsilon mass terms (i.e. those which are not of the

double-epsilon form) will arise at the scale (highly schematically)

g2
∗∆Smass ∼ Λ4

3

∫ ∑
nm

[
bnm(E − I)2EnFm + cnm(F − I)2EnFm + dnm(E − F )2EnFm

]
(4.26)

which is suppressed by
Λ4

3

m2M2
∼ Λ3

M
∼
(m
M

)2/3
, (4.27)

relative to the leading mass terms.

4.6.2 Λ7/2 theory

If we do not make the scaling implied by eq. (4.9), then the leading interactions of the

cycle theories already imply a cutoff Λ7/2 from the helicity-1/helicity-0 interactions (unless

we include quadratic mixing as in section 4.4 or tune the cubic interactions to zero as

discussed in section 4.3). As we have explained, these interactions are the origin of the
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Boulware-Deser ghosts seen in the ADM analysis. However, as already noted, when viewed

as an EFT there is no problem with this theory provided we accept that Λ7/2 is indeed

the cutoff. One consequence of this, is that all higher derivative corrections are expected

to arise now at the scale Λ7/2. In other words, in the worst case scenario, these EFT

corrections will organize in the schematic form

g2
∗Shigher-der =

∫
d4xΛ4

7/2F

[
Λ3

3(Eaµ − Iaµ)

Λ3
7/2

,
Λ3

3(F aµ − Iaµ)

Λ3
7/2

,
∂ρ

Λ7/2
,
MR[E]abcd

Λ3
7/2

,
MR[F ]efgh

Λ3
7/2

]
,

(4.28)

and in the more optimistic scenario in which the helicity-2 modes do not enter at leading

order in the decoupling limit

g2
∗Shigher-der =

∫
d4xΛ4

7/2F

[
Λ3

3(Eaµ − Iaµ)

Λ3
7/2

,
Λ3

3(F aµ − Iaµ)

Λ3
7/2

,
∂ρ

Λ7/2
,
R[E]abcd

Λ2
7/2

,
R[F ]efgh

Λ2
7/2

]
.

(4.29)

5 Decoupling limit for the line of interactions

The derivation of the decoupling limit action for the theory with a line of interactions (or

mixed nonlinear kinetic terms in the mass eigenstates) turns out to be much simpler. We

shall work with the action (2.20) for the line interactions and follow the same formalism

that was used for deriving the decoupling limit for the cycle of interactions in section 3.

For line interactions we find that only the standard interactions known from the case of a

single massive spin-2 field and leading to strong coupling at Λ3 scale are present, with no

ghost. This is consistent with the ADM arguments of [35] and previous discussions [48, 71].

For the sake of clarity we expand the terms on the second line of the action (2.20) here:

g2
∗Snon-der =−m

2
1M

2
1

2

∫
d4x

4∑
n=0

β̃
(1)
n

n!(4−n)!
Un(I,E)

=−m
2M2

2

∫
εabcd

[
β̃

(2)
1

3!
Ea∧Eb∧Ec∧F d+

β̃
(2)
2

2!2!
Ea∧Eb∧F c∧F d

+
β̃

(2)
3

3!
Ea∧F b∧F c∧F d+

β̃
(2)
4

4!
F a∧F b∧F c∧F d

]
.

(5.1)

Now, let us introduce the two sets of Stückelberg fields for both the local Lorentz trans-

formations and spacetime diffeomorphisms as we did before in (3.3):

Eaµ → Ẽaµ = Λa bE
b
c(φ)∂µφ

c , F aµ → F̃ aµ = Γa bF
b
c (ψ)∂µψ

c . (5.2)

Since the Einstein-Hilbert terms are invariant under these transformations, the Stückelberg

fields only appear in the non-derivative terms presented above. With these fields in place

the total action is again invariant under spacetime diffeomorphisms and under one overall

local Lorentz transformation transforming all the Lorentz indices in the same fashion.
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There is in fact a more convenient way of writing the Lorentz transformations Γa b by

splitting it as a product of two sequential transformations:

Γa b ≡ Λa cΓ̃
c
b . (5.3)

The interaction terms then schematically become

g2
∗Snon-der =−m

2
1M

2
1

2

∫
d4x

4∑
n=0

β̃
(1)
n

n!(4−n)!
Un(I,ΛE∂φ) (5.4)

−m
2M2

2

∫
εabcd

[
β̃

(2)
1

3!

(
ΛE∂φ

)a
∧
(

ΛE∂φ
)b
∧
(

ΛE∂φ
)c
∧
(

ΛΓ̃F∂ψ
)d

+
β̃

(2)
2

2!2!

(
ΛE∂φ

)a
∧
(

ΛE∂φ
)b
∧
(

ΛΓ̃F∂ψ
)c
∧
(

ΛΓ̃F∂ψ
)d

+
β̃

(2)
3

3!

(
ΛE∂φ

)a
∧
(

ΛΓ̃F∂ψ
)b
∧
(

ΛΓ̃F∂ψ
)c
∧
(

ΛΓ̃F∂ψ
)d

+
β̃

(2)
4

4!

(
ΛΓ̃F∂ψ

)a
∧
(

ΛΓ̃F∂ψ
)b
∧
(

ΛΓ̃F∂ψ
)c
∧
(

ΛΓ̃F∂ψ
)d]

,

making it apparent that the Lorentz transformation Λ drops out from the last set of terms,

thus decoupling the Lorentz Stückelbergs Λ and Γ̃.

One can simplify the terms under the second integral in the above action even further

by performing an inverse diffeomorphism to φa. To demonstrate it clearly, let us write the

β̃
(2)
2 term explicitly (we drop the normalization factors):

S
β̃
(2)
2

=

∫
εabcd

(
E∂φ

)a
∧
(
E∂φ

)b
∧
(

Γ̃F∂ψ
)c
∧
(

Γ̃F∂ψ
)d

=

∫
εabcd

(
E(φ)∂φ

)a
µ
dxµ∧

(
E(φ)∂φ

)b
ν
dxν∧

(
Γ̃F (ψ)∂ψ

)c
α

dxα∧
(

Γ̃F (ψ)∂ψ
)d
β

dxβ

=

∫
εabcdE

a
a′(φ)

∂φa
′

∂φµ
dφµ∧Ebb′(φ)

∂φb
′

∂φν
dφν∧Γ̃cc′F

c′
c′′(ψ)

∂ψc
′′

∂φα
dφα∧Γ̃dd′F

d′
d′′(ψ)

∂ψd
′′

∂φβ
dφβ

(5.5)

where in the last equality we have simply rewritten it in a different set of coordinates xµ ≡
φµ. Expanding the differentials dφµ = ∂φµ

∂xµ′
dxµ

′
and recognising that Eaµ(φ) ∂φ

µ

∂xµ′
= Ẽaµ′(x)

this simplifies to

S
β̃
(2)
2

=

∫
εabcd Ẽ

a
µ(x)dxµ ∧ Ẽbν(x)dxν ∧ Γ̃cc′F

c′
c′′(ψ)∂αψ

c′′dxα ∧ Γ̃dd′F
d′
d′′(ψ)∂βψ

d′′dxβ . (5.6)

We also reorganize the terms on the first line of the action (5.1) in a similar fashion by

performing the inverse diffeomorphism to φa there as well. Taking now the β̃
(1)
2 term as an

example this becomes

S
β̃
(1)
2

=

∫
εabcd I

a ∧ Ib ∧
(

ΛE∂φ
)c
∧
(

ΛE∂φ
)d

=

∫
εabcd δ

a
µdxµ ∧ δbνdxν ∧

(
ΛE(φ)∂φ

)c
α
dxα ∧

(
ΛE(φ)∂φ

)d
β
dxβ

=

∫
εabcd δ

a
µdφµ ∧ δbνdφν ∧ Λcc′E

c′
c′′(φ)

∂φc
′′

∂φα
dφα ∧ Λdd′E

d′
d′′(φ)

∂φd
′′

∂φβ
dφβ ,

(5.7)
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leading to

S
β̃
(1)
2

=

∫
εabcd ∂µφ

adxµ ∧ ∂νφbdxν ∧ Λcc′Ẽ
c′
α (x)dxα ∧ Λdd′Ẽ

d′
β (x)dxβ , (5.8)

which makes it clear that there is only one set of diffeomorphism Stückelberg fields necessary

to restore the diffeomorphism invariance of each of the integrals in the action (5.1). Hence,

the Stückelberg trick needed to restore the diffeomorphism invariance in its most convenient

form is given by

Iaµ → Ĩaµ = ∂µφ
a , Eaµ → Ẽaµ = Λa bE

b
µ(x) , F aµ → F̃ aµ = Λa bΓ

b
cF

c
d (ψ)∂µψ

d . (5.9)

The final action for line interactions written in the vierbein form then becomes:

g2
∗Snon-der =− m2

1M
2
1

2

∫
d4x

4∑
n=0

β̃
(1)
n

n!(4− n)!
Un(∂φ,ΛE)

− m2M2

2

∫
d4x

4∑
n=1

β̃
(2)
n

n!(4− n)!
Un(E, ΓF (ψ)∂ψ) ,

(5.10)

where we have already taken into account that the Lorentz Stückelberg fields Λa
b drop out

from the second term. Henceforth we work with the mass scaling (2.18) for concreteness.

Importantly, the two sets of diffeomorphism and Lorentz Stückelberg fields (Λ, φa) and

(Γ, ψa) are only coupled to each other through the helicity-2 perturbations. We shall see

below that this significantly simplifies the decoupling limit analysis.

5.1 Helicity-two/helicity-zero sector

The decomposition of the Stückelberg fields introduced in (5.9) suitable for the analysis of

the helicity-0/helicity-2 sector decoupling limit interactions is:

Ĩ = I +
Π

Λ3
3

, E = I +
h(x)

M
,

F = I +
X
Λ3

3

+
1

M

f [x+
∂χ

Λ3
3

]
+
f
[
x+ ∂χ

Λ3
3

]
· X

Λ3
3

 ,

(5.11)

where we neglect both Lorentz and vector Stückelberg fields.

The decoupling limit of the first line of non-derivative interactions in (5.10) coincides

with that of a single massive graviton. We have analyzed such terms in section 3.1 already.

As presented there the naively dangerous higher derivative self-interactions (3.13) that

arise at the scales Λ4 and Λ5 are in fact total derivatives and therefore cancel. Instead the

leading order interactions arise at the Λ3 scale and take the standard form [54]:

g2
∗LDL, 1 = −γ2hµνEαβµν hαβ +

1

4
γ2x2hµνX̃(1)

µν [Π] , (5.12)

with

X̃(i)
µν [Π] ≡ κ̃(i)

2 (εεIIΠ)µν +
κ̃

(i)
3

Λ3
3

(εεIΠΠ)µν +
κ̃

(i)
4

Λ6
3

(εεΠΠΠ)µν , (5.13)
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where i = 1, 2 and

κ̃
(1)
2 = −β̃(1)

1 − 2β̃
(1)
2 − β̃(1)

3 , κ̃
(1)
3 = −β̃(1)

1 − β̃(1)
2 , κ̃

(1)
4 = −1

3
β̃

(1)
1 . (5.14)

On the second line of (5.10) there are also the mixed total derivative interactions ap-

pearing at scales Λ4 and Λ5 as in (3.16) that we disregard. The leading physical interactions

in the helicity-0/helicity-2 decoupling limit coming from these terms are:

g2
∗LDL,2 =−fµνEαβµν fαβ+

1

4
hµνX̃(2)

µν [X]+
1

4

(
faµ [x+∂χ/Λ3

3]+
faν [x+∂χ/Λ3

3]Xνµ
Λ3

3

)
Ỹ µ
a [X]

(5.15)

where in the last term alone f is evaluated at x+ ∂χ/Λ3
3 , and with

κ̃
(2)
2 = −β̃(2)

1 − 2β̃
(2)
2 − β̃(2)

3 , κ̃
(2)
3 = −β̃(2)

2 − β̃(2)
3 , κ̃

(2)
4 = −1

3
β̃

(2)
3 . (5.16)

The Ỹ µ
a are given by

Ỹ µ
a [X] ≡ 2κ

(2)
2 (εεIIX)µa +

3κ
(2)
3

Λ3
3

(εεIXX)µa +
4κ

(2)
4

Λ6
3

(εεXXX)µa , (5.17)

where κ
(2)
n = Cnmβ̃

(2)
n and the matrix C is defined in (A.19). The following combination

amounts to an overall cosmological constant

β̃
(i)
0 + 4β̃

(i)
1 + 6β̃

(i)
2 + 4β̃

(i)
3 + β̃

(i)
4 , i = 1, 2 , (5.18)

and can be set to any value, e.g. β̃
(i)
0 + 4β̃

(i)
1 + 6β̃

(i)
2 + 4β̃

(i)
3 + β̃

(i)
4 = 0 (since we do not have

a massless graviton here). In practice this means that say β̃
(i)
4 are not independent. The

condition for the absence of tadpoles for both fields imposes

γ2x2
(
β̃

(1)
1 + 3β̃

(1)
2 + 3β̃

(1)
3 + β̃

(1)
4

)
+ 3β̃

(2)
1 + 3β̃

(2)
2 + β̃

(2)
3 = 0 , (5.19)

β̃
(2)
1 + 3β̃

(2)
2 + 3β̃

(2)
3 + β̃

(2)
4 = 0 . (5.20)

This condition is slightly different from the no-tadpole condition in standard massive grav-

ity due to the non-trivial mixing between both spin-2 fields.

The total decoupling limit action for the helicity-0 and helicity-2 interactions for a

theory with line interactions is then given by the sum of (5.12) and (5.15). These inter-

actions become strongly coupled at Λ3. Let us also note that there is no direct coupling

between the two helicity-0 modes π and χ. They only mix through their coupling to hµν .

Finally, we remark that, as in the case of cycle interactions, the last term in (5.15) appears

to be non-local, since we are evaluating fµν as fµν

[
x+ ∂χ

Λ3
3

]
. This can be corrected by

performing a Galileon duality transformation [48–51]. Defining x′ = x+ ∂χ(x)/Λ3
3 and the

dual Galileon field χ′ by x = x′+∂′χ′(x′)/Λ3
3, and then relabelling the dummy label x′ → x

we find only fµν(x) enters. We shall do this explicitly in section 6, demonstrating that the

resulting action is actually local. We can then apply the standard arguments known from

the single spin-2 case leading to the conclusion that due to the double-epsilon structure

of our non-derivative interactions, there are no dangerous higher derivative interactions

contained in the helicity-0/helicity-2 decoupling limit of this theory.
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5.2 Helicity-one/helicity-zero sector

In this subsection we work out the decoupling limit of the helicity-0 and helicity-1 interac-

tions arising from the line-type non-derivative interactions (5.10) between the two spin-2

fields. The relevant interactions can be captured by using the Stückelberg decomposi-

tion (5.9), after integrating out the Lorentz Stückelberg fields. As already mentioned in

the general analysis at the beginning of this section the two sets of Lorentz Stückelberg

fields, Λa b and Γa b, are decoupled in the case of line interactions. This means that the

decoupling limit analysis for the mixed helicity-1 sector can be done separately for each

of the two terms in (5.10), as in the case of two non-interacting massive spin-2 fields.

Hence, this means that, further decomposing the fields as (3.4), and varying with respect

to ω and σ, each of the fields will obey their respective symmetric vierbein conditions as

in (2.23) and that there are no new mixed helicity-1 interactions leading to the lowering of

the strong coupling scale. For the sake of completeness we give the final result here, but

refer the reader to the standard decoupling limit analysis [59] of the helicity-1 sector for

more details.

For the first term in (5.10) we use the decomposition (3.4) as

EΛ = I +
ω

Λ2
2

+
1

2

ω · ω
Λ4

2

+O
(

1

MΛ2
2

)
, ∂φ = I + Π̂ +

∂A

Λ2
2

, (5.21)

where as for the cycle interactions we truncate the expansion by dropping higher orders of

Λ2
2. We also disregard the helicity-2 modes haµ/M due to their additional M−1 suppression.

This leads to the decoupling limit interactions

g2
∗LDL,1 = −γ

2x2

2
εε

[
β̃

(1)
1

3!

(
I + Π̂

)2
(

1

2
(I + Π̂)ω · ω + 3 ∂Aω

)

+
β̃

(1)
2

2!2!

(
I + Π̂

) [
4I∂Aω + (I + Π̂)

(
I ω · ω + ω2

)]
+
β̃

(1)
3

2
I

[
I∂Aω + (I + Π̂)

(
1

2
I ω · ω + ω2

)]]
.

(5.22)

We note that this decoupling limit action has Λ3 as the strong coupling scale. All terms

appearing at a lower scale have cancelled either as total derivatives or because of the

antisymmetric properties of ω. Let us also remark that it is known that the equations of

motion for the Lorentz Stückelberg fields is independent on the coefficients β̃
(1)
n (see [59]

and appendix B). Hence varying any of the β̃
(1)
n terms in the above action with respect

to ω gives the standard symmetric vierbein condition allowing to express the Lorentz

Stückelberg fields as before:

2ωab = ∂[aAb] − (Π̂ · ω)[ab] . (5.23)

For the second term in (5.10) we use E = I and

ΓF (ψ)∂ψ = I + X̂ +
1

Λ2
2

(
∂B + σ + σ · X̂

)
+

1

Λ4
2

(
σ · ∂B +

1

2
σ · σ +

1

2
σ · σ · X̂

)
+O

(
f

M

)
.

(5.24)
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In the decoupling limit this then gives

g2
∗LDL,2 =−1

2
εε

{
β̃

(2)
1

3!
I3

(
σ ·∂B+

1

2
σ ·σ+

1

2
σ ·σ ·X̂

)
(5.25)

+
β̃

(2)
2

2!2!
I2

[
(∂β+σ+σ ·X̂)2+2(I+X̂)

(
σ ·∂B+

1

2
σ ·σ+

1

2
σ ·σ ·X̂

)]
+
β̃

(2)
3

3!
I

[
3(I+X̂)(∂β+σ+σ ·X̂)2+3(I+X̂)2

(
σ ·∂B+

1

2
σ ·σ+

1

2
σ ·σ ·X̂

)]
+
β̃

(2)
4

4!

[
6(I+X̂)2(∂β+σ+σ ·X̂)2+4(I+X̂)3

(
σ ·∂B+

1

2
σ ·σ+

1

2
σ ·σ ·X̂

)]}
,

which all enter at the scale Λ3. The dangerous interactions present in the cycle case do not

arise for the line of interactions. The reason for this is that only mixing between σ and X̂
(and not with Π̂ occurs). Thus, similarly as in the case of the self interactions in the mass

terms (3.28), these terms vanish due to the antisymmetry of σ. Varying with respect to σ

gives the symmetric vierbein condition for σa b:

σab = ∂[aBb] − (X̂ · σ)[ab] . (5.26)

The total helicity-1/helicity-0 decoupling limit is given in a closed form by the sum

of (5.22) and (5.25), together with the symmetric vierbein conditions (5.23) and (5.26).

Its strong coupling scale is Λ3, as would be the case for two decoupled massive spin-2

fields. After integrating out the Lorentz Stückelberg fields (or, equivalently, imposing the

symmetric vierbein conditions) this describes the interactions in the helicity-0/helicity-1

theory of line of interactions in a closed form. These coincide with the interactions in

ghost-free massive gravity [59].

5.3 Higher derivative EFT corrections for line theories

The higher derivative corrections that arise in the EFT for line theories will take the same

form as those for the Λ3 cycle theories in section 4.6. The reason being is that the overall

scaling of each of the arguments in the decoupling limit remains the same, and the higher

derivative terms do not rely on any special cancellations, e.g. through terms being total

derivatives. Hence we either have

g2
∗Shigher-der =

∫
d4xΛ4

3F
[
Eaµ, Fbµ,

∂ρ
Λ3
,
MR[E]abcd

Λ3
3

,
MR[F ]efgh

Λ3
3

]
, (5.27)

assuming the helicity-two modes interact with other modes at the same Λ3 scale or

g2
∗Shigher-der =

∫
d4xΛ4

3F
[
Eaµ, Fbµ,

∂ρ
Λ3
,
R[E]abcd

Λ2
3

,
R[F ]efgh

Λ2
3

]
, (5.28)

assuming the helicity-two interactions are additionally suppressed, as is natural in models

which for we may diagonalize/demix the helicity-2 interactions at leading order in the

decoupling limit (as in eq. (6.18)).

– 34 –



J
H
E
P
0
1
(
2
0
2
0
)
1
3
1

Technically speaking, when these higher derivative terms are added to the action,

the unconstrained and constrained formulations are no longer equivalent. This is not a

significant problem, and the same is true already in GR where different higher derivative

Riemann operators are inequivalent in the first order and second order formulation. It is

simply necessary to make a choice from the outset. Since the Lorentz Stückelberg fields

have no physical meaning, and it is enough to work with two 10 component symmetric

tensors to describe two spin-2 fields, it is arguably better to work with the constrained

formulation, as we did in the case of the cycle theories.

6 Bi-Galileon theory from the line of interactions

Here we shall rewrite the decoupling limit action for the helicity-0/helicity-2 interactions

derived in section 5.1 in the form of a bi-Galileon theory [47]. We shall follow closely a

similar derivation derived in [48] in the context of bigravity theories which is generalized

to multi-gravity in [71]. As a first step we rewrite the action (5.15) in the form:

g2
∗SDL,2 =−

∫
d4x fµνEαβµν fαβ +

1

4

∫
d4xhµνX̃(2)

µν [X]

+
1

4

∫
d4x faν

[
x+

∂χ

Λ3
3

](
δνµ +

Xνµ
Λ3

3

)
Ỹ µ
a [X] ,

(6.1)

where the squared brackets indicate that faµ is evaluated at x + ∂χ/Λ3
3. We also rewrite

Ỹ µ
a defined in eq. (5.17) as:

Ỹ µ
a [X] = −2Λ3

3 ε
µ...εa...

4∑
n=1

β̃
(2)
n

(n− 1)!(4− n)!
I4−n

(
I +

X
Λ3

3

)n−1

, (6.2)

where we use the notations such that, e.g.

εµ...εa...I

(
I +

X
Λ3

3

)2

≡ εµναβεabcd δbν
(
I +

X
Λ3

3

)c
α

(
I +

X
Λ3

3

)d
β

. (6.3)

In order to write the term on the second line of (6.1) in a local form it is helpful to

first recognize that it is a wedge product of combinations of the following one-forms

va1 = faν

[
x+

∂χ

Λ3
3

](
δνµ +

Xνµ(x)

Λ3
3

)
dxµ , (6.4)

va2 = δaµdxµ , (6.5)

va3 =

(
δaµ +

Xaµ(x)

Λ3
3

)
dxµ . (6.6)

We shall now perform a Galileon-duality transformation, which is best thought of in the

present context as a field dependent diffeomorphism [48–51]. We introduce new coordinates

x′
a

= xa +
∂aχ(x)

Λ3
3

, (6.7)
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and the dual Galileon field via

xa = x′
a

+
∂′aχ′(x′)

Λ3
3

. (6.8)

By differentiating both sides with respect to x we have

∂x′a

∂xb
=

(
I +

X(x)

Λ3
3

)a
b , (6.9)

or
∂xa

∂x′b
=

(
I +

X(x)

Λ3
3

)−1a

b =

(
I +

X′(x′)
Λ3

3

)a
b , (6.10)

where we have defined X′ aµ(x′) ≡ ∂′µ∂
′aχ′(x′). In terms of the dual coordinates, the one-

forms become

va1 = faµ [x′]dx′
µ
, (6.11)

va2 =

(
δaµ +

X′aµ(x′)

Λ3
3

)
dx′

µ
, (6.12)

va3 = δaµdx′
µ
. (6.13)

Once these transformations have been done for every term on the second line of the ac-

tion (6.1), we now replace the dummy label x′ with x, leaving the interactions as a function

of faν [x] and the dual Galileon field χ′(x). The resulting local action is

g2
∗SDL,2 = −

∫
d4x fµνEαβµν fαβ +

1

4

∫
d4xhµνX̃(2)

µν [X] +
1

4

∫
d4x faµ(x)Yµa [X′] , (6.14)

where we define

Yµa [X′] = −2Λ3
3 ε

µ...εa...

4∑
n=1

β̃
(2)
n

(n− 1)!(4− n)!

(
I +

X′(x)

Λ3
3

)4−n
In−1 . (6.15)

Combining the results here for the decoupling limit action (5.15) together with the other

part of the action (5.12), derived in section 5.1 we obtain the full helicity-0/helicity-2 de-

coupling limit theory for line interactions written in a local form. The result is a bi-Galileon

theory of two helicity-2 fields hµν , fµν and two Galileon fields π and χ (or χ′, related to χ

through the duality transformations (6.7) and (6.8)). After some trivial restructuring the

Lagrangian reads:

g2
∗LDL =− γ2hµνEαβµν hαβ − fµνEαβµν fαβ

+
1

4
γ2x2hµνX̃(1)

µν [Π] +
1

4
hµνX̃(2)

µν [X] +
1

4
fµνX̃(3)

µν [X′] ,
(6.16)

where similarly as in section 5.1 we define

X̃(i)
µν [Π] ≡ κ̃(i)

2 (εεIIΠ)µν +
κ̃

(i)
3

Λ3
3

(εεIΠΠ)µν +
κ̃

(i)
4

Λ6
3

(εεΠΠΠ)µν , (6.17)
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but this time with i = 1, 2, 3 and the various κ̃
(i)
n ’s are defined in appendix C, see

eqs. (C.1)–(C.4).

In the special case when κ
(i)
4 = 0 for i = 1, 2, 3 one can write the action (6.16) in a

manifestly bi-Galileon form [47]. This can be achieved by first decoupling/demixing the

helicity-0 and helicity-2 modes by the following field redefinitions:

hµν → hµν +
1

4
x2κ̃

(1)
2 πηµν − x2 κ̃

(1)
3

4Λ3
3

∂µπ∂νπ +
1

4γ2
κ̃

(2)
2 χηµν −

1

γ2

κ̃
(2)
3

4Λ3
3

∂µχ∂νχ ,

fµν → fµν +
1

4
κ̃

(3)
2 χ′ηµν −

κ̃
(3)
3

4Λ3
3

∂µχ
′∂νχ

′ .

(6.18)

By using the relationships

Eαβµν πηαβ =
1

2
(εεIIΠ)µν , Eαβµν ∂απ∂βπ = −1

2
(εεIΠΠ)µν , (6.19)

we arrive at the following form of (6.16):

g2
∗SDL =− γ2

∫
d4xhµνEαβµν hαβ −

∫
d4x fµνEαβµν fαβ

+
γ2x4

2

∫
d4xLgalileon

(
π, κ̃(1)

n

)
+

1

2γ2

∫
d4xLgalileon

(
χ, κ̃(2)

n

)
+

1

2

∫
d4xLgalileon

(
χ′, κ̃(3)

n

)
+
x2

γ2

∫
d4xLbigalileon

(
π, κ̃(1)

n ;χ, κ̃(2)
n

)
,

(6.20)

where Lgalileon stands for the quartic Galileon Lagrangians [72] defined as

Lgalileon

(
π, κ̃(i)

)
≡ π

[
(κ̃

(i)
2 )2εεIIIΠ + 2κ̃

(i)
2 κ̃

(i)
3

1

Λ3
3

εεIIΠΠ + (κ̃
(i)
3 )2 1

Λ6
3

εεIΠΠΠ

]
, (6.21)

and the mixed interactions Lbigalileon are given by

Lbigalileon

(
π, κ̃(1)

n ;χ, κ̃(2)
n

)
≡ π

[
κ̃

(1)
2 κ̃

(2)
2 εεIIIX + κ̃

(1)
2 κ̃

(2)
3

1

Λ3
3

εεIIXX + κ̃
(1)
3 κ̃

(2)
2

1

Λ3
3

εεIIΠX

+κ̃
(1)
3 κ̃

(3)
3

1

Λ6
3

εεIXXΠ

]
. (6.22)

Note that the bi-Galileon Lagrangian is symmetric under exchanging

Lbigalileon

(
π, κ̃(1)

n ;χ, κ̃(2)
n

)
= Lbigalileon

(
χ, κ̃(2)

n ;π, κ̃(1)
n

)
.

We next perform the Galileon duality transformation, inverse to the one we performed

before in eqs. (6.7) and (6.8), in the last term on the second line of (6.20). We use the

known relationships [50] between the coefficients in the dual Galileon actions written in

the form ∫
d4xLgalileon

(
χ′, κ̃(3)

n

)
= Λ6

3

∫
d4x

5∑
n=2

cn χ
′ Un−1

(
X′

Λ3
3

)

= Λ6
3

∫
d4x

5∑
n=2

pn χUn−1

(
X
Λ3

3

) (6.23)
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with

c2 = (κ̃
(3)
2 )2 , c3 = 2κ̃

(3)
2 κ̃

(3)
3 , c4 = (κ̃

(3)
3 )2 , c5 = 0 , (6.24)

and the dual coefficients given by

p2 = c2 , p3 = 2c2 − c3 , p4 =
3

2
c2 −

3

2
c3 + c4 , p5 =

1

5
(2c2 − 3c3 + 4c4 − 5c5) .

(6.25)

Thus our final result for the decoupling limit action for the helicity-0/helicity-2 sector in a

theory with line interactions becomes (see also [71]):

g2
∗SDL =− γ2

∫
d4xhµνEαβµν hαβ −

∫
d4x fµνEαβµν fαβ

+
γ2x4

2

∫
d4xLgalileon

(
π, κ̄(1)

n

)
+

1

2γ2

∫
d4xLgalileon

(
χ, κ̄(2)

n

)
+
x2

γ2

∫
d4xLbigalileon (π, χ) ,

(6.26)

where the Galileon and bi-Galileon Lagrangians are defined respectively as

Lgalileon

(
π, κ̄(i)

)
≡ π

[
κ̄

(i)
2 εεIIIΠ +

κ̄
(i)
3

Λ3
3

εεIIΠΠ +
κ̄

(i)
4

Λ6
3

εεIΠΠΠ +
κ̄

(i)
5

Λ9
3

εεΠΠΠΠ

]
, (6.27)

and

Lbigalileon (π, χ) ≡ π
[
κ̄11εεIIIX +

κ̄12

Λ3
3

εεIIXX +
κ̄21

Λ3
3

εεIIΠX +
κ̄22

Λ6
3

εεIXXΠ

]
, (6.28)

where the various coefficients appearing in the above action are expressed in terms of the

original coefficients β̃
(i)
n in the line interactions (2.22) in (C.5) and (C.6).

7 EFT for multiple interacting spin-2 fields

The vierbein interactions can easily be extended to arbitrary number of fields [35] and

arise naturally in the dimensional deconstruction framework [73] (for earlier metric based

work see [74–77]). A crucial observation for this is that in four spacetime dimensions there

are only two additional interaction vertices of the double-epsilon structure that have to be

added to (A.20) in the case when there are more fields present. These correspond to quartic

interaction vertices mixing three and four of the dynamical vierbeins. If we label the set of
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N dynamical vierbeins as E(i), i = 1, 2, . . . , N , the total non-derivative Lagrangian reads:

g2
∗Lnon-der =

N∑
i=1

m2
iM

2
i

4

4∑
n=0

β(i)
n Un(I, E(i))

+

N∑
i,j=1
i<j

m2M2

4

4∑
ni=1

4−ni∑
nj=1

β(ij)
ninj Uninj (I, E

(i), E(j))

+
N∑

i,j,k=1
i<j<k

m2M2

4

4∑
ni=1

4−ni∑
nj=1

4−(ni+nj)∑
nk=1

β(ijk)
ninjnk

Uninjnk(I, E(i), E(j), E(k))

+
N∑

i,j,k,l=1
i<j<k<l

m2M2

4
β

(ijkl)
1111 U1111(E(i), E(j), E(k), E(l)) ,

(7.1)

where on the last three lines i, j, k = 1, 2, . . . , N and m and M are some mass scales that

depend on the choice of normalization of the interaction terms. The first line are the

individual mass terms for each of the dynamical metrics. The second line contains all the

pairwise interactions between two of the dynamical vierbeins E(i), E(j), including both

cubic and quartic interactions between the two. The third and the fourth lines show the

couplings between three and four dynamical vierbeins respectively. To avoid the double

counting between the terms contained in the different lines we start the sums on the last

three lines from ni, nj , nk = 1.

Written in this form the action above is the most convenient for describing a line of

interactions between the N vierbeins and the reference vierbein I. If we choose to number

the vierbeins as E(1), E(2), . . . , E(N) then the action for the line of interactions is given

simply by

g2
∗Lline =

m2
1M

2
1

4

4∑
n=0

β(1)
n Un(I, E(1)) +

N∑
i=2

m2
iM

2
i

4

4∑
n=0

β(i)
n Un(E(i−1), E(i)) . (7.2)

Following the decoupling limit analysis for the case of two interacting vierbeins it is clear

that the main conclusions still hold for the case of N vierbeins, provided we make the same

assumption that the hierarchy between the masses mi and interaction scales Mi is small

in comparison to the hierarchy between masses. As long as this is true we can continue to

define the same type of decoupling limit. In particular, in this theory the constrained and

unconstrained formalisms are equivalent, it is ghost-free, with the strong coupling scale Λ3.

In fact the full helicity-2/helicity-0 decoupling limit is worked out closely following the same

methodology in [71]. The known absence of Boulware-Deser ghosts for line theories [35]

implies that the decoupling limit analysis for the helicity-1/helicity-0 sector will be equally

unproblematic. With this in mind, we may easily identify the typical EFT corrections in

the form

g2
∗Shigher-der =

∫
d4xΛ4

3F
[
Ei

a
µ,
∂µ
Λ3
,
MR[Ei]abcd

Λ3
3

]
, (7.3)
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if the helicity-2 states also have Λ3 interactions, or more typically

g2
∗Shigher-der =

∫
d4xΛ4

3F
[
Ei

a
µ,
∂µ
Λ3
,
R[Ei]abcd

Λ2
3

]
, (7.4)

when the helicity-2 states are additionally M suppressed.

For cycles of interactions it is more convenient to write the action (7.1) in terms of the

vierbein ‘perturbations’, i.e. in terms of (E(i) − I) instead of E(i) as we did in (2.15). In

the case of N dynamical vierbeins this is given by

g2
∗Lcycle =

N∑
i=1

m2
iM

2
i

4

4∑
n=0

κ(1)
n Un(I, E(i) − I)

+

N∑
i,j=1
i<j

m2M2

4

4∑
ni=1

4−ni∑
nj=1

κ(ij)
ninj Uninj (I, E

(i) − I, E(j) − I)

+

N∑
i,j,k=1
i<j<k

m2M2

4

4∑
ni=1

4−ni∑
nj=1

4−(ni+nj)∑
nk=1

κ(ijk)
ninjnk

Uninjnk(I, E(i) − I, E(j) − I, E(k) − I)

+
N∑

i,j,k,l=1
i<j<k<l

m2M2

4
κ

(ijkl)
1111 U1111(E(i) − I, E(j) − I, E(k) − I, E(l) − I) , (7.5)

with κ
(ij)
11 = 0 to avoid linear mixing. Again, also in this case we still know that adding more

fields do not change the main conclusions that we have learned in sections 3 and 4. Most

importantly, the perturbative unitarity in this theory with generic couplings κ ∼ O(1)

is broken by the terms on the second, third and fourth line of the above action at the

scale Λ7/2. That is because the dangerous helicity-1/helicity-0 interactions (4.2) that arose

before, occur whenever two distinct helicity-0 modes couple within the same interaction

vertex to Lorentz Stückelberg fields. In the case of multiple interacting spin-2 theories with

any cycle interactions, we only increase the number of dangerous interactions of this form.

Once again, these conclusions hold both in constrained and unconstrained formulation. As

discussed in section 4 we choose either to accept the lower cutoff scale and organize the

EFT in a manner similar to (4.28) and (4.29), or we may rescale the coefficients of the

dangerous helicity-1/helicity-0 interactions as in (4.9) and define the cycle theory as a Λ3

EFT. If this is done then the correct form of the EFT corrections is (7.3) or (7.4).

We should note that in considering large N spin-2 states, the actual scale at which

perturbative unitarity is violated may additionally scale with some power of N . The precise

scaling will depend on the details of the interactions between the spin-2 states and we do

not consider this here (see for example [40, 73] for related discussions).

8 Discussion

In this paper we have analyzed the EFT of interacting multiple massive spin-2 fields in

Minkowski spacetime with the highest possible EFT cutoff, focussing in particular on the
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case of two spin-2 fields. Our principle focus is spin-2 states which acquire masses through

the breaking of diffeomorphism symmetries. Unsurprisingly, the mixed interactions be-

tween the spin-2 fields must take the double-epsilon form characteristic to ghost-free mas-

sive gravity theories [29]. This result is inferred by performing a decoupling limit analysis in

the helicity-zero/helicity-two mode sector. Even given this, there are two different classes

of interacting theories: ‘Cycle theories’, where the mass eigenstates are chosen to inter-

act through non-derivative interactions, but whose kinetic interactions are diagonalized

and standard, or ‘Line theories’ where the mass eigenstates arise through mass mixing,

hence leading to non-trivial kinetic mixing between mass eigenstates. Both classes of the-

ories are acceptable starting point for EFT constructions of interactions between multiple

spin-2 fields.

We perform the full decoupling limit analysis of both classes of theories in order to

determine the most relevant interactions, and the cutoff of the two EFTs. For the case

of cycle theories, a novel and previously unexpected result is that if these interactions are

chosen to arise in the Lagrangian in a similar manner to the spin-2 self-interactions, then

the cutoff of the EFT is lowered to the parametrically smaller energy scale Λ7/2. This arises

due to novel interactions in the helicity-one/helicity zero mode sector that have no analogue

in the single spin-2 case. These interactions are higher derivative in nature, and are shown

to contribute non-trivially to scattering amplitudes indicating that they are physical. This

is consistent with the presented ADM Hamiltonian analysis in the metric (constrained

vierbein) formalism and previous works on unconstrained vierbein formulations of the

same theory which indicate the presence of a BD ghost. Our decoupling limit identifies the

energy scale of this ghost, or more precisely the cutoff of the EFT beyond which the would-

be BD ghost is banished. We show that by performing a technically natural tuning of the

mixed interactions, it is possible to raise the cutoff of the combined theory to Λ3, which

is the maximum allowed scale for an interacting theory of two massive spin-2 particles in

Minkowski spacetime. The line theories by contrast naturally give EFTs whose cutoff scale

is Λ3 (for all helicity states) without any further special tuning (beyond the double epsilon

structure). This is consistent with previous decoupling limit results [48]. In both cases

we identify the generic form of EFT corrections that would come from either a weakly or

strongly coupled UV completion.

The majority of these results extend straightforwardly to theories of multiple spin-

2 particles provided that the hierarchy between the various physical masses mi and the

various interaction scales Mi is large in comparison to the hierarchy between the different

physical masses. As long as this is true, it is still meaningful to talk about a Λ3 (more

generally Λn) decoupling limit. All of the tunings and scalings considered are technically

natural, i.e. stable under radiative corrections. Hence from an EFT point of view alone,

there are no further constraints on the interaction coefficients (the various β’s and κ’s).

This situation changes dramatically when we impose positivity bound requirements as we

do in a forthcoming work [46].
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A Metric formulation

A.1 Λ3 EFT

Here we review the highest cutoff EFT of a single massive spin-2 field. As was said in

the main text, it is known that for generic interactions, the EFT of massive spin-2 field

breaks (perturbative) unitarity at the scale Λ5 = (m4M)1/5 [53, 60, 78]. There is however

a unique set of fully nonlinear interactions for which the cutoff can be raised to much larger

values, known as the Λ3-EFT for a massive spin-2 field [29, 54]. That particular theory

requires tunings that are not protected by any symmetry but remain stable under quantum

corrections [69, 70] and therefore leads to a meaningful quantum EFT.

In the context of the present paper the Λ3 EFT is most conveniently written in the

vierbein formalism [35]:

g2
∗S =

M2

2

[∫
1

4
εabcdE

a ∧ Eb ∧Rcd [E]−m2

∫
d4x

4∑
n=0

βn
n!(4− n)!

Un(I, E)

]
, (A.1)

where Ia = δaµdxµ and Ea = Eaµdxµ and the vierbein Eaµ can be related to the ‘would-be’

metric through gµν = EaµE
b
νηab. The first term above then is the standard Einstein-Hilbert

term associated to the ‘would-be’ metric gµν , and the non-derivative interactions are given

by the double-epsilon potentials, conveniently written in the following notation:

Un(I, E) ≡ εεEnI4−n ≡ εa1...anan+1...a4ε
µ1...µnµn+1...µ4Ea1µ1 . . . E

an
µnI

an+1
µn+1

. . . Ia4µ4 , (A.2)

where εabcd is the flat space Levi-Civita symbol6 so that, e.g.,∫
d4xU3(I, E) =

∫
εabcd δ

a
µdxµ ∧ Ebνdxν ∧ Ecαdxα ∧ Edβdxβ =

∫
εabcd I

a ∧ Eb ∧ Ec ∧ Ed .
(A.3)

6Let us emphasize that here and henceforth we are using the anti-symmetric Euclidean Levi-Civita

symbol with εi1...ikik+1...idε
i1...ikjk+1...jd = k!δ

jk+1...jd
ik+1...id

where the generalized Kronecker delta is expressed

as a determinant of a matrix built out of δ’s. In a sense we are abusing the notation here, since it looks as if

one could be lowering/raising the indices of the epsilons with a Minkowski metric. For this to be consistent

we should add an overall minus sign everywhere because εµναβEuclidean = −εµναβLorentzian. To avoid this, we shall

never raise nor lower the indices directly on the Levi-Civita symbols.
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The action (A.1) can thus be written explicitly as

g2
∗S =

M2

2
εabcd

∫ [
1

4
Ea ∧ Eb ∧Rab [E]−m2

(
β0

4!
Ia ∧ Ib ∧ Ic ∧ Id

+
β1

3!
Ia ∧ Ib ∧ Ic ∧ Ed +

β2

2!2!
Ia ∧ Ib ∧ Ec ∧ Ed

+
β3

3!
Ia ∧ Eb ∧ Ec ∧ Ed +

β4

4!
Ea ∧ Eb ∧ Ec ∧ Ed

)]
.

(A.4)

The coefficients βn here are arbitrary constant coefficients; three of them are usually fixed

by imposing the conditions for the absence of cosmological constant and a tadpole, and by

the normalization of the mass of the spin-2 field.

It is straightforward to relate the vierbein to the symmetric spin-2 field perturbations

hµν by defining7

Eaµ ≡ δaµ + haµ . (A.5)

If the symmetric vierbein condition

ηE = (ηE)T , (A.6)

equivalent to Eaµ = Eµa, is satisfied (or imposed) this implies that haµ = hµa thus providing

an equivalent mapping between the vierbein and metric formulations. In terms of the

‘would-be’ metric gµν and of the tensor

Kµν(g, η) = δµν −
(√

g−1η
)µ
ν
, (A.7)

where gµν is the inverse of gµν , and ηµν is the Minkowski reference metric, the standard

ghost-free massive gravity Lagrangian for a single massive spin-2 field is

g2
∗LΛ3 [g] =

M2

2

√
−g

[
R[g] +

m2

2

4∑
n=0

αn Un [K(g, η)]

]
, (A.8)

with α0 = α1 = 0 (ensuring the absence of tadpole and cosmological constant) and α2 = 1.

The two remaining coefficients α3 , α4 are the free parameters of the theory together with

the graviton mass m. The relevant terms in the potential are defined as

U2(K) = 2
(
[K]2 − [K2]

)
, (A.9)

U3(K) = [K]3 − 3[K][K2] + 2[K3] , (A.10)

U4(K) = [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4] , (A.11)

where the squared brackets denote the traces. The potential terms can be written in the

double-epsilon form in terms of the flat space Levi-Civita symbol as

U2(K) = εµναβε
µνα′β′Kαα′Kββ′ ,

U3(K) = εµναβε
µν′α′β′Kνν′Kαα′Kββ′ ,

U4(K) = εµναβε
µ′ν′α′β′Kµµ′K

ν
ν′Kαα′Kββ′ .

(A.12)

7Throughout this appendix we choose not to canonically normalize the perturbation.
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We define the vierbein-inspired metric perturbations as [4, 70]

gµν = (ηµν + hµν)2 ≡ (ηµα + hµα) ηαβ (ηβν + hβν) , (A.13)

directly related to the constrained vierbein perturbations Eaµ = δaµ+haµ when the symmetric

vierbein condition is imposed. In terms of the metric perturbations defined in this way it

is straightforward to take the square root of the following matrix

Kµν (η, g) = δµν −
(√

η−1g
)µ
ν

= −ηµαhαν , (A.14)

so that the massive gravity action (A.8) becomes

g2
∗LΛ3 [g] =

M2

2

√
−gR+

m2M2

4

√
−η

4∑
n=0

κn Un
[
η−1h

]
(A.15)

up to arbitrary power in metric perturbations hµν . We stress that the 10 component

vierbein defined as ηµα + hµα is a constrained vierbein since its symmetry is imposed from

the outset. This should not be confused with the 16 component unconstrained vierbein that

enters in first order formulations of GR and massive gravity as presented in the main text.

The inequivalence of these two formulations in the case of two massive spin-2 particles is an

important result [35, 37] which is why we must be clear from the outset which formalism

we are working in.

The coefficients κn are the same κ’s that appear in the vierbein action (2.15) and are

related to αn’s as κn = Anmαm with A given by [4]

A =


1 0 0 0 0

4 1 0 0 0

6 3 1 0 0

4 3 2 1 0

1 1 1 1 1

 . (A.16)

For our choice of αn’s this means

κ0 = κ1 = 0 , κ2 = 1 , κ3 = 2 + α3 , κ4 = 1 + α3 + α4 . (A.17)

The coefficients αn’s in (A.8) are related to the coefficients βn used in the vierbein ac-

tion (A.4) as:

βn = Bnmαm , with Bnm =


0 0 0 0 −12

0 0 0 3 12

0 0 −2 −6 −12

0 3 6 9 12

−12 −12 −12 −12 −12

 . (A.18)
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Finally, inserting Eaµ = δaµ + haµ in the action (A.4) we are lead back to (A.15) with the

coefficients βn and κn related as

κn = Cnmβm , with Cnm = − 1

12


1 4 6 4 1

0 4 12 12 4

0 0 6 12 6

0 0 0 4 4

0 0 0 0 1

 , (A.19)

and satisfying CB = A.

A.2 Cycle of interactions

An equivalent way of writing the cycle interactions given in (2.13) in the vierbein form is:

g2
∗Snon-der =

m2M2

4

∫
d4x

4∑
n=0

4−n∑
m=0

βnm
n!(4− n)!m!(4−m)!

Unm(I, E, F ) , (A.20)

where we have extended the notations (A.2) as

Unm(I, E, F ) ≡ εεI4−(n+m)EnFm , (A.21)

that written explicitly in the index notation become

εa1...anan+1...an+man+m+1...a4ε
µ1...µnµn+1...µn+mµn+m+1...µ4Ea1µ1 . . .E

an
µnF

an+1
µn+1

. . .F an+mµn+m I
an+m+1
µn+m+1

. . . Ia4µ4 .

The non-derivative terms written in (A.20) include both the individual mass terms as well

as the interactions between the dynamical vierbeins Ea and F a. For instance, the βn0

terms coincide with the potential terms in the Lagrangian of a single massive graviton

given in (A.1) and only involve pairwise interactions between the vierbein Eaµ and the

reference vierbein Iaµ = δaµ (similarly, the β0n terms are the mass terms for F a).

The βnm terms with n,m 6= 0, however, also allow for mixed interactions between all

three vierbeins and also involve pairwise interactions directly between the two dynamical

vierbeins E and F :

m2M2

4

∫
εabcd

[
β11

3!3!
Ia∧Ib∧Ec∧F d+

β12

3!2!2!
Ia∧Eb∧F c∧F d+

β13

3!3!
Ea∧F b∧F c∧F d

+
β21

3!2!2!
Ia∧Eb∧Ec∧F c+ β22

(2!)4
Ea∧Eb∧F c∧F d+

β31

3!3!
Ea∧Eb∧Ec∧F d

]
.

(A.22)

Finally, let us remark that the coefficients κnm used in (2.13) in the main text are related

to βnm as

κnm =
1

4
Cnk βkl (CT )lm , (A.23)

with C defined in (A.19). with βn0 = β0m = 0. Note that in this action the first and the

second line contains terms of similar structure because of our conventions when writing the

action (A.20).
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The symmetric vierbein condition (2.12) allows the identification (2.9) between the

vierbeins and the symmetric spin-2 fields h and f equivalently expressed when defining the

metric perturbations as

g(1)
µν ≡ (ηµν + hµν)2 , g(2)

µν ≡ (ηµν + fµν)2 . (A.24)

With this in mind the vierbein action for the cycle of interactions (2.15) together with the

corresponding kinetic terms becomes a nonlinear action describing the fields hµν and fµν as

g2
∗Lcycle =

M2
1

2

√
−g(1)R[g(1)]+

m2
1M

2
1

4

√
−η

4∑
n=0

κ(1)
n Un

[
η−1h

]
(A.25)

+
M2

2

2

√
−g(2)R[g(2)]+

m2
2M

2
2

4

√
−η

4∑
n=0

κ(2)
n Un

[
η−1f

]
+
m2M2

4
Lint[h,f ]+Lh.d. ,

with the interaction term

Lint[h, f ] = κ21Lhhf + κ12Lhff + κ22Lhhff + κ31Lhhhf + κ13Lhfff , (A.26)

and the various terms defined as

Lhhf = εµναβε
µν′α′β′

hνν′h
α
α′f

β
β′ ,

Lhff = εµναβε
µν′α′β′

hνν′f
α
α′f

β
β′ ,

Lhhff = εµναβε
µ′ν′α′β′

hµµ′h
ν
ν′f

α
α′f

β
β′ ,

(A.27)

and similarly for Lhhhf and Lhfff . We also set κ
(i)
0 = κ

(i)
1 = 0 as the no cosmological

constant and no tadpole conditions and normalize the spin-2 masses as κ
(i)
2 = 1. Finally

Lh.d. denotes higher derivative terms that arise in the effective theory.

We note that we could have written the action (A.25) without ever referring to the

vierbeins. It is the action of two interacting massive spin-2 fields, such that in the ab-

sence of interaction terms Lint each is described by the standard ghost-free massive gravity

Lagrangian. In particular, at quadratic level it reduces to two copies of the standard Fierz-

Pauli Lagrangian for massive spin-2 fields, (2.1), while mixes the two metrics at nonlinear

level, leading to a cycle of interactions (figure 1 [left]). Nevertheless, as we have shown

above, the action (A.25) can be obtained starting from the vierbein formulation by impos-

ing the symmetric vierbein condition (2.12) on the otherwise unconstrained action (2.15).

A.3 Line of interactions

As presented in the main text the line of interactions are most conveniently described by

the vierbein action (2.20) which can be easily related to the most general action (A.20)

introduced in the previous subsection by the choice of coefficients β0m = 0, βnm = 0 for

n+m < 4 and the following mapping:

β̃(1)
n = −1

2

m2M2

m2
1M

2
1

βn0

4!
, (A.28)
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and

β̃
(2)
1 = −1

2

β31

3!
, β̃

(2)
2 = −1

2

β22

2!2!
, β̃

(2)
3 = −1

2

β13

3!
, β̃

(2)
4 = −1

2

β04

4!
. (A.29)

In order to write the metric formulation of the vierbein action for line of interactions it is

useful to further rotate the action (2.22) in the form

g2
∗Snon-der =

m2
1M

2
1

4

∫
d4x

4∑
n=0

κ̃(1)
n Un(I, E − I) (A.30)

+
m2M2

4

∫
d4x (detE)

4∑
n=0

κ̃(2)
n Un

(
I, E−1F − I

)
,

with coefficients κ̃
(i)
n related to β̃

(i)
n as in (A.19).

As discussed in section 2.2.2 the symmetric vierbein conditions in this case read (2.23)

and imply that the symmetric metric perturbations should be related to the vierbeins as:

Eaµ = δaµ + h̃aµ , δµν +
(
g−1

(1) f̃
)µ
ν

=
(
E−1F

)µ
ν
≡ EµaF aν . (A.31)

To see why this is the case, we note that the above equation implies

F aν = Eaν + Eaµg
µω
(1)f̃ων (A.32)

In component form, the symmetric vierbein condition (2.23) is F aµE
b
νηab−µ↔ ν = 0. Now

F aµE
b
νηab = (Eaµ + Eaαg

αω
(1) f̃ωµ)Ebνηab = g(1)

µν + f̃µν (A.33)

and so the symmetric vierbein condition is satisfied for symmetric f̃µν = f̃νµ.

In metric language this corresponds to defining the metric perturbations as in (2.24):

g(1)
µν ≡ (ηµν + h̃µν)2 , g(2)

µν ≡ (g(1)
µα + f̃µα)gαβ(1)(g

(1)
βν + f̃βν) . (A.34)

By using the equation (A.31), it is now straightforward to rewrite the potential (A.30)

in metric form. Together with the Einstein-Hilbert kinetic terms this gives the full action

of a line of perturbations:

g2
∗Lline =

M2
1

2

√
−g(1)R[g(1)] +

m2
1M

2
1

4

√
−η

4∑
n=0

κ̃(1)
n Un

[
η−1h̃

]
(A.35)

+
M2

2

2

√
−g(2)R[g(2)] +

m2M2

4

√
−g(1)

4∑
n=0

κ̃(2)
n Un

[
g−1

(1) f̃
]

+ Lh.d. .

We also note that one could rewrite the above action in more traditional form used in the

context of massive gravity by constructing the tensor Kµν out of g
(1,2)
µν as

K(g(1), g(2))µν = δµν −
(√

g−1
(1)g(2)

)µ
ν

= −gµα(1)f̃αν = −
(
g−1

(1) f̃
)µ
ν
. (A.36)

The symmetric vierbein condition then ensures that K̃µν = g
(1)
µαKαν is symmetric which

is equivalent to f̃αν = f̃να. Together with (A.14) this makes the rewriting trivial. As

expected, we see that the interactions between g(1) and g(2) that would have the highest

possible cutoff are the double-epsilon polynomials of K.
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B Integrating out the Lorentz Stückelberg fields

Here we consider the EFT of cycle of interactions (2.15) in the unconstrained vierbein

formalism. This theory involves genuine 16 component vierbeins Eaµ (and F aµ) and is not

equivalent to the constrained vierbein theory that is obtained after imposing the symmetric

vierbein conditions (3.9). In the unconstrained vierbein formulation of the theory, the

Lorentz Stückelberg fields are auxiliary fields and are determined by varying the action with

respect to those fields. Unsurprisingly this leads to expressions for the Lorentz Stückelberg

fields that differ from the symmetric vierbein conditions (3.9) leading to a theory which

differs from its constrained version. While section 3 in the main text focused on the metric

or constrained symmetric vierbein formulation of the cycle interactions, in what follows we

shall explore briefly the unconstrained case and show the existence of interactions at the

same scale.

For the purpose of this section we use the non-derivative cycle interactions written in

the form (A.20):

g2
∗Snon-der = −m

2M2

2

∫
d4x

4∑
n=0

n∑
m=0

dnm
n!m!(4− n−m)!

Unm(I, E, F ) , (B.1)

with slightly different coefficients, related to the original βnm’s as:

dnm = −1

2
βnm

(4− n−m)!

(4− n)!(4−m)!
. (B.2)

We then make a further use of the relationship

1

n!m!(4− n−m)!
Unm(I,X,Y) =

∂n

∂µn
∂m

∂νm
det(I + µX + νY)

∣∣∣∣
µ=ν=0

, (B.3)

to write the action as

Snon-der = −m
2M2

2

∫
d4x

4∑
n=0

n∑
m=0

dnm
∂n

∂µn
∂m

∂νm
det(I + µE + νF )

∣∣∣∣
µ=ν=0

. (B.4)

In order to derive the equations of motion for Lorentz Stückelberg fields, we introduce

all the Stückelberg fields in (B.4) (the diff and the Lorentz ones). Varying with respect to

the Lorentz Stückelberg Λ then gives

δΛ (det (I + µΛE∂φ+ νΓF∂ψ)) =

det (I + µΛE∂φ+ νΓF∂ψ) tr
[
δΛ(µΛE∂φ) (I + µΛE∂φ+ νΓF∂ψ)−1

]
.

(B.5)

Similarly as in [59] we further use the property

δΛ(ΛE∂φ) = (δΛΛΛ−1η)η(ΛE∂φ) (B.6)

to write the equation of motion as

tr
[
(δΛΛΛ−1η)η(ΛE∂φ) (I + µΛE∂φ+ νΓF∂ψ)−1

]
= 0 . (B.7)
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We then note that (δΛΛ−1η)T = −δΛΛ−1η. Combined with the property of the trace that

trX = trXT for any matrix X it then follows that for the equation of motion to be satisfied

the following has to hold:

η(ΛE∂φ) (I + µΛE∂φ+ νΓF∂ψ)−1 =
[
η(ΛE∂φ) (I + µΛE∂φ+ νΓF∂ψ)−1

]T
. (B.8)

This can be rewritten as

(ΛE∂φ)T ηI − IT η(ΛE∂φ) = ν
[
(ΓF∂ψ)T η(ΛE∂φ)− (ΛE∂φ)T η(ΓF∂ψ)

]
. (B.9)

We note that the above equation is independent on µ and the left hand side for ν = 0 gives

the usual symmetric vierbein condition in massive gravity:

(ΛE∂φ)T ηI = IT η(ΛE∂φ) . (B.10)

After performing the substitutions (3.4) in terms of the various helicities and taking the

decoupling limit this takes the form

∂aAb − ∂bAa = 2ωab −
(
ωdaΠ̂

d
b − ωdbΠ̂d

a

)
, (B.11)

where we define Π̂µ
ν ≡ ∂µ∂νπ/Λ3

3 . Similarly, varying the action (B.4) with respect to Γ gives

(ΓF∂ψ)T ηI − IT η(ΓF∂ψ) = −µ
[
(ΓF∂ψ)T η(ΛE∂φ)− (ΛE∂φ)T η(ΓF∂ψ)

]
. (B.12)

We note that the right hand sides of equations (B.9) and (B.12) coincide up to the coeffi-

cients µ, ν. In decoupling limit the equation (B.9) becomes(
δµb

(
1 +

1

ν

)
+ X̂µb

)(
−ωµa + ∂µAa − ωcaΠ̂c

µ

)
−
(
δµa

(
1 +

1

ν

)
+ X̂µa

)(
ωbµ + ∂µAb − ωcbΠ̂c

µ

)
=
(
δµb + Π̂µ

b

)(
−σµa + ∂µBa − σcaX̂cµ

)
−
(
δµa + Π̂µ

a

)(
σbµ + ∂µBb − σcbX̂cµ

)
,

(B.13)

where we have defined X̂µν ≡ ∂µ∂νχ/Λ3
3. The equation (B.12) in turn becomes:(

δµb + X̂µb
)(
−ωµa + ∂µAa − ωcaΠ̂c

µ

)
−
(
δµa + X̂µa

)(
ωbµ + ∂µAb − ωcbΠ̂c

µ

)
=

(
δµb

(
1 +

1

µ

)
+ Π̂µ

b

)(
−σµa + ∂µBa − σcaX̂cµ

)
−
(
δµa

(
1 +

1

µ

)
+ Π̂µ

a

)(
σbµ + ∂µBb − σcbX̂cµ

)
.

(B.14)

Importantly, the symmetric vierbein condition (B.11) is not a solution when µ , ν 6= 0.

As already explained in the main text, in the analysis performed there we have a

different situation in mind. Instead of treating the Lorentz Stückelberg fields as auxil-

iary fields with their own equations of motion we consider a constrained version of the

action (B.4). In other words we impose the symmetric vierbein constraint (B.11) on both

– 49 –



J
H
E
P
0
1
(
2
0
2
0
)
1
3
1

Lorentz Stückelberg fields, ω and σ, and derive the decoupling limit action for the remain-

ing fields. However, it is important to emphasize that had we used the actual equations of

motion to integrate out ω and σ in the decoupling limit action (3.35) for the cycle interac-

tions it would not change the scale of the leading decoupling limit interactions. Indeed, at

leading order in fields the equations of motion (B.13) and (B.14) coincide with the sym-

metric vierbein conditions thus leading to the same conclusions about the strong coupling

case as in the constrained theory.

C Bi-Galileon coupling constants

The bi-Galileon coupling constants κ̃
(i)
n introduced in (6.17) are given in terms of the β̃

(i)
n ’s

as follows

κ̃
(1)
2 = −β̃(1)

1 − 2β̃
(1)
2 − β̃(1)

3 , κ̃
(1)
3 = −β̃(1)

1 − β̃(1)
2 , κ̃

(1)
4 = −1

3
β̃

(1)
1 , (C.1)

κ̃
(2)
2 = −β̃(2)

1 − 2β̃
(2)
2 − β̃(2)

3 , κ̃
(2)
3 = −β̃(2)

2 − β̃(2)
3 , κ̃

(2)
4 = −1

3
β̃

(2)
3 , (C.2)

κ̃
(3)
2 = −β̃(2)

1 − 2β̃
(2)
2 − β̃(2)

3 , κ̃
(3)
3 = −β̃(2)

1 − β̃(2)
2 , κ̃

(3)
4 = −1

3
β̃

(2)
1 . (C.3)

Note that while the first two lines of coefficients were already introduced in section 5.1, the

third one is new, but very similar in structure. In particular, if we relate

κ̃(3)
n = Dnmβ̃(2)

m with Dnm =


0 0 0 0 0

0 −1 −2 −1 0

0 −1 −1 0 0

0 −1
3 0 0 0

0 0 0 0 0

 , (C.4)

then also κ̃
(1)
n = Dnmβ̃

(1)
m and κ̃

(2)
n = DnlJlmβ̃

(2)
m where J is the exchange matrix (i.e. the

backward identity matrix).

In eqs. (6.27), (6.28), the coefficients κ̄(i)’s are expressed in terms of the original coef-

ficients β̃
(i)
n in the line interactions (2.22) as follows,

κ̄
(1)
2 =

(
β̃

(1)
1 + 2β̃

(1)
2 + β̃

(1)
3

)2
,

κ̄
(1)
3 = 2

(
β̃

(1)
1 + β̃

(1)
2

)(
β̃

(1)
1 + 2β̃

(1)
2 + β̃

(1)
3

)
κ̄

(1)
4 =

(
β̃

(1)
1 + β̃

(1)
2

)2
, κ̄

(1)
5 = 0 ,

κ̄
(2)
2 =

(
1

γ2
+ 1

)(
β̃

(2)
1 + 2β̃

(2)
2 + β̃

(2)
3

)2
,

κ̄
(2)
3 = 2

(
1

γ2
+ 1

)(
β̃

(2)
2 + β̃

(2)
3

)(
β̃

(2)
1 + 2β̃

(2)
2 + β̃

(2)
3

)
,

κ̄
(2)
4 = −1

2

(
β̃

(2)
1 + β̃

(2)
2

)2
+

(
3

2
+

1

γ2

)(
β̃

(2)
2 + β̃

(2)
3

)2
,

κ̄
(2)
5 = −2

5

(
β̃

(2)
1 − β̃(2)

2

)(
β̃

(2)
2 + β̃

(2)
3

)
,

(C.5)
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and

κ̄11 =
(
β̃

(1)
1 + 2β̃

(1)
2 + β̃

(1)
3

)(
β̃

(2)
1 + 2β̃

(2)
2 + β̃

(2)
3

)
,

κ̄12 =
(
β̃

(1)
1 + 2β̃

(1)
2 + β̃

(1)
3

)(
β̃

(2)
2 + β̃

(2)
3

)
,

κ̄21 =
(
β̃

(1)
1 + β̃

(1)
2

)(
β̃

(2)
1 + 2β̃

(2)
2 + β̃

(2)
3

)
,

κ̄22 =
(
β̃

(1)
1 + β̃

(1)
2

)(
β̃

(2)
2 + β̃

(2)
3

)
.

(C.6)
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