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1 Introduction

Two dimensional CFTs play a prominent role in string theory and provide the best arena

to test the AdS/CFT correspondence. The conformal group in two dimensions is infinite

dimensional and this makes two dimensional CFTs much more tractable than their higher

dimensional counterparts, in some cases even exactly solvable [1]. In turn, certain AdS3
solutions involve only NS-NS fields, and constitute exactly solvable string theory back-

grounds [2, 3]. As such there is clear motivation to study the AdS3/CFT2 duality in as

much detail as possible.
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The canonical example of AdS3 geometry is the near horizon limit of D1 and D5

branes [4] which gives rise to an AdS3 × S3 × CY2 geometry realising small N = (4, 4)

superconformal symmetry. The CFT dual is believed to be the free symmetric product

orbifold SymN (CY2) for CY2 = T4 or K3 [5]. In recent years there has been renewed

interest in its study and strong support for this proposal has been provided [6, 7, 9–11].

Despite this early success, small N = (4, 0) AdS3 solutions in 10 and 11 dimensions are

rare in the literature, with known cases mostly following from [4] via orbifoldings and/or

string dualities. These describe the near horizon limit of D1 and D5 branes intersecting

with KK-monopoles [12–15] or D9-branes [16]. These systems play a prominent role in

the microscopical description of five dimensional black holes [17–22]. 2d (4,0) CFTs are

also central in the description of self-dual strings in 6d (1,0) CFTs, realised in M and F

theory [23–28]. The AdS3 duals of D3-branes wrapped on complex curves in F-theory have

been recently constructed in [28], and will play an important role in this work. More general

(4,0) 2d CFTs such as the ones described by the quivers constructed in [23, 24, 26, 30], are

however still lacking a holographic description. One of the motivations of this work will be

to fill this gap.

This dearth of holographic duals is symptomatic of the limited classification effort

aimed at AdS3 in general,1 which mostly focuses on different superconformal algebras and

restrictive ansätze (see for instance [31–39]). Bucking this trend are [41, 42] and [28] which

do study small N = (4, 0) solutions in M-theory and IIB respectively, though they still

take a restricted ansatz for the fluxes. In this work we shall focus on small N = (4, 0) in

massive IIA, we will make no restriction on the allowed fluxes, though we will also make

some assumptions.

Our approach to finding AdS3 solutions with small N = (4, 0) superconformal sym-

metry is to construct Killing spinors which manifestly transform in the (2,2 ⊕ 2) of the

bosonic sub-algebra sl(2)⊕ su(2) — the same as the bosonic generators of the algebra [29].

The first factor is realised by Killing spinors on AdS3 which transfrom in the 2 of sl(2),

while the second is an SU(2) R-symmetry SU(2)R that suggests a local description of the

geometry and fluxes in which this SU(2)R is realised by a 2-sphere, that we shall assume

is round. We then realise the 2 ⊕ 2 representation of SU(2)R by taking certain products

of Killing spinors on S2 and spinors on the internal 5-manifold. The fundamental building

block in this construction, which builds on earlier work in [43–47], are the SU(2) doublets

one can form from the Killing spinors on S2.

A major advantage of this R-symmetry based approach to constructing spinors on the

internal space is that it is possible to show that N = (4, 0) supersymmetry is actually

implied by an N = 1 sub-sector through the action of SU(2)R. As such we are able to

exploit an existing geometric classification ofN = 1 AdS3 solutions [38] to extract necessary

conditions on the geometry and fluxes. Of course there should rather be a lot of solutions

of the form AdS3 × S2 ×M5, so in this work we will focus on those for which M5 supports

an SU(2)-structure.2 We do this in part to try and ensure that we realise small N = (4, 0)

1See however [40] for some systematic work addressing this from a 3d gauged supergravity perspective.
2A similar restriction was taken in [48] for N = 2 AdS4 in massive IIA.
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rather than some larger superconformal algebra which contains this. That SU(2)-structure

implies the small algebra and no more is certainly not a theorem but experience suggests

to us that algebras that cointain this (such as large N = (4, 0)) will require an Identity-

structure on M5. Another reason to focus on SU(2)-structure is to keep this work focused,

and leave the more generic case with M5 supporting an identity structure for the future.

The layout of the paper is as follows: in section 2 (with supplementary material in

appendix A) we perform the technical ground work of constructing spinors transforming

in the 2 ⊕ 2 representation of SU(2)R, and extracting necessary and sufficient conditions

on the geometry and fluxes for a solution to realise small N = (4, 0). We find two classes

of solutions.

Class I is a warped product of the form AdS3×S2×CY2×R that we study in section 3.

The class is summarised and derived in sections 3.1 and 3.2 respectively. In section 3.3 (up

to T-duality) we find a generalisation of the D1–D5 near horizon with source D5 branes

back reacted on CY2. In section 3.4 we find several new compact local solutions in massive

IIA that are foliations of AdS3 × S2 × CY2 over a bounded interval.

Class II is a warped product of the form AdS3×S2×M4×R, where M4 is now a Kahler

four-manifold. The class is summarised in section 4.1 and derived in section 4.2. Exploiting

T-duality, in section 4.3, we find a generalisation of the class of D3 branes wrapping curves

in the base of an elliptically fibered CY3 [28] — with non trival 3-form flux turned on. In

section 4.4 we then find further local AdS3 × S2 × CY2 foliations that are compact.

In section 5 we establish that the local solutions found in sections 3.4 and 4.4 may

be used to construct a significantly richer variety of globally compact solutions by using

defect branes to glue local solutions together.

Finally in section 6 we summarise and discuss some future directions.

2 AdS3 ×S2 solutions with small N = (4, 0) supersymmetry and SU(2)-

structure

In this section we derive geometric conditions for a class of warped AdS3 solutions preserv-

ing small N = (4, 0) supersymmetry in massive IIA.

The small N = (4, 0) super-conformal algebra contains a bosonic sub-algebra

sl(2)⊕ su(2) (2.1)

that should be realised geometrically by the solutions we are interested in. The sl(2) factor

is simply realised by AdS3. The su(2) factor is an R-symmetry, we shall denote SU(2)R,

that should be realised by the 7 dimensional internal space M7. This indicates that M7

should admit a local description that contains a 2-sphere, that may be round or appear as

part of an SU(2)×U(1) preserving squashed 3-sphere, foliated over the remaining directions.

In this work we shall assume the former and seek solutions with metric decomposing as

ds2 = e2Ads2(AdS3) + ds2(M7), ds2(M7) = e2Cds2(S2) + ds2(M5), (2.2)

where the warp factors e2A, e2C and dilaton Φ have support in M5, and the fluxes de-

pend on the AdS3 and S2 directions only through their respective volume forms vol(AdS3)
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and vol(S2). This is sufficient to ensure that we respect the isometries of AdS3 and S2.

However to guarantee small N = (4, 0) supersymmetry we must solve the supersymmetry

constraints. Our strategy to achieve this is as follows

1. Construct spinors on that transform in the (2,2⊕2) representation of SL(2)×SU(2),

ensuring consistency with the bosonic sub-algebra of small N = (4, 0) superconformal

symmetry.

2. Reduce our considerations to an N = 1 sub-sector of this spinor that manifestly

implies N = (4, 0) through the action of the R-symmetry — this requires the bosonic

supergravity fields to be SL(2)× SU(2) singlets.

3. Exploit an existing N = 1 AdS3 classification [38] to obtain sufficient conditions on

the geometry and fluxes for a solution with small N = (4, 0) and SU(2)-structure in

IIA to exist.

4. Study the classes consistent with our assumptions, and simplify them as much as

possible in a coordinate patch away from the loci of possible sources.

We will deal with points 1–2 in section 2.1, which is the most technical part of the paper

and can be skipped on a first reading. Section 2.2 deals with point 3. For point 4 there are

2 classes of solutions to study with SU(2)-structure, specialised to conformal Calabi-Yau

and Kahler structure. We present these and study them in sections 3 and 4. Those readers

merely interested in the results can find summaries of these classes in sections 3.1 and 4.1.

Following 1–4 leads to necessary and sufficient conditions for two classes of solutions

to exist in the absence of localised sources. When these are present, the derivation is still

completely valid away from their loci, but at these specific points we must solve some

additional constraints. Namely that the source corrected Bianchi identities hold and that

the sources have a supersymmetric embedding — i.e. they must be calibrated [52, 53].

We shall come back to this issue in section 5. However, from a practical perspective one

should appreciate that it is often not necessary to check these conditions explicitly. In

particular, if the warp factors and relevant parts of the fluxes reproduce the behaviour of

known localised supersymmetric sources (i.e. branes, O-planes and their generalisations) at

some point in the geometry, then one knows that these additional conditions must follow.

We will exploit this fact in sections 3.4 and 4.4.

In the next section we shall construct N = (4, 0) spinors that manifestly transform

under the action of SU(2). We shall then be able to identify an N = (1, 0) sub-sector,

which when solved, implies the full N = (4, 0) under the action of SU(2)R.

2.1 Realising an SU(2) R-symmetry

Supersymmetric solutions of type II supergravity come equipped with associated Majorana-

Weyl Killing spinors ǫ1, ǫ2, that ensure the vanishing of the dilatino and gravitino variations.

As we seek solutions with an AdS3 factor that preserve N = (4, 0) supersymmetry we can
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decompose these spinors as

ǫ1 =
4

∑

I=1

ζI ⊗ v+ ⊗ χI1, ǫ2 =
4

∑

I=1

ζI ⊗ v∓ ⊗ χI2 (2.3)

where ζI are 4 independent Majorana Killing spinors on unit radius AdS3 and χI1,2 each

contain 4 independent Majorana spinors on M7. The remaining factors v± are auxiliary

vectors that are required to make ǫ1,2 ∈ Cliff(1, 9) as we decompose in terms of spinors in 3

and 7 dimensions. They also take care of 10 dimensional chirality, so the upper/lower signs

are taken in IIA/B. The 10 dimensional gamma matrices undergo a similar decomposition as

ΓM = eAγ
(3)
M ⊗ σ3 ⊗ I, ΓA = I⊗ σ2 ⊗ γ

(7)
A (2.4)

where γ
(3)
M are real and defined on unit radius AdS3, and γ

(7)
A are defined on M7. σi are the

Pauli matrices so the 10 dimensional chirality matrix is γ̂ = I⊗σ1⊗I, so that σ1v± = ±v±.

The intertwiner, defining Majorana conjugation as ǫc = B(10)ǫ∗, is B(10) = I⊗B(7) so that

v± are real and B(7)−1γ
(7)
A B(7) = −γ

(7)∗
A , B(7)B(7)∗ = 1.

There are actually several distinct types of superconformal algebras corresponding to

N = (4, 0) (see [49] for a classification). One way to ensure that we have (at least3) small

N = (4, 0) is to demand that the internal parts of our N = (4, 0) spinors are charged under

an SU(2) R-symmetry, specifically transforming in the 2 ⊕ 2 representation. Then since

the spinors on AdS3 are charged under SL(2) we manifestly realise the bosonic sub-algebra

of small N = (4, 0) superconformal symmetry (2.1). If the internal spinors are charged

under SU(2)R it should be possible to construct a χI1,2 realising a 4d basis of the SU(2) Lie

algebra i
2Σi, when acted on by the spinoral Lie derivative — i.e.

LKi
χI1,2 =

i

2
(Σi)

I
Jχ

J
1,2 (2.5)

where Ki are the 3 Killing vectors of SU(2). Let us now construct such SU(2) spinors.

As we decompose the internal space as M7 = S2 ×M5, we anticipate that the Killing

spinors on S2 will realise SU(2)R. For a unit norm 2-sphere, the Killing spinors ξ can be

taken to obey

∇S2

µ ξ =
i

2
σµξ, |ξ|2 = 1, (2.6)

where µ are flat indices on the unit sphere and σµ are the first 2 Pauli matrices. The

chirality matrix is σ3 and Majorana conjugation is defined as ξc = σ2ξ
∗. To incorporate

this into M7 we further decompose the gamma matrices as

γ(7)µ = eCσµ ⊗ I, γ(7)a = σ3 ⊗ γa, B(7) = σ2 ⊗B, (2.7)

with γa gamma matrices in 5d and BB∗ = −1, B−1γaB = γ∗a. As established in [43], the

S2 Killing spinors so defined may be used to construct two independent SU(2) doublets

ξα =

(

ξ

ξc

)α

, ξ̂α =

(

iσ3ξ

iσ3ξ
c

)α

, (2.8)

3The small N = (4, 0) superalgebra is a sub-algebra of several larger ones — notably the large N = (4, 0)

superalgebra D(2, 1, α) [50]. We will not be concerned with this subtlety in this paper.
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that transform under SU(2) as

LKi
ξα =

i

2
(σi)

α
βξ
β , LKi

ξ̂α =
i

2
(σi)

α
β ξ̂
β , (2.9)

with i
2σi a 2d representation of the SU(2) Lie algebra and where the 1-forms dual to the

Killing vectors can now be taken to be

Ki = ǫijkyjdyk, (2.10)

for yi embedding coordinates on the unit 2-sphere. One can form 7 dimensional spinors

giving rise to a 4 dimensional representation of SU(2) in terms of a spinor on M5, η, that

is an SU(2) singlet, with which one defines

ηα =

(

η

ηc

)α

. (2.11)

One can then contract the S2 and M5 doublets to form a 7-dimensional SU(2) spinor

χI = MI
αβξ

α ⊗ ηβ , MI = (σ2σ1, σ2σ2, σ2σ3,−iσ2)
I , (2.12)

where all components of χI are Majorana.4 Using (2.9) and Pauli matrix identities it is

not hard to show that χI transforms as (2.5) with specific 4 dimensional representation

Σi = (σ2 ⊗ σ1,−σ2 ⊗ σ3, I⊗ σ2)i, (2.13)

which is equivalent to the 2 ⊕ 2 representation of SU(2).5 Since S2 only preserves 2

supercharges, it is perhaps not obvious that (2.12) will give rise to 4. However, since (2.3)

couples the 7 dimensional SU(2) spinors to 4 independent AdS3 spinors, this is guaranteed

as long as the components of χI are independent — making use of appendix A it is not

hard to establish that

χI†χJ = |η|2δIJ (2.15)

which confirms this. Let us stress that although we used ξα to form χI , we can also use

ξ̂α, which gives a further 7 dimensional SU(2) spinor independent of the first.

The most general expressions we can write for the 7 dimensional SU(2) charged factors

of (2.3) are then

χI1 =
1√
2
e

A
2 MI

αβ

(

ξα ⊗ ηβ1 + ξ̂α ⊗ η̂β1
)

, χI2 =
1√
2
e

A
2 MI

αβ

(

ξα ⊗ ηβ2 + ξ̂α ⊗ η̂β2
)

, (2.16)

4Demanding this actually fixes the second component of (2.11) in terms of the first. Note that the form

of (2.12) is very similar to that of the SO(4) spinors constructed in [39].
5Specifically the similarity transformation

S ∼











0 0 s −is

is −s 0 0

0 0 s is

is s 0 0











, (2.14)

for s = ei
π

4 is such that i
2
SΣiS

−1 = i
2
σi ⊕

(

i
2
σi

)

∗
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where we introduced 4 spinors on M5 (η1, η̂1, η2, η̂2). The 10 dimensional spinors of (2.3)

contain 4 independent N = 1 sub-sectors, i.e. each term in the sums. Because the solutions

we seek have an AdS3 factor, d = 10 supersymmetry is implied by 4 sets of reduced d = 7

conditions — 1 for each component of (χI1, χ
I
2). As such, each component of the internal

spinors is such that [38]

e∓A|χ1|2 ± |χ2|2 = c±, (2.17)

for c± constant. This relates the norms of these components to the AdS3 warp factor,

in such a way that the later can only be an SU(2) singlet if the former are. Setting the

charged parts of |χI1,2| to zero imposes the following conditions on the 5d spinors

η̂c†1 η1 = Im(η̂†1η1) = η̂c†2 η2 = Im(η̂†2η2) = 0, (2.18)

for the S2 zero form bi-linears that give rise to these charged terms (see appendix A). In

what follows we will fix c− = 0 as this is requirement for non zero Romans mass. We can

then take c+ = 2 without loss of generality. As such the 5d spinors should also obey

|η1|2 + |η̂1|2 = |η2|2 + |η̂2|2 = 1. (2.19)

There is one final property of the SU(2) spinors we have constructed which it is important

to stress. The 4 independent N = 1 sub-sectors contained in (2.16) each couple to the

same spinors in 5 dimensions, and the action of SU(2)R in (2.5) provides a map between

each sub-sector. Specifically, one can write χI1,2 in terms of a single component and its

spinoral Lie derivative

χI1,2 =











χ1,2

2LK3
χ1,2

−2LK2
χ1,2

2LK1
χ1,2











I

. (2.20)

As such, the N = 1 Killing spinor equations following from each of χ2
1,2, χ

3
1,2, χ

4
1,2 are

implied by χ1
1,2 whenever LKi

commutes with the dilatino and gravitino variations. This

is guaranteed by imposing that all bosonic supergravity fields are singlets under SU(2)R.
6

Thus it is sufficient to solve for the N = 1 sub-sector involving just χ1
1,2 to know that

N = (4, 0) is realised by a solution.7

Clearly, there should be rather a lot of distinct classes of solutions consistent with

AdS3 × S2. In particular, while (2.18)–(2.19) do constrain the 5 dimensional spinors some-

what, they will still lead to many branching possibilities, many of which will have supercon-

formal algebras for which small N = (4, 0) is only a subgroup. To mitigate this issue, for

the rest of this paper we will constrain our focus to the particular case where M5 supports

6The proof is analogous to that in appendix B of [39].
7As a redundant check we also performed the analysis of section 2.2 for the other 3 N = 1 sub-sectors

in χI
1,2. All that changes is some signs in the components of the charged SU(2) forms on S2 (yi,Ki etc.) as

they appear in (2.29a)–(2.29b) — no signs changes happen for the SU(2) singlet terms. After factoring out

the S2 data one left with the same necessary and sufficient conditions in 5 dimensions irrespective of which

N = 1 sub-sector you start with — as expected.
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an SU(2)-structure — rather than an identity-structure as would be the case generically.

We also focus on IIA, leaving IIB for future work.

In the next section we derive necessary and sufficient geometric conditions for super-

symmetry when M5 supports an SU(2)-structure.

2.2 Geometric conditions for supersymmetry

In the previous section we constructed spinors realising N = (4, 0) and an SU(2) R-

symmetry. We further argued that it is sufficient to solve for an N = 1 sub-sector, as

the rest of the N = (4, 0) conditions are implied by this through the action of SU(2)R,

provided that the bosonic fields are SU(2) singlets. In this section we will derive necessary

and sufficient conditions for supersymmetry in IIA under the assumption that M5 supports

an SU(2)-structure. We shall thus take our N = 1 sub-sector to be

χ1 =
e

A
2√
2
(σ2σ1)αβ

(

sin

(

α1 + α2

2

)

ξα + cos

(

α1 + α2

2

)

ξ̂α
)

⊗ ηβ1

χ2 =
e

A
2√
2
(σ2σ1)αβ

(

sin

(

α1 − α2

2

)

ξα + cos

(

α1 − α2

2

)

ξ̂α
)

⊗ ηβ2 , (2.21)

with α1,2 functions on M5, and where

η1 = η, η2 = eiβη, |η|2 = 1, (2.22)

with β another function on M5. This is the most general parametrisation solving (2.17)–

(2.19) that gives rise to an SU(2)-structure.8

Geometric conditions that imply N = 1 for warped AdS3 solutions were recently

derived in [38]. These are given in terms of a bi- spinor (that is mapped to a poly-form

under the Clifford map) constructed from a pair of Majorana spinors (χ1, χ2) defined on

the internal M7 as

Ψ+ + iΨ− = χ1 ⊗ χ2† =
1

8

7
∑

n=0

1

n!
χ†
2γ

(7)
an,...,a1

χ1dx
a1 ∧ . . . ∧ dxan , (2.23)

where Ψ± are real poly-forms of even/odd degree. Under the assumption of equal internal

spinor norm, one has |χ1|2 = |χ2|2 = eA and the NS 3-form has no electric component. In

turn, the RR flux can be expressed as a poly-form

F = f + e2Avol(AdS3) ∧ ⋆7λ(f) (2.24)

8Actually one could take η2 = aη + bηc with |a|2 + |b|2 = 1 and still achieve this. However when one

plugs this ansatz into the supersymmetry conditions it eventually becomes clear that when (Reb, Imb, Ima)

are expressed in polar coordinates all the angles must be constant. They can then be set to any value with

rotations of yi and the vielbein on M5. One can use this freedom to fix b = 0 and |a| = 1 without loss of

generality. We suppress this subtly.
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with f the sum of the magnetic components of the democratic fluxes. Supersymmetry for

unit radius AdS3 in type IIA is then implied by the following geometric conditions

dH(e
A−ΦΨ−) = 0, (2.25a)

dH(e
2A−ΦΨ+)− 2eA−ΦΨ− =

e3A

8
⋆7 λ(f), (2.25b)

eA−Φ(f,Ψ−)−
1

2
vol(M7) = 0, (2.25c)

where λ(Xn) = (−1)
n
2
(n−1)Xn and (X,Y ) is the d = 7 Mukai pairing, defined as (X,Y ) =

(λ(X)∧Y )7. The twisted exterior derivative is defined as dH = d−H∧. Let us now return

to the assumption of equal spinor norm made below (2.18). Had we taken 7d spinors with

non equal norm instead of (2.21), the r.h.s. of (2.25a) would have become c−f [38]. This

leads to the necessary condition f0c− = 0, so a Romans mass is only possible when c− = 0

— i.e. when the spinor norms are equal as in (2.21).

Plugging (2.21) into (2.23) and making use of the bi-linear on S2 and M5 defined in

appendix A it is possible to construct Ψ±. However, the completely general expressions

for these poly-forms are rather unwieldy. Let us sketch how we simplify them to a more

tractable form, by solving some necessary conditions. Upon computing the general form

of Ψ1, i.e. the 1-form part of Ψ−, one finds that it contains the term

Ψ1 = −1

8
cosα1 sinβK3 + . . . (2.26)

for Ki the 1-forms dual to the SU(2) Killing vectors defined in (2.10). This term is prob-

lematic for (2.25b) as there is no way to generate it under d from the forms that span the

S2 bi-linears (A.5), and making it part of the RR flux would make them charged under

SU(2) — thus one necessarily has cosα1 sinβ = 0. To determine which factor must vanish

one can examine the general form of Ψ2 and Ψ3. In particular the latter can only contain

Ki when the former does, due again to (2.25b) and the fact the NS 3-form and RR sector

should be SU(2) singlets. We find

Ψ2 = −eC

8
sinα1 sinβK3 ∧ V + . . . ,

Ψ3 =
eC

8
cosα1(K1 ∧ j1 +K2 ∧ j2 + cosβK3 ∧ j3) + . . . , (2.27)

where V is a real vector and (j1, j2, j3) are real 2-forms that together span the SU(2)-

structure in 5 dimensions, as in appendix A.2. As such we fix

cosα1 = 0, α2 = α, (2.28)

which we achieve by setting α1 =
π
2 without loss of generality. The 7 dimensional bi-spinors
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are then given by

8Ψ+ =
(

sinα+ cosαe2Cvol(S2)
)

∧
(

y1j1 + y2j2 − y3Imψ)

+
(

cosα− sinαe2Cvol(S2)
)

∧ Reψ +−eC
(

K1 ∧ j1 +K2 ∧ j2 −K3 ∧ Imψ) ∧ V,

(2.29a)

8Ψ− =
(

cosα− sinαe2Cvol(S2)
)

∧
(

y1j1 + y2j2 − y3Imψ
)

∧ V

−
(

sinα+ cosαe2Cvol(S2)
)

∧ Reψ ∧ V − eC
(

dy1 ∧ j1 + dy2 ∧ j2 − dy3 ∧ Imψ
)

,

(2.29b)

where to ease notation we introduced the exponentiated 2-form

ψ = e−iβe−ij3 . (2.30)

Ψ± can generically be expressed in terms of an SU(3)-structure in 7 dimensions, but in this

case doing so is not particularly illuminating, and (2.29a)–(2.29b) give far more compact

expressions.

We now want to insert (2.29a)–(2.29b) into (2.25a)–(2.25c) and derive 5 dimensional

conditions that imply these. To do so we decompose

H = H3 + e2CH1 ∧ vol(S2), (2.31)

and assume that the RR fluxes only depend on the S2 directions through vol(S2), and

that (eA, eC , eΦ) are independent of these directions. Making use of the expressions that

map (yi,Ki, vol(S
2)) under the exterior derivative and wedge-product in (A.5), and after

significant massaging one arrives at necessary and sufficient conditions for supersymmetry.

Those independent of the RR forms that follow from (2.25a)–(2.25b) are

2eC + sinαeA = 0, (2.32a)

d(e3A−Φ sinα sinβ)− 2e2A−Φ cosα sinβV = 0, (2.32b)

e2CH1 +
eA

2
V − 1

4
d(e2A sinα cosα) = 0, (2.32c)

d(eA−Φ sinα cosβ) ∧ V = 0, (2.32d)

d(e3A−Φ sinαΩ)− 2e2A−Φ cosαV ∧ Ω = 0, (2.32e)

d(e3A−Φ sinα cosβJ)− 2e2A−Φ cosα cosβV ∧ J − e3A−Φ sinα sinβH3 = 0, (2.32f)

(sinβe2Ad(e−2AJ) + cosβH3) ∧ V = 0, (2.32g)

Ω ∧H3 = (sinβdJ + cosβH3) ∧ J = 0, (2.32h)

where we have repackaged ji as the more standard SU(2)-structure forms J,Ω

J = j3, Ω = j1 + ij2, J ∧ Ω = 0, J ∧ J =
1

2
Ω ∧ Ω. (2.33)
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From (2.25b) we are also given the following definitions for the RR fluxes

e3A⋆7f6 = d(e3A−Φ cosα cosβ)+2e2A−Φ sinα cosβV, (2.34a)

e3A⋆7f4 = (d(e3A−Φ cosα sinβJ)−2e2A−Φ sinα sinβV ∧J−e3A−Φ cosα cosβH3) (2.34b)

+vol(S2)∧
(

d(e3A+2C−Φ sinα cosβ)−e3A+2C−Φ cosα cosβH1+2e2A+2C−Φ cosα cosβV
)

,

e3A⋆7f2 = −d

(

e3A−Φ

2
cosα cosβJ∧J

)

−e2A−Φ sinα cosβV ∧J∧J+e3A−Φ cosα sinβJ∧H3,

+vol(S2)∧
(

d(e3A+2C−Φ sinα sinβJ)+e3A+2C−Φ cosα sinβH1∧J (2.34c)

−2e2A+2C−Φ cosα sinβV ∧J+e3A+2C−Φ sinα cosβH3

)

,

e3A⋆7f0 = −1

2
vol(S2)∧

(

d(e3A+2C−Φ sinα cosβJ∧J)−2e3A+2C−Φ sinα sinβJ∧H3 (2.34d)

+e3A+2C−Φ cosα cosβH1∧J∧J−2e2A+2C−Φ cosα cosβV ∧J∧J
)

.

Finally (2.25c) gives the pairing constraints

eA−Φ(f, [(sinα+ cosαe2Cvol(S2)) ∧ Reψ ∧ V ]) + 2e2Cvol(S2) ∧ V ∧ J ∧ J = 0,

(f, [cosα− sinαe2Cvol(S2)) ∧
(

y1j1 + y2j2 − y3Imψ
)

∧ V ] = 0. (2.35)

Equations (2.32a)–(2.35) are necessary and sufficient for supersymmetry, but to ensure that

we actually have a solution one must impose the Bianchi identities of the magnetic parts

of the RR and NS fluxes. Away from localised sources these are

dH3 = 0, d(e2CH1) = 0, dHf = 0. (2.36)

In the presence of sources the left hand side of these expressions may be modified by δ-

function sources — we shall comment on this when it becomes relevant. Supersymmetry

and (2.36) have been shown to imply the remaining equations of motion following from the

IIA action [51].

The conditions (2.32a)–(2.32h) contain two physically distinct classes of solutions,

namely for sinβ = 0 and sinβ 6= 0, that we explore in sections 3 and 4. To briefly illustrate

the difference one can consider (2.32b)∧J and (2.32f). These may be combined to show in

general that

sin2 β

(

H3 − d

(

cosβ

sinβ
J

))

= 0. (2.37)

When sinβ 6= 0 this condition gives a unique definition of H3, while when sinβ = 0 the

condition is trivialised and (2.32g)–(2.32h) merely constrain H3 such that it should give

zero when wedged with each of (J,Ω, V ).

Despite there being two classes, they do contain some common features. We first note

that (2.32c) defines e2C1H1 in such a way that its Bianchi identity can only be obeyed away

from sources if

d(eAV ) = 0. (2.38)
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We solve this condition by introducing a local coordinate ρ such that

eAV = dρ, (2.39)

which enables us to locally decompose the internal 5-manifold as ds2(M5) = ds2(M4) +

e−2Adρ2. The second commonality is (2.32a), which fixes the warp factor of S2 uniquely as

eC = −eA

2
sinα. (2.40)

Together these conditions allow us to locally refine the metric ansatz of (2.2) as

ds2 = e2A
[

ds2(AdS3) +
1

4
sin2 αds2(S2)

]

+ ds2(M4) + e−2Adρ2, (2.41)

where M4 supports an SU(2)-structure.9

Let us now summarise the main results of this section: in section 2.1 we derived

general N = (4, 0) spinors on AdS3 × S2× M5 that are manifestly charged under an

SU(2) R-symmetry, and compatible with type II supergravity. Any solution consistent

with this spinor realises small N = (4, 0) superconformal symmetry. We then established

that when one imposes that the physical fields of a solution (metric, dilaton and fluxes)

respect SU(2)R, it is sufficient to solve for an N = 1 sub-sector of this spinor to know

that N = (4, 0) is realised, as the remaining supercharges are implied by the action of the

R-symmetry. In section 2.2 we zoomed in on solutions for which M5 supports an SU(2)-

structure in massive IIA. We exploited an existing N = 1 AdS3 classification of [38] to

derive necessary and sufficient conditions on the geometry and fluxes of an AdS3 solution

preserving small N = (4, 0). Finally we established that there are two classes of such

solutions, those for which sinβ = 0 and sinβ 6= 0.

In the next section we study the first class of solutions, where M4 is a conformal

Calabi-Yau manifold.

3 Class I: conformal Calabi-Yau 2-fold case

In this section we study the first class of solutions that follows from the necessary conditions

in section 2.2 with sinβ = 0. We find that they are warped products of AdS3×S2×CY2×R

with all possible massive IIA fluxes turned on.

In section 3.1 we present a summary of class I and interpret the types of solutions that

lie within it. In section 3.2, we spell out precisely how class I is derived from the necessary

conditions of section 2.2. Then, in section 3.3 we exploit T-duality to obtain a class of

solutions in IIB with D5 branes back reacted on AdS3 × S3×CY2, with S3 foliated over

CY2, that generalises the D1–D5 near horizon. We also show how to realise the sub-class

with no fibration as a near horizon limit. Finally, in section 3.4 we focus on explicit local

solutions in massive IIA that are foliations of AdS3 × S2×CY2 over an interval.

9Strictly speaking (2.41) holds in a region of space away from NS sources that do not wrap S2. Including

such objects is in principle still possible, but they must lie at the intersection of two coordinate patches

with local metrics of the form (2.41).
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3.1 Summary of class I

The solutions of class I have the following NS sector

ds2 =
u√
h4h8

(

ds2(AdS3) +
h8h4

4h8h4 + (u′)2
ds2(S2)

)

+

√

h4
h8

ds2(CY2) +

√
h4h8
u

dρ2, (3.1)

e−Φ =
h

3

4

8

2h
1

4

4

√
u

√

4h8h4 + (u′)2, H =
1

2
d

(

−ρ+
uu′

4h4h8 + (u′)2

)

∧ vol(S2) +
1

h8
dρ ∧H2.

Here Φ is the dilaton, H the NS 3-form and ds2 is in string frame. The warping h4 has

support on (ρ,CY2) while u and h8 have support on ρ, with u′ = ∂ρu. As shall become

clear below, the reason for the notation h4, h8 is that these functions may be identified

with the warp factors of D4 and D8 branes when u = 1, the interpretation for generic u is

more subtle.

The 10 dimensional RR fluxes are

F0 = h′8, (3.2a)

F2 = −H2 −
1

2

(

h8 −
h′8u

′u

4h8h4 + (u′)2

)

vol(S2), (3.2b)

F4 =

(

d

(

uu′

2h4

)

+ 2h8dρ

)

∧ vol(AdS3)

− h8
u
(⋆̂4d4h4) ∧ dρ− ∂ρh4vol(CY2)−

uu′

2(4h8h4 + (u′)2)
H2 ∧ vol(S2), (3.2c)

with the higher fluxes related to these as F6 = − ⋆10 F4, F8 = ⋆10F2, F10 = − ⋆10 F0.

Supersymmetry holds whenever

u′′ = 0, H2 + ⋆̂4H2 = 0, (3.3)

which makes u a linear function (i.e. an order 1 polynomial), and where ⋆̂4 is the Hodge

dual on CY2. In a canonical frame on CY2 the associated closed-forms Ĵ , Ω̂ read,

Ĵ = ê1 ∧ ê2 + ê3 ∧ ê4, Ω̂ = (ê1 + iê2) ∧ (ê3 + iê4), (3.4)

and then H2 may be express in terms of 3 arbitary functions g1,2,3 on CY2 as

H2 = g1(ê
1 ∧ ê2 − ê3 ∧ ê4) + g2(ê

1 ∧ ê3 + ê2 ∧ ê4) + g3(ê
1 ∧ ê4 − ê2 ∧ ê3). (3.5)

The Bianchi identities of the fluxes then impose

h′′8 = 0, dH2 = 0 (3.6)

h8
u
∇2

CY2
h4 + ∂2

ρh4 +
2

h38
(g21 + g22 + g23) = 0,

away from localised sources.
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To better understand this class of solutions it is instructive to consider the case with

u = 1 and g1 = g2 = g3 = 0, so that H2 = 0. The metric and PDEs of (3.6) then reduce

to those of a D4 brane wrapped on AdS3 × S2 and backreacted on CY2, that is inside the

world volume of a D8 wrapped on AdS3 × S2×CY2. One can compare this to the localised

flat space D4–D8 system of [55] and see that indeed, the warp factors and PDEs match

when CY2 = R
4. Of course here there are additional fluxes turned on, but this should

be no surprise as what was R1,4 in [55] has become AdS3 × S2. Thus one should expect

additional fluxes to accommodate the fact that this space is no longer flat. More generally,

turning on H2 and u 6= 1 is essentially a deformation of this system.

In section 3.3 we establish that when one imposes that ∂ρ is an isometry, class I reduces

to the T-dual of D5 branes back reacted on AdS3×S3×CY2 —with S3 foliated over CY2. It

is worth stressing that class I actually also contains the non-Abelian T-dual of this system

as well. To extract this, one can fix

u = Lλρ, h8 = cρ, h4 =
λ4

c
ρh5 (3.7)

where h5 depends on CY2 only and should be interpreted as a D5 brane warp factor before

the duality. For h5 = 1, H2 = 0 this reproduces the non-Abelian T-dual of the D1–D5

near horizon solution [56], which is of course non compact. Class I then provides a general

class in which this non compact solution may be embedded. This allows to find a compact

completion of this solution in the vein of [57–60], as shown in [68].

In the next section we will show how class I is obtained from the necessary supersym-

metry conditions derived in section 2.1.

3.2 Derivation of class I

To derive class I we begin by fixing sinβ = 0. We can in fact fix β = 0 without loss of

generality. We begin by refining (2.32a)–(2.32h) by expanding the exterior derivative in

terms of the local coordinate ρ introduced in (2.39), as

d = d4 + dρ ∧ ∂ρ. (3.8)

This reduces (2.32e)–(2.32f) to

d4(e
3A−Φ sinαJ) = d4(e

3A−Φ sinαΩ) = 0, (3.9a)

∂ρ(e
3A−Φ sinαJ)− 2eA−Φ cosαJ = ∂ρ(e

3A−Φ sinαΩ)− 2eA−Φ cosαΩ = 0. (3.9b)

Using both equations we establish that d4(e
−2A cotα) ∧ J = d4(e

−2A cotα) ∧ Ω = 0, from

which it follows that d4(e
−2A cotα) = 0. We can solve this and (2.32d) as

eA−Φ sinα = h8(ρ), e−2A cotα =
1

2
∂ρ log u(ρ), (3.10)

for h8, u arbitrary functions. We can then define

Ĵ = e−3A+Φ u

sinα2
J, Ω̂ = e−3A+Φ u

sinα2
Ω, (3.11)
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which are such that

dĴ = dΩ̂ = 0, (3.12)

so that M4 is conformally Calabi-Yau. In turn, the conditions (2.32f)–(2.32h) constrain

H3 as

H3 =
eA

h8
V ∧H2, J ∧H2 = Ω ∧H2 = 0, (3.13)

with H2 otherwise free and the factor of e
A

h8
is chosen for later convenience. A consequence

of these conditions is the useful identity ⋆5H3 = − eA

h8
H2 which holds because the J ∧H2 =

Ω ∧H2 = 0 implies that H2 is anti self dual, and vice versa.

We now turn our attention to the RR fluxes. Using what has been derived thus far,

and the fact that

⋆5 1 =
1

2
V ∧ J ∧ J, ⋆5 V =

1

2
J ∧ J, ⋆5 J = V ∧ J, (3.14)

it is possible to take the Hodge dual of (2.34a)–(2.34d) and arrive at

f0 = h′8+
e4Au′u′′

4u2
, (3.15a)

f2 = −H2−
1

2






h8−

e4Au(u′)2
(

h8
u′

)′

4u2+e4A(u′)2






vol(S2), (3.15b)

f4 = −e3Ah28
u2

⋆5d

(

u2

e4Ah8

)

−1

2
e4A

uu′

4u2+e4A(u′)2
H2∧vol(S2)−

e4Ah8u
′u′′

8u2
J∧J, (3.15c)

f6 =
1

2

[

− e7Ah28u
′

u(4u2+e4A(u′)2)
⋆5d

(

u2

e4Ah8

)

+
1

2

(

h8+
e4Ah8uu

′′

u(4u2+e4A(u′)2)

)

J∧J
]

∧vol(S2).

(3.15d)

Using these definitions we can now solve (2.35), which imposes simply

u′′ = 0. (3.16)

At this point the supersymmetry conditions are completely solved. What remains is to

solve the Bianchi identities of the fluxes. Away from localised sources these impose10

h′′8 = 0, dH2 = 0 (3.18)

h8
u
∇2

CY2
h4 + ∂2

ρh4 −
1

h38
⋆̂4(H2 ∧H2) = 0.

10In deriving the last of these we make use of the identity

h
5
4
8

h
3
4
4

√
u
⋆5 dh4 =

h8

u
(⋆̂4d4h4) ∧ dρ+ ∂ρh4vol(CY2), (3.17)

and that ∇2

CY2
h4 = ⋆̂4d4⋆̂4d4h4.
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Therefore, any solution to (3.3) and (3.6) gives a solution in IIA away from localised sources.

When these are included, (3.6) will have additional δ-function source terms on the l.h.s.

and these sources should also be calibrated. We shall return to this in section 5.

In the next section we will derive a class of solutions with D5-branes backreacted on

AdS3 × S3×CY2, with S3 fibered over CY2.

3.3 D5 branes wrapped on AdS3 × S3 and backreacted on CY2

In this section we derive a class of solutions in IIB with D5 branes and formal KK monopoles

that generalises the D1–D5 near horizon. We begin with the class of solutions in section 3.1

and impose that ∂ρ is an isometry. We can achieve this without loss of generality by fixing

u = Lλ, h8 = c, h4 =
λ4

c
h5, (3.19)

where h5 depends only on the coordinates on CY2 and (L, λ, c) are arbitrary constants

chosen in this specific combination for convenience. The class then reduces to

ds2 =
L2

√
h5

(

ds2(AdS3)+
1

4
ds2(S2)

)

+λ2
√

h5ds
2(CY2)+

√
h5
L2

dρ2, eΦ = Lh
− 1

4

4 , (3.20)

B =

(

1

2
η+

1

c
A
)

∧dρ, F2 = −H2−
c

2
vol(S2), F4 = 2cvol(AdS3)∧dρ−

cλ

L2
⋆̂4dh5∧dρ,

where we have introduced 1-form potentials η and A such that

dη = −vol(S2), dA = H2, (3.21)

to write the 2-form NS potential B in a form respecting the isometry ∂ρ.

We now T-dualise on ρ (see for instance [61]), which we take to have period 2π, and

arrive at the dual IIB solution

ds2 =
L2

√
h5

[

ds2(AdS3) +
1

4

(

Dψ2 + ds2(S2)

)]

+ λ2
√

h5ds
2(CY2), eΦ = L2h

− 1

2

5 , (3.22)

F3 = 2c

[

vol(AdS3) +
1

8
Dψ ∧ vol(S2)

]

+
1

2
Dψ ∧ dA− cλ

L2
⋆̂4dh5,

where ⋆̂4 is the Hodge dual on CY2, the NS 3-form and the remaining RR forms are now

all trivial and we define

Dψ = dψ + η +
2

c
A, (3.23)

for ∂ψ now the isometry direction. Supersymmetry requires that

dA+ ⋆̂4dA = 0, (3.24)

where Ĵ , Ω̂ are the 2 and 3 forms on CY2, and the Bianchi identity of the RR 3-form

imposes

∇2
CY2

h5 −
L2

c2λ2
⋆̂4(dA ∧ dA) = 0, (3.25)
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away from localised sources. When A = 0 and ψ has period 4π this gives a class of solutions

with D5 branes wrapped on AdS3 × S3 and backreacted in an arbitrary CY2. Note that

one is also free to replace this S3 by a Lens space, by changing the period of ψ, as ∂ψ is

an uncharged isometry generically. The effect of turning on A is then to formally place

a Kaluza-Klein monopole into this set-up. The assumption of equal spinor norm made

in section 2.1, means that this solution is in fact not the most general one of this type.

However the latter can be reached by performing an SL(2,R) transformation11 of (3.22),

which will generically turn on F1 and H3 fluxes. In this regard (3.22) is a specific duality

frame of this more general solution.

Clearly (3.22) is closely related to the near horizon limit of coincident D5 and D1 branes

that respectively wrap or are smeared on CY2 [4, 5]. In particular if A = 0, h5 = constant

and ψ ∼ ψ + 4π, so that there is a round S3, we recover this class and supersymmetry

is enhanced to N = (4, 4). Replacing S3 with a Lens space yields the D1–D5-KK near

horizon, which has also been systematically studied [12–15] and preserves only N = (4, 0).

Of course when they are non trivial, both A and the ⋆̂4dh5 term in F3 break supersymmetry

to N = (4, 0) irrespective of the period of ψ.

Of course a viable CFT dual demands a compact internal space which restricts CY2 to

be either T4 or K3 for the near horizon of D1–D5s and D1–D5-KK. This is no longer the

case for generic h5, as the warp factor can cause a non compact space to be restricted to

a finite subregion when embedded in 10d. A simple example in this class exhibiting such

behaviour was already given in [39], where a compact solution with D5s and an O5 plane

backreacted on AdS3 × S3 × R
4 was found.

Interestingly, it turns out that the A = 0 limit of (3.22) can also be realised as a near

horizon limit of intersecting branes. One begins by compactifying R
1,9 → R

1,5 × CY2,

which preserves 1
2 of maximal supersymmetry. For the standard D1–D5 system giving rise

to AdS3 in the near horizon, D5 branes would then be wrapped on R
1,1×CY2 and D1

branes placed on R
1,1 (smeared across CY2). This breaks supersymmetry to 1

4 of maximal

— enhanced to 1
2 at the horizon. However, one can also place additional D5s on R

1,1 and

the common co-dimensions of the other branes at the cost of breaking supersymmetry to
1
8 of maximal. This leads us to a metric of the form

ds2 =
1√

H1H5h5
ds2(R1,1) +

√

H5H1

h5

(

dr2 + r2ds2(S3)
)

+

√

h5H1

H5
ds2(CY2) (3.26)

where the warp factors are, respectively,

H1 = 1 +
Q1

r2
, H5 = 1 +

Q5

r2
, h5 : ∇2

CY2
h5 = 0, (3.27)

away from the h5 sources. One can then take the near horizon limit of D1s and the D5s

11Equal spinor norm is in 1-to-1 correspondence with having no electric component of the NS 3 form.

Such a term, when present, can always be turned off (i.e. mapped to the RR 3-form) with an SL(2,R)

transformation, which maps to the case of equal spinor norm we are studying.
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corresponding to H5 by expanding about r = 0. The metric becomes

ds2 =
1√
h5

[

r2√
Q1Q5

ds2(R1,1) +
√

Q1Q5
dr2

r2
+
√

Q1Q5ds
2(S3)

]

+

√

Q1

Q5

√

h5ds
2(CY2),

(3.28)

at leading order, which is a solution by itself with supersymmetry enhanced to 1
4 of maximal.

Clearly there is an AdS3 factor of radius (Q1Q5)
1

4 , and in fact the entire metric can be

easily mapped to that of (3.22) (with unit radius AdS3) for A = 0 by redefining Q1, Q5 and

rescaling R1,1, h5. The same is true of the fluxes, the details of which we have suppressed.

Despite how seemingly obvious this near horizon is, as far as the authors are aware, it is

absent from the literature. Given that a near horizon limit is known, and that the class is

relatively simple it would be fruitful to study it in the future.

In the next section we study a class of local solutions in massive IIA following from

class I that are a foliation of AdS3 × S2 × CY2 over an interval.

3.4 Local solutions with AdS3 × S2 × CY2 foliated over an interval

In this section we study the sub-class of local solutions that follow from section 3.1 by

imposing that the symmetries of CY2 are respected by the full solution. This means that

the warp factors cannot depend on the directions on CY2 and we must fix H2 = 0. As

such, the only way to realise a compact internal space is if CY2 is itself compact. This

restricts our considerations to

CY2 = T4 or CY2 = K3. (3.29)

The supersymmetry condition (3.3) and Bianchi identities (3.6) are then all completely

solved for h8, u, h4 arbitrary linear functions in ρ. We parametrise these in general by

introducing five arbitrary constants (c1, . . . , c5) such that

h8 = c1 + F0ρ, u = c2 + c3ρ, h4 = c4 + c5ρ, (3.30)

at which point the local form of a general solution in this class may be written explicitly.12

The NS sector of the general solution is

ds2 =
(c2+c3ρ)√

c1+F0ρ
√
c4+c5ρ



ds2(AdS3)+
1

4+
c2
3

(c1+F0ρ)(c4+c5ρ)

ds2(S2)



+

√

c4+c5ρ

c1+F0ρ
ds2(CY2)

+

√
c1+F0ρ

√
c4+c5ρ

(c2+c3ρ)
dρ2, e−Φ =

(c1+F0ρ)
3

4

√

c23+4(c1+F0ρ)(c4+c5ρ)

2
√
c2+c3ρ(c4+c5ρ)

1

4

,

H = dB2, B2 =
1

2

(

2nπ−ρ+
c3(c2+c3ρ)

c23+4(c4+c5ρ)(c1+F0ρ)

)

∧vol(S2), (3.31)

where we have added the closed form nπvol(S2) to B2 that parametrises large gauge trans-

formations — so n is an integer. The 10 dimensional RR fluxes follow from substitut-

ing (3.30) and H2 = 0 into (3.2a)–(3.2c). However, in what follows we will find it more

12At least when CY2 = T4. The metrics on K3 manifolds are not know explicitly, but they are known to

exist by Yau’s theorem.
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useful to know the magnetic parts of the Page fluxes explicitly, i.e. f̂ = f ∧ e−B2 , where f

encloses the magnetic components of the 10 dimensional RR fluxes. We find

f̂0 = F0, f̂2 = −1

2
(c1 + 2nπF0)vol(S

2), (3.32a)

f̂4 = −c5vol(CY2), f̂6 =
1

2
(c4 + 2nπc5)vol(CY2) ∧ vol(S2). (3.32b)

Flux quantisation for Dp brane like objects requires that the Page charges, Np=
1

(2π)7−p

∫

Σ8−p

·f̂8−p, are integer. This requires that one tunes

2πF0 = N8, − c5
(2π)3

∫

CY2

vol(CY2) = N4,

−c1 = n6,
c4

(2π)4

∫

CY2

vol(CY2) = n2, (3.33)

where ni ∈ Z, so that we have the integer Page charges N8, N4 and

N6 = n6 − nN8, N2 = n2 − nN4. (3.34)

Of course, as they are defined in terms of arbitrary constants, not all these integers need

to be non-zero in a given solution. The holographic central charge of a generic solution in

this class at leading order is then given by

chol =
3

24π6

∫

M7

eA−2Φvol(M7) =
3

4π3

∫

dρ(2πn2 −N4ρ)(N8ρ− 2πn6), (3.35)

where we have converted the formula of [28] to string frame. However one needs to know

the range of ρ to perform the final integration — which depends on how ci are tuned.

For similar reasons the charge associated to H, which is defined on (ρ, S2) needs to be

computed on a case by case basis.

A brief glance at (3.31) makes it clear that the generic solution in this section is not

regular, though regularity can be achieved by tuning ci. A regular solution requires the

AdS3 warp factor to be either constant, or constant at the boundaries of the interval

spanned by ρ. Only the former leads to a compact space in this case, and requires tuning

h8 ∝ u ∝ h4. We thus set

c2 = L2λ2c1, c3 = L2λ2F0, c4 = λ4c1, c5 = λ4F0, (3.36)

without loss of generality. The metric then reduces to

ds2 = L2ds2(AdS3) + λ2ds2(CY2) +
1

L2
dρ2 +

L2(c1 + F0ρ)
2

L4F 2
0 + 4(c1 + F0ρ)2

ds2(S2). (3.37)

This solution is regular: when F0 = 0 the warp factors are constant so this point is trivial,

∂ρ becomes an isometry and the metric is compact if we make it parametrise a circle. For

generic F0, ρ is bounded from below at ρ = − c1
F0
, where the sub-manifold spanned by (ρ, S2)

vanishes as R3 in polar coordinates. However ρ is not bounded from above, with ρ = ∞ at
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infinite proper distance, so the metric is non compact. In fact when F0 = 0 (3.37) is the

metric of the T-dual of the D1–D5 near horizon geometry, and taking 0 < ρ < 2π in the

formula for the central charge (3.35) yields chol = 6N2N6, as one expects for this class. In

turn, for F0 6= 0 it is the non-Abelian T-dual of this system.13 These observations extend

to the fluxes and dilaton as well. As such, the solution defined by (3.36) is somewhat

novel, in that it gives a hybrid solution containing both the T and non-abelian T-duals of

a known solution.

For choices of ci other than (3.36), the metric in (3.31) will necessarily contain singular

loci, making the solution non regular. However non regularity is not always a reason to

worry. Indeed, there are situations in which one can trust a singularity in a supergravity

solution, namely when it signals the presence of a physical object in string theory and when

the radius of divergent behaviour about this object, where the supergravity approximation

does not hold, can be made arbitrarily small by tuning parameters. Given the form of (3.31)

we anticipate D brane and O plane sources. Thus, we will allow ρ to terminate at a singular

point of the space when the solution reduces to the behaviour of these objects at this loci,

i.e. if the leading order behaviour of the metric and dilaton are diffeomorphic to one of the

following forms

Dp brane : ds
2 ∼ r

7−p

2 ds
2(M1,p)+r

−7+p

2

(

dr
2+r

2
ds

2(B8−p)

)

, e
Φ ∼ r

(3−p)(−7+p)
4 ,

Dp smeared

on B̃s
: ds

2 ∼ r
7−p−s

2 ds
2(M1,p)+r

−7+p+s

2

(

dr
2+ds

2(B̃s)+r
2
ds

2(B8−p−s)

)

, e
Φ ∼ r

(3−p)(−7+p+s)
4 ,

Op plane : ds
2 ∼ 1√

r
ds

2(M1,p)+
√
r

(

dr
2+r

2

0ds
2(B8−p)

)

, e
Φ ∼ r

3−p

4 . (3.38)

Here M1,p is some manifold that the object wraps, B8−p a compact base, on which one

integrates to get the associated charge of this object, and B̃
s
is the manifold over which

a brane is smeared. We have included smeared D branes but not O planes, because the

former is dynamical in string theory while the latter is not. We shall also allow for coincident

objects such as a Dp-brane inside the world volume of a D(p+4)-brane.14 If M1,p were flat,

the only magnetic flux near a Dp/Op singularity would be f8−p — but here M1,p will

not be flat, so one should expect additional fluxes to be turned on at the singularity to

accommodate this.

13This is perhaps made more obvious if one defines r = c1 + F0ρ and substitutes for ρ in favour of r.
14Both must depend on the same radial variable for this behaviour to occur, hence the Dp-brane is

smeared over the remaining world volume directions of the D(p+4)-brane.
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By tuning the constants ci we are able to find a rich variety of physical boundary

behaviours, namely

Source Minimal tuning M1,p B̃
s

Loci

D8/O8 c3 = 0 all but ρ — ρ = − c1
F0

D6 c3 6= 0 c4 = bc2, c5 = bc3 AdS3 × CY2 — ρ = − c2
c3

O6 generic ci AdS3 × CY2 — ρ = − c1
F0

Smeared D4 c3 = 0 AdS3 × S2 CY2 ρ = − c4
c5

Smeared D21 c2 = bc1, c3 = bF0 6= 0 AdS3 CY2 ρ = − c2
c3

Smeared D22 generic ci AdS3 S2 × CY2 ρ = − c4
c5

D4 in D8 c3 = 0, c4 = bc1, c5 = bF0 D8 : all but ρ D4 : CY2 ρ = − c1
F0

D2 in D6 generic ci D6 : AdS3 × CY2 D2 : CY2 ρ = − c2
c3

O2 in O6 c4 = bc1, c5 = bF0 O6 : AdS3 × CY2 O2 : S2 × CY2 ρ = − c4
c5

T/NATD hybrid (3.36) — — —

Here b is an arbitrary constant, and we have included the T-dual and non-Abelian T-

dual hybrid solution, which is regular, as well as smeared O2 inside an O6 plane, for

completeness. Note that when the D4, D2 branes are delocalised on all directions but

ρ, one could also interpret them as smeared O4 and O2 planes respectively. To realise

a compact solution from (3.31) beyond the F0 = 0 limit of (3.37), we need two of these

boundary behaviours to exist for the same tuning of ci. There are in fact several such

solutions for various tunings of ci. In summary, we see that the following behaviours can

exist simultaneously

Tuning Boundary behaviours Loci: ρ =

generic ci O6 | D2 in D6 | D22 − c1
F0

| − c2
c3

| − c4
c5

(c4 = bc1, c5 = bF0, c3 6= 0) O2 in D6 | D2 in O6 − c2
c3

| − c1
F0

(c2 = bc4, c3 = bc5, c3 6= 0) D6 | O6 − c2
c3

| − c1
F0

(c2 = bc1, c3 = bF0, c3 6= 0) D21 | D22 − c1
F0

| − c4
c5

c3 = 0 D8/O8 | D4 − c1
F0

| − c4
c5
,

(3.39)

making for a total of 7 independent compact solutions of this type.15 In the interest of

(relative) brevity we are going to look only at the two simplest cases explicitly, those with

interval bounded between D8s/O8 and D4s, and those between D6 and an O6.

Interval bounded between D8/O8s and D4s. To realise the first compact example

with sources, one should tune c3 = 0. Then one of (c1, c4) can also be set to zero with a

15Really 14, as we can take CY2 = T4 or K3 for each.
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coordinate transformation of ρ. Here we take c4 = 0. The resulting NS sector is

ds2 =
c2√

c5
√
ρ
√
c1+F0ρ

[

ds2(AdS3)+
1

4
ds2(S2)

]

+

√
c5
√
ρ√

c1+F0ρ
ds2(CY2)+

√
c5
√
ρ
√
c1+F0ρ

c2
dρ2,

e−Φ =
c

1
4
5 ρ

1
4 (c1+F0ρ)

5
4

√
c2

, B2 =
(

nπ−ρ

2

)

∧vol(S2), (3.40)

and the magnetic RR Page fluxes are given by (3.32a)–(3.32b) with c3 = c4 = 0. It should

not be hard to see that close to ρ = − c1
F0

= 2πn6

N8
the metric and dilaton are consistent

with D8 and O8 behaviour, while at ρ = 0 they signal D4 branes wrapped on AdS3 × S3

and smeared on CY2. This bounds the interval as 0 < ρ < 2πn6

N8
, assuming 2πn6

N8
> 0. This

solution is also under parametric control, with the supergravity approximation holding for

c5 ∼ N4 ≫ 1, with the radius of divergent behaviour about the poles scaling inversely with

this parameter. Given the flux quantisation conditions (3.33), the Page charges are then

N8, N4, N6 = n6 − nN8, N2 = −nN4, N5 =
n6

N8
, (3.41)

where N5 = 1
(2π)2

∫

(ρ,S2) dB2 is the charge associated to NS5 branes. We now turn our

attention to the large gauge transformations parameterised by n in the definition of the NS

2-form. As (ρ, S2) defines a cycle at each of the singular loci, we should impose that b =

− 1
(2π)2

∫

S2 B2 should be an integer at these points. This may be achieved by constraining

b =
ρ

2π
− n s.t. 0 ≤ b < 1, (3.42)

which implies that ρ is partitioned into segments of length 2π. At ρ = 0, b = n so we can

take n = 0 fixing b = 0. One should then perform a large gauge transformation sending

n → n+1 each time ρ increases by 2π. At ρ = 2πn6

N8
one has b = N5+m for m the number

of gauge transformations required to traverse the interval. Finally we can integrate the

expression for the holographic central charge at leading order (3.35), which yields

chol = n6N4N
2
5 . (3.43)

At first sight this may appear confusing as the (left) central charge of smallN = (4, 0) CFTs

should be related to the level of the affine SU(2) algebra as c = 6k. Here (3.43) contains

no factor of 6, but one should recall that chol is the central charge in the supergravity limit

N5 ≫ 1, which only gives the leading order contribution to c, neglecting sub-leading terms

in N5. We believe that one will recover c = 6k if one includes the 1-loop correction to

chol — however to our knowledge this corrections is not yet known for massive IIA, so one

cannot yet check this explicitly. Adding support to this claim is [62], where in section 4 the

central charges of several concrete CFTs and geometries that are locally of the form (3.32)

are compared. The CFTs obey c = 6k, but to leading order in some parameter(s), where

it makes sense to compare to supergravity, the factor of 6 is lost in many cases — non the

less c = chol in these limits.
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Interval bounded between D6s and an O6. One can get the second compact solution

by tuning c2 = bc4, c3 = bc5. One can then set c4 = 0 without loss of generality with a

diffeomorphism. This results in the following NS sector

ds2 =
b
√
c5
√
ρ√

c1+F0ρ

[

ds2(AdS3)+
ρ(c1+F0ρ)

b2c5+4ρ(c1+F0ρ)
ds2(S2)

]

+

√
c5
√
ρ√

c1+F0ρ
ds2(CY2)+

√
c1+F0ρ

b
√
c5
√
ρ
dρ2,

e−Φ =

√
c1+F0ρ

√

b2c5+4ρ(c1+F0ρ)

2
√
bc

1
4
5 ρ

3
4

, B =

(

nπ− 2ρ2(c1+F0ρ)

b2c5+4ρ(c1+F0ρ)

)

∧vol(S2), (3.44)

where again n is an integer parametrising large gauge transformations and the magnetic

RR Page fluxes are given by (3.32a)–(3.32b) with c2 = c4 = 0, c3 = bc5. This time one can

show that the behaviour close to ρ = − c1
F0

= 2πn6

N8
corresponds to an O6 plane wrapped on

AdS3× CY2, while that of ρ = 0 is a D6 brane — bounding the interval as ρ ∈
(

0, 2πn6

N8

)

.

The supergravity approximation is valid this time for F0 ≫ c1 ∼ n6 ≫ 0. The Page

charges are

N8, N4, N6 = n6 − nN8, N2 = −nN4, N5 = 0, (3.45)

with the major difference with respect to the previous example being that the NS charge

N5 = 0. We should again constrain

b = − 1

(2π)2

∫

S2
B2 s.t. 0 < b < 1. (3.46)

The form of B2 means that the ρ dependence vanishes at the boundaries and reaches an

extrema in between at ρ = ρ0, which depends non trivially on the charges. As at ρ = 0

one sets n = 0, then as one traverses the interval 0 < ρ < ρ0 successive large gauge

transformations are needed to keep 0 < b < 1. But once one crosses ρ = ρ0 one needs

to start undoing the gauge transformations to keep b bounded until n = 0, once more at

ρ = 2πn6

N8
. From this we conclude that the charge of both the D6s and the O6 is equal to

n6, which gives a problem. Weak curvature requires n6 ≫ 0, but the charge of the O6 is

fixed to be ±4. As such, the solution is strongly curved everywhere. Nonetheless, for the

sake of comparison we compute the holographic central charge from (3.35), and find

chol =
n3
6N4

N2
8

. (3.47)

Summary of this section. To summarise, in this section 3.4 we have studied the

local solutions of class I that respect the symmetry of CY2 — they are foliations of

AdS3 × S2 × CY2 over an interval. We have found that the general solution can be given

explicitly and depends on parameters (c1, . . . c5, F0), with all necessary conditions solved.

Different behaviours can be achieved by tuning these parameters, and we have found an

array of physical boundary behaviours for the interval. We have established that there are

8 independent compact solutions: the T-dual of the D1–D5 near horizon, which is regu-

lar, and the 7 independent combinations one can form from (3.39) with various physical

singularities. We have chosen two of these solutions for a more detailed study, where the

interval is bounded between either D8/O8s and D4 or D6s and an O6. We have shown
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that only the former has a good interpretation in supergravity, with the latter requiring

higher curvature corrections.

Before moving on let us first stress that the general solution of this section is only

a local one. What this really means is that every coordinate patch of a global solution

can be expressed in the form of (3.31) and (3.32a)–(3.32b), but the specific values of

(F0, c1, . . . , c5) in each of these patches may differ in principle. This fact was exploited

in [54] to construct infinite classes of globally compact AdS7 solutions in massive IIA, by

glueing together various non compact solutions with defect branes. We shall return to this

issue in section 5, where we will establish that this is also possible for the local solutions

of this section. We delay a detailed analysis of such solutions until [62, 68].

In the next section we shall begin our analysis of the second class of solutions we

consider in this paper, namely those containing a family of Kahler four-manifolds.

4 Class II: Kahler four-manifold case

In this section we study the second class of solutions following from the necessary conditions

of section 2.2 for sinβ 6= 0. We find that the solutions decompose as a warped product of

AdS3 × S2 × M̂4 × R where M̂4 is a family of Kahler manifolds with metrics that depend

on the interval.

In section 4.1 we summarise class II and discuss some of its general features, deferring

its derivation to section 4.2. In section 4.3 we T-dualise class II along the interval and arrive

at a generalisation of [28] with non trivial 3-form flux. And finally in section 4.4 we expand

up section 3.4 and present further local solutions that are foliations of AdS3 × S2×CY2

over an interval.

4.1 Summary of class II

The solutions in class II have the following NS sector

ds2 =
u√

hw2−v2

[

ds2(AdS3)+
hw2−v2

4(hw2−v2)+(u′)2
ds2(S2)

]

+

√
hw2−v2

u

[ u

hw
ds2(M̂4)+dρ2

]

,

H =
1

2
d

(

−ρ+
uu′

4(hw2−v2)+(u′)2

)

∧vol(S2)+d
( v

wh
Ĵ
)

,

e−Φ =
wh

1

2

√

4(hw2−v2)+(u′)2

2
√
u(hw2−v2)

1

4

. (4.1)

Here M̂4 is a family of Kahler manifolds parameterised by ρ, with an integrable complex

structure that is ρ independent. Ĵ is a two-form defined on the Kahler four-manifold (the

details are given below). The functions u, v, w depend on ρ only, while h has support

in (ρ, M̂4). In fact w is actually redundant, as it can be absorbed into h and M̂4. We

keep it for convenience as it simplifies the derivation of the classes in sections 4.3 and 4.4.

Supersymmetry is ensured by the following differential conditions

u′′ = 0, ∂ρ

(

ĝ
1

2

h

)

= 0, i∂∂ log h = R̂, (4.2)
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for R̂ the Ricci form and ĝ the determinant of the metric on M̂4. ∂, ∂ are Dolbeault

operators expressed in terms of complex coordinates on M̂4 such that d4 = ∂ + ∂. The 10

dimensional RR fluxes of this class take the form

F0 = v′,

F2 = −w2

u
dρ ∧ ⋆̂4(d4h ∧ Ĵ)− ∂ρ(wĴ) +

vv′

hw
Ĵ − 1

2

(

v − v′uu′

4(hw2 − v2) + (u′)2

)

vol(S2),

F4 =
1

2
vol(AdS3) ∧

(

d

(

vuu′

hw2 − v2

)

+ 4vdρ

)

+
v

2h

(

vv′

hw2
− ∂ρ log(v

−1hw2)

)

Ĵ ∧ Ĵ

− vw

u
dρ ∧ ⋆̂4d log h+

1

2

(

uu′

4(hw2 − v2) + (u′)2
F2 +

hw2 − v2

hw
Ĵ

)

∧ vol(S2), (4.3)

where again F6 = − ⋆10 F4, F8 = ⋆10F2. The Bianchi identities are then solved away from

localised sources when

v′′ = 0, 2i∂∂h = ∂2
ρ(wĴ). (4.4)

The conditions (4.2) and (4.4) are necessary and sufficient for a solution to exist in the

absence of sources. When these exist one should also check the source corrected Bianchi

and calibration conditions at their loci.

To better understand this second class of solutions one can consider the limit u = w = 1

and v = 0 with ∂ρ an isometry. The result coincides with the Hopf fibre T-dual of the class

of solutions found in [28]. These solutions are of the form AdS3 × S3 × B, for B the base

of an elliptically fibered Calabi-Yau 3-fold. They are characterised by varying axio-dilaton

with D3 branes wrapped on a curve within B, but have no 3-form flux. If we instead

consider a similar limit with v = constant rather than zero, we find a generalisation of this

class with non trivial 3-form flux, as we shall demonstrate in section 4.3. In addition to

containing the T-dual of this IIB class, class II also contains its non-Abelian T-dual, which

one can realise by fixing w ∝ u ∝ v and taking J and M̂4 to be ρ independent. This in

fact gives another hybrid solution similar to (3.37), that realises the T-dual of section 4.3

when F0 = 0 and the non-Abelian T-dual for generic F0.

In the next section we show how class II is derived from the necessary and sufficient

conditions for supersymmetry found in section 2.1.

4.2 Derivation of class II

For class II we assume sinβ 6= 0, and as such we are free to divide by sinβ which enables

us to put (2.32a)–(2.32h) in the form

d(eA−Φ sinα cosβ) ∧ V = d(e3A−Φ sinα sinβ)− 2µe2A−Φ cosα sinβV = 0, (4.5)

2eC + eA sinα = d

(

1

sinβ
Ω

)

= d

(

e−2A

sin2 β
J

)

∧ V = 0, (4.6)

e2CH1 = − 1

2µ
eAV +

1

4
d(e2A sinα cosα), H3 = d

(

cosβ

sinβ
J

)

. (4.7)
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We can solve (4.5) in general by introducing two functions u(ρ), v(ρ) such that

e3A−Φ sinα sinβ = u, 2eA−Φ cosα sinβ = u′, eA−Φ sinα cosβ = v. (4.8)

In contrast to case I the conditions supersymmetry imposes on (J,Ω) do not imply that

M̂4 is conformally Calabi-Yau in general. We will see instead that it must be a family of

ρ dependent Kahler four-manifolds. Taking [64] as a guide it is useful to introduce the

rescaled forms and metric

J =
sinβ√

h
Ĵ, Ω =

sinβ√
h
Ω̂, ds2(M̂4) =

sinβ√
h
ds2(M̂4), (4.9)

where we have also introduced

1

h
= e4A sin2 βw2u−2, (4.10)

with h a function of ρ and the coordinates on M̂4. Here w = w(ρ) is an arbitrary function

that is actually redundant, as it can be absorbed into the definition of h and M̂4, but

extracting it now simplifies later exposition. Expanding d = d4 + dρ ∧ ∂ρ as before (4.6)

implies the following conditions

d4Ĵ = 0, (4.11a)

d4Ω̂ =
1

2
d4 log h ∧ Ω̂, (4.11b)

∂ρΩ̂ =
1

2
∂ρ log hΩ̂. (4.11c)

The first two conditions (4.11a)–(4.11b) imply that ds2(M̂4) is a family of Kahler manifolds

parameterised by ρ, with an associated complex structure that is ρ independent. Since M̂4

is Kahler (4.11b) can be expressed as

d4Ω̂ = iP̂ ∧ Ω̂, P̂ = −1

2
d4 log hyĴ , d4P̂ = R̂, (4.12)

where R̂ is the Ricci form on ds2(M̂4), with components R̂ij = 1
2R̂ijklĴ

kl, for R̂ijkl the

Riemann curvature tensor on ds2(M̂4) computed at constant ρ. The condition (4.11c) then

just serves to constrain the ρ dependence of the Kahler metric such that its determinant ĝ

satisfies

∂ρ

(

ĝ
1

2

h

)

= 0. (4.13)

We now turn our attention to the paring conditions (2.35). Although it is not possible

to explicitly take the Hodge dual of every term in (2.34a)–(2.34d), it is still possible to

solve (2.35) explicitly by making use of (4.11a)–(4.11c), (3.14), and the following identities

involving an arbitrary 1-form in 5 dimensions U = U4 + u0V :

j1 ∧ ⋆5(U ∧ j2) = −j2 ∧ ⋆5(U ∧ j1) = U ∧ V ∧ j3 and cyclic in 123 (4.14)

j1 ∧ ⋆5(U ∧ j1) = j2 ∧ ⋆5(U ∧ j2) = j3 ∧ ⋆5(U ∧ j3) = ⋆5U4 + u0j3 ∧ j3, (4.15)
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where J = j3, Ω = j1+ ij2. After a lengthy calculation we find that (2.35) imposes simply

u′′ = 0. (4.16)

Having now dealt with the geometric supersymmetry constraints we turn our attention to

Bianchi identities of the RR fluxes. In general the RR fluxes are rather involved, but as is

often the case, the Page fluxes f̂ = e−B ∧ f , where dB = H, are rather more simple, so let

us first study these. The conditions defining H1, H3 in (4.7) can be locally integrated with

ease giving rise to the NS potential

B =
1

2

(

−ρ+
uu′

4(w2h− v2) + (u′)2

)

∧ vol(S2) +
v

wh
Ĵ, (4.17)

in terms of which the Page fluxes take the following form16

f̂0 = f0 = v′, (4.19a)

f̂2 = −w2

u
dρ ∧ ⋆̂4(d4h ∧ Ĵ)− ∂ρ(wĴ) +

1

2
(ρv′ − v)vol(S2), (4.19b)

f̂4 =
v′

2h
Ĵ ∧ Ĵ +

1

2

(

ρf̂2 + wĴ

)

∧ vol(S2), (4.19c)

f̂6 =

(

ρ

2
f̂4 −

v

4h
Ĵ ∧ Ĵ

)

∧ vol(S2). (4.19d)

Away from localised sources the Bianchi identities of the RR fluxes hold if and only if the

Page fluxes are closed. Imposing this yields the conditions

v′′ = 0, (4.20a)

w2

u
d4⋆̂4(d4h ∧ Ĵ) = ∂2

ρ(wĴ), (4.20b)

that follow from the parts of f̂0, f̂2 that are orthogonal to vol(S2) — closure of the rest

is implied by these and supersymmetry. We can make further progress by introducing

complex coordinates z1, z2 on M̂4 and Dolbeault operators ∂ = dzi∂zi , ∂ = dzi∂zi in terms

of which we can expand d4 = ∂ + ∂. We then have

⋆̂4(d4g ∧ Ĵ) = d4 log gyĴ = −i(∂ − ∂)g, (4.21)

for g an arbitrary function. This can be used to simplify some of the necessary conditions,

allowing us to present the class in the form given in section 4.1.

In the next section we will derive a class of solutions in IIB that generalise the solutions

in [28] to include non trivial 3-form flux.

16We have significantly simplified f̂2, f̂4 by making use of (4.14) and

∂ρĴ =
1

2
∂ρ log hĴ +H2, H2 + ⋆̂4H2 = 0, (4.18)

where J ∧H2 = Ω∧H2 = 0, which follows from (4.11c) and the allowed torsion classes of SU(2)-structures

in 5 dimensions [63].
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4.3 Generalisation of the F-theory solutions in [28] with non trivial 3-form flux

In this section we derive a generalisation of a class of solutions in IIB found in [28]. These

are characterised by varying axio-dilaton with D3-branes wrapped on complex curves within

the base of an elliptically fibered CY3, and vanishing 3-form flux. Our generalisation will

include a non-trivial 3-form flux.

We begin with class II of section 4.1 and impose that ∂ρ is an isometry. This can be

achieved without loss of generality by fixing

u = L4, w = L4λ2 v = cL2, (4.22)

with the Kahler manifold and structure assumed to be ρ independent. We also rescale h

for convenience as

h → h

L4λ4
, (4.23)

for (L, λ, c) all constant. The NS sector then becomes

ds2 =
L2

√
h− c2

[

ds2(AdS3) +
1

4
ds2(S2)

]

+

√
h− c2

L2
dρ2 + L2λ2

√
h− c2

h
ds2(M̂4),

B = −1

2
dρ ∧ η + cL2λ2h−1Ĵ , e−Φ = L

√
h(h− c2)

1

4 , (4.24)

as before, dη = −vol(S2) and dB = H — we have chosen a gauge for B that makes the ∂ρ
isometry explicit. The RR sector becomes

F2 = idρ ∧ (∂ − ∂)h− L2c

2
vol(S2), (4.25)

F4 = 2cL2vol(AdS3) ∧ dρ+ cL2λ2(⋆̂4d log h) ∧ dρ+
L4λ2

2

h− c2

h
Ĵ ∧ vol(S2), (4.26)

with F0 = 0. The first thing we note is that the only Bianchi identity that is not solved

automatically is that of the RR 2-form, due to the first term. Whenever this is satisfied

away from localised sources there exists a local function C0 with support on M̂4 such that

dC0 = i(∂ − ∂)h, (4.27)

which holds precisely when the following complex function is holomorphic

σ = C0 + ih, (4.28)

i.e. ∂σ = 0 implies (4.27) and vice-versa. This is already very reminiscent of [28]. Indeed

if we fix c = 0 we reproduce the result of T-dualising that class on the Hopf fibre of the

S3, with τ = σ the modular parameter of IIB. Generic c 6= 0 is a parametric deformation

of this that obeys the same supersymmetry constraint, namely that

i∂∂ log h =
1

2
d

(

dC0

h

)

= R̂, (4.29)
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which reproduces the geometric condition the base of the elliptically fibered CY3 manifolds

of [28] must obey. After performing the T-duality on ∂ρ, under the assumption it has period

2π, the IIB string frame solution becomes

ds2 =
L2

√
h− c2

[

ds2(AdS3) + ds2(S3)

]

+ L2λ2

√
h− c2

h
ds2(M̂4),

B̂ = cλ2L2h−1Ĵ , e−Φ̂ =
√
h
√

h− c2,

F1 = dC0, F3 = −2cL2vol(AdS3)− cL2λ2⋆̂4d log h+ 2cL2λ2vol(S3),

F5 = −2L4λ2h− c2

h
(1 + ⋆10)Ĵ ∧ vol(S3), (4.30)

with Φ̂ and B̂ the dilaton and NS 2-form potential in IIB, and where in particular c = 0

fixes H = F3 = 0 as in [28]. Although we choose to write this solution with an S3, this

is meant just locally. One could equally well replace the S3 with a Lens space without

breaking any further supersymmetry, as is done in [28] by sending S3 → S3/Zk.

In summary, we find a parametric deformation of the solutions of [28] with 3-form flux

turned on that still preserves N = (4, 0) supersymmetries. Converting to Einstein frame,

in which the SL(2,R) invariance of IIB is manifest, and replacing the S3 with a Lens space,

we arrive at the IIB solution

ds2E = L2

[

h
1

4

(h−c2)
1

4

(

ds2(AdS3)+ds2(S3/Zk)
)

+λ2 (h−c2)
3

4

h
3

4

ds2(M̂4)

]

, (4.31)

τ = C0+i
√
h
√

h−c2, B = cλ2L2h−1Ĵ , F5 = −2L4λ2h−c2

h
(1+⋆10)Ĵ∧vol(S3/Zk)

F3 = −2cL2vol(AdS3)−cL2λ2⋆̂4d log h+2cL2λ2vol(S3/Zk).

This coincides locally with the class in [28] when c = 0, so that τ = C0 + ih,17 with AdS

radius m = 1. The complex 3-form is defined as G = i(Imτ)−1(τdB−F3). Supersymmetry

and the Bianchi identities away from sources, simply require

∂(C0 + ih) = 0,
1

2
d

(

dC0

h

)

= R̂. (4.32)

Thus, as solutions were argued to exist when c = 0, further solutions must exist for c 6= 0

(at least formally) as the necessary conditions for their existence are c independent. A

difference is that now the physical region of M̂4 when embedded into 10 dimensions is the

portion for which h ≥ c2 is satisfied, with the lower bound a singular loci in the full space.

The warp factors appear consistent with D5 branes wrapped on S3 at this loci,18 however

17The specific map is L → eA, λ → m−1

B .
18We rule out a 3-cycle in M̂4 because the cycle on which the D5s are wrapped should be calibrated. This

ultimately means that the DBI action of the 5 brane should be equal to the pull back of some combination

of the structure forms wedged with themselves, vol(AdS3) and B̂. But since the structure group of M̂4 is

SU(2) we only have two forms at our disposal — thus any supersymmetric brane, D5 or otherwise, must

wrap the S3.
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confirming this seems dependent on the specifics of the Kahler Manifold. Let us stress

that, similar to the class of solutions in section 3.3, this is not the most general class of

this type. Rather this is a specific SL(2,R) duality frame of this most general solution —

see the discussion below (3.25).

It would be interesting to study the solutions in this class, but as with the c = 0

limit, the permissible metrics on M̂4 are the possible bases of an elliptically fibered CY3,

which are not explicitly known.19 In particular, it would be interesting to find their explicit

F-theory realisation [27, 28].

4.4 Further local AdS3 × S2 × CY2 foliations

In this section we shall explore the solutions contained in class II that are foliations of

AdS3 × S2 × CY2 over the interval spanned by ρ, similar to those found in section 3.4

— here we will be more brief. Such solutions should respect the isometries of CY2, which

means the warp factors must be independent of the directions on CY2. Again CY2 should be

compact, which reduces our considerations to CY2 = T4 or CY2 = K3. The supersymmetry

conditions and Bianchi identities of the fluxes (away from the loci of sources) then just

impose that (v, u, w) are linear functions, that we choose as

v = c1 + F0ρ, u = c2 + c3ρ, w = c4 + c5ρ, h = 1 (4.33)

where ci are all constants. The NS sector is then

ds2 =
c2 + c3ρ

√

(c2 + c3ρ)2 − (c1 + F0ρ)2



ds2(AdS3) +
1

4 +
c2
3

(c2+c3ρ)2−(c1+F0ρ)2

ds2(S2)





+

√

(c2 + c3ρ)2 − (c1 + F0ρ)2

c2 + c3ρ

[

c2 + c3ρ

c4 + c5ρ
ds2(CY2) + dρ2

]

,

e−Φ =
((c4 + c5ρ)

2 − (c1 + F0ρ)
2)

3

4

√

4 +
c2
3

(c4+c5ρ)2−(c1+F0ρ)2

√

1 + (c1+F0ρ)2

(c4+c5ρ)2−(c1+F0ρ)2

2
√
c2 + c3ρ

,

B = nπvol(S2)− c1 + F0ρ

c4 + c5ρ
Ĵ − 1

2

(

ρ− c3(c2 + c3ρ)

4((c4 + c5ρ)2 − (c1 + F0ρ)2) + c23

)

vol(S2),

(4.34)

where n is an integer with which we parametrise potential large gauge transformations of

the NS 2-form B. The magnetic Page fluxes, f̂ = e−B ∧ f , for f the magnetic components

of the 10 dimensional RR fluxes, are

f̂0 = F0, f̂2 = −c5Ĵ − 1

2
(c1 + 2πnF0)vol(S

2), (4.35)

f̂4 = F0Ĵ ∧ Ĵ +
1

2
(c4 + 2πnc5)Ĵ ∧ vol(S2), f̂6 = −1

2
(c1 + 2πnF0)Ĵ ∧ Ĵ ∧ vol(S2) (4.36)

with F0 non trivial generically, and where Ĵ is the Kahler form of CY2 (so dĴ = 0).

19Strictly speaking this base could be CY2, in which case one could take T4 as an explicit metric. However

constancy requires that h is constant whenever the Kahler manifold is Ricci flat.
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As was the case in section (3.4), the only way to have a regular solution is if the AdS3
warp factor is constant. We can achieve this by fixing

u = L4, w = L4λ2 v = cL2, h =
1

L4λ4
(4.37)

without loss of generality. The resulting metric takes the form

ds2 =
L2

√
1− c2

[

ds2(AdS3) +
1

4
ds2(S2)

]

+

√
1− c2

L2
dρ2 + L2λ2

√

1− c2ds2(CY2). (4.38)

When F0 = 0 this reproduces the metric of (4.24), in the limit h = 1 and M̂4 = CY2,

which is the T-dual of the same limit of the IIB solution derived in the previous section —

this solution is compact when CY2 and ∂ρ are assumed to be. For generic values of F0 6= 0

the solution is the non abelian T-dual of this IIB solution, where the interval spanned by

ρ becomes semi infinite, with a regular zero at ρ = − c1
F0
. These statements all hold true

for the fluxes also.

Allowing for D brane and O plane behaviour at the boundaries of the interval as

in (3.38), as well as composite objects, we find that it is possible to realise the following

physical boundary behaviours

Source Minimal tuning M1,p B̃
s

Loci

Smeared D4 c3 = 0 AdS3 × S2 CY2 ρ = ±c1−c4
c5∓F0

Smeared D2 Generic ci AdS3 CY2 × S2 ρ = ±c1−c4
c5∓F0

D2 inside D6 Generic ci D6: AdS3 × CY2 D2: CY2 ρ = − c2
c3

O2 inside O6 c1 = bc4, F0 = bc5 O6: AdS3 × CY2 O2: CY2 × S2 ρ = − c4
c5

T/NATD hybrid (4.37) — — —

where b are arbitrary constants and we include the T-dual/non-Abelian T-dual hybrid,

which is regular, for completeness. As before, one can also interpret the D branes smeared

on all their compact co-dimensions as smeared O planes.

As in section (3.4), we need two of these boundary behaviours to exist for the same

tuning of ci to realise a compact local solution beyond the F0 = 0 limit of (4.38). We find

the following possibilities

Tuning Boundary behaviours Loci: ρ =

generic ci D2 | D2 in D6 | D2 +c1−c4
c5−F0

| − c2
c3

| −c1−c4
c5+F0

(c4 = bc1, c5 = bF0, c3 6= 0) D2 in D6 | O2 in O6 − c2
c3

| − c1
F0

(c2 = bc1, c3 = bF0, c3 6= 0) D2 | D2 − c1
F0

| − c4
c5

c3 = 0 D4 | D4 c1−c2
c5−F0

| −c1−c2
c5+F0

(4.39)

Together with (3.39) this gives a total of 13 distinct foliations of AdS3×S3× CY2 over

intervals bounded between a rich variety of D brane and O plane behaviours. They are
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compact whenever CY2 = T4 or K3, which really doubles the number of distinct solutions

to 26.

As was true of section (3.4), the general solution of this section is only local. One can

actually construct more general globally compact solutions by glueing these local solutions

together with defect branes. In the next section we will explore this possibility.

5 Glueing local solutions together with defect branes

In sections 3.4 and 4.4 we found several local compact solutions that are foliations of

AdS3×S2×CY2 over a finite interval bounded by various D brane an O plane behaviours.

In this section we show that these compact local solutions, and more generally any local

solution in these classes, may be used as the building blocks of a far larger class of globally

compact solutions. This can be achieved by using defect branes to glue the various local

solutions together. This follows the spirit of [54], where an infinite family of globally

compact AdS7 solutions in massive IIA was found, that utilised D8 brane defects to glue

various non compact local solutions together (see also [39] for an AdS3 example).

Through out most of this paper we have derived our various classes of solution under

the assumption that we are in a region of the internal space away from the loci of sources.

This was actually sufficient to find solutions with sources on the boundary of the internal

space — as then one can explicitly see known brane/plane behaviour appearing in the

physical fields. However to realise defect branes, that lie on the interior of the internal

space, we will have to explicitly solve the source corrected Bianchi identities and make sure

the sources are supersymmetric.

Various types of defect branes are possible in supergravity, with various signatures —

the most simple is probably the D8. The singularity signalling a D8 brane defect is rather

mild, giving rise only to a discontinuity in the derivatives of the metric and dilaton, with the

fields themselves continuous. The NS 2-form on the other hand needs only be continuous

up to a large gauge transformation. The remaining fluxes can be discontinuous across such

a defect provided that this is induced by a shift in the D8 brane flux F0 — which should

naturally shift as one crosses a D8 brane stack. In what follows this will be one defect we

use to perform glueings. The others are a D4 brane defect and a D6 defect that are both

smeared over their compact co-dimensions. Such objects behave in a completely analogous

way to the D8 defect, indeed for CY2 = T4 they are mapped into each other via T-duality,

only now it is the charge of D4s/D6s rather than F0 that experiences a discontinuity as we

cross the defect.

Having set the scene, it will now be helpful to look at the two cases individually to

show that such glueing of local solutions is possible. Let us first look at global solutions

following from section 3.4.

5.1 Towards global solutions with defects from section 3.4

In this section we will study the possibility of gluing the local solutions of section 3.4

together with defect branes.
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As explained in section 3.4, the general local form of the NS sector and RR Page fluxes

are given exactly by (3.31) and (3.32) respectively. However these expressions depend on

constants (ci, F0) that can change as we cross a defect brane, so for a global solution it is

more helpful to consider the form of NS sector given in (3.1), we remind the reader that

here we fix H2 = 0 so as to respect the symmetry of CY2 and (h8, h4, u) are all functions

of ρ only, the latter being linear and the behaviour of the former two determined by the

Bianchi identities of the fluxes. As we shall see (h8, h4) end up being piece-wise linear

so that

F0 = h′8, G0 = h′4 (5.1)

are not globally defined, but can change between local patches of a global solution. For

the RR sector it will be most useful to know the magnetic component of the Page flux

polyform

f̂ = h′8 −
1

2
(h8 − ρh′8)vol(S

2)−
(

h′4 −
1

2
(h4 − ρh′4)vol(S

2)

)

∧ vol(CY2). (5.2)

Recall the Page flux is defined in terms of the NS 2-form B as F̂ = e−B∧F , for simplicity we

do not consider large gauge transformations in B — however we stress that their inclusion

changes nothing substantive about what follows.

Let us first consider a single D8 brane defect: the Bianchi identity of the entire magnetic

flux in the presence of a generic D8 brane stack takes the form

(d−H)f =
n8

2π
δ(ρ− ρ0)e

F ∧ dρ (5.3)

where ρ0 is the loci of the stack, and n8 its charge. As usual F = B + 2πf̃2 for f̃2 a

world-volume flux that may be turned on — this should not to be confused with the RR

2-form! As B ∼ vol(S2) for the local solutions of section 3.4, we anticipate that this

D8 brane is actually (at least) a D8–D6 bound state — however exactly what branes are

bounded together will depend on the form of f̃2 that we determine by actually solving (5.3).

Following [54], we do this in terms of f̂ , for which (5.3) is equivalent to

df̂ =
n8

2π
δ(ρ− ρ0)e

2πf̃2 ∧ dρ . (5.4)

As we move across this defect the NS sector (3.31) should be continuous (B can shift by a

large gauge transformation, but for simplicity we shall assume it does not), while only F0

should shift. Thus h8, h4, h
′
4, h

′′
4 should be continuous across the defect while F0 = h′8 will

be discontinuous. As such integrating (5.4) across the D8 stack gives rise to

∆F0e
1

2
ρ0vol(S

2) =
n8

2π
e2πf̃2 (5.5)

for ∆F0 the difference between the values of F0 for ρ < ρ0 and ρ > ρ0. We thus see that

the Bianchi identity merely fixes

∆F0 =
n8

2π
, f̃2 =

1

4π
ρ0vol(S

2), ⇒ F =
uu′

8h4h8 + 2(u′)2
vol(S2) (5.6)

confirming that the defect is actually a D8–D6 bound state.
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For the D4 brane defect wrapped on AdS3×S2 and smeared over CY2 things are rather

similar. The Bianchi identity of such a D4 brane stack takes the from

(d−H)f

∣

∣

∣

∣

CY2

= (2π)3n4δ(ρ− ρ0)e
F ∧ dρ ∧ vol(CY2) (5.7)

where (ρ0, n4) are the loci and charge of the stack — the notation on the l.h.s. means we

only consider the components parallel to vol(CY2). This time it should be only G0 = h′4
which is discontinuous across the defect, so integrating the Page form avatar of (5.7) gives

rise to

∆G0e
1

2
ρ0vol(S

2) = −(2π)3n4e
2πf̃2 , (5.8)

where the volume of CY2 has been factored out of both sides of this expression. We need

then only fix

∆G0 = −(2π)3n4, f̃2 =
1

4π
ρ0vol(S

2), ⇒ F =
uu′

8h4h8 + 2(u′)2
vol(S2) (5.9)

for the Bianchi identity to be solved — which implies that like the D8, the D4 is also a

bound state, this time D4–D2.

We have shown that both D8 and smeared D4 brane defects can be placed at arbitrary

points along the interval of the AdS3×S2×CY2 foliations in section 3.4 and still solve the

source corrected Bianchi identities — provided they come as part of a bound state (D8–D6

and D4–D2). To guarantee that we actually have a solution at these loci however the

branes must have a supersymmetric embedding — then supersymmetry is preserved on

the defects and the remaining EOM are implied [51]. A major advantage of the approach

we took to constructing solutions in section 2.2 is that it allows us to determine this in

the language of generalised calibrations [52]. This is relatively simple for us because the

fundamental object of this approach is the 7d bi spinors already given in (2.29a)–(2.29b). A

D brane source extended along AdS3 is supersymmetric if it obeys a calibration condition

— namely the DBI Lagrangian LDBI = dξde−Φ
√

− det(g + F) is equal to a calibration

form. In IIA this calibration form is given by the pull back of e3A−Φvol(AdS3) ∧Ψ+ ∧ eF

onto the relevant D brane world-volume. It is not hard to show that both our D8 and D4

brane defects obey this condition precisely when F is tuned as the Bianchi identity of each

defect requires.

Thus we have established that one can place defects at arbitrary points along the

interval of the AdS3×S2×CY2 foliation and still have a supersymmetric solution — we

need only impose that (h4, h8) are continuous. This fact can be used to glue two local

solutions of section 3.4 together provided they share a common tuning for u (u′′ = 0 by

supersymmetry, so u is globally linear). There is no limit to the number of defects one can

place in a global solution, indeed in general (h4, h8) need only be piece-wise linear with a

change in slope of the former (latter) indicating the presence of a D4 (D8) brane at that

loci. One can therefore construct infinite classes of global solutions for each tuning of u in

section 3.4. We delay a detailed exploration of these possibilities and their interpretation

in terms of the AdS3/CFT2 correspondence until [62, 68].

In the next section, we explore the possibility of constructing global solutions with

defects from the solutions in section 4.4.
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5.2 Towards global solutions with defects from section 4.4

In this section we will show that it is possible to glue the local solutions of section 4.4

together with defect branes. As most of the details of this procedure are covered in the

previous section, we encourage the reader to go over that first, as here we shall be brief.

As before the local solutions of section 4.4 depend on constants (ci, F0). However, as

these constants can shift between local patches in a global solution, it is more helpful to

consider the NS sector in the form of (4.1), with h = 1 and M̂4 = CY2 — recall (u, v, w)

are functions of ρ only and that u is such that globally u′′ = 0 due to supersymmetry.

Conversely v, w are only linear functions away from localised sources — globally they need

only be piecewise linear provided that the resulting δ-functions appearing in their second

derivatives gives rise to a source corrected Bianchi identity, and this source is calibrated.

The magnetic Page flux polyform associated to these solutions is

f̂ = v′ − 1

2
(v − ρv′)vol(S2)−

(

w′ − 1

2
(w − ρw′)vol(S2)

)

∧ Ĵ

+

(

v′ − 1

2
(v − ρv′)vol(S2)

)

∧ vol(CY2). (5.10)

Given the form of this expression it might be tempting to interpret a shift in v′ as coincident

D8–D6 and D4–D2 bound states — however such configurations fail to obey the calibration

condition discussed in the previous section at generic points along the interval — so cannot

be used to glue solutions together without breaking supersymmetry.20 Shifts in w′ on

the other hand are different and give rise to something new. To interpret it consider

the following: if we take a D8–D6 brane defect wrapping CY2 =T4, we can express Ĵ =

dx1∧dx2+dx3∧dx4 with xi the directions on T4 which are all isometries. If one T-dualises

such an object on both (x1, x2) it would generate the part of −
(

w′− 1
2(w−ρw′

)

vol(S2)
)

∧ Ĵ

with legs in (x1, x2) — this is a D6–D4 brane wrapping AdS3×S2 and (x3, x4) which is

smeared on (x1, x2). If instead one T-dualised the D8–D6 bound state on (x3, x4), the

part of the previous expression with legs in (x1, x2) would be generated, which should

be interpreted as a D6–D4 wrapping (x1, x2) and smeared on (x3, x4). To generate the

entire w dependent term in (5.10) then, one should have both of these smeared D6–D4s

simultaneously. Generalising to generic CY2, a shift in w′ gives rise to a D6–D4 bound

state that wraps a curve in CY2 and are smeared on its co-cycle and another D6–D4 that is

on smeared and wraps the opposite cycles. The Bianchi identities of each bound state are

essentially the same as the D4–D2 of the previous section, only this time pulled back onto

the relevant curve rather than the entire of CY2 — they are solved as before with world

volume gauge field 4πf̃2 = ρ0vol(S
2) and D6 brane charge proportional to ∆w′ across the

defect. Finally, it is not hard to establish that each of the D6–D4 bounds states are indeed

calibrated at generic points in the space.

We have now established that D6–D4 defect branes can be placed at generic points

along the interval of the AdS3×S2×CY2 foliation of section 4.4. It would be interesting

20They do obey the calibration condition when w = v, where the metric blows up, so they still cannot be

interpreted as defect branes, like in the previous section.
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to explore what global solutions may be constructed by glueing the local solutions already

found together with these defects. We leave that for future work.

In the next and final section we summarise this work and discuss some future directions.

6 Summary and future directions

In this paper we have found two classes of warped AdS3 × S2 × M5 solutions in massive

IIA that preserve small N = (4, 0) supersymmetry in terms of an SU(2) structure on M5.

These classes are exhaustive for solutions of this type when one assumes that the associated

spinors on S2 ×M5 have equal norm, a requirement for non vanishing Romans mass. For

class I M5 decomposes as CY2 × R and we are able to give explicit local expressions for

the metric and fluxes up to simple Laplace like PDEs. This class contains a generalisation

of the flat space system of D4s inside the world volume of D8s contained in [55], with flat

space replaced by AdS3 × S2 ×CY2 ×R. For class II we find M5 = M4 ×R where M4 is a

class of warped Kahler manifolds with metrics that depend on the interval.

Performing T duality on the IIA classes, we find new classes of solutions in IIB that,

modulo SL(2,R) transformations, exhaust N = (4, 0) solutions of the type AdS3×S3×M4,

with M4 an SU(2) structure manifold. The first is a generalisation of the near horizon limit

of D1–D5 branes [4], where the S3 becomes fibered over CY2 and D5 branes are backreacted

on top of this. It is possible to turn off the fibre and then realise the resulting system as

a near horizon limit with a modification of the D1–D5 intersection. The second class of

IIB solutions is a generalisation of D3 branes wrapped on a curve inside the base of an

elliptically fibered CY3 [28]. The generalisation depends on the same necessary geometric

conditions as [28], but has an additional parameter turned on which is related to the charge

of 5-branes, absent in the original construction, which tunes the 3-forms to zero.

In sections 3.4 and 4.4, we have found several new local solutions in massive IIA that

are foliations of AdS3 × S2 × CY2 over an interval, bounded between a variety of D brane

and O plane behaviours. Then in section 5 we show how these may be used as the building

blocks of infinite families of global solutions. These utilise defect branes to glue the various

local solutions together in the vein of [54]. We will explore some possible global solutions

containing defect branes and their holographic interpretation in [62, 67].

An interesting open problem that our classification of (0,4) supersymmetric solutions

leaves is the identification of their 2d dual CFTs. On the other hand, as stressed in the

introduction, there are large classes of 2d (0,4) linear quivers, such as the ones constructed

in [23, 24, 26, 30], which lack a holographic description. In [62] we will partially fill this gap,

and provide the explicit connection between AdS3 × S2 solutions in class I with compact

CY2 and 4d (0,4) quivers.

Another interesting avenue to explore as a consequence of this work is the connection

between our solutions and the AdS7 solutions to massive IIA constructed in [54], in particu-

lar whether a generalisation to AdS3 solutions exists of the flows constructed in [65, 66, 69].

We will report progress in this direction in [67, 68].
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A Spinors and bi spinors on S2 and M5

In this appendix we provide details of the spinors and bi spinors on S2 to supplement

section 2.2. Specifically when deriving the 7 dimensional bi spinors (2.23) from (2.21),

it is useful to know the 2 and 5 dimensional bi spinors on S2 and M5, which (2.23) will

decompose in terms of. In fact given our decomposition of the gamma matrices (2.7), a

bi spinor constructed out of tensor products of spinors in 2 and 5 dimensions (ξi and ηi

respectively) necessarily decomposes as
[

ξ1 ⊗ η1
]

⊗
[

ξ2 ⊗ η2
]†

= (η1 ⊗ η2†)+ ∧ (ξ1 ⊗ ξ2†) + (η1 ⊗ η2†)− ∧ (σ3ξ
1 ⊗ ξ2†) (A.1)

where ± denotes the even/odd degree components of a form only, which can be repeatedly

used when computing (2.23) — and proves that it is built from bi spinors in 2 and 5

dimensions.

In the next section we present details of spinors and bi spinors on unit norm S2.

A.1 Spinors and bi spinors on S2

There are two types of Killing spinor on unit radius S2, ξ±, that are solutions to the Killing

spinor equations

∇aξ± = ± i

2
σaξ±, a = 1, 2, (A.2)

where we take the first 2 Pauli matrices as two dimensional gamma matrices. Unlike the

ξ± equivalents on S3, these are not really independent and in fact one can take ξ− = σ3ξ+
without loss of generality. We identify ξ+ = ξ in the main text, and one has in general

that both ξ and σ3ξ transform in the same fashion under the SU(2) global symmetry on

S2. The bi spinors that follow from ξ, under the assumption they have unit norm, are [43],

ξ ⊗ ξ† =
1

2
(1 + k3 − iy3vol(S

2)), ξ ⊗ ξc† = −1

2
(k1 + ik2 − i(y1 + iy2)vol(S

2)),

σ3ξ ⊗ ξ† =
1

2
(y3 + idy3 − ivol(S2)), σ3ξ ⊗ ξc† = −1

2
(y1 + iy2 − id(y1 + iy2)), (A.3)
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where yi are coordinates embedding S2 into R
3 and Ki are one forms dual to the Killing

vectors of SU(2), which may be parameterised as

Ki = ǫijkyjdyk. (A.4)

Note that (A.3) are spanned entirely by the (yi, dyi,Ki, yivol(S
2)) which transform as SU(2)

triplets, and vol(S2), that is an SU(2) singlet. These form a closed set under the action of

d and wedge product, namely

dyi ∧ vol(S2) = Ki ∧ vol(S2) = 0, dKi = 2yivol(S
2) (A.5)

as well as the more obvious relations. We use this fact to reduce the 7d conditions that

follow from inserting (2.29a)–(2.29b) into (2.25a)–(2.25c) to a set of 5d conditions no longer

involving S2, (2.32a)–(2.35).

In the next section we give details on the bi spinors in 5d.

A.2 Spinors and bi spinors on M5

In (2.22) we decompose the independent 5d spinors appearing in (2.21) in terms of a single

unit norm spinor in 5d, η. The bi-linears that follow from η are given in [65], and read:

η ⊗ η† =
1

4
(1 + V ) ∧ e−ij3 , η ⊗ ηc† =

1

4
(1 + V ) ∧ Ω,

Ω = w ∧ u, j3 =
i

2
(w ∧ w + u ∧ u), (A.6)

where

v, w1 = Rew, w2 = Imw u1 = Reu, u2 = Imu (A.7)

defines a vielbein in five dimensions. It then follows that if one decomposes

Ω = j1 + ij2, (A.8)

we have

ja ∧ jb =
1

2
δabvol(M4) (A.9)

where V ∧ vol(M4) is the volume form in 5d.
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