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1 Introduction

A salient feature of topological phases of matter is the lack of local order parameters

characterizing them. For example, topologically-ordered phases in (2+1)d cannot be char-

acterized by their symmetry-breaking pattern, but by the anyonic excitations that they

support [1]. Quantum Hall systems are characterized by their quantized Hall conductance,

which detects the global topological properties of the ground states. Specifically, the Niu-

Thouless-Wu formula [2] relates the quantized Hall conductance to the first Chern number

defined on a parameter space of boundary conditions, through the Berry connection of the

(many-body) ground state wave functions in the presence of twisted boundary conditions.
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For topological phases of matter beyond the quantum Hall example, such as symmetry-

protected topological (SPT) phases with internal or spacetime symmetries, their topologi-

cal characterization using non-local operations have been proposed [3–8]. For example, in

the prototypical case of (1+1)d topological superconductors with time-reversal symmetry

(symmetry class BDI), the operation called “partial time-reversal” (or partial transpose)1

can be used to construct a quantized quantity which can detect the Z8 classification [9, 10]

of (1+1)d BDI topological superconductors [11]. Similarly, one can use “partial-reflection”

to construct a quantized quantity that can detect the Z8 classification of (1+1)d reflection

symmetric topological superconductors (symmetry class D+R−) [11]. The precise defini-

tions of these quantities will be presented in the later sections. Henceforth, we loosely

call these quantized quantities non-local order parameters. These are the quantities which

are constructed from the ground states of topological phases by acting with a non-local

operation, and detect topological classifications.2 Experimental protocols to measure these

quantized non-local order parameters have been proposed [12].

The response of quantum Hall systems at low energies and long distances is expected

to be described by the Chern-Simons topological quantum field theory (TQFT). The Niu-

Thouless-Wu formula extracts, from the ground state wave functions, the quantized coef-

ficient of the Chern-Simons theory, which is the quantized Hall conductance. Similarly,

(1+1)d time-reversal invariant topological superconductors are expected to be described

by an invertible topological quantum field theory at long distances [13–15], whose partition

function on a spacetime gives a bordism invariant. In this case, the underlying topolog-

ical field theory needs to be equipped with a spacetime structure called pin− structure.

Such invertible pin− TQFTs are classified up to deformation by the Pontryagin dual of the

pin− bordism group Ωpin−

2 (pt) = Z8 [16]. It was argued [17] that the proposed quantized

non-local order parameter is associated with the partition function of the correspond-

ing invertible pin− TQFT, evaluated on a manifold which generates the bordism group

Ωpin−

2 (pt) (e.g., RP2), thereby providing the Z8-valued topological invariant detecting the

classification.

One of the purposes of this paper is to elucidate the connection between the quanti-

zation of non-local order parameters and the underlying field theory, clarifying the nature

of the non-local order parameters as topological invariants. To do this, it is indispensable

to formulate the non-local operations in the Hilbert space of TQFT. This can be achieved

by a local lattice definition of pin− TQFT recently proposed in [18, 19]. The lattice

formulation makes it possible to construct the “fixed point” wave functions of fermionic

symmetry-protected topological phases on a 1d spatial lattice — they are the represen-

tatives of the ground state wave functions with shortest possible correlation length, and

have structures akin to Matrix Product States (MPSs). (See also [20–23] for relevant refer-

1Partial time-reversal and partial transpose may differ by a local unitary transformation. In this paper,

we will exclusively use partial time-reversal.
2String-type order parameters, commonly discussed in the context of the Haldane phase and related

systems, are also often called non-local order parameters. While string-type order parameters can detect

topologically distinct phases of matter, they are not quantized. In this paper, we will exclusively discuss

quantized non-local quantities, which are distinct from string-type order parameters.
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ences.) Using the invertible pin− TQFT generating the Z8 classification, we explicitly show

that the quantized non-local order parameter for (1+1)d time-reversal symmetric topolog-

ical superconductors (class BDI) is identical to the partition function of the pin− TQFT

computed on RP2. Similarly, for (1+1)d reflection symmetric topological superconductors

(class D+R−), we also prove the exact correspondence between the order parameter and

the partition function of field theory, based on a lattice definition of pin− TQFT.

Partial time-reversal (partial transpose) can also be used to construct an entanglement

measure for mixed quantum states — the (fermionic) entanglement negativity. The en-

tanglement negativity has been studied recently in the context of many-body physics and

quantum field theory — see, for example, [24–32]. Experimental protocols for the entan-

glement negativity has been also proposed [33]. The formalism which we will develop in

this paper allows us to study the entanglement negativity in 2d fermionic TQFT, i.e., in

the fixed point wave functions of fermionic symmetry protected topological phases. While

not expected to be a topological invariant, the entanglement negativity in the fixed point

wave functions are known to take specific values. For example, for the ground state of

the (1+1)d Kitaev chain in its topologically non-trivial phase, the entanglement negativity

for adjacent intervals is given by log
√

2, which is related to the quantum dimension of

the boundary Majorana modes. We will reproduce this result by using our TQFT/MPS

formalism.

Another quantity of our interest is the moments of the partially-transposed reduced

density matrix, which give the spectrum of partially-transposed reduced density matrix

(“the negativity spectrum”) [34–36]. Just like the entanglement spectrum provides the

universal information of quantum ground states (for gapped quantum states in particular),

we expect that we could extract universal (topological) data from the negativity spectrum.

For comparison, it is good to recall that for the case of unitary and on-site symmetry,

ground states of symmetry-protected phases in one spatial dimension are characterized

by symmetry-protected degeneracy of their entanglement spectra [5, 37–39]. Here, we

will show that we can develop a similar diagnostics by using the negativity spectrum for

fermionic symmetry-protected topological phases protected by time-reversal.

1.1 Summary of results

The first column of table 1 lists the quantities studied in this paper. We will prove that

these quantities computed for the fixed point wave function of (1+1)d topological super-

conductors (constructed from lattice TQFT) exactly give the partition functions of the

TQFT on spacetime manifolds listed in the second column. The third column lists the

explicit values of these quantities.

In the first and second rows of table 1, we find that the partial time-reversal and

partial reflection on the fixed-point wave function gives the partition function of pin−

TQFT on RP2. Here, although the state is initially prepared on a boundary of an oriented

surface (e.g., disk), we will see that the process of partial time-reversal or reflection intro-

duces a combinatorial pin− structure in the whole triangulated spacetime, which becomes

unoriented, providing a pin− bordism invariant. Especially, when computed within the

– 3 –
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Order parameter Spacetime manifold the Kitaev chain Section

partial time-reversal
RP2 1

2
√

2
e±2πi/8 3

trI(ρIρ
T1
I )

partial reflection
RP2 1√

2
e±2πi/8 6

〈ψ|Rpart |ψ〉
Rényi entanglement

negativity (n/2− 1)× (NS, NS) (2
√

2)2−n × 1
2 4

eEn

n = 0

mod 8

(n/4)× (R, R) +

(n/4− 1)× (NS, R)
(2
√

2)2−n × 1
2

n = 1

mod 8

(n− 1)/4× (R, R) +

(n− 1)/4× (NS, R)
(2
√

2)1−n × 1

n = 2

mod 8
— 0

moment of partial

time-reversal

n = 3

mod 8

(n+ 1)/4× (R, R) +

(n− 3)/4× (NS, R)
(2
√

2)1−n × (−1)
5

Zn
n = 4

mod 8

(n/4)× (R, R) +

(n/4− 1)× (NS, R)
(2
√

2)2−n ×
(
−1

2

)
n = 5

mod 8

(n− 1)/4× (R, R) +

(n− 1)/4× (NS, R)
(2
√

2)1−n × (−1)

n = 6

mod 8
— 0

n = 7

mod 8

(n+ 1)/4× (R, R) +

(n− 3)/4× (NS, R)
(2
√

2)1−n × 1

moment of partial

time-reversal

n = 0

mod 2
(n/2− 1)× (NS, NS) (2

√
2)2−n × 1

2 5

Z̃n (twisted)
n = 1

mod 2
— 0

Table 1. List of many-body order parameters for fermion SPT phases formulated in lattice TQFT.

lattice TQFT generating the Z8 classification, the bordism invariant corresponds to the

Arf-Brown-Kervaire invariant.

In the third row of table 1, we find that the exponential of the Rényi entanglement

negativity eEn of the fixed point wave function is equal to the TQFT partition function on

a closed oriented manifold with genus (n/2 − 1). The notation like (n/2 − 1)× (NS, NS)

means that the spacetime manifold has an induced spin structure given by a connected

sum of (n/2 − 1) copies of (NS,NS) torus. When evaluated for the correctly-normalized

fixed point wave function, the TQFT partition function has the Euler term, which makes

the Rényi negativity proportional to the Euler characteristic of the spacetime manifold up

to constant.

In the fourth row of table 1, we present the moment Zn of a ground state density

matrix acted by partial time-reversal. We find an interesting periodicity of the spacetime

– 4 –
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structure with respect to the degree of the moment. The spin structure of the spacetime

manifold is fixed for each n, and it has a pattern of mod 4 periodicity. Entries marked as

“—” in table 1 mean that the induced structure on a spacetime manifold is not spin. We

will see that these cases have a vortex of fermion parity introduced in a spacetime, which

makes a spin structure ill-defined. When evaluated for the fixed point wave function, the

phase of the TQFT partition function corresponds to the Arf invariant on a spacetime

manifold equipped with a spin structure, which has a pattern of mod 8 periodicity.

Although most of the analysis will be done for a specific pin− invertible TQFT in the

main text which corresponds to the Kitaev chain, the partial time-reversal and reflection

can also be formulated on the Hilbert space of generic spin/pin TQFT prepared by Z2-

graded Frobenius algebra. The result presented in this paper can be safely generalized for

generic spin/pin TQFT on a lattice.

The rest of the paper is organized as follows. In section 2, we review the lattice

construction of fermionic TQFT on unoriented spacetime manifolds. In section 3, we

formulate partial time-reversal for the Hilbert space of pin− TQFT. In section 4, we discuss

the formulation of the entanglement negativity. In section 5, we discuss the formulation of

the moments of the density matrices with partial time-reversal and the periodicity presented

in table 1. Finally, in section 6, we illustrate the partial reflection.

2 Review of fermionic TQFT

In this section, we recall the lattice construction of the spin and pin± TQFT on a 2d

manifold M , following [18, 19]. We provide a recipe to construct a state sum definition

of spin/pin TQFT, by formulating the spin/pin theory called the Gu-Wen Grassmann

integral on M , equipped with a Z2 global symmetry, whose partition function has the

form [18, 40, 41]

z[M,η, α] = σ(M,α)(−1)
∫
M η∪α, (2.1)

where α ∈ Z1(M,Z2) is a background Z2 gauge field of the Z2 symmetry, and η specifies

a spin or pin± structure on M , which is related to the obstruction of the structure as

δη = w2 (resp. δη = w2 +w2
1) in the spin or pin+ (resp. pin−) case. Here, w1,2 are the first

an second Stiefel-Whitney classes, respectively.

σ(M,α) is written in terms of a certain path integral of Grassmann variables defined

by giving a triangulation of M . (In the following, when there is no confusion, we simply

write z[η, α], σ(α), instead of z[M,η, α], σ(M,α), etc.)

By studying the effect of re-triangulations and gauge transformations, this theory is

shown to be anomaly free for a spin or pin− surface which we focus on in the main text of

the present paper. Then, one can construct a spin or pin− theory fully invariant under the

change of triangulation and gauge transformations, by coupling the Grassmann integral

with an anomaly free bosonic theory Z̃M [α] called a “shadow theory” [42–44], and then

gauging the Z2 symmetry,

Z[M,η] =
∑
α

z[M,η, α]Z̃M [α]. (2.2)

– 5 –
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The rest of this section is organized as follows. In section 2.1 and 2.2, we review

the construction of the Grassmann integral on a spin and pin surface respectively. In

section 2.3, we provide the lattice construction of a pin− invertible TQFT, which describes

(1+1)d topological superconductors in class BDI at long distances. Then, we describe the

construction of spin/pin TQFT on a surface with a non-empty boundary in section 2.4, and

apply it to construct the “fixed-point” ground state wave function of (1+1)d topological

superconductors in section 2.5. This is the ground state wave function of the Kitaev chain

deep inside its topological superconductor phase, with the smallest correlation length.

2.1 Spin TQFT on the lattice

We endow an oriented surface M with a triangulation. In addition, we take the barycentric

subdivision for the triangulation of M . Namely, each 2-simplex in the initial triangulation of

M is subdivided into 6 simplices, whose vertices are barycenters of the subsets of vertices in

the 2-simplex. We further assign a local ordering to vertices of the barycentric subdivision,

such that a vertex on the barycenter of i vertices is labeled as i.

Each simplex can then be either a + simplex or a − simplex, depending on whether the

ordering agrees with the local orientation or not. We assign a pair of Grassmann variables

θe, θe on each 1-simplex e of M when α(e) = 1, we associate θe on one side of e contained

in one of 2-simplices neighboring e (which will be specified later), and θe on the other side.

Then, σ(M,α) is defined as

σ(M,α) =

∫ ∏
e|α(e)=1

dθedθe
∏
t

u(t), (2.3)

where t denotes a 2-simplex, and u(t) is the product of Grassmann variables contained in

t. Namely, u(t) on t = (012) is the product of ϑ
α(12)
12 , ϑ

α(01)
01 , ϑ

α(02)
02 . Here, ϑ denotes θ or θ

depending on the choice of the assigning rule, which will be discussed later. The order of

Grassmann variables in u(t) will also be defined shortly. We note that u(t) is ensured to

be Grassmann-even when α is closed.

Due to the fermionic sign of Grassmann variables, σ(α) becomes a quadratic func-

tion, whose quadratic property depends on the order of Grassmann variables in u(t).

We will adopt the order used in Gaiotto-Kapustin [18], which is defined as u(012) =

ϑ
α(12)
12 ϑ

α(01)
01 ϑ

α(02)
02 when (012) is a + triangle, and u(012) = ϑ

α(02)
02 ϑ

α(01)
01 ϑ

α(12)
12 for a − trian-

gle. We choose the assignment of θ and θ on each e in the following fashion: the Grassmann

variables on e are assigned such that, if t is a + (resp. −) simplex, u(t) includes θe when e

is given by omitting a vertex with odd (resp. even) number from t = (012), see figure 1.

Based on the above definition of u(t), the quadratic property of σ(α) turns out to be

σ(α)σ(α′) = σ(α+ α′)(−1)
∫
α∪α′ , (2.4)

for closed α, α′. Moreover, the change of σ(α) under the gauge transformation α→ α+ δγ

or under the change of the triangulation is controlled by the formula

σ(M̃, α̃) = (−1)
∫
K w2∪ασ(M,α), (2.5)

– 6 –
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Figure 1. Assignment of Grassmann variables on 1-simplices. θ (resp. θ) is represented as a black

(resp. white) dot.

where M̃ is the same manifold M with a different triangulation, α̃ is a cocycle such that

[α] = [α̃] in cohomology, and K = M × [0, 1] such that the two boundaries are given by M

and M̃ , and finally α is extended to K so that it restricts to α and α̃ on the boundaries. The

derivation of (2.4), (2.5) was given in [18]. Then, the spin theory z[M,η, α] is defined as

z[M,η, α] = σ(M,α)(−1)
∫
M η∪α, (2.6)

where η specifies a spin structure on M , and satisfies δη = w2.

2.2 Pin TQFT on the lattice

We construct an unoriented manifold by picking locally oriented patches, and then gluing

them along codimension one loci by transition functions. The locus where the transition

functions are orientation reversing, constitutes a representative of the dual of the first

Stiefel-Whitney class w1. We will sometimes call the locus an orientation reversing wall.

We can choose a consistent orientation everywhere if we remove a locus of the orientation

reversing wall.

We remark that the assigning rule of the Grassmann variables described in the previous

subsection fails, when e lies on the wall where we glue patches of M by the orientation

reversing map. In this case, we would have to assign Grassmann variables of the same color

on both sides of e (i.e., both are black (θ) or white (θ)), since the two triangles sharing e

have the identical sign when e is on the orientation reversing wall, see figure 2(a). Hence,

we need to slightly modify the construction of the Grassmann integral on the orientation

reversing wall. To do this, instead of specifying a canonical rule to assign Grassmann

variables on the wall, we just place a pair θe, θe on the wall in an arbitrary fashion.

Along with this modification, the Grassmann integral on M is revised as

σ(M,α) =

∫ ∏
e|α(e)=1

dθedθe
∏
t

u(t)
∏
e|wall

(±i)α(e), (2.7)

where the
∏
e|wall(±i)α(e) term assigns weight (+i)α(e) (resp. (−i)α(e)) on each 1-simplex e

on the orientation reversing wall, when e is shared with + (resp. −) 2-simplices. There is

– 7 –
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(a) (b)

Figure 2. (a): the signs of triangles near the orientation reversing wall, which is represented as

a red line. (b): assignment of Grassmann variables on the wall specifies a deformation of the wall

that intersects the wall transversally at vertices.

no ambiguity in such definition, since both 2-simplices on the side of e have the same sign

when e is on the wall.

The quadratic property of the Grassmann integral (2.4) still holds for the pin± case

while the effect of re-triangulations and gauge transformations are given by

σ(M̃, α̃) = (−1)
∫
K(w2+w2

1)∪ασ(M,α), (2.8)

as shown in [19].

Then, the pin± theory z[M,η, α] is defined as

z[M,η, α] = σ(M,α)(−1)
∫
M η∪α, (2.9)

where η specifies a pin± structure on M , which satisfies δη = w2 (resp. δη = w2 + w2
1) in

the pin+ (resp. pin−) case.

Here, it should be emphasized that the expressions (2.8), (2.9) are based on a specific

choice of the representative of the Poincaré dual of w2, w2
1 in M . Firstly, the representative

of the dual of w2 on M is given by the set of all vertices of the barycentric subdivision [45–

47]. Secondly, to specify the dual of w2
1 on M , we first observe that the choice of the

assignment of Grassmann variables on the wall corresponds to choosing the slight deforma-

tion of the wall, such that the deformation intersects transversally with the wall at vertices.

Concretely, we deform the wall on each edge of the wall to the side where θ (black dot) is

contained, see figure 2(b). Here, both walls before and after deformation give a represen-

tative of the dual of w1, and then the intersection of two walls gives our representative of

the dual of w2
1. η in (2.9) is a trivialization of the representative of the obstruction class,

prepared in the above fashion.

2.3 Arf-Brown-Kervaire invariant in (1+1)d

In this subsection, we construct the 2d pin− invertible TQFT [48] for the Arf-Brown-

Kervaire (ABK) invariant via the Grassmann integral on the lattice, whose state sum

– 8 –



J
H
E
P
0
1
(
2
0
2
0
)
1
2
1

definition was initially given in [49]. In condensed matter literature, this invertible theory

describes (1+1)d topological superconductors in class BDI. Here, we construct the Z8-

valued ABK invariant by coupling the 2d state sum shadow TQFT with the Grassmann

integral. For the Z2-valued Arf invariant of the spin case, this was done in [18].

The weight for the state sum is assigned in the same manner as the case of the Arf in-

variant of the spin case [18], described as follows. For a given configuration α ∈ C1(M,Z2),

we assign weight 1/2 to each 1-simplex e, and also assign weight 2 to each 2-simplex f when

δα = 0 at f , otherwise 0. Let us denote the product of the whole weight as Z̃[α]. Then,

we can see that the partition function is given by the ABK invariant up to the Euler term,

Z[M,η] =
∑

α∈Z1(M,Z2)

σ(M,α)(−1)
∫
M η∪αZ̃[α]

= 2|F |−|E| ·
∑

α∈Z1(M,Z2)

σ(M,α)(−1)
∫
M η∪α

= 2χ(M)−1 ·
∑

[α]∈H1(M,Z2)

σ(M,α)(−1)
∫
M η∪α

=
√

2
χ(M)

ABK[M,η],

(2.10)

where |F |, |E| denotes the number of 2-simplices, 1-simplices in M , respectively. χ(M)

denotes the Euler characteristic of M , and ABK[M,η] is the ABK invariant,

ABK[M,η] =
1√

|H1(M,Z2)|

∑
[α]∈H1(M,Z2)

iQη [α]. (2.11)

Here, iQη [α] = σ(M,α)(−1)
∫
M η∪α is a Z4-valued quadratic function that satisfies [50]

Qη[α] +Qη[α
′] = Qη[α+ α′] + 2

∫
M
α ∪ α′. (2.12)

The ABK invariant determines the pin− bordism class of 2d manifolds Ωpin−

2 (pt) = Z8,

which is generated by RP2 [16]. To see this, let α be a nontrivial 1-cocycle that generates

H1(RP2,Z2) = Z2. Then, using the quadratic property for α = α′ in (2.12), one can see

that Qη[α] takes value in ±1, since Qη[0] = 0 and
∫
M α ∪ α′ = 1. Qη[α] = ±1 corresponds

to two possible pin− structures on RP2. Then, the ABK invariant is given by an 8th root

of unity,

ABK[M,η] =
1± i√

2
= e±2πi/8. (2.13)

If M is oriented, the ABK invariant reduces to the Arf invariant Arf[M,η], which deter-

mines the spin bordism class Ωspin
2 (pt) = Z2 [51].

2.4 Wave function on boundaries

Now let us consider a spin or pin TQFT on M constructed in the manner described in

section 2.1 and 2.2, when M has a non-empty boundary.

To construct the wave function of the vacuum state, let us describe the state of spin/pin

TQFT on the lattice. We recall that the state-sum model of 2d oriented spin TQFT is built

– 9 –
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from a Z2-graded (not necessarily commutative) semi-simple Frobenius algebra A [18, 52].

A similar construction for the spin TQFT wave functions is also found in [53]. If one

seeks to consider unoriented pin case, we further have to assume that A is commutative,

to ensure invariance of the theory under re-triangulation [54].

Let εi ∈ A(i ∈ I) be the basis of A and denote α(i) as the Z2 grading of εi. We

sometimes call the Z2 grading as the fermion parity. We write Cijk as the structure constant

of A in this basis. Then, let gij := C likC
k
jl. Because gij is non-degenerate, it has the inverse

denoted as gij . We define Cijk := gilC
l
jk, which turns out to be cyclically symmetric. If we

further assume that A is commutative, Cijk is symmetric under any permutations. Since

the algebra A is Z2-graded, Cijk and gij always respect the Z2 grading. Namely, Cijk
vanishes unless α(i) + α(j) + α(k) ≡ 0 (mod 2), and gij vanishes unless α(i) + α(j) ≡ 0

(mod 2).

Using these data, we can construct the bosonic shadow theory Z̃M [α] coupled with

background Z2 gauge field α. We assign a pair of elements εi, εj of A on each 1-simplex of

M . Here, the background field α ∈ Z1(M,Z2) is regarded as the Z2 grading of the element

in A assigned on 1-simplices. Namely, a pair of elements share the same Z2 grading specified

by α. Then, we assign weight gij on each 1-simplex and Cijk on each 2-simplex. To obtain

the partition function Z̃M [α], we just have to perform contraction of indices for all factors

gij , Cijk on M with a fixed Z2 grading α. Then, the spin/pin TQFT is constructed in the

form of (2.2), by coupling with the spin/pin theory prepared by the Grassmann integral.

If one makes up a boundary on M , the Hilbert space for the TQFT is constructed

on A⊗̂n, where n is the number of boundary 1-simplices. Here, ⊗̂ denotes the supertensor

product of Z2-graded algebra. Compared with conventional tensor product, supertensor

product is modified in the way which respects the fermionic sign of the elements carrying

fermion parity. Namely, given the algebra A1 ⊗̂ A2, the multiplication of elements in

A1 ⊗̂ A2 is defined as [53]

(ε1 ⊗̂ ε2) · (ε′1 ⊗̂ ε′2) = (−1)α(ε2)α(ε′1) · (ε1 · ε′1) ⊗̂ (ε2 · ε′2). (2.14)

For a given basis of A⊗̂n on ∂M , the wave function is evaluated as the path integral

on M . Denoting the element of A⊗̂n in the form of |ε1 . . . εn〉, the wave function for the

prepared Hilbert space is given by evaluating the path integral of the TQFT (2.1) on M ,

which is expressed as

|ψ〉 =
∑

α∈Z1(M,Z2)

∑
A⊗̂n

Z̃M [α]σ(M,α; ord(1, · · · , n))(−1)
∫
M η∪α |ε1 . . . εn〉 . (2.15)

Especially, let us consider the simplest case where A = Cl(1) (real Clifford algebra

generated by one Z2-odd element), where we are setting gjk = 1/2 · δjk, Cijk = 2δi+j,k. For

simplicity, let M be an oriented spin surface. Then, we can build the Hilbert space on ∂M

as the Fock space of n complex fermions. Namely, we prepare a complex fermion on each

boundary 1-simplex, and consider a Fock space of the fermions. Then, the wave function

for the prepared Hilbert space is given by evaluating the path integral of the TQFT (2.1)
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on M , which is expressed as

|ψ〉 =
∑

α∈Z1(M,Z2)

Z̃M [α]σ(M,α; ord(1, · · · , n))(−1)
∫
M η∪α(c†1)α(e1) · · · (c†n)α(en) |0〉 , (2.16)

where cj/c
†
j denotes a complex fermion annihilation/creation operator at ej . Z̃M [α] is the

weight of the bosonic shadow theory evaluated on M . σ(M,α; ord(1, · · · , n)) evaluates the

Grassmann integral on an open surface M , which is defined via the following relation∫
M

∏
e|α(e)=1

dθedθe
∏
t

u(t) = σ(M,α; ord(1, · · · , n))ϑ
α(e1)
1 · · ·ϑα(en)

n . (2.17)

Here, ϑj represents θj or θj depending on an assignment of Grassmann variables on bound-

aries.

In the expression (2.16), η satisfies δη = w2 as an element of Z2(M,∂M ;Z2), where

the representative of w2 is specified as the dual of a set of all 0-simplices in the barycentric

subdivision, as illustrated in section 2.2. Thus, we can rewrite the factor (−1)
∫
M η∪α as

(−1)
∫
M η∪α = (−1)

∫
EM

α
, (2.18)

where EM is the dual of η, and ∂EM becomes a set of all 0-simplices in the barycentric

subdivision, when restricted to the interior of M .

The algebra A = Cl(1) also works as data for the unoriented pin− TQFT presented

in section 2.3. When M is a pin− surface, we include the Z4 factor
∏
e|wall(±i)α(e) in

the l.h.s. of the equation (2.17), and let η be a trivialization of w2 + w2
1 as an element of

Z2(M,∂M ;Z2).

2.5 Ground state wave function of the Kitaev chain

Here, we provide the fixed-point ground state wave function of topological superconductors

in class BDI, based on the 2d pin− TQFT described in section 2.3. In this case, the shadow

theory on a closed spin or pin− manifold is given by

Z̃X [α] = 2|F |−|E|, (2.19)

where |F | and |E| denote the number of faces and edges of X respectively. We set the

shadow theory Z̃M on M with a non-empty boundary, by requiring that the wave function

|in〉 is correctly normalized,

〈out|in〉 = 1. (2.20)

where 〈out| is conjugate to |in〉. From this condition, the shadow theory is obtained as

Z̃M [α] = 2|F |−|E|+|Eb|/2−χ(Y )/4, (2.21)

where |Eb| denotes the number of boundary 1-simplices and χ(Y ) is the Euler characteristic

of Y which is obtained by gluing M and M along the boundary. Actually, the product of

the shadow theories on M and M

Z̃M [α|M ]Z̃M [α|M ] = 2−χ(Y )/2Z̃Y [α] (2.22)
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gives the shadow theory on Y , and the norm of the wave function is

〈out|in〉 = 2−χ(Y )/2
∑

α∈Z1(Y,Z2)

Z̃Y [α]σ(Y, α)(−1)
∫
Y η∪α

= ABK[Y, η].

(2.23)

Here, ABK[Y, η] is the Arf-Brown-Kervaire invariant quantized as the 8th root of unity.

Since the above expression is positive (ensured by reflection positivity of unitary TQFT [14,

15]), ABK[Y, η] is 1, which shows that the wave function is correctly normalized.

3 Partial time-reversal

In this section, we will formulate the quantized non-local order parameter for SPT phases

proposed in [11], for the states prepared by spin or pin TQFT. First, we recall the con-

struction of the order parameter for (1+1)d SPT phases in class BDI, following [11].

Let us consider a ground state of the SPT phase on a ring with length n, constructed in

the Fock space of complex fermions c1, . . . , cn with anti-periodic boundary condition. We

take the reduced density matrix ρI of the ground state, defined on an interval I in the ring.

Then, we take a bipartition of I as I = I1 t I2. Roughly speaking, the order parameter is

defined via the process of taking the “transpose” of the density matrix, restricted to the

interval I1. With a proper definition of the transpose in the partial region I1 in I, the order

parameter is given by

trI(ρIρ
T1
I ), (3.1)

where ρT1I denotes the density matrix acted by “partial time-reversal”. The definition of

partial time-reversal is transparently expressed in the coherent state basis. Namely, we in-

troduce n Grassmann variables ξ1, . . . , ξn and denote a state like |{ξi}〉 =
∏
j exp(−ξjc†j) |0〉.

The density matrix is rewritten in the coherent state basis as

ρI =

∫
d[ξ, ξ]d[χ, χ] |{ξj}〉 ρI({ξj}; {χj}) 〈{χj}| , (3.2)

where d[ξ, ξ] =
∏
j dξjdξje

−
∑
j ξjξj , and ρI({ξj}; {χj}) = 〈{ξj}| ρI |{χj}〉. Then, the oper-

ation ρT1I is defined as

ρT1I :=

∫
d[ξ, ξ]d[χ, χ] |{iχj}j∈I1 , {ξj}j∈I2〉 ρI({ξj}; {χj}) 〈{iξj}j∈I1 , {χj}j∈I2 | . (3.3)

This operation on I1 is called partial time-reversal in [11], since it acts on Grassmann

variables in I1 in the same fashion as the time-reversal for the symmetry class BDI.

In the following, we formulate partial time-reversal and compute the quantity (3.1), on

a wave function constructed from a (1+1)d pin− invertible TQFT discussed in section 2.4.

We find that (3.1) is identical to the partition function of the pin− TQFT Z[X, η] evaluated

on a closed unoriented pin− surfaceX, which generates the pin− bordism group Ωpin−

2 (pt) =

Z8. Especially, when M is taken to be a disk, X = RP2 and

trI(ρIρ
T1
I ) = Z[RP2, η], (3.4)
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where η specifies a pin− structure. The partial time-reversal can also be defined on the

Hilbert space of spin/pin TQFT prepared by Z2-graded Frobenius algebra, which is de-

scribed in A. Though we will mostly work on the Kitaev chain wave function in the main

text, the correspondence between the quantized non-local order parameter and TQFT

wave function (3.4) is safely extended to a pin− TQFT prepared by generic commutative

Z2-graded Frobenius algebra.

3.1 Evaluation of partial time-reversal

Now we perform the explicit computation of (3.1). We start with constructing the reduced

density matrix. We first prepare the state on ∂M = S1 and its conjugation, in the form

of (2.16)

|in〉 =
∑

α∈Z1(M,Z2)

Z̃M [α]σ(M,α; ord(−n, · · · , n))(−1)
∫
M η∪α(c†−n)α(e−n) · · · (c†n)α(en) |0〉 ,

(3.5)

〈out| =
∑

α∈Z1(M,Z2)

Z̃M [α]σ(M,α; ord(n, · · · ,−n))(−1)
∫
M η∪α 〈0| cα(en)

n · · · cα(e−n)
−n , (3.6)

where we let the number of boundary 1-simplices 2n here, and labeled 1-simplices in ∂M

as e−n, . . . , e−1, e1, . . . , en, for later convenience. M is given by reversing the orientation of

M , and we denote 1-simplices in ∂M as e−n, . . . , e−1, e1, . . . en. Starting from the density

matrix ρ = |in〉 〈out|, we take the reduced density matrix ρI for the interval I =
∑

1≤|j|≤l ej ,

see figure 3. For simplicity, we set l, n as even. Then, ρI is expressed as

ρI =
∑

α∈Z1(N,Z2)

Z̃N [α]σ(M,α|M ; ord(−n, · · · , n))σ(M,α|M ; ord(n, · · · ,−n))

× (−1)

∫
EM+E

M
α
× (c†−l)

α(e−l) · · · (c†l )
α(el) |0〉 〈0| cα(el)

l · · · cα(e−l)

−l ,

(3.7)

where N is given by gluing M and M along the complement of I on ∂M . Here, Z̃N [α]

denotes the weight of the shadow theory evaluated on N .3 EM , EM denotes a dual of η

introduced in (2.18).

(3.7) reduces to the form of the path integral on N . To see this, first we associate the

product of Grassmann integrals on M , M with that of N , by the following relation

σ(M,α|M ; ord(−n, · · · , n))σ(M,α|M ; ord(n, · · · ,−n))

=
odd∏

l+1≤j≤n
(−1)α(ej)

even∏
l+1≤j≤n

(−1)α(e−j)σ(N,α; ord(−l, · · · , l, l, · · · ,−l)),
(3.8)

3To be precise, Z̃N [α] in (3.7) should rather be written as Z̃M [α]Z̃M [α]. However, we can redefine Z̃ on

the boundary to make (3.7) valid. Since A = Cl(1) and gij is diagonal gij = diag(gi), we can do this by

assigning an additional weight
√
gi on a boundary 1-simplex colored by εi ∈ A. In the main text, we will

work with such a redefinition.
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(a) (b)

Figure 3. (a): |in〉 and 〈out| are prepared by the path integral on M and M respectively. (b):

taking the partial trace amounts to gluing M and M , and the resulting surface is denoted as N .

which can be shown by an explicit computation of the Grassmann integral. Then, (3.7) is

rewritten in the form of the path integral on N (see figure 3),

ρI =
∑

α∈Z1(N,Z2)

Z̃N [α]σ(N,α; ord(−l, · · · , l, l, · · · ,−l))(−1)
∫
EN

α

× (c†−l)
α(e−l) · · · (c†l )

α(el) |0〉 〈0| cα(el)

l · · · cα(e−l)

−l ,

(3.9)

where we define EN as

EN := EM + EM +
odd∑

l+1≤j≤n
ej +

even∑
l+1≤j≤n

e−j . (3.10)

One can check that ∂EN correctly gives the dual of w2 on N , when restricted to the interior

of N . Thus, EN actually works as a dual of η on N .

To compute the partial time-reversal of ρI , we express ρI using the coherent state

basis,

ρI =
∑

α∈Z1(N,Z2)

Z̃N [α]σ(N,α; ord(−l, · · · , l, l, · · · ,−l))(−1)
∫
EN

α

×
∫ ←−

d ξ
α(e−l)
−l · · ·

∫ ←−
d ξ

α(el)
l |ξα(e−l)

−l 〉−l ⊗ · · · ⊗ |ξ
α(el)
l 〉

l

×
∫ −→

d ξ
α(el)

l
· · ·
∫ −→

d ξ
α(e−l)

−l l
〈ξα(el)

l
| ⊗ · · · ⊗

−l
〈ξα(e−l)

−l |,

(3.11)

where
∫ ←−
d ξ (resp.

∫ −→
d ξ) denotes the integral which satisfies ξ

∫ ←−
d ξ = 1 (resp.

∫ −→
d ξ ξ = 1).

Now we take the partial time-reversal (3.3) acting on the region I1 =
∑

1≤j≤l ej and

I1 =
∑

1≤j≤l ej ,

ρT1I =
∑

α∈Z1(N,Z2)

Z̃N [α]σ(N,α; ord(−l, · · · , l, l, · · · ,−l))(−1)
∫
EN

α

×
∫ ←−

d ξ
α(e−l)
−l · · ·

∫ ←−
d ξ

α(el)
l |ξα(e−l)

−l 〉−l⊗· · ·⊗|ξ
α(e−1)
−1 〉−1

⊗|iξα(e1)

1
〉
1
⊗· · ·⊗|iξα(el)

l
〉
l

×
∫ −→

d ξ
α(el)

l
· · ·
∫ −→

d ξ
α(e−l)

−l l
〈iξα(el)

l |⊗· · ·⊗ 1〈iξ
α(e1)
1 |⊗

−1
〈ξα(e−1)

−1
|⊗· · ·⊗

−l
〈ξα(e−l)

−l |,

(3.12)
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which is rewritten in the fermion number basis as

ρT1I =
∑

α∈Z1(N,Z2)

Z̃N [α]σ(N,α; ord(−l, · · · ,−1, 1, · · · , l, l, · · · , 1,−1, · · · ,−l))

× (−1)
∫
EN

α
∏

e∈I1∪I1

(−i)α(e) × (c†−l)
α(e−l) · · · (c†−1)α(e−1)(c†1)α(e1) · · · (c†l )

α(el) |0〉

× 〈0| cα(el)
l · · · cα(e1)

1 c
α(e−1)

−1 · · · cα(e−l)

−l .

(3.13)

Now we can explicitly write down the order parameter (3.1) as

trI(ρIρ
T1
I ) =

∑
α∈Z1(N,Z2)

∑
α′∈Z1(N ′,Z2)

Z̃N [α]Z̃N ′ [α
′]σ(N,α; ord(−l, · · · , l, l, · · · ,−l))

× σ(N ′, α′; ord(−l, · · · ,−1, 1, · · · , l, l, · · · , 1,−1, · · · ,−l))

× (−1)
∫
EN

α
(−1)

∫
EN′

α′ ∏
e∈I1∪I1

(−i)α(e)

×
∏

1≤j≤l
δα(e−j)α′(e−j)

δα(ej)α′(ej)δα(e−j)α
′(e−j)δα(ej)α

′(ej)
,

(3.14)

where the expression involves two copies of N evaluating ρT1I and ρI written as N and N ′

respectively. By taking the trace after partial time-reversal, the expression (3.14) looks

like the form of path integral on a space X, which is obtained by gluing N,N ′ along their

boundaries as illustrated in figure 4. Namely, we identify I1 + I1 =
∑

1≤j≤l(ej + ej) on

∂N and ∂N ′, by the orientation reversing map, and I2 + I2 =
∑

1≤j≤l(e−j + e−j) by the

orientation preserving map. Here, the induced map N t N ′ → X is restricted to each N

as N → Ñ , where Ñ is given by identifying two boundary 0-simplices of N contained in

∂(I1 + I1). Then, (3.14) is rewritten in the form of path integral on X as

trI(ρIρ
T1
I ) =

∑
α∈Z1(X,Z2)

Z̃X [α]σ(Ñ , α|
Ñ

; ord(−l, · · · , l, l, · · · ,−l))

× σ(Ñ ′, α|
Ñ ′ ; ord(−l, · · · ,−1, 1, · · · , l, l, · · · , 1,−1, · · · ,−l))

× (−1)

∫
E
Ñ
α
(−1)

∫
E
Ñ′

α
×

∏
e∈I1∪I1

(−i)α(e).

(3.15)

The expression (3.15) looks like the partition function of pin TQFT constructed from

the Grassmann integral (2.7), since both assigns ±i factor to 1-simplices where we reverse

the orientation. We can actually show that these are identical. To see this, we com-

pare (3.15) with the pin− TQFT on X. By integrating out the Grassmann variables living

on boundaries of Ñ and Ñ ′, the pin− TQFT partition function is obtained as

Z[X, η] =
∑

α∈Z1(X,Z2)

Z̃X [α]σ(Ñ , α|
Ñ

; ord(−l, · · · , l, l, · · · ,−l))

× σ(Ñ ′, α|
Ñ ′ ; ord(−l, · · · ,−1, 1, · · · , l, l, · · · , 1,−1, · · · ,−l))

× (−1)
∫
EX

α
even∏
e∈I2

(−1)α(e)
odd∏
e∈I2

(−1)α(e) ×
∏

e∈I1∪I1

(−i)α(e),

(3.16)
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Figure 4. Taking trI(ρIρ
T1
I ) amounts to gluing N and N ′ along boundaries, such that the boundary

1-simplices with the same color in the figure are identified. We are gluing I1 + I1 (red and yellow

curves) by the orientation reversing map, and I2 + I2 (blue and green curves) by the orientation

preserving map. The resulting surface X has a crosscap introduced along I1 + I1.

where EX is the dual of η trivializing w2 + w2
1 on X, whose choice of representative is

described in section 2. By comparing (3.15) with (3.16), one can see these expression are

completely the same, by checking that

E
Ñ

+ E
Ñ ′ +

even∑
ej∈I2

ej +
odd∑
ej∈I2

ej = EX . (3.17)

Thus, we have shown that (3.1) is identical to the partition function of the pin− TQFT,

trI(ρIρ
T1
I ) = Z[X, η]. (3.18)

For instance, we can evaluate trI(ρIρ
T1
I ) for the ground state wave function of the Kitaev

chain described in section 2.5. Using the form of the ABK invariant (2.10), the expression

becomes

trI(ρIρ
T1
I ) = 2−χ(Y )+χ(X)/2ABK[X, η], (3.19)

where Y is a closed surface given by gluing M and M along the boundaries. In particular,

if we choose M as a disk, Y = S2 and X = RP2, which gives

trI(ρIρ
T1
I ) =

1

2
√

2
e±2πi/8. (3.20)

This reproduces the results obtained in [11].

4 Entanglement negativity

In this section, we evaluate the Rényi entanglement negativity of even degree n, which is

defined as

En = log tr[ρT1I (ρT1I )† · · · ρT1I (ρT1I )†], (4.1)

where ρT1I (ρT1I )† is multiplied n/2 times in the above expression. Let us comment on

notations used throughout this section.
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• Following the notation in section 3.1, ρT1I and (ρT1I )† are thought to be a path integral

on surfaces N and N∗ respectively, where N∗ is given by reversing the orientation of

N . For simplicity, N is taken to be a disk. We represent the boundary intervals as

I1, I1, I2, I2 ∈ ∂N (following figure 3(b)), and I1∗ , I1∗ , I2∗ , I2∗ ∈ ∂N∗.

• We introduce the following notation for path integral on an open surface

z[M,ηM , α; ord(e1, e2, . . . , en)] := σ(M,α; ord(e1, e2, . . . , en))(−1)
∫
EM

α
, (4.2)

where e1, e2, . . . , en are boundary 1-simplices of M . It is convenient to mention the

behavior of the path integral under gluing surfaces. Let us consider gluing two open

surfaces M , M ′ along the boundary interval I, whose 1-simplices are denoted as

ẽ1, ẽ2, . . . , ẽm. If we denote the resulting surface X, we have the following relation

between the path integral before and after gluing,

z[M,ηM , α; ord(e1, . . . , el, ẽ1, . . . , ẽm)]z[M ′, ηM ′ , α; ord(ẽm, . . . , ẽ1, e1′ , . . . , el′)]

= z[X, ηX , α; ord(e1, . . . , el, e1′ , . . . , el′)],

(4.3)

where we defined EX as

EX := EM + EM ′ +

+∑
ẽ∈I

ẽ, (4.4)

where the sum runs over boundary 1-simplices of M contained in I, rounding a

2-simplex of M whose sign is +.

We aim to show that the quantity eEn is identified as a path integral of the TQFT on a

certain closed surface. To do this, we start with examining how the surface looks like. We

can obtain the resulting surface by gluing each N and N∗ step by step; (i) multiplying ρT1I
and (ρT1I )†, (ii) multiplying ρT1I (ρT1I )†s and taking the trace.

Let us begin with the first step. Since ρT1I (3.13) has an outgoing state in the interval

I1 and I2 of ∂N , taking ρT1I (ρT1I )† amounts to gluing N and N∗ along I1, I2 and I1∗ , I2∗ ,

making up a cylinder. See figure 5(a). Similarly, one finds that gluing two ρT1I (ρT1I )†s

gives a torus with two punctures, by gluing two copies of cylinder along I1∗ , I2∗ and I1, I2,

see figure 5(b). Then, En amounts to successive gluing of n/2 cylinders, which gives an

oriented closed surface Σg(n) with genus g(n) = n/2 − 1. Actually, we will show that the

Rényi negativity is directly associated with the partition function of spin TQFT as

eEn = Z[Σg(n), η] =
∑

α∈Z1(Σg(n),Z2)

Z̃Σg(n) [α]z[Σg(n), η, α], (4.5)

which will be demonstrated in the following subsection. Though we will mainly work on

the Kitaev chain wave function, the above correspondence is safely extended for generic

spin TQFT prepared by a Z2-graded Frobenius algebra (see A).
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(a)

(b)

Figure 5. (a): the computation of ρT1I (ρT1I )† gives a path integral on a cylinder. (b): taking

ρT1I (ρT1I )†ρT1I (ρT1I )† gives a path integral on a torus with two punctures.

4.1 Evaluation of entanglement negativity

Let us turn to the explicit computation of eEn . For notational simplicity, we ignore the

shadow theory part in ρT1I , (ρT1I )† shown in (3.13) and just focus on the Grassmann integral

part, and write

ρT1I ≈ z[N, ηN , α; ord(−l, · · · ,−1, 1, · · · , l, l, · · · , 1,−1, · · · ,−l)],
(ρT1I )† ≈ z[N∗, ηN∗ , α; ord(−l∗, · · · ,−1

∗
, 1∗, · · · , l∗, l∗, · · · , 1∗,−1∗, · · · ,−l∗)].

(4.6)

Here, we omitted the imaginary factor
∏
e∈I1∪I1(−i)α(e) in ρT1I in (3.13), since this contri-

bution cancels out with that of (ρT1I )† when evaluating the moment. From now on, let us

simply write the r.h.s. of (4.6) as z[N, ηN , α] and z[N∗, ηN∗ , α] respectively. If we write the

cylinder as X0 obtained by gluing N and N∗ as shown in figure 5, using (4.3) we have

z[N, ηN , α]z[N∗, ηN∗ , α] = z[X0, ηX0 , α], (4.7)

where the ordering of boundary 1-simplices of X0 is induced from those of N , N∗. This

allows us to write ρT1I (ρT1I )† in a similar fashion to (4.6) as

ρT1I (ρT1I )† ≈ z[X0, ηX0 , α]. (4.8)

If we further glue two cylinders like figure 5(b), we have

z[X0, ηX0 , α]z[X ′0, ηX′0 , α] = z[X1, ηX1 , α], (4.9)
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where X0, X ′0 denotes two copies of cylinder, and X1 is a two-punctured torus given by

gluing two cylinders. By successive gluing of cylinders, if we let Xg denote a genus g surface

with two punctures, one finds

ρT1I (ρT1I )† · · · ρT1I (ρT1I )† ≈ z[Xg(n), ηXg(n) , α]. (4.10)

Finally, we obtain a closed surface with genus g(n) = n/2 − 1 by taking the trace of the

equation (4.10),

tr[ρT1I (ρT1I )† · · · ρT1I (ρT1I )†] ≈ z[Σg(n), ηΣg(n) , α]. (4.11)

Now let us examine what the induced structure ηΣg(n) is like. First, it is not hard to see that

ηΣg(n) correctly gives a trivialization of w2, δη = w2, thereby defining a spin structure on

Σg(n). We can further show that the induced spin structure η is equivalent to a connected

sum of g(n) copies of (NS, NS) torus. To see this, let us first determine the spin structure

measured around a cylinder X0 given by gluing N and N∗ (figure 5(a)). In this case, if we

denote Cχ as a cycle around a cylinder, we have

z[N, ηN , χ]z[N∗, ηN∗ , χ] = z[X0, ηX0 , χ], (4.12)

where χ is a dual 1-cocycle of Cχ. Since the configuration of Cχ can be chosen in a

symmetric fashion such that z[N, ηN , χ] and z[N∗, ηN∗ , χ] are identical, we see that the

l.h.s. of (4.12) is 1. Thus, we have z[X0, ηX0 , χ] = 1, which means that the induced spin

structure is NS around Cχ. Using the same logic for the other cycles of Σg(n), we see that

the spin structure is NS for all fundamental cycles of Σg(n), hence we have a connected sum

of g(n) copies of (NS, NS) tori.

Recalling that a bosonic shadow theory and the summation over α is omitted in the

equation (4.11), we obtain

tr[ρT1I (ρT1I )† · · · ρT1I (ρT1I )†] =
∑

α∈Z1(Σg(n),Z2)

Z̃Σg(n) [α]z[Σg(n), η, α] = Z[Σg(n), η]. (4.13)

This is what we wanted to achieve. We have shown that the moments of partial time-

reversal are identical to the partition functions on a surface with genus g(n) with NS spin

structure for all fundamental cycles. If we employ the ground state wave function of the

Kitaev chain described in section 2.5, we obtain

eEn =
√

2
4−3n

. (4.14)

5 Moments of partial time-reversal

In this section, we compute the moments of partial time-reversal for any power

Zn = tr[ρT1I · · · ρ
T1
I ],

Z̃n = tr[ρT̃1I · · · ρ
T̃1
I ],

(5.1)
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where ρT̃1I denotes the partially transposed density matrix twisted by the fermion number

parity (−1)F1 of the interval I1 [36],

ρT̃1I := ρT1I (−1)F1 . (5.2)

Here, we note that Z̃n coincides with the moment of partial time-reversal eEn computed in

section 4 when n is even, because

(ρT1I )† = (−1)F1ρT1I (−1)F1 . (5.3)

As well as the case of En, these moments can also be represented as a partition function

on a surface Σg with genus g where g = n/2 − 1 for an even n, and g = (n − 1)/2 for an

odd n. Interestingly, we find that Zn shows the following Z8 effect, while Z̃n just shows

even/odd effect,

Zn = (2
√

2)−2g ×



+1/2 n = 0 mod 8

+1 n = ±1 mod 8

0 n = ±2 mod 8

−1 n = ±3 mod 8

−1/2 n = 4 mod 8

(5.4)

Z̃n = (2
√

2)−2g ×

{
1/2 n = 0 mod 2

0 n = 1 mod 2,
(5.5)

for the wave function of Kitaev chain described in section 2.5.

Here, let us outline the key steps of the computation, focusing on Zn. The evaluation

of Zn runs largely parallel to the case of the entanglement negativity eEn in section 4. First,

let us drop the imaginary factor
∏
e∈I1∪I1(−i)α(e) in ρT1I (3.13) supported on I1∪ I1. Then,

analogously to section 4, Zn is regarded as the path integral on some surface X given by

gluing n copies of N . During the process of the successive gluing of surfaces, let us denote

the intermediate surface obtained by gluing k copies of N which corresponds to (ρT1I )k as

N (k). Then, every time we glue the (k + 1)th copy of N with N (k) along the interval in

∂N (k), to evaluate (ρT1I )k+1, we have the following relation between the partition function

before and after gluing using (4.3),

z[N (k), ηN(k) , α]z[N, ηN , α] = z[N (k+1), ηN(k+1) , α]. (5.6)

By successively applying this relation and taking the trace in the last step, we finally obtain

EX , dual of ηX induced on the resulting surface X which corresponds to Zn. Hence, if we

ignore the imaginary factor
∏
e∈I1∪I1(−i)α(e) in ρT1I (3.13), Zn would be associated with

the partition function on X as

Z[X, ηX ] =
∑

α∈Z1(X,Z2)

Z̃X [α]z[X, ηX , α] =
∑

α∈Z1(X,Z2)

Z̃X [α]σ(X,α)(−1)
∫
EX

α
. (5.7)
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The above expression does not necessarily give the partition function of spin TQFT, since

EX constructed above may or may not provide the correct trivialization of w2.

Next, we incorporate the effect of the imaginary factor
∏
e∈I1∪I1(−i)α(e) in ρT1I (3.13)

supported on I1 ∪ I1. The imaginary factor introduces the shift of the spin structure. This

factor acts as the “half of fermion parity” on the fermions living in I1 ∪ I1. Hence, if we

glue two copies of N along I1 and I1, the doubled imaginary factor gives the fermion parity

twist to the resulting surface, inserted in the interval where we glued them, see figure 6(a).

Accordingly, every time we glue surfaces along I1 ⊂ ∂N (k) and I1 ⊂ ∂N , we introduce the

twist by fermion parity in the resulting surface. The fermion parity twist leads to the shift

of ηX , which is expressed as ηX → ηX + χ where χ is the dual of the 1-cycle Cχ in which

we insert the twist. Incorporating this effect to the expression (5.7), we find that Zn is

given by

Zn = Z[X, ηX + χ] =
∑

α∈Z1(X,Z2)

Z̃X [α]σ(X,α)(−1)
∫
EX+Cχ

α
. (5.8)

The above expression becomes the partition function of spin TQFT, if EX + Cχ gives the

trivialization of w2 correctly. Summarizing, the computation of the moment Zn proceeds

as follows.

1. Firstly, we ignore the imaginary factor on I1 ∪ I1 in (3.13), and write Zn without the

imaginary factor as the path integral in the form of (5.7).

2. Then, we introduce the effect of the imaginary factor, which shifts EX by the fermion

parity twist line Cχ. Zn is eventually expressed as (5.8).

In the following subsection, we explicitly compute Zn following the above procedure, di-

viding into the cases of even or odd n. Though we will mainly work on the Kitaev chain

wave function, the following analysis is safely extended for generic spin TQFT prepared by

a Z2-graded Frobenius algebra (see A).

5.1 Even powers

For even n, the resulting surface X becomes an oriented closed surface Σg with genus

g = n/2 − 1, see figure 6(b) for the case of n = 4. In this case, one can check that EX
in (5.7) correctly provides the trivialization of w2, hence (5.7) represents a spin TQFT. In

the same way as the case of the entanglement negativity, the induced spin structure ηX is

given by the connected sum of g copies of (NS, NS) torus.

Then, let us consider the effect of the imaginary factor, which makes Zn different from

the case of the entanglement negativity eEn . As we discussed above, this factor shifts the

spin structure of the resulting surface, by inserting the fermion parity twist in the interval

where we glued the copies of N , see figure 6(a). For instance, in the case of n = 4, the

twist lines run along two fundamental cycles of the torus, shifting the spin structure from

(NS, NS) to (R, R), see figure 6(b). Generally, one can see that Σg is a connected sum of

(g + 1)/2 copies of tori with (R, R) spin structure, and (g − 1)/2 copies of tori with (NS,

R) spin structure when n = 0, 4 mod 8.
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(a)

(b)

Figure 6. Every time we glue surfaces along I1 and I1, we introduce the twist by the fermion

parity in the resulting surface along the gluing interval. (a): when we glue two copies of N to take

the square of ρT1I , we introduce the fermion parity twist along the red line in the resulting cylinder.

The induced spin structure is Ramond. (b): when we glue four copies of N to take the fourth power

of ρT1I , we introduce the fermion parity twist along the red line in the resulting punctured torus. If

we close the puncture by taking the trace, the induced spin structure on the torus is (R, R).

However, for the case of n = 2, 6 mod 8, the line of the fermion parity twist is no longer

closed, which introduces the vortex of the fermion parity at the end of the twist line. This

violates the gauge invariance under α → α + δλ of the theory (2.1). Thus after summing

over α ∈ Z1(M,Z2) the partition function becomes zero. Hence, we conclude that Zn = 0

when n = 2, 6 mod 8, as shown in (5.4).

Now let us evaluate Zn for the ground state wave function of the Kitaev chain described

in section 2.5, when n = 0, 4 mod 8. The phase of Zn is given by the Arf invariant of Σg

equipped with the spin structure discussed above. Recalling the Arf invariant on the torus

becomes +1 for (NS, R) and −1 for (R,R), the Arf invariant for Σg becomes −1 for n = 4

mod 8, and +1 for n = 0 mod 8. If we correctly normalize the wave function to match the

amplitude, Zn for n = 0, 4 mod 8 is given by (5.4).

5.2 Odd powers

For odd n, the resulting surface X is Σg with genus g = (n−1)/2. In this case, EX in (5.7)

does not give the trivialization of w2. One can check that ∂EX becomes the set of all

0-simplices of the barycentric subdivision in X, except for a pair of 0-simplices which are

denoted as v1 and v2, where the equation δη = w2 is violated.

Then, let us incorporate the effect of the fermion parity twist. For odd n, the network

Cχ of fermion parity twist has two junctions where n twist lines gather at a point. The
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network becomes not closed at the junctions, and one can check that v1, v2 are exactly

where the two junctions live. Thus, EX +Cχ in (5.8) correctly gives the spin structure on

X after all. The spin structure induced by EX +Cχ on X = Σg is determined by the same

logic described around (4.12), and summarized as follows.

On one hand, if n = 4m+ 1, the spin structure is given by the connected sum of g/2

copies of (R, R) tori and g/2 copies of (NS, R) tori. Especially, for n = 1, X is a sphere

equipped with a spin structure. On the other hand, if n = 4m + 3, the spin structure is

given by the connected sum of (g + 1)/2 copies of (R, R) tori and (g − 1)/2 copies of (NS,

R) tori.

Let us evaluate Zn for the ground wave function of the Kitaev chain described in

section 2.5, when n = 1, 3, 5, 7 mod 8. The phase of Zn is again given by the Arf invariant

of Σg equipped with the spin structure discussed above. One can see that the Arf invariant

for Σg becomes −1 for n = ±3 mod 8, and +1 for n = ±1 mod 8. If we correctly normalize

the wave function to match the amplitude, Zn for n = 1, 3, 5, 7 mod 8 is given by (5.4).

5.3 Spectrum of partial time-reversal

Once we have determined the moments for any degree, it is a simple matter to obtain the

spectrum of partial time-reversal ρT1I for Kitaev chain wave function. First, due to the mod

8 periodicity of Zn, the phases of eigenvalues of ρT1I are all quantized as the eighth root

of unity. Since we have Z8n = 4 × (2
√

2)−n, the spectrum consists of four nonzero values

whose absolute values are 1/(2
√

2), otherwise zero. By further matching the spectrum with

the obtained value of Zn, we see that the four nonzero eigenvalues of ρT1I are given by{
1

2
√

2
eiπ/4,

1

2
√

2
eiπ/4,

1

2
√

2
e−iπ/4,

1

2
√

2
e−iπ/4

}
. (5.9)

6 Partial reflection

In this section, we discuss another quantized non-local order parameter for (1+1)d SPT

phases protected by spatial reflection symmetry, proposed in [11]. The proposed quantity is

associated with operating the reflection partially on the state. Concretely, let us consider

the ground state of the SPT phase |ψ〉 protected by the spatial reflection symmetry R,

where we have R|ψ〉 = |ψ〉. Then, the “partial reflection” is defined as

〈ψ|Rpart |ψ〉 , (6.1)

where Rpart denotes an operator which reflects a segment in the lattice system. As well

as the partial time-reversal in section 3, the partial reflection diagnoses the Z8 classifica-

tion of (1+1)d topological superconductors protected by reflection symmetry R satisfy-

ing R2 = (−1)F .

In the following, we compute the partial reflection (6.1) on the state prepared by the

pin− TQFT (3.5), (3.6), and show that (6.1) is identical to the partition function of the

pin− TQFT,

〈ψ|Rpart |ψ〉 = Z[X, η], (6.2)

where X is a closed pin− surface which generates the pin− bordism group Ωpin−

2 (pt) = Z8.
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6.1 Evaluation of partial reflection

We prepare the SPT state |in〉 in the form of (3.5), via the path integral on an open surface

M . Let the partial reflection Rpart act on the interval I in ∂M , expressed in figure 3. The

action of Rpart on fermion operators is then given by

RpartcjR−1
part =

{
ic−j ej ∈ I
cj otherwise,

Rpartc
†
jR
−1
part =

{
−ic†−j ej ∈ I
c†j otherwise.

(6.3)

Then, the order parameter is given by

〈out|Rpart|in〉 =
∑

α∈Z1(M,Z2)

∑
α′∈Z1(M,Z2)

Z̃M [α]Z̃M [α′]σ(M,α; ord(−n, · · · , n))

× σ(M,α′; ord(n, · · · ,−n))(−1)
∫
EM

α
(−1)

∫
E
M
α′

×
∏

1≤j≤l
(−i)α(ej)(−i)α(e−j) × sgn[α(e−l) · · ·α(el)]

×
∏

1≤|j|≤l

δα(ej)α′(e−j)

∏
l+1≤|j|≤n

δα(ej)α′(ej)
,

(6.4)

where sgn[α1 . . . αn] is a fermionic sign associated with reordering ε1 . . . εn into εn . . . ε1,

where εi carries fermion parity αi. The expression looks like path integral on the manifold

X given by gluing M and M via the partial reflection, i.e., identifying the interval I with I

by the orientation reversing map and the complement by the orientation preserving map.

Here, the induced map M tM → X is restricted to M as M → M̃ , where M̃ is given by

identifying two 0-simplices contained in ∂I on ∂M , since these two 0-simplices are identified

in X. Similarly, we also have the restriction M → M̃ .

Since the product of the shadow theories on M and M defines a shadow theory on X,

one can rewrite the above expression as

〈out|Rpart|in〉 =
∑

α∈Z1(X,Z2)

Z̃X [α]σ(M̃, α|
M̃

; ord(−n, · · · , n))σ(M̃, α|
M̃

; ord(n, · · · ,−n))

× (−1)

∫
E
M̃
α|
M̃ (−1)

∫
E
M̃

α|
M̃
∏
e∈I

(−i)α(e) × sgn[α(e−l) · · ·α(el)],

(6.5)

where α|
M̃

(resp. α|
M̃

) represents the restriction of α ∈ Z1(X,Z2) to M̃ (resp. M̃), and E
M̃

is an image of EM under M → M̃ . We can show that the quantity (6.5) gives the partition

function of the pin− invertible TQFT defined on X. This is done by comparing (6.5) with
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the partition function of the pin− TQFT given by

Z[X, η] =
∑

α∈Z1(X,Z2)

Z̃X [α]σ(M̃, α|
M̃

; ord(−n, · · · , n))σ(M̃, α|
M̃

; ord(n, · · · ,−n))

× (−1)
∫
EX

α
odd∏

l+1≤j≤n
(−1)α(ej)

even∏
l+1≤j≤n

(−1)α(e−j)

×
∏
e∈I

(−i)α(e) × sgn[α(e−l) · · ·α(el)].

(6.6)

Comparing the equation (6.5) with (6.6), one finds that these expressions are identified if

E
M̃

+ E
M̃

+

odd∑
l+1≤j≤n

ej +

even∑
l+1≤j≤n

e−j = EX , (6.7)

where ∂EX is the dual of w2 + w2
1 on X, specified in section 2.2. Here, we note that the

boundary contribution of E
M̃

, E
M̃

cancel out, once we postulate the reflection symmetry

of the state R|in〉 = |in〉, making ∂EM reflection symmetric on ∂M . Then, we can check

that the l.h.s. of (6.7) gives the correct trivialization of w2 + w2
1 on X. Hence, we have

shown that

〈out|Rpart|in〉 = Z[X, η]. (6.8)

For instance, let us evaluate the quantity in the wave function of the Kitaev chain described

in section 2.5. Using the form of the ABK invariant (2.10), the expression becomes

〈out|Rpart|in〉 = 2−χ(Y )/2+χ(X)/2ABK[X, η], (6.9)

where Y is a closed surface given by gluing M and M along the boundaries. In particular,

if we choose M as a disk, Y = S2 and X = RP2, which gives

〈out|Rpart|in〉 =
1√
2
e±2πi/8. (6.10)

This reproduces the results obtained in [11].

7 Conclusions

In conclusion, we explicitly computed entanglement measures and quantized non-local or-

der parameters for fermionic SPT phases in the framework of spin/pin TQFT. We clarified

the properties of order parameters defined via partial operations, as topological invariants

diagnosing the Z8 classification of (1+1)d fermionic SPT phases in class BDI and D+R−.

Moreover, we demonstrated that these order parameters have universal amplitudes, in-

dicating a topological origin such as the quantum dimension of the boundary Majorana

modes. Furthermore, we revealed that the moments of partial time-reversal have the mod

8 periodicity, which leads to the eight-fold quantization of the negativity spectrum.

– 25 –



J
H
E
P
0
1
(
2
0
2
0
)
1
2
1

There are several avenues to pursue for future research. First, a natural extension

of the present paper is to explore the formulation in higher dimensions. In this case, we

should be able to prepare a wave function in the form of tensor network state, from a path

integral of spin/pin TQFT in generic dimension. In higher dimensions, it is suggested [17]

that fermionic SPT phases with point group symmetries can be detected by partial point

group operations. It is interesting to formulate the partial point group operation and its

relationship to path integral of lattice TQFT. It also remains open for future works to

examine entanglement properties of spin/pin TQFT in higher dimensions.

Furthermore, it is worth investigating entanglement measures studied in the present

paper for conformal field theory (CFT) coupled with a spin structure. Since we can obtain

a fermionic CFT by coupling a bosonic CFT with a spin/pin TQFT, we believe that our

formulation of entanglement measures is useful in studying entanglement properties of

fermionic CFT. Especially, it was demonstrated in [36] that a critical Majorana chain with

c = 1/2 shows the six-fold quantization of the negativity spectrum, which resembles the

eight-fold quantization in spin TQFT discovered in the present paper. It is conceivable

that the six-fold quantization for eigenvalues of ρT1I is a universal nature of spin CFT not

limited to a Majorana chain, since the moment of partial time reversal is associated with a

three point function of twist fields of CFT. The derivation of the six-fold quantization for

the case of fermionic CFT is left for a future work.
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A Partial time-reversal: cases with general Frobenius algebra

In this appendix, we formulate partial time-reversal for spin/pin TQFT wave function

prepared by a Z2 graded Frobenius algebra A. In a similar way to section 3.1, we prepare

the Hilbert space on S1 = ∂M , and let e−n, . . . , en as boundary 1-simplices. Then, the

state is expressed like (3.5), (3.6) as

|in〉 =
∑

α∈Z1(M,Z2)

∑
A⊗̂2n

Z̃M [α]σ(M,α; ord(−n, · · · , n))(−1)
∫
M η∪α |ε−n . . . ε−1ε1 . . . εn〉 ,

(A.1)

〈out| =
∑

α∈Z1(M,Z2)

∑
A⊗̂2n

Z̃M [α]σ(M,α; ord(n, · · · ,−n))(−1)
∫
M η∪α 〈εn . . . ε1ε−1 . . . ε−n| ,

(A.2)

where the sum for A⊗̂2n runs over the elements |ε−n . . . ε−1ε1 . . . εn〉 with a fixed Z2 grading

specified by α on the boundary. To formulate the partial time-reversal, we need to give a
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definition of the inner product and the trace. We postulate that

〈εi|εj〉 = tr(|εi〉 〈εj |) = gij , (A.3)

where gij is the weight on 1-simplices in the state sum of the shadow theory Z̃. When the

above inner product is a sesquilinear positive definite form, and further A is a commutative

Frobenius algebra equipped with a structure of a ∗-algebra Cijk = Ci∗kj , then the theory is

guaranteed to be unitary [21]. In the following, we assume that A satisfies these properties.

Then, replicating the logic of section 3.1, the reduced density matrix for the interval I =⋃
1≤|j|≤l ej is given in the form of (3.9),

ρI =
∑

α∈Z1(N,Z2)

∑
A⊗̂4l

Z̃N [α]σ(N,α; ord(−l, · · · , l, l, · · · ,−l))(−1)
∫
EN

α

× |ε−l . . . εl〉 〈εl . . . ε−l| .
(A.4)

Imitating the case of A = Cl(1) expressed in (3.13), we define the partial time-reversal for

ρI as

ρT1I =
∑

α∈Z1(N,Z2)

Z̃N [α]σ(N,α; ord(−l, · · · ,−1, 1, · · · , l, l, · · · , 1,−1, · · · ,−l))

× (−1)
∫
EN

α
∏

e∈I1∪I1

(−i)α(e) × |ε−l . . . ε−1ε1 . . . εl〉 〈εl . . . ε1ε−1 . . . ε−l| .
(A.5)

Based on the above definition of partial time-reversal, we can compute the entanglement

negativity and moment of partial time-reversal for generic wave function of spin TQFT in

the same fashion as section 4, 5. It is straightforward to see that the results presented in

section 4, 5 are also true for generic spin TQFT on lattice. The results in section 3, 6 are

also extended to pin− TQFT on lattice constructed from A.
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