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1 Introduction

One of the most intriguing discoveries in the past decade is finding interesting connec-

tions between different quantum notions of information theory with quantum gravity and

quantum field theory. These connections have been provided through Gauge/Gravity du-

ality which the first one of them is reproducing entanglement entropy of conformal field

theories (CFTs) using minimal co-dimension two surfaces in geometry of asymptotically

locally AdS (AlAdS) spacetimes [1, 2]. Intriguingly, this surface, which is known as the

Ryu-Takayanagi surface, is also observed in a completely different area i.e. multi-scale en-

tanglement renormalization ansatz (MERA) for a ground state of critical systems. It is

observed by Swingle [3] that the Ryu-Takayanagi curve is similar to a special curve with

minimum length in MERA tensor network and this similarity implies that gravity is an

emergent quantity, indeed it emerges from entanglement entropy. Albeit this is a genuine

idea, but it is discussed by Susskind [4] that entanglement entropy is not enough since it can

not give information about the interior of black hole. This latter claim was a starting point

to use another notion of quantum information theory in high energy physics community,

i.e. computational complexity or more precisely state complexity.
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According to complexity action (CA) proposal of Susskind [5–7], the complexity of

a boundary state is dual to a value of gravitational action in a special part of spacetime,

known as WDW patch, which interestingly contains also the black hole interior. It is shown

by Lloyd [8] that the complexity growth rate for a given state is smaller than twice the

average energy of the system at that state and intriguingly the CA proposal gives the same

value for neutral black holes at late times [6, 9, 10]. The ability of CA proposal to probe

the interior of black holes not only gives us the opportunity to understand thermalization

process in quantum many-body systems better, but also, by using that, one can hopefully

resolve the black hole information paradox. Moreover, this proposal can play a great role in

improving our understanding about scrambling and quantum chaos [11], ER=EPR [12] and

firewalls [13, 14]. It is worth noting that the main idea for this holographic proposal comes

from rigorous computations for quantum mechanical systems. Accordingly, to understand

the holographic results better, before anything, one needs to develop state complexity for

QFTs with infinite degrees of freedom.

Let us remind that the complexity of a state |ΨT〉 in a system of qubits is defined as the

minimum number of gates which are needed to approximately produce target state from a

reference state, |ΨR〉. The reference state is chosen as a state with no spatial entanglement

entropy, i.e. ground state of a Hamiltonian with a very large mass in comparison with

the kinetic term. Moreover, the gates are unitary operators and one calls the sequence of

gates a circuit. Two main extensions of this idea have been recently made to quantify state

complexity in QFTs. The first extension [15] is based on the idea of Nielsen [16–18] in which,

one associates a geometry to the space of unitaries based on the algebra of gates. Then

finding the optimal circuit is mapped to finding a minimal geodesic in the space of unitaries

and the state complexity becomes the length of that geodesic. Up to now, this procedure

has been well established for the free bosonic and fermionic QFTs [19–24] and preliminary

steps for weakly interacting theories has been done in [25]. In the second extension, the

optimal circuit is mapped to an optimized path integral definition of the target state [26, 27].

The intuition behind this extension comes from noting the relation between MERA and

discretized path integral representation of a state. Accordingly, the cost of computing path

integral on a Weyl-rescaled geometry is less than the cost of computing it on a flat two-

dimensional lattice. This cost is quantified by Liouville action and very interestingly it is

shown [28] that this action has a deep connection with the length of minimal geodesics in

the Nielsen approach i.e. in the first extension. Remarkably, both of the above extensions

give rise to UV divergences similar to the ones in holographic computations. We explore

the first extension in this paper and we discuss path integral complexity no more.

Recently, Chapman, Eisert, Hackl, Heller, Jefferson, Marrochio and Myers [29] evalu-

ated the complexity of TFD state of a free scalar field theory. Their study led to discovery

a cost function which is completely consistent with the properties of holographic complex-

ity in the absence of any background charge. To discover these similarities, one special

cost function, known as F1 which will be explained below, is used for counting gates. By

this cost function, the length of the path which connects reference state to the target state

depends on the basis chosen for generators. Intriguingly, the advantage of this basis de-

pendence has been taken in evaluating the complexity of formation and it is shown that it
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can produce the complexity of formation that compares well with holographic results. For

U(1) charged black holes, a generalization of Lloyd’s bound has been proposed [6],

dCA
dt
≤ 2

π
[(M − µQ)− (M − µQ)gs] , (1.1)

where the subscript gs indicates a state which for a given chemical potential gives the

lowest (M − µQ). For charged small black holes, i.e. for the ones where the size of the

horizon is much smaller than AdS radius, the rate of the change of complexity at late times

saturates the bound
dCA
dt

=
2

π
(M − µQ), (1.2)

where for a given µ, the smallest value of (M − µQ) is zero. In this paper, we would

like to extend the analysis of [29] to free complex scalar QFT in the presence of chemical

potential. To be more precise, we would like to check whether that special cost function

can also provide similar results with the holographic proposal (1.1), i.e., a linear growth of

complexity at late times, its dependency on the detailed structure of null boundary terms,

its UV divergence as spatial volume and its IR divergence for vanishing temperature at a

fixed chemical potential. We will show that in contrast with holographic results, at late

times, no linear growth appears in our calculation of complexity. It can be anticipated

since the holographic results are applicable for strong interacting theories, but our results

are obtained for free theory. Moreover, we see that, similar to the holographic proposal,

the QFT result for complexity based on using F1 cost function in Left-Right (LR) has IR

divergences in the limit of zero temperature along with volume UV divergence. Further-

more, we discuss that by minor modification in the holographic proposal (adding a behind

the horizon cut off), the detailed structure of null boundary terms can be encoded in the

QFT results.

We organize the paper as follows: In section 2, we reconstruct the cTFD state of

free complex scalar theory by putting it on a lattice with a UV cut off. In the same

section, the time-dependent cTFD state is also studied. In section 3, after a brief review of

covariance matrix formalism for manipulating the state complexity, we proceed to evaluate

the complexity and its time dependency for cTFD state. In section 4 we extend the same

analysis for continuous system and confirm that the prefer cost function introduced in [29]

continues to work also in the presence of U(1) global charge. In appendix A some definitions

are provided. Moreover, in appendix B the similar results for another basis are presented,

i.e. diagonal one and in appendix C more concrete comparison with holographic complexity

of charged black holes is provided.

Note added. When our paper was in the final stage to be submitted to arxiv, the

paper [30] appeared which studied the same problem. The main difference between our

approach with theirs is that we just have particles on the left side and as a result, just

anti-particles on the right side. But their cTFD is made of particles and anti-particles on

both sides, so their cTFD is a tensor product of our cTFD and a state with anti-particles

on the left side and particles on the right. Our approach divides the phase space in half.

Furthermore, it let us reach the conformal limit of the theory.
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2 cTFD states

In this section, we construct the cTFD state in the Hilbert space of free complex scalar

theory. Just for simplicity we consider this theory in (1+1) dimensions and in section 4, we

easily extend the study to general dimensions. The Lagrangian density of a free complex

scalar field is given by

L = (DµΦ)(DµΦ)∗ −m2ΦΦ∗, (2.1)

where the covariant derivative is defined by Dµ = ∂µ − iqAµ. For the background electric

field, Aµ=(−µ, 0), so this Lagrangian density is simplified to

L = Φ̇Φ̇∗ − ∂~xΦ∂~xΦ∗ − iµq(Φ̇Φ∗ − ΦΦ̇∗)− (m2 − q2µ2)ΦΦ∗, (2.2)

with the dot means derivative with respect to the time. The conjugate momentums are

given by

Π =
∂L
∂Φ̇

= Φ̇∗ − iµqΦ∗, Π∗ =
∂L
∂Φ̇∗

= Φ̇ + iµqΦ, (2.3)

and the Hamiltonian on a circle with circumference L becomes

H =

∫ L
2

−L
2

dx
(

ΠΠ∗ − iµq (ΠΦ−Π∗Φ∗) + ∂xΦ∂xΦ∗ +m2ΦΦ∗
)
. (2.4)

To regulate this theory in the UV, we consider that circle as a lattice with N sites and

lattice spacing δ which it implies that

δ =
L

N
, xa = Φ(xa)δ, pa = Π(xa), (2.5)

with xa, pa are redefined canonical variables and xN+1 = x1 and pN+1 = pN . Following

by these variables, the Hamiltonian (2.4) changes to

H =
N∑
a=1

(
δpap∗a − iµq (paxa − p∗ax∗a) +

m2

δ
xax∗a +

1

δ3
(xa+1 − xa)

(
x∗a+1 − x∗a

))
. (2.6)

By defining the following canonical transformation in momentum variable

p′a = pa + i
µq

δ
x∗a, (2.7)

the Hamiltonian (2.6) becomes

H =

N∑
a=1

(
δp′ap′∗a +

m2 − µ2q2

δ
xax∗a +

1

δ3
(xa+1 − xa)

(
x∗a+1 − x∗a

))
. (2.8)

To decompose the contribution of different modes, one can use discrete Fourier transfor-

mation of variables as follows

x̃k =
1√
N

N∑
a=1

e
2πika
N xa, p̃′k =

1√
N

N∑
a=1

e
−2πika
N pa, (2.9)
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where x̃∗k = x̃N−k and similarly for the momentum variable. According to (2.9), the

Hamiltonian (2.8) reduces to

H =

N−1∑
k=0

(
δ |p̃′k|2 +

m2 − µ2q2 + 4
δ2 sin2(πkN )

δ
|x̃k|2

)
. (2.10)

Now using the Fourier transformation p̃′k = p̃k + iµqδ x̃∗N−k, the Hamiltonian (2.10)

changes to

H =
N−1∑
k=0

(
δ |p̃k|2 +

ω2
k

δ
|x̃k|2 − iµq

(
p̃k x̃N−k − p̃∗k x̃∗N−k

))
, (2.11)

where ωk is given by

ω2
k = m2 +

4

δ2
sin2

(
πk

N

)
. (2.12)

To construct the cTFD state of theory (2.11), one needs to quantize its Hamiltonian and

it can be achieved by defining two sets of creation and annihilation operators

x̃k =

√
δ

2ωk

(
âN−k + b̂†k

)
, p̃k = i

√
ωk
2δ

(
â†k − b̂N−k

)
, (2.13)

with [âk, â
†
k] = [b̂k, b̂

†
k] = 1 and other commutators are zero. Let remind that (âk, â

†
k)

and (b̂k, b̂
†
k) are respectively the “annihilation, creation” operators for particles and anti-

particles. Substituting (2.13) in (2.11) gives the following quantized Hamiltonian,

Ĥ =

N−1∑
k=0

ωk

(
â†k âk + b̂†k b̂k + 1

)
+ µq

(
â†kâk − b̂

†
k b̂k

)
. (2.14)

The Hamiltonian (2.14) contains two different parts. One part describes two standard

harmonic oscillators for each mode (constant momentum k)

Ĥ0 =

N−1∑
k=0

ωk

(
â†k âk + b̂†k b̂k + 1

)
. (2.15)

By noting that the U(1) electric Noether charge associated to the complex scalar field

reads as

Q = q

∫
dx
(

Φ∗Φ̇− ΦΦ̇∗
)
, (2.16)

the second part is the product of this charge operator with chemical potential

µQ̂ =

N−1∑
k=0

µq
(
â†k âk − b̂

†
k b̂k

)
. (2.17)

Accordingly, the Hamiltonian (2.11) constitutes N decoupled harmonic oscillators with

equal masses M = δ−1 (not to be confused with the physical mass m) and k-dependent

frequencies ωk. If we omit the constant part, the total energy of level “n” for each of these
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oscillators with fixed momentum k is given by n (ωk + µq). Since ω0 vanishes when m = 0,

the zero mode Hamiltonian does not have a normalizable ground state. But it can be

regularized by introducing a very small dimensionless mass, mL� 1. Moreover, since each

mode k in (2.11) is decoupled from the other modes, the respective cTFD state will be the

product of cTFD states for each oscillator. Accordingly, in the following, we focus on a

single mode (fixed momentum k) and construct its time-dependent cTFD state. To attain

that, let us remind that in thermal equilibrium, the ensemble average of any operator is

given by

〈Ô〉β =
1

Z
Tr[e−βĤ Ô] =

1

Z

∑
n

e−β En,q〈En,q | Ô |En,q〉, (2.18)

where Z is the partition function of the system and En,q = n (ω + µq). One can express

the above ensemble average of any operator as an expectation value in a thermal vacuum

by defining a state |0〉β such that

〈Ô〉β = β〈0|Ô|0〉β =
1

Z

∑
n

e−β En,q〈En,q | Ô |En,q〉. (2.19)

Assuming thermal vaccum |0〉β can be written as a linear superposition of the states of

Hilbert space |En,q〉,

|0〉β =
∑
n

|En,q〉〈En,q |0〉β =
∑
n

αn,q(β) |En,q〉, (2.20)

implies that

β〈0|Ô|0〉β =
∑
n,m

α∗m,q(β)αn,q(β)〈Em,q |Ô|En,q〉. (2.21)

This agrees with (2.19) provided

α∗m,q(β)αn,q(β) = Z−1e−βEn,q δmn. (2.22)

However, as it is clear from (2.20), αn,q’s are ordinary numbers and therefore it is not

possible to satisfy (2.22). This means that we can not define the thermal vacuum as long

as we restrict ourselves to the original Hilbert space. Interestingly, the condition (2.22) is

quite analogous to orthonormality condition for state vectors. Let us introduce a fictitious

system which is an identical copy of the original system and denote it with tilde system.

Now, expanding the thermal vacuum as following

|0〉β =
∑
n

αn,q(β) |n, ñ〉 =
∑
n

αn,q(β) |En,q〉 ⊗ | Eñ,−q〉, (2.23)

implies that

β〈0|Ô|0〉β =
∑
n

α∗n,q(β)αn,q(β) 〈En,q |Ô|En,q〉. (2.24)

Comparing (2.24) with (2.19) implies that

α∗n,q(β)αn,q(β) = Z−1 e−βEn,q , (2.25)
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which has a simple real solution

αn,q(β) = α∗n,q(β) = Z−1/2 e−
β
2
En,q . (2.26)

By Substituting αn,q from (2.26) in (2.23), the charged thermal vacuum (cTFD state)

becomes

|cTFD〉 = Z−
1
2

∞∑
n=0

e−
β
2
En,q |En,q〉L ⊗ |En,−q〉R, (2.27)

where we denoted the original system by subscript R and the tilde system with subscript

L, just in analogy with the right and left copies of CFT in the penrose diagram of eternal

black hole. It is easy to see that the normalization factor becomes Z−1 = 1 − e−β(ω+µq).

To proceed furthermore, we note that the level “n” energy eigenstate can be expressed as

| En,q〉 =
1√
n!

(â†)n |0〉, (2.28)

where

â†|n〉 =
√
n+ 1 |n+ 1〉, â|n〉 =

√
n |n− 1〉, (2.29)

with

â† =

√
mω

2

(
x̂− i p̂

mω

)
, â =

√
mω

2

(
x̂+ i

p̂

mω

)
, (2.30)

and [â, â†] = 1. In comparison with (2.14) and noting to (2.15) and (2.17), it is clear that

to construct the state (2.27) one can use the (âk, â
†
k) for the left side and (b̂k, b̂

†
k) for the

right side. This observation implies that (2.27) can be simplified to

|cTFD〉 =
√

1− e−β(ω+µq) exp
(
e−

β
2

(ω+µq) â†Lb̂
†
R

)
|0〉L⊗ |0〉R. (2.31)

We would like to re-express the thermofield double state (2.31) by acting a unitary operator

on the vacuum state |0〉L⊗ |0〉R. To achieve this, one can define the following operator

Ô = exp
(
α+K̂+ + α−K̂− + α0K̂0

)
, (2.32)

with

K̂− = âL b̂R K̂+ = â†L b̂
†
R K̂0 =

1

2

(
â†L âL + b̂†R b̂R + 1

)
, (2.33)

and

[K̂−, K̂+] = 2K̂0, [K̂0, K̂±] = ±K̂±. (2.34)

The operator Ô is unitary for α+ = −α− and α0 ∈ R and it can be decomposed as [31]

Ô = eγ+K̂+ e(log γ0)K̂0 eγ−K̂− , (2.35)

where

γ0 =
(

cosh Θ− α0

2Θ
sinh Θ

)−2
, γ± =

2α± sinh Θ

2Θ cosh Θ− α0 sinh Θ
, Θ2 =

α2
0

4
− α+α−.

(2.36)
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For the special case α0 = 0 and α+ = −α− = α ∈ R, the operator Ô can be simplified to

Ô = eα(K̂+−K̂−) = e(tanhα)K̂+ e−2(log coshα)K̂0 e−(tanhα)K̂− . (2.37)

By noting that

K̂− |0〉L⊗ |0〉R = 0, K̂0 |0〉L⊗ |0〉R =
1

2
|0〉L⊗ |0〉R, (2.38)

we have

eα(K̂+−K̂−) |0〉L⊗|0〉R =
1

coshα
e(tanhα)K̂+ |0〉L⊗|0〉R. (2.39)

Now, by comparing the right hand side of (2.39) with (2.31), one can write the cTFD

state (2.31) in desired form

|cTFD〉 = e
α
(
â†Lb̂
†
R−âLb̂R

)
|0〉L ⊗ |0〉R with tanhα = e−

β
2

(ω+µq). (2.40)

The time evolution of state (2.40) is given by

| cTFD(t)〉 = e−i(ĤL+µQ̂L)tLe−i(ĤR−µQ̂R)tR | cTFD〉, (2.41)

with

ĤL = â†L âL +
1

2
, ĤR = b̂†R b̂R +

1

2
, µQ̂L = µq â†L âL, µQ̂R = −µq b̂†R b̂R. (2.42)

By choosing tL = tR = t/2 following the common convention in holography,1 the time-

dependent cTFD state (2.41) after short computations becomes

| cTFD(t)〉 = e−
i
2

(ω+µq)t
√

1− e−β(ω+µq) exp

[
e−

β
2

(ω+µq)e−i(ω+µq)t a†Lb
†
R

]
|0〉L ⊗ |0〉R .

(2.43)

To re-express the state (2.43) as acting a unitary operator on the |0〉L⊗|0〉R, one can define

z = αe−i(ω+µq)t, (2.44)

which by that and doing similar procedure as (2.32)–(2.39), this state becomes2

|cTFD(t)〉 = exp

[
z â†L b̂

†
R − z∗ âL b̂R

]
|0〉L⊗ |0〉R. (2.45)

For future application, let us find the wave function representation of cTFD state (2.40).

By defining the proper normal coordinates

x̂± =
1√
2

(
x̂L ± x̂R

)
, p̂± =

1√
2

(
p̂L ± p̂R

)
, (2.46)

1According to the boost symmetry, the evaluation of the holographic complexity will depend on t =

tL + tR and not on each of the boundary times separately. So, without loss of generality, on can choose

symmetric times tL = tR = t/2.
2We have dropped the above global time-dependent phase, since this does not change the physical state.
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one can see (
â†Lb̂
†
R − âLb̂R

)
= −i (x̂+p̂+ − x̂−p̂−) , (2.47)

which this implies that (2.31) changes to

|cTFD〉 = e−iα(x̂+p̂+−x̂−p̂−) |0〉+⊗ |0〉− = e−iαx̂+p̂+ |0〉+ ⊗ eiαx̂−p̂− |0〉−. (2.48)

By noting that the ground-state wave functions are given by

〈x|0〉± ≡ Ψ0 =
(mω)

1
4

π
1
4

e−
mω
2
x2
± , (2.49)

and

e−
iα
2

(x̂+p̂+ + p̂+x̂+)Ψ0(x+) ' Ψ0(e−αx+) ' e−mω2 e−2αx2
+ ,

e
iα
2

(x̂−p̂−+p̂−x̂−)Ψ0(x−) ' Ψ0(eαx−) ' e−mω2 e2αx2
− , (2.50)

the wavefunctional cTFD state (2.48) becomes

〈x+, x−|cTFD〉 ≡ ΨcTFD ' exp

[
− mω

2

(
e−2αx2

+ + e2αx2
−

)]
. (2.51)

In the standard coordinates (xL, xR) (2.46), the above wave function changes to

ΨcTFD ' exp

[
− mω

2

(
cosh 2α

(
x2
L + x2

R

)
− 2 sinh 2α (xLxR)

)]
. (2.52)

Moreover, for later convenience let us write the time-dependent cTFD state (2.45), by

using (2.47), as following

|cTFD(t)〉 = e−iα Ô+(t) |0〉+ ⊗ eiα Ô−(t) |0〉−, (2.53)

with

Ô± (t) =
1

2

(
cos ((ω + µq) t) (x̂±p̂± + p̂±x̂±) + sin ((ω + µq) t)

(
mωx̂2

± −
1

mω
p̂2
±

))
.

(2.54)

By using this representation, one can easily find the time-dependent cTFD wavefunctional

state similar to the procedure which is done in (2.48)–(2.52). Now, by having the cTFD

state (and its time-dependent counterpart) one can calculate its complexity. The way we

have chosen to calculate this quantity is based on the Nielsen geometric approach which is

developed for QFTs in [15, 19]. In the next section, we give a brief review on this approach

and after that, we present the results for complexity with different cost functions.

3 Nielsen’s complexity of cTFD state

As we discussed above, since each mode k is decoupled from the other modes in (2.11),

the respective cTFD state will be the product of TFD states for each of the oscillators.

This means that the complexity of ground state of Hamiltonian (2.11) on a lattice with
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N site is easily a sum over the complexity for each mode k. Therefore, it is sufficient to

find the complexity for a single mode (2.51) and its time-dependent counterpart, (2.53), by

using covariance matrix approach and then sum over all modes. To do that, let us provide

firstly a brief review of Nielsen’s geometric approach for evaluating circuit complexity. This

geometric approach is a base for a group theoretic perspective to calculate the complexity of

a state that is named as covariance matrix approach. As said before, the state complexity

is defined as the minimal number of unitary gates required to prepare a certain target state

|ΨT 〉 from a specific reference state |ΨR〉, up to an error of ε. The reference state |ΨR〉 is

actually a factorizable state in position space which means that it is an unentangled state.

Practically, the reference state is the ground state of the Hamiltonian

HR =

∫ L
2

−L
2

dx

(
1

2
Π2(x) +

1

2
ω2
RΦ2(x)

)
=

N−1∑
k=0

(
δ

2
|p̃k|2 +

ω2
R

2δ
|x̃k|2

)
. (3.1)

Nielsen and collaborators [16–18] introduced a geometric approach to identify the optimal

unitary transformation Û between reference and target state

|ΨT 〉 = Û |ΨR〉, (3.2)

as a string of continuous unitary operators

Û = P e−i
∫ 1
0 dw Ĥ(w), (3.3)

where the path-dependent Hamiltonian H(w) is expanded in terms of a basis of Hermitian

operators K̂I as following

Ĥ(w) =
∑
I

Y I(w)K̂I , (3.4)

and P indicates the path ordering operator. It is worth noting that in the case of Gaussian

states and with the mentioned gates, one does not need to consider a tolerance ε, since the

YI(w) can always be adjusted to produce exactly the desired target state. Moreover, using

this framework, one can consider trajectories in the space of unitaries

Û(s) = P e−i
∫ s
0 dw Ĥ(w), (3.5)

with the boundary conditions Û(s = 1) = Û , Û(s = 0) = 1 and by that interprets YI(s) as

the tangent vector of the corresponding trajectory

Y I(s)ÔI =
(
∂sÛ(s)

)
Û−1(s). (3.6)

Now the state complexity is defined by the value of particular minimized cost C(U) de-

fined by

C(U) =

∫ 1

0
ds F

(
U(s),

−→
Y (s)

)
, (3.7)

where the cost function F
(
U(s),

−→
Y (s)

)
is a local functional along the trajectory of U(s).

This cost function has different forms, but the one which is the main focus in this paper

is [15]

Fκ(U,
−→
Y ) =

∑
I

|Y I |κ . (3.8)
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Intriguingly, in applying the above framework to a free scalar QFT in [15], a group theoretic

structure was found to appear naturally. To see this structure, let us consider a bosonic

system with N degrees of freedom. This system can be described by 2N observables ξ̂ =

(q̂1, q̂2, . . . , q̂N , p̂1, . . . , p̂N ) with (q̂i, p̂i) are canonical operators. The two-point functions of

these observables in an arbitrary state |Ψ〉 can be expressed as

〈Ψ|ξ̂a ξ̂b|Ψ〉 =
1

2

(
Gab + iΩab

)
, (3.9)

where Gab = G(ab) is the symmetric part of the correlation matrix and Ωab = Ω[ab] denotes

the antisymmetric part. In fact, for a system with bosonic degrees of freedom, Ωab is trivial

and simply contains the information about commutation relations of q̂i and p̂i. Restricting

to the space of Gaussian states implies that the unitary operator Û(s) can be expressed by

Hermitian operators that are quadratic in the canonical operators ξ̂,

Û(s) = e−isK̂ , with K̂ =
1

2
ξ̂a k(a,b) ξ̂

b ≡ 1

2
ξ̂ k ξ̂T . (3.10)

To proceed further, one needs the operation of Û(s) on ξ̂a which can be obtained as follows

Û †(s) ξ̂a Û(s) =
∞∑
n=0

sn

n!
[iK̂, ξ̂a](n), (3.11)

with [iK̂, ξ̂a](n) is defined recursively by [iK̂, ξ̂a](n) = [iK̂, [iK̂, ξ̂a](n−1)], and [iK̂, ξ̂a](0) =

[iK̂, ξ̂a]. Using (3.10) and the commutation relation [ξ̂a, ξ̂b] = iΩab, it is easy to see that

[iK̂, ξ̂a] = Ωab k(b,c) ξ̂
c, (3.12)

which by defining Ka
b = Ωac k(c,b), it can be written as

[iK̂, ξ̂a] = Ka
b ξ̂

b. (3.13)

This latter identity implies that

Û †(s) ξ̂a Û(s) = (esK)ab ξ̂
b ≡ U(s)ab ξ̂

b. (3.14)

Now, (3.10) together with (3.14) imply that the covariance matrix for |ΨG(s)〉 becomes

G(a,b)
s = U(s)ac G

(c,d)
0 U(s)bd. (3.15)

Eventually, the complexity of a target state in a basis independent way can be achieved by

defining the relative covariance matrix

∆a
b = G

(a,c)
T G−1

R (c,b), (3.16)

and make a proper choice for the cost function which by that, the complexity only depends

on the eigenvalues of this matrix. One of these choices is the κ = 2 in (3.8). Indeed one
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can choose a basis such that the GR becomes identity and then diagonalize GT using only

transformations within the stabilizer subgroup StaGR . Then κ = 2 complexity is given by

Cκ=2 (GT , GR) =
1

4
Tr
[
| log ∆ |2

]
. (3.17)

It is worth to mention that the Cκ=1 = 1
2Tr [| log ∆ |] in general is different from the com-

plexity obtained from F1 in (3.8). The reason for that is F1 can not be found from any

well-defined metric. Despite Cκ=2, choosing the gates matters for F1. One way to estimate

the length of shortest path between the two states is to consider orthonormal symplectic

group generators (with respect to Frobenius inner product) as our gates and calculate the

length of the path that minimizes F2 cost function, i.e. the linear path. Since this path is

not necessary the minimal geodesic of F1, then

C1 ≤
∑
I

|Y I |. (3.18)

From now on, we take this upper bound as C1. Intriguingly, in the case of ground state

of free bosonic quantum field theory, this approach gives the same answer as covariance

matrix approach [15]. Last but not least, we need the dimensionless control functions to

add them together. This can be achieved by introducing the new dimensionless position

and momentum coordinates according to

xnew,± = gs x±, pnew,± =
p±
gs
, (3.19)

where gs is a new gate scale. Accordingly, for each mode we have

λR,k ≡ λR =
ωR
δ g2

s

, λk =
ωk
δ g2

s

. (3.20)

Let us write the state (2.53) as following

|cTFD(t)〉 = Û+(1)|G0〉+ ⊗ Û−(1)|G0〉− = e−iK̂+ |G0〉+ ⊗ e−iK̂− |G0〉−. (3.21)

By choosing ξ̂± = (x̂new,±, p̂new,±) and noting to (2.54), the unitary matrices k(a,b),+ and

k(a,b),− are given by

k(a,b),+ = α

(
λ sin

(
(ω + µq)t

)
cos
(
(ω + µq)t

)
cos
(
(ω + µq)t

)
− 1
λ sin

(
(ω + µq)t

)
.

)
, k(a,b),− = k(a,b),+(α→ −α),

(3.22)

with

λ = mω/g2
s . (3.23)

The commutator [ξ̂a±, ξ̂
b
±] = iΩab

± implies that

Ωab
+ = Ωab

− =

(
0 1

−1 0

)
, (3.24)
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and by that matrices K± become respectively,

K+ = α

(
cos
(
(ω + µq)t

)
− 1
λ sin

(
(ω + µq)t

)
−λ sin

(
(ω + µq)t

)
− cos

(
(ω + µq)t

) ) , K− = K+(α→ −α). (3.25)

Exponentiation of matrices K± gives the unitary matrices U±(1),

U+(1) =

(
u11 u12

u21 u22

)
, U−(1) = U+(1) (α→ −α) , (3.26)

with

u11 = cosh(α) + cos
(
(ω + µq)t

)
sinh(α), u22 = u11(α→ −α),

u21 = λ2u12 = −λ sin
(
(ω + µq)t

)
sinh(α). (3.27)

Now, according to (3.26) and noting that

G0,+ = G0,− =

(
1
λ 0

0 λ

)
, (3.28)

the eq. (3.15) implies that

GTFD,+(t) =

(
g11,+ g12,+

g21,+ g22,+

)
, GTFD,−(t) = GTFD,+(t) (α→ −α) , (3.29)

with

g11,+ =
1

λ

(
cosh(2α) + cos

(
(ω + µq)t

)
sinh(2α)

)
, g22,+ = λ2g11,+(α→ −α),

g12,+ = g21,+ = − sin
(
(ω + µq)t

)
sinh(2α). (3.30)

The last ingredient to construct the relative covariance matrix (3.16) is the covariance

matrix for the unentangled states |ΨR,±〉. These states are the ground states of Hamilto-

nian (3.1) and their covariance matrices are given by

GR,+ = GR,− =

(
1
λR

0

0 λR

)
, (3.31)

with

λR = mωR/g
2
s . (3.32)

Having all ingredients, (3.29) and (3.31), the relative covariance matrix (3.16) for right and

left moving modes is given by

∆+(t) =

(
∆11,+ ∆12,+

∆21,+ ∆22,+

)
, ∆−(t) = ∆+(t) (α→ −α) , (3.33)
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with

∆11+ =
λR
λ

(
cosh(2α) + cos

(
(ω + µq)t

)
sinh(2α)

)
, ∆22+ =

λ2

λ2
R

∆11+(α→ −α),

∆21+ = λ2
R ∆12+ = −λR sin

(
(ω + µq)t

)
sinh(2α). (3.34)

Finally, according to (3.17) the κ = 2 complexity for the single mode is given by

Cκ=2(t, q) =
1

4

2∑
i=1

[(
log ∆

(i)
+ (t)

)2
+
(

log ∆
(i)
− (t)

)2
]
, (3.35)

where ∆
(i)
± (t) are eigenvalues of ∆±(t) matrices (3.33),

∆
(1)
+ (t) =

1

A1

(
λ2A2 + λ2

R A3 −
((

λ2 A2 + λ2
R A3

)2 −A2
1

) 1
2

)
,

∆
(2)
+ (t) =

1

A1

(
λ2A2 + λ2

R A3 +

((
λ2 A2 + λ2

R A3

)2 −A2
1

) 1
2

)
,

∆
(i)
− (t) = ∆

(i)
+ (t) (α→ −α) , (3.36)

with

A1 = 2λλR, A2 = cosh(2α)− cos
(
(ω + µq)t

)
sinh(2α), A3 = A2 (α→ −α). (3.37)

Having a complexity for single mode, (3.35), and noting that each mode k is decoupled

from the other modes, the complexity of the ground state of Hamiltonian (2.11) on a lattice

with N site is easily a sum over the complexity for each mode k,

Cκ=2(t, q) =
1

4

N−1∑
k=0

2∑
i=1

[(
log ∆

(i,k)
+ (t)

)2
+
(

log ∆
(i,k)
− (t)

)2
]
, (3.38)

where ∆
(i,k)
± (t) are given by (3.36) upon substituting ω with ωk. In the subsequent sub-

sections 3.1 and 3.2 we study the complexity (3.38) for the system with fixed size L. The

same analysis for the continuum system will be presented in section 4.

3.1 Keeping the total size L of the system fixed

To explore the consequences of (3.38) for a system with fixed size L, we note that the

only dimensionless parameters are L/β and µqL. In figures 1 and 2, we set λR = 1 and

the parameter µqL is fixed but the temperature is changed. It is explained above that

we consider the mass parameter mL very small. One may expect that for this case the

main contribution to the complexity comes from the zero mode. In the following, we will

show that, independent from the value of µqL, this expectation is correct just for low

temperatures. Indeed the contribution of the zero mode, in comparison with other modes,

can be seen effectively in the limit m� ωR where the eigenvalues (3.36) for this mode can

be simplified to

∆
(1)
± (t) ≈ 0, ∆

(2)
± (t) ≈ ωR

m

(
cosh 2α± cos

[
(m+ µq)t

]
sinh 2α

)
. (3.39)
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In the limit β(m+ µq)� 1, the above eigenvalues can be simplified more to

∆
(2)
+ (t) ≈ 4ωR

βm(m+ µq)
− ωR t

2

βm
(m+ µq), ∆

(2)
− (t) ≈ ωR t

2

βm
(m+ µq), (3.40)

which by using them and for the times (m + µq)t � 1, the contribution of zero mode to

κ = 2 complexity (3.35) becomes

Cκ=2 ≈
1

4
log2

[
ωR(m+ µq)

βm
t2
]

+
1

4
log2

[
4ωR

βm(m+ µq)

]
. (3.41)

This result is presented with the green curve in figures 1 and 2 and it exhibits that the

contribution of zero mode for small times, (m+ µq)t� 1 is proportional to a1 log2(a2 t
2).

Besides that, it is clear from (3.36) that the biggest contribution of the zero mode happens

at the time t = π/2(m + µq). This means that the maximum contribution of zero mode

happens between times 0 and π/2(m+µq) where in the limits (m+µq)� 1 and β(m+µq)�
1 it becomes

Ck=0
κ=2

(
π

2(m+ µq)

)
− Ck=0

κ=2

(
0
)
≈ 1

2
log2

[
2ωR

βm(m+ µq)

]
− 1

4
log2

[
4ωR

βm(m+ µq)

]
. (3.42)

Even though the zero mode contribution diverges at those limits but by paying attention

to the figures 1 and 2, it is clear that at the decompactification limit i.e. high temperatures

and independently from the charge, the contribution of the other modes dominate. More

precisely, for higher temperatures, we observe saturation which happens through the pres-

ence of many modes which they contribute non-trivially to the sum (3.38). The transition

between logarithmic growth regime and saturation regime is oscillatory, which occurs with

a period of half of the circle’s circumference, as if two wave packets were propagating on a

circle in opposite directions, see figures 3 and 4. For example when m� ωR and m� µq,

for the zero mode we have

∆
(2)
± (t) ≈ ωR

m
csch

(
β µq

2

)(
cosh

(
β µq

2

)
± cos [µq t]

)
. (3.43)

We would like to emphasize again that above, λR = 1 is considered since for this

special value, it is proven that the optimal circuit does not mix the normal modes. Even

though this simplicity of the optimal circuits might be lost when λR 6= 1, just to make the

numerical problem tractable, we still assume that there is no mixing between the normal

modes along the circuit. The same analysis as before for λR 6= 1 is presented in figures 5

and 6 which they show the validity of the results for λR = 1 also in this case.

To close this section, we show the asymmetry between the effect of mass and charge

times chemical potential in figure 7.

3.2 Keeping the lattice spacing fixed with increasing N

What we have done in previous subsection was introducing a UV-regularization and mode

decomposition in which the Hamiltonian of a continuous quantum many-body system be-

came a sum over independent harmonic oscillators (bosonic modes). The latter one implies
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Figure 1. All mode contribution to time dependence of Cκ=2 with the initial value subtracted

for the neutral TFD at zero time on a circle with circumference L with ωR = 1/L, m = 10−5/L,

µq = 10−5/L and increasing temperatures T = 1/β. We use 1501 lattice sites on each side.

the complexity for QFT is found by simply adding up contributions for each bosonic mode.

One can use an interesting different regularization which is based on the continuous multi-

scale entanglement renormalization ansatz (cMERA). In cMERA approach, a UV regulator

is introduced such that the ground state for large momenta |p| > Λ behaves as a product

state i.e. the ground state of ultralocal Hamiltonian (3.1). We extend this regularization

also for the cTFD state. In next section, we will study the continuous system on the line

with details. For the moment, the figure 8 demonstrates that the decompactification limit

of the circle (δ is fixed and N → ∞) quantitatively reproduces the results on an infinite

line, and provides an example of the use of cMERA-inspired techniques in the context

of complexity.

4 Working with the infinite system

To find the complexity in the continuum limit, we use the cMERA inspired regularization.

Let us introduce a continuous label p ∈ [−π
δ ,

π
δ ] defined as

p =
2π

N

k

δ
. (4.1)
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Figure 2. All mode contribution to time dependence of Cκ=2 with the initial value subtracted

for the neutral TFD at zero time on a circle with circumference L with ωR = 1/L, m = 10−5/L,

µq = 10−1/L and increasing temperatures T = 1/β. We use 1501 lattice sites on each side.
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Figure 3. Time dependence of κ = 2 complexity with the initial value subtracted for TFD state

on a circle with circumference L with ωR = 1/L, m = 10−4/L, λR = 1, β = 10L (left), β = 10−1L

(right) and different increasing the chemical potential from 10−3/L (blue) to 10−1/L (green). We

use 1501 lattice sites on each side. We see that complexity grows as log2(t/L) up to times of the

order of 1/(m + µq) when it starts oscillating around the saturated value. The zero mode is the

source for this logarithmic growth but by increasing the temperature this behavior is lost.
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Figure 4. Time dependence of κ = 2 complexity with the initial value subtracted for TFD state on

a circle with circumference L with ωR = 1/L, µq = 10−1/L, β = 10L (left), β = 10−1/L (right) and

different increasing the masses, from 10−4/L (blue) to 10−2/L (green). We use 1501 lattice sites on

each side. We see that complexity grows as log2(t/L) up to times of the order of 1/(m+ µq) when

it starts oscillating around the saturated value. The zero mode is the source for this logarithmic

growth but by increasing the temperature this behavior is lost.

This definition for continuous momentum p implies that ωp, (2.12), becomes

ω2
p = m2 +

4

δ2
sin2

(
pδ

2

)
. (4.2)

The continuity of momentum p implies that we have taken the limit of large chain, L� δ

(i.e. N � 1 while keeping δ fixed). Since energy of all modes is less than the UV cut off Λ

and Λ itself is much less than π/δ, therefore ωp (4.2) is simplified to3

ωp =
√
m2 + p2. (4.3)

In the following, we consider the complex scalar theory (2.1) in d-dimensional flat spacetime

and with mass m. In this case, one may also modify the gate sale. For d-dimensional

spacetime, the relations in (2.5) become

xa = Φ(xa)δ
d/2, pa = Π(xa)δ

d/2−1, (4.4)

which they imply that in going from the lattice to the continuum expressions, we should

absorb a factor of 1/δd−1 into control functions and also define the gate scale as follows

ωR,g ≡ δ g2
s . (4.5)

Accordingly, the dimensionless ratios in (3.20) change to

λR =
ωR
ωR,g

, λ =
ωk
ωR,g

. (4.6)

Furthermore, in order to make contact with holography, we are primarily interested in CFTs

(i.e. massless models). However as we have pointed above, the massless limit of (3.36) is

3One may also demand that the frequency of the oscillator is continuous at the transition point, i.e.

ωp=Λ = ωR where ωp was defined in (4.2).
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Figure 5. All mode contribution to time dependence of Cκ=2 with the initial value subtracted

for the neutral TFD at zero time on a circle with circumference L with ωR = 1/L, m = 10−5/L,

µq = 10−5/L. We use 1501 lattice sites on each side.
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Figure 6. All mode contribution to time dependence of Cκ=2 with the initial value subtracted

for the neutral TFD at zero time on a circle with circumference L with ωR = 1/L, m = 10−5/L,

µq = 1/L. We use 1501 lattice sites on each side.
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sites on each side.
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Figure 8. Time dependence of κ = 2 complexity with the initial value subtracted for TFD state

with fixed lattice spacing δ, m = 10−6/δ, β = 10δ and ωR = 1/δ, µq = 0 (left) and µq = 10−2/δ

(right). The solid curves represents the theory on a circle with the total number of cites N = 1

(blue), N = 31 (brown), N = 301 (green), N = 701 (red), N = 1501 (purple). The solid blue and

brown curves are scaled with 1/5 for the cTFD state. The dashed brown and dotted dashed blue

curve represent the result respectively for the cMERA inspired technique with UV cutoff Λ = 1/δ

and the one obtained directly for a theory on an infinite line.

ill-defined since the zero mode gives a divergent contribution. We regulate this divergence

by instead working with a small but non-zero mass. Moreover, in order to UV regulate our

results for the complexity, one can subtract its value at the initial time t = 0. Accordingly,

based on covariance matrix approach (3.17), the desired complexities in the continuum

limit reads

Cκ=2(t) = vol

∫
p≤Λ

dd−1p

(2π)d−1

1

4

2∑
i=1

[(
log ∆

(i)
+ (t, p)

)2
+
(

log ∆
(i)
− (t, p)

)2
]
,

C2(t) = vol

∫
p≤Λ

dd−1p

(2π)d−1

(
1

4

2∑
i=1

[(
log ∆

(i)
+ (t, p)

)2
+
(

log ∆
(i)
− (t, p)

)2
]) 1

2

,

C1(t) = vol

∫
p≤Λ

dd−1p

(2π)d−1

1

2

2∑
i=1

[ ∣∣∣∣ log ∆
(i)
+ (t, p)

∣∣∣∣ +

∣∣∣∣ log ∆
(i)
− (t, p)

∣∣∣∣ ], (4.7)
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where ∆
(i)
± (t, p) are obtained by substituting

λ→ λp, ω → ωp, (4.8)

in eigenvalues (3.36). In the first view, one may suspect that these integrals will produce

UV divergences. But these potential divergences are eliminated, because we have powers of

e−βΛ competing against (positive) powers of Λ in these contributions, and so they actually

vanish in the limit of Λ → ∞. According to this fact, we remove the UV regulator and

integrating all the way to infinite momenta. But the above integrals have IR divergences

which they are encoded in the “vol” coefficients. These IR divergences can be remove by

dividing the change of complexity with thermal entropy

Sth =
vol

βd−1

Ωd−2

(2π)d−1

∫ ∞
0

du ud−2

[√
u2 + β2m2 + βµq

e
√
u2+β2m2+βµq − 1

− log

(
1− e−

√
u2+β2m2−βµq)

)]
,

(4.9)

where Ωd−2 is the volume of a (d − 2)-sphere, i.e. Ωd−2 = 2π
d−1

2 /Γ(d−1
2 ). Last but not

least, to take into account the reference scale together with massless limit, it will be useful

to define dimensionless variables

t̃ =
t

β
, k̃ = βk, γ̃ =

1

βωR
, Q̃ = µqβ. (4.10)

4.1 Complexity of formation: A prob for prefer cost function

In this subsection we study the complexity of formation for cTFD state (2.40) carefully to

see which cost function is consistent with the UV structure and third law of holographic

complexity [29]. The complexity of formation is indeed the extra complexity required to

prepare the two copies of a complex scalar field theory in the cTFD state compared to

simply preparing each of the copies in the vacuum state, i.e. ∆C = C(0) − C(0)
∣∣
β→∞. For

the case where the frequency of all modes ωp is much less than the reference scale ωR, the

eigenvalues (3.36) can be simplified to

∆
(1)
± (t) ≈ 0, ∆

(2)
± (t) ≈ ωR

ωp

(
cosh 2αp ± cos

[
(ωp + µq)t

]
sinh 2αp

)
. (4.11)

It is worth noting that very high frequency contributions are exponentially suppressed and

so in fact, we only need to consider ωR � T . In this regime, the complexity of formation

for the ones in (4.7) becomes

∆Cκ=2 = vol

∫
p≤Λ

dd−1p

(2π)d−1
2α2

p,

∆C2 = vol

∫
p≤Λ

dd−1p

(2π)d−1

√
1

2
log2

(
ωP
ωR

)
+ 2α2

p −
1√
2

∣∣∣∣ log
ωp
ωR

∣∣∣∣,
∆C1 = vol

∫
p≤Λ

dd−1p

(2π)d−1

(∣∣∣∣12 log
ωp
ωR
− αp

∣∣∣∣+

∣∣∣∣12 log
ωp
ωR

+ αp

∣∣∣∣− ∣∣∣∣ log
ωp
ωR

∣∣∣∣ ) . (4.12)
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These complexities are presented in figure 9. To probe which of them is consistent with

UV divergences in holographic results, let us focus for the moment on the vacuum state

(αp → 0). According to (4.11) for this state we have

Cκ=2 =
1

4

N−1∑
[pi]=0

(
log

ω~p
ωR

)2

, C2 =
1

2

√√√√ N−1∑
[pi]=0

(
log

ω~p
ωR

)2

, C1 =
1

2

N−1∑
[pi]=0

∣∣∣∣ log
ω~p
ωR

∣∣∣∣ (4.13)

with pi’s are the components of the momentum vector ~p = (p1, p2, . . . , pd−1) and the total

number of oscillators is Nd−1 = V/δd−1. Therefore, contribution of UV modes i.e. ω~p ∼ 1/δ

to (4.13) become

Cκ=2 ∼
V

δd−1

(
log

1

δ ωR

)2

, C2 ∼
(

V

δd−1

)1/2

log

(
1

δ ωR

)
, C1 ∼

V

δd−1

∣∣∣∣ log
1

δ ωR

∣∣∣∣
(4.14)

The leading divergence appearing in CA proposal takes the

Cholography ∼
V

δd−1
log

(
l

α̃δ

)
, (4.15)

where δ is the short-distance cut-off scale in the boundary CFT, l is the AdS curvature

scale of the bulk spacetime, and α̃ is an arbitrary (dimensionless) coefficient which fixes the

normalization of the null normals on the boundary of the WDW patch. Since Cholography is

a quantity which is to be defined in the boundary CFT, it should not depend on the bulk

AdS scale. One can eliminate this factor with the freedom in choosing α̃ = ω̃R l where ω̃R
is some arbitrary frequency. In this case (4.15) is simplified to

Cholography ∼
V

δd−1
log

(
1

δ ω̃R

)
, (4.16)

which interestingly agrees with C1 in (4.14). It is discussed [32] that the CA proposal which

leds to (4.15) does not have a reparameterization invariance of null boundary coordinates.

To recover this symmetry one can consider a new boundary term which intriguingly adding

it also removes that UV logarithmic divergence. The C1 complexity (4.14) agrees with

holography also in the presence of this new boundary term if, for example ωR is set by the

cut-off scale i.e. ωR ∼ 1/δ.

We would like to mention here that according to the above discussion, it seems C1

complexity (4.13) for ground state agrees with the holographic proposal. But by carefully

noting to figure 9, we see that C1 complexity is in contrast with the third law of holographic

complexity [9]. The third law of holographic complexity expresses that the complexity of

formation for a charged black hole diverges in extremal limit. The origin of this mismatch

can be understood by evaluating carefully that the sign changes inside each argument of

the logarithms in (4.13). Let us concentrate on the massless theory for the moment. In

this case, 1
2 log p

ωR
+ αp changes sign at a value pc given by

pc coth

(
pc + µq

4T

)
= ωR (4.17)
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Figure 9. (C1, Cκ=2, C2) complexities of formation normalized by the entropy for µq = 10−5Λ

(blue), 10−2Λ (dashed orange), 10−1Λ (dotted dashed green), Λ (dashed red) and d = 1 + 1,m =

10−5Λ, ωR = 2Λ. For small temperatures, the profile of the ratio of the complexity of formation over

the entropy becomes small. For higher temperatures, it develops a dependence on the temperature

and the cutoff scale Λ. The nontrivial profile of the ratio of the complexity of formation to the

entropy contrasts with the holographic results of ref. [9].

There are two important limits to the above equation: when pc+µq is very small and when

pc is close to the cutoff scale Λ. Solving for the temperature in these two regimes, we find

Tc1 =
(Λ + µq)

2

1

log
(
ωR+Λ
ωR−Λ

) , Tc2 =
ωR
4

(
1 +

µq

pc

)
. (4.18)

For T < Tc1 , the arguments of all of the absolute values in (4.12) are negative which implies

that the complexity of formation is identically zero, ∆C1(T < Tcl) = 0. For temperature

within the range Tc1 < T < Tc2 , there is a single solution pc to the (4.17) in the range

[0,Λ]. We find that for p < pc the argument of the second absolute value is negative, and

for p > pc the argument is positive. The complexity of formation in this situation is found

by integrating only over modes larger than pc,

∆C1(Tc1 < T < Tc2) = vol
Ωd−2

(2π)d−1

∫ Λ

pc

dppd−2

(
2αp − log

p

ωR

)
. (4.19)

Finally, if the temperature is bigger than Tc2 , we find that 1
2 log p

ωR
+αp is always positive
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Figure 10. C1, Cκ=2, C2 complexities of formation normalized by the entropy for different values

of ωR and d = 1 + 1,m = 10−5Λ, µq = 10−1Λ. For small temperatures, the profile of the ratio of

the complexity of formation over the entropy becomes small. For higher temperatures, it develops

a dependence on the temperature and the cutoff scale Λ. The nontrivial profile of the ratio of the

complexity of formation to the entropy contrasts with the holographic results of ref. [9].

in the range of momenta [0,Λ]. Therefore, we have

∆C1(T > Tc2) = vol
Ωd−2

(2π)d−1

∫ Λ

0
dppd−2

(
2αp − log

p

ωR

)
. (4.20)

Therefore for small temperatures with respect to the cutoff scale, we find that the com-

plexity of formation is exactly zero. For higher temperatures, there are some nontrivial

cancellations between the circuits that introduce some dependence on T and Λ that con-

trasts with the holographic results of ref. [9]. To complete this discussion, we also present

the same analysis for different ωR in figure 10 and for d = 3 + 1 in figure 11.

Based on the above contradiction with holography, we should use another cost function

which also gives the same UV divergence as C1. It is argued that [29] the basis-dependent

L1 norm in (3.8) is a preferred choice. According to (2.45) and (2.48), in the LR basis, two

copies of the physical degrees of freedom entangled in the cTFD state and in the diagonal

or ± basis the cTFD state factorizes. For a single mode, these basis are related by a

simple rotation
x̂+

p̂+

x̂−
p̂−

 = R4


x̂L
x̂R
p̂L
p̂R

 , with R4 =
1√
2


1 1 0 0

0 0 1 1

1 −1 0 0

0 0 1 −1

 . (4.21)
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Figure 11. Left: C1 complexity of formation normalized by the entropy for µq = 0 (blue), 10−1Λ

(brown), Λ/2 (green), Λ (red) and d = 3 + 1,m = 10−5Λ, ωR = Λ. For small temperatures, the

profile of the ratio of the complexity of formation over the entropy becomes small. For higher

temperatures, it develops a dependence on the temperature and the cutoff scale Λ. The nontrivial

profile of the ratio of the complexity of formation to the entropy contrasts with the holographic

results of [9]. Right: C1 complexity of formation normalized by the entropy for ωR = 10−2Λ (brown),

Λ (green), 104Λ (purple) and d = 3 + 1,m = 10−5Λ, µq = 10−1Λ. For small and large values of

reference scale, the profile of the ratio of the complexity of formation over the entropy is almost very

small. For high temperatures, for reference scale in order of UV cutoff it develops a dependence on

the temperature and the cutoff scale Λ.

Accordingly, the two-point function transforms as follows

G(±) = R4 G
(LR) RT

4 , (4.22)

which it implies that if we have a circuit acting in the diagonal basis as G
(±)
T =

U (±) G
(±)
R U (±),T, then the same circuit in the LR basis is

G
(LR)
T = U (LR) G

(LR)
R (U (LR) )T with U (LR) = RT

4 U (±) R4. (4.23)

For the F1 cost function, we also have considerable freedom in choosing the basis of gen-

erators KI in (3.4). One can impose that the generators be orthonormal under the inner

product inducing the F2 cost function. For the single degree of freedom the generator group

is Sp(2, R) = SL(2, R), whose algebra is given by the traceless matrices KI ∈ T1, T2, T3,

T1 =

(
1 0

0 −1

)
, T2 =

(
0 0

−
√

2 0

)
, T1 =

(
0
√

2

0 0

)
, (4.24)

with

[T2, T1] = 2T2, [T1, T3] = 2T3, [T2, T3] = 2T1. (4.25)

Exponentiating these generators yields the group elements that will serve as the elementary

gates used in the construction of quantum circuits

UT1 = eεT1 =

(
eε 0

0 e−ε

)
, UT2 = eεT2 =

(
1 0

−
√

2ε 1

)
, UT3 = eεT3 =

(
1
√

2ε

0 1

)
,

(4.26)
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with ε is a real parameter with ε � 1. According to (3.29) for G
(±)
T = U (±)G

(±)
R

(
U (±)

)T
,

it is easy to see

U+ =
(
eT1,+

)(α− 1
2

log λ
λR

)
, U− =

(
eT1,−

)(−α− 1
2

log λ
λR

)
. (4.27)

The corresponding matrix U in LR bases is U (LR) = RT4 U (±) R4 where

U (±) = eK
(±)
, K(±) =


α− 1

2 log λ
λR

0 0 0

0 −α+ 1
2 log λ

λR
0 0

0 0 −α− 1
2 log λ

λR
0

0 0 0 α+ 1
2 log λ

λR


(4.28)

After a short computation, one can find U (LR) which by knowing that, the generator K(LR)

in LR basis become

K(LR) =


−1

2 log λ
λR

α 0 0

α −1
2 log λ

λR
0 0

0 0 1
2 log λ

λR
−α

0 0 −α 1
2 log λ

λR

 . (4.29)

To compute the complexity, we need to decompose the generator K(LR) (4.29) in terms of

the generators of Sp(4, R). The matrix generators for the Sp(4, R) can be split into the

Sp(2, R) subalgebra acting on the left oscillator only

T
(1)
L,L =


1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0

 , T
(2)
L,L =


0 0 0 0

0 0 0 0

−
√

2 0 0 0

0 0 0 0

 , T
(3)
L,L =


0 0
√

2 0

0 0 0 0

0 0 0 0

0 0 0 0

 (4.30)

the Sp(2, R) subalgebra acting on the right oscillator only

T
(1)
R,R =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 −1

 , T
(2)
R,R =


0 0 0 0

0 0 0 0

0 0 0 0

0 −
√

2 0 0

 , T
(3)
R,R =


0 0 0 0

0 0 0
√

2

0 0 0 0

0 0 0 0

 , (4.31)

and the remaining generators which entangle the two oscillators

T
(1)
L,R =


0 0 0 0

1 0 0 0

0 0 0 −1

0 0 0 0

 , T
(1)
R,L =


0 1 0 0

0 0 0 0

0 0 0 0

0 0 −1 0

 ,

T
(2)
L,R =


0 0 0 0

0 0 0 0

0 −1 0 0

−1 0 0 0

 , T
(3)
L,R =


0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 0

 . (4.32)
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According to the above generators, K(LR) (4.29) can be written as follows

K(LR) = −1

2
log

λ

λR

(
T

(1)
L,L + T

(1)
R,R

)
+ α

(
T

(1)
L,R + T

(1)
R,L

)
, (4.33)

which it means that only four components of the tangent vector Y I are non-vanishing. The

above result implies that the F1 complexity becomes

C(LR)
1 = |Y (1)

L,L|+ |Y
(1)
L,R|+ |Y

(1)
R,L|+ |Y

(1)
R,R| = 2|α|+ | log

λ

λR
|, (4.34)

and by that, the complexity of formation is given by

C(LR)
1 − C(LR)

1 (vac) = 2|α|, (4.35)

where it only depends on β(ω + µq) and it contains no information about the reference

state.4 Accordingly, the contribution of all modes to the complexity of formation becomes

C(LR)
1 − C(LR)

1 (vac) =
vol Ωd−2

βd−1(2π)d−1

∫ ∞
0

du ud−2 log

(
1 + e−

1
2

(
√
u2+s2+Q̃)

1− e− 1
2

(
√
u2+s2+Q̃)

)
. (4.36)

The ratio of the complexity of formation to thermal entropy is provided in figure 12 for

different dimensions and different values of chemical potential. Intriguingly, this ratio

is free of UV divergence but has a new IR divergence for T → 0 case. Similarly, in

the holographic counterpart, for the complexity of formation there is still a cancellation

of the UV divergences associated with the asymptotic boundary and instead exists an IR

divergence associated with the infinitely long throat of the extremal black holes. The above

results suggests that preparing the ‘extremal’ thermofield double states at zero temperature

and finite chemical potential are infinitely hard compared to the finite temperature states

in complete agreement with third law of holographic complexity, [9]. To complete the

study of complexity of formation in this basis, let us present the result for massive complex

scalar. The effect of changing dimension and chemical potential for this case are presented

figure 13. Both the complexity of formation and the entropy go to zero as the parameter

βm increases, but the ratio increases exponentially as a function of βm.

4.2 Time dependency of complexity

To evaluate the complexity growth rate of cTFD state in LR basis we need the full time-

dependent relative covariance matrix. Similar to previous analysis, let us firstly concentrate

on a single mode. To obtain that matrix, we start with the covariance matrix itself in

diagonal basis

G(±)(t) = G+
TFD(t)⊕G−TFD(t), (4.37)

where the direct sum inputs the + and − components in a 4 by 4 combined matrix and

where the G+
TFD(t) was defined in (3.29) by noting to α → αp and G−TFD(t) is a same

matrix just with αp → −αp. According to the following definition

GT,+(t) = U+(t) GR,+ UT
+(t), (4.38)

4It is worth noting that in (4.34) all gates are uniformly weighted.
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Figure 12. Left: C1 complexity of formation normalized by the entropy in LR basis at constant

chemical potential µq = 10−1Λ and very small mass m = 10−5Λ for d = 1 + 1 (blue), 2 + 1

(brown), 3 + 1 (green), 4 + 1 (red) and 5 + 1 (purple). For small temperatures, the profile of

the ratio of the complexity of formation over the entropy diverges. For higher temperatures, it

decreases to a constant value which it depends to dimension. Right: C1 complexity of formation

normalized by the entropy in LR basis at different constant chemical potential µq = 0 (blue),

µq = 10−1Λ (brown), µq = Λ/2 (green) and µq = Λ (red) with very small mass m = 10−5Λ. For

small temperatures, the profile of the ratio of the complexity of formation over the entropy diverges.

For higher temperatures, it decreases to a constant value.
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Figure 13. Left: The ratio of complexity of formation with thermal entropy in the LR basis for

the cTFD state of a free complex scalar with a mass m and Q̃ = 10−1. We show the dependence

on the dimension from d = 2 (bottom) to d = 6 (top). Right: The complexity of formation in the

LR basis for the cTFD state of a free complex scalar with a mass m and different Q̃ = 10−6 (blue),

10−1 (brown), 1/2 (dot-dashed green) and 1 (dotted red) in d = 1 + 1.

for λR = 1, it is easy to see that the transfer matrix U+(t) can be written as

U+(t) =

(
cosh s1,+ − sin s2,+ sinh s1,+ cos s2,+ sinh s1,+

cos s2,+ sinh s1,+ cosh s1,+ + sin s2,+ sinh s1,+

)
, (4.39)

with

s1,+ =
1

2
cosh−1

(
1 + λ2

p

2λp
cosh 2αp +

1− λ2
p

2λp
sinh 2αp cos[(ωp + µq)t]

)
,

s2,+ = tan−1

(
1 + λ2

p

2λp
cot[(ωp + µq)t] +

1− λ2
p

2λp
coth 2αp csc[(ωp + µq)t]

)
. (4.40)
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Clearly, the identity U−(t) = U+(t)(αp → −αp), implies that

si,− = si,+(αp → −αp). (4.41)

The transfer matrix (4.40) by using the SL(2, p) generators (4.24) can be decomposed

as following

U+(t) = exp

[
(−s1,+ sin s2,+)T1,+ +

(
s1,+ cos s2,+√

2

)
(T2,+ − T3,+)

]
. (4.42)

Therefore, the full circuit U(±) becomes

U±(t) ≡ exp[M±(t)] = exp



−s1,+ sin s2,+ s1,+ cos s2,+ 0 0

s1,+ cos s2,+ s1,+ sin s2,+ 0 0

0 0 −s1,− sin s2,− s1,− cos s2,−
0 0 s1,− cos s2,− s1,− sin s2,−


 .

(4.43)

Now, we can find relevant generator M(LR)(t) = RT
4 M(±)R4 in the LR basis by apply the

transformation (4.21). It is easy to see that

M(LR)(t) =
1

2


M11(t) M12(t) M13(t) M14(t)

M12(t) M11(t) M14(t) M13(t)

M13(t) M14(t) −M11(t) M34(t)

M14(t) M13(t) M34(t) −M11(t)

 , (4.44)

with

M11(t) = −s1,− sin s2,− − s1,+ sin s2,+, M12(t) = s1,− sin s2,− − s1,+ sin s2,+,

M13(t) = s1,− cos s2,− + s1,+ cos s2,+, M14(t) = −s1,− cos s2,− + s1,+ cos s2,+,

M34(t) = −s1,− sin s2,− + s1,+ sin s2,+. (4.45)

The matrix M(LR)(t) (4.44) can be decomposed in terms of the generators of

Sp(4, R), (4.30)–(4.32) as follows

MLR(t) = a
(1)
L,L

(
T

(1)
L,L + T

(1)
R,R

)
+ a

(1)
L,R

(
T

(1)
L,R + T

(1)
R,L

)
+ a

(2)
L,R

(
T

(2)
L,R − T

(3)
L,R

)
+ a

(2)
L,L

(
T

(2)
L,L + T

(2)
R,R − T

(3)
L,L − T

(3)
R,R

)
, (4.46)

where

a
(1)
L,L =−1

2

(
s1,− sins2,−+s1,+ sins2,+

)
, a

(2)
L,L =− 1

2
√

2

(
s1,− coss2,−+s1,+ coss2,+

)
,

a
(1)
L,R =

1

2

(
s1,− sins2,−−s1,+ sins2,+

)
, a

(2)
L,R =

1

2

(
s1,− coss2,−−s1,+ coss2,+

)
, (4.47)

and

s1,± =
1

2
cosh−1

(
1

2λp
cosh 2αp ±

1

2λp
sinh 2αp cos[(ωp + µq)t]

)
,

s2,± = tan−1

(
1

2λp
cot[(ωp + µq)t]± 1

2λp
coth 2αp csc[(ωp + µq)t]

)
. (4.48)
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Now, using the F1 cost function, (3.8), we arrive at

C1(t) = 2 |a(1)
L,L|+ 2 |a(1)

L,R|+ 2 |a(2)
L,R|+ 4 |a(2)

L,L|. (4.49)

Firstly, let us study (4.49) in simple limit where ωR is much bigger than any other scale,

i.e. λp → 0. In this limit we have

C(LR)
1 (t)− C(LR)

1 (vac) =
vol

(2π)d−1

∫ ∞
0

dd−1p log

(
cosh 2αp +

∣∣∣∣ cos(ωp + µq)t

∣∣∣∣ sinh 2αp

)
.

(4.50)

From the above equation, one may conclude that the complexity oscillates in time. But as

it is clear from figure 14, a saturation happens at the order of inverse temperature.5 This

fast saturation happens since oscillatory behavior for all modes quickly dephase and as a

result, summing over them averages out at a time of the inverse temperature. Of course,

this is very different than what we see for holographic complexity, i.e. where we see a linear

growth at late times. The late time saturation for holographic CFTs is indeed related to

their chaotic/fast-scrambling characteristic. The complexity growth rate differs more with

holography since it is negative at first and it becomes more negative by increasing the

U(1) global charge, see figure 15. The reason for this negativity can be easily understood

from (4.50) where at t = 0 the contribution of all of individual modes take their maxi-

mum value and after this time all oscillatory terms become misaligned and therefore the

complexity begins to decrease.

It will be instructive if we also study the effect of global charge in the presence of

mass. According to figures 16 and 17, if the mass or chemical potential are larger than the

temperature then complexity oscillates with damping amplitude. This oscillatory behavior

is clear from (4.50) and at late times we observe again a saturation to a constant value.

To close this section, in the following, we explore the effect of the reference scale on the

time evolution of complexity of cTFD state by changing the dimensionless parameter γ̃.

It is clear from figure 18 that the decreasing of the complexity of formation to the minus

values is an artifact of choosing the special value for reference scale and indeed it can grow

very fast to positive values for intermediate scales, γ̃ ∼ 1. Of course, despite increasing at

first for intermediate scale, it does not continue increasing for long times and it saturates

fast. It is worth to emphasize that for both large and small values of γ̃ we see the same

behavior, i.e. decreasing at first then saturating to a constant value. The constant value of

saturation also depends on the value of γ̃, see figures 18–19. Moreover, it is worth noting

that the dependency of complexity to reference scale at early transient times is the same

as holographic results. Indeed, the time dependency of complexity for cTFD state dual

to a charged eternal black hole exhibits non-universal behavior at early times due to the

normalization of the null normals to boundary of WDW patch in the CA proposal which

it is remained even after recovering affine parametrization. To be more precise, even after

fixing reparametrization invariance by a boundary counterterm, the transient behavior is

controlled by an arbitrary dimensionless parameter lct/l which it can be dual to ωR in the

5Our result is in contradiction with previous attempts [33] to study complexity of cTFD state of free

complex scalar theory, since the authors find that the complexity grows linearly for a long time.
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Figure 14. The L1 norm complexity and its time derivative for a cTFD state of a massless complex

scalar field with Q̃ = 1/10 in the LR basis and simple limit (λp → 0). d = 1 + 1 (up) and d = 2 + 1

(down). In contrast to holography, the rate of change is negative at first, then saturates to zero at

times of the order of the inverse temperature.
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state with Q̃ = 1/10 in the simple limit (λp → 0). m̃ = 1/5 (blue), m̃ = 1/2 (brown), m̃ = 1

(dashed green) and m̃ = 2 (dashed red). For large masses with respect to the thermal scale, there

is an oscillatory behavior with period ∆t ∼ π/(m+ µq).
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Figure 17. The L1 norm complexity and its time derivative in the LR basis for a massive cTFD

state with m̃ = 1/5 in the simple limit (λp → 0). Q̃ = 10−6 (blue), Q̃ = 10−1 (brown), Q̃ = 1/2

(dashed green) and Q̃ = 1 (dashed red). For large chemical potentials with respect to the thermal

scale, there is an oscillatory behavior with period ∆t ∼ π/(m+ µq).

field theory side. The late time growth rate of complexity in holography was independent

of these ambiguities in the null boundaries which also seems to be a property in figures 19.

Similar analysis for the massive case is presented in figures 20 and 21. Same as the massless

case, for the large and small values of γ̃ we see effectively the same behavior. This can be

understood easily by finding the complexity of formation in LR bases for the simple limit

in which ωR is much smaller than any other scale, i.e. λp →∞. In this limit, using (4.40),

we have

s1,± =
1

2
log

(
cosh 2αp ∓ sinh 2αp cos[(ωp + µq)t]

)
+

1

2
log λp,

s2,± ' ∓sgn

(
sin(ωp + µq)t

)
π

2
. (4.51)
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Figure 19. The L1 norm complexity growth rate over temperature times thermal entropy for a

cTFD state of massless complex scalar with Q̃ = 1/10 and different values of reference state scale.

d = 2 + 1 (left), d = 3 + 1 (right).

Considering the above values for si,± in (4.47) implies that

a
(1)
L,L = −1

2

(
s1,− sin s2,− + s1,+ sin s2,+

)
, a

(1)
L,R =

1

2

(
s1,− sin s2,− − s1,+ sin s2,+

)
,

a
(2)
L,R ' 0, a

(2)
L,L ' 0, (4.52)

which by implementing them in (4.49) we have

C(LR)
1 (t)− C(LR)

1 (vac) =
vol

(2π)d−1

∫ ∞
0

dd−1p log

(
cosh 2αp +

∣∣∣∣ cos(ωp + µq)t

∣∣∣∣ sinh 2αp

)
.

(4.53)

The result (4.53) exactly matches with (4.50). Thus, even though we are considering the

opposite limit here (i.e. λ→∞ rather than λ→ 0), the time dependency of complexity of

formation remains unchanged.

5 Conclusions

In this paper, we derived the complexity of formation over entropy for cTFD state of free

complex scalar theory with particles on one side and anti-particles on the other side. We

chose Nielsen’s geometric approach and used covariance matrix technique, since our states
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Figure 20. The time evolution of L1 norm complexity of cTFD state in LR basis with Q̃ = 1/10

in d = 1 + 1 dimensions and different masses. m̃ = 1/5 (blue), m̃ = 1/2 (brown), m̃ = 1 (dashed

green) and m̃ = 2 (dashed red). The left figure is for γ̃ = 105 and the right one for γ̃ = 10−5. It is

clear that both the large and small values of reference scale led to the same time dependency for

the complexity.

were Gaussian. We investigated Fκ=2, F2 and F1 cost functions to see which one is a better

option to be the quantum field counterpart of holographic complexity. In general, L2 norms

are not basis-dependent and it makes them easier to work with. But their leading divergent

term for F2 and Fκ=2 cost functions are in conflict with the holographic results (4.15). On

the other hand, if we take α̃ = lωR, C1 would have the same leading term as holography.

So after this observation, we mainly focused on F1. As a matter of fact, we could just

find an upper bound for this cost function and calculating the exact expression for C1 is

very difficult. Also, this cost function is basis-dependent so we had to choose our basis.

In the beginning, we used diagonal basis in which we can factorize our cTFD state. C1

in diagonal basis was in contrast with the third law of complexity, even though it had

the correct leading terms. So we changed our basis to LR which uses physical degrees of

freedom and it gave us the desired IR divergence that we see in holography.

Then we investigated the time dependency of complexity and it’s growth rate, using

F1 in LR basis. A difference with holographic complexity is saturation time, which is much

less than the expected one in holography, because we are using free field theory so our

state cannot probe a vast subspace of Hilbert space and complexity saturates in thermal

time. Besides, we observed that the reference scale has the same rule that the ambiguities
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Figure 21. The time evolution of L1 norm complexity of cTFD state in LR basis with m̃ = 1/5 in

d = 1 + 1 dimensions and different charges. Q̃ = 10−6 (blue), Q̃ = 10−1 (brown), Q̃ = 1/2 (dashed

green) and Q̃ = 1 (dashed red). The left figure is for γ̃ = 105 and the right one is for γ̃ = 10−5. It

is clear that both the large and small values of reference scale led to the same time dependency for

the complexity.

have in holography. For example, the dependency of complexity to reference scale at early

transient times matches the holographic dependence on ambiguity.

Our final observation regarding complexity was comparing each term of it with differ-

ent holographic proposals. We derived complexity of formation in holography for different

dimensions. In 3+1 dimensions, even though the neutral TFD was in agreement with

holography, complexity of charged black hole had some terms missing. We discussed dif-

ferent ways to solve this problem. If we assume that the complexity we found in free

cTFD does not change in strong coupling regime, we concluded that the most reasonable

solution is adding boundary terms. One of these boundary terms were proposed in [34].

This term just recovers one of the missing terms and the remaining are still missing. But

the other boundary term, proposed in [36] has all the missing terms and unlike the other

one, smoothly approaches to neutral case. Moreover, in the finite chemical potential, the

holographic complexity with the latter boundary term diverges similarly to the complexity

of formation in cTFD.

So C1 in LR basis not only is a very good candidate for neutral black hole, but also it

is a very good match in the presence of U(1) electric charge and complexity of formation

in this basis matches very well with the theory that has cut off behind the horizon.
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A Thermal entropy and total charge

Entropy of any thermal state can be obtained by its partition function, using the equation

Sth =
∂

∂T
(T logZ) = logZ − β ∂

∂β
logZ. (A.1)

For a single mode, the partition function becomes

Z =
e−β(ω+µq)/2

1− e−β(ω+µq)
, (A.2)

which it implies that the thermal entropy is given by

Sth = vol

∫
dd−1k

(2π)d−1

[
β(ωk + µq)

eβ(ωk+µq) − 1
− log(1− e−β(ωk+µq))

]
. (A.3)

Moreover, every particle has a charge q so in order to find the total charge of the state, we

need to find the average number of particles, using Bose-Einstein distribution. Accordingly,

Q = q

[
1

Z

∞∑
n=0

ne−β(ω(n+ 1
2

)+nµq)
]

=
q

eβ(ω+µq) − 1
. (A.4)

By integrating over every mode of the quantum field theory, we obtain

Qtot = vol

∫
dd−1k

(2π)d−1

q

eβ(ωk+µq) − 1
. (A.5)

B Complexities in diagonal basis

In this appendix we explore the time dependency of Cκ=2 (or it’s C2 counterpart) and

C1 complexities in diagonal basis. It is discussed in section 4 that these complexities are

not consistent with holographic results neither for neutral AdS black holes nor for RN-

AdS ones. In figure 22, time evolution of those complexities is presented for the massless

complex scalar theory. Although these complexities are basis independent but they are

scale dependent. In contrast with C1 complexity in LR basis, they decrease by increasing

the dimension. The difference of complexity at time “t” with complexity of TFD state at

zero time is presented in figure 22 and the difference with the value for vacuum state is

presented in figures 23–24. Moreover, for both of them the complexity increases sharply
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Figure 22. The time evolution of complexity of cTFD state in the diagonal basis for a massless

complex scalar field with Q̃ = 1/10 in different dimensions. d = 2 (blue), d = 3 (brown), d = 4

(green), d = 5 (red) and d = 6 (purple). The reference scale is γ̃ = 10. Up: κ = 2, Down: κ = 1.

at the beginning and reaches to its maximum value and then saturates very fast. This

increasing in the beginning is another difference with C1 complexity in the LR basis but

the fast saturation happens for both of the cases. The fast saturation is also in contrast

with holographic results where one see a linear growth at late times. Since this linear

growth is the effect of chaotic holographic CFTs this difference is not unexpected.

From figure 24, it is clear that the complexity growth rate for both Cκ=2 and C1

measures is independent from the chemical potential which it is another difference with

holographic proposals. Beside previously indicated reasons, this observation also implies

that these complexities are not well suited to compare with holography. In figure 25, we

study the effect of changing reference scale and moreover we see that sharply increasing

value of complexity can become smooth by increasing value of Q̃. These complexities also

saturate to different values by changing the reference scale and moreover for large and

small γ̃ we have a large time derivative during the transient period at early times. This

dependency to reference scale in early times is similar to the C1 complexity in LR basis and

moreover is the same as holography and ambiguity in the normalization of null surfaces in

CA conjecture. To complete the study, we do the same analysis for massive theory and

results are presented in figures 26–27. Again we see a sharp increasing in the value of

complexity but in contrast to massless case, for large masses (or large values of charges)

with respect to the thermal scale there is an oscillatory behavior with period ∆t = π/m

(or ∆t = π/µq). The complexity becomes smaller by increasing the mass or chemical
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Figure 23. Up: The time dependence of Cκ=2 and C1 complexity of formation for TFD state of

a massless real scalar theory with γ̃ = 10 in different dimensions. Down: The time dependence

of Cκ=2 and C1 complexity of formation for cTFD state of a massless complex scalar theory with

Q̃ = 1/10 and γ̃ = 10 in different dimensions. d = 1 + 1 (blue), 2 + 1 (orange), 3 + 1 (green) 4 + 1

(red) and 5 + 1 (purple).

potential and moreover at late times, we observe a saturation for complexity to a constant

value. Albeit in all above cases we have chosen the UV cut-off as infinity, but complexity of

formation is finite. This indicates that the UV divergences in the complexity of the time-

dependent cTFD state is exactly those of (two copies of) the vacuum not only in massless

theory but also in massive one. Moreover, the UV divergences for the time-dependent

cTFD state are the same with the ones for TFD state. This means that in presence of

the U(1) global charge no new UV divergence appears which is similar to holography. In

holographic dual, we do not need to add any new gravitational counterterm in presence of

U(1) bulk field. The reason for the absence of new counterterms comes from the special

fall of U(1) gauge field near the boundary of spacetime.

The effect of changing the reference scale on time dependence of complexity is explored

above, figure 25. Similarly, the results for time dependency of complexity of formation is

presented in figure 28. Figures 25 and 28 show that by changing the reference scale, the

general structure of time dependency of complexity of formation, which is increasing in the

beginning and saturating after short time, in this basis does not change. This is in contrast

with the result of C1 complexity in LR basis, figure 18, where by changing the reference

scale, the decreasing of complexity in the beginning changes to increasing behavior and
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Figure 24. Up: The Cκ=2 and C1 complexity growth rate normalized by temperature times thermal

entropy for TFD state of a massless real scalar theory with γ̃ = 10 in different dimensions. Down:

The Cκ=2 and C1 complexity growth rate normalized by temperature times thermal entropy for

cTFD state of a massless complex scalar theory with Q̃ = 1/10, γ̃ = 10 in different dimensions.

d = 1 + 1 (blue), 2 + 1 (orange), 3 + 1 (green) 4 + 1 (red) and 5 + 1 (purple).

vice versa. But similar to the C1 in LR basis, for the large and small values of reference

scale we see the same behavior. The effects of changing mass and charge on complexity of

formation in this basis are provided respectively in figure 29 and figure 30.

To close this section, we explore the effect of changing the λR. Changing the ratio of

the reference state scale to the gate scale i.e. λR does not change the conclusions above

significantly. The complexity still saturates at times of the order of β. From figure 31

we see that sharply changes of complexity becomes more and more smooth by increasing

λR. This is consistent with this fact that by increasing λR, target state approaches to the

reference state and therefore the complexity becomes smaller. For these norms the net

effect of charge is just decreasing the value of complexity in each time without altering the

general structure of graph specially its first time derivative. This is in contrast with the

holographic results [9] which again, implies that these norms are not well suited to compare

with large N CFTs.

C More concrete comparison with holography

To explore the relation between QFT calculations in subsection 4.1 with holographic re-

sults more concretely, it would be better to focus on the complexity of formation. The
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Figure 25. The time evolution of complexity with varying reference scale for massless complex

scalar in d = 1 + 1. γ̃ = 1(solid black), γ̃ < 1 (dashed curves) and γ̃ > 1 (colored solid curves).

For different values of γ̃ the complexity saturates to different constants at late times. We note that

for large and small γ̃ we have a large time derivative during the transient period at early times.

Increasing the charge actually smooth this transition. Left: Q̃ = 1/10, Right: Q̃ = 1, Up: C2
complexity and Down: C1 complexity.

C1 function (4.36) in LR basis together with (4.9) imply that the ratio of complexity of

formation to thermal entropy for massless theory has the following expansion in Q̃,

C(LR)
1 − C(LR)

1 (vac)

Sth
=

2d − 1

d
+

d−1∑
n=1

a(n, d) Q̃n + b(d) Q̃d−1 log Q̃+O(Q̃d), (C.1)

where a(n, d) and b(d) are constant numbers that depend on the dimensions, for example

a(1, 2) =
6

π2
(1− log 2), a(1, 3) =

5π2

54 ζ(3)
, a(1, 4) =

765 ζ(3)

8π4
,

a(2, 3) =
1

486 ζ(3)2

(
5π4 + 27(−13 + 6 log 2) ζ(3)

)
, a(2, 4) = − 135

16π8

(
π6 − 765 ζ(3)2

)
,

a(3, 4) = − 5

32π12

(
− 211π8 + 48π8 log 2 + 5940π6 ζ(3)− 2788425 ζ(3)3

)
, (C.2)

and

b(2) = − 3

2π2
, b(3) =

2

9ζ(3)
, b(4) = − 165

16π4
. (C.3)

According to CA proposal, to compute the complexity of cTFD state dual to charged

eternal AdS-BH, one may find on-shell bulk action in a special part of geometry which is
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Figure 26. The time dependence of Cκ=2 (up) and C1 (down) complexities for cTFD state of a

massive complex scalar theory in d = 1 + 1 dimensions with Q̃ = 1/10, γ̃ = 10 and different masses.

m = 0.2T (blue), m = 0.5T (orange), m = 1T (dotted dashed green) and m = 2T (dotted red).

For large masses with respect to the thermal scale, there is an oscillatory behavior with period

∆t = π/m. At late times, we observe a saturation to a constant value.

known as WDW patch. The background geometry is

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2, f(r) =

r2

l2
− ωd−2

rd−2
+

q2

r2(d−2)
(C.4)

and the WDW patch is shown as shaded region in left panel of figure 32. Temperature and

entropy of this solution is given by

T =
1

4π

∂f

∂r

∣∣∣∣
r=r+

, Sth =
Vd−1

4GN
rd−1

+ . (C.5)

Furthermore, bulk gravitational action is as follows

SBulk =
1

16πGN

∫
dd+1x

√
−G (R− 2Λ)− 1

4g2

∫
dd+1x

√
−G FµνF

µν . (C.6)

To have an action which has well defined variational principle and its on-shell value also

has reparamitrization invariance, one needs to add respectively Gibbons-Hawking term and

proper counterterm. According to figure 32 for zero time at the boundary (tL = tR = 0),
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Figure 27. The time dependence of Cκ=2 (up) and C1 (down) complexities for cTFD state of a

massive complex scalar theory in d = 1 + 1 dimensions with m̃ = 1, γ̃ = 10 and different charges.

Q̃ = 10−6 (blue), Q̃ = 10−1 (orange), Q̃ = 1/2 (dotted dashed green) and Q̃ = 1 (dotted red).

For large charges with respect to the thermal scale, there is an oscillatory behavior with period

∆t = πβ/Q̃. At late times, we observe a saturation to a constant value.
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Figure 28. Time dependency of C1 complexity of formation in diagonal basis for a cTFD state of

massless complex scalar theory with Q̃ = 1/10 and different values of reference scale. Left: d = 1+1

and Right: d=2+1.
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Figure 29. The time dependence of Cκ=2 and C1 complexity of formation for cTFD state of a

massive complex scalar theory in d = 1 + 1 dimensions with Q̃ = 1/10, γ̃ = 10 and different masses.

m̃ = 1/5 (blue), m̃ = 1/2 (orange), m̃ = 1 (dotted dashed green) and m̃ = 2 (dotted red). For large

masses with respect to the thermal scale, there is an oscillatory behavior with period ∆t = π/m̃.

At late times, we observe a saturation to a constant value.
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Figure 30. The time dependence of Cκ=2 and C1 complexity of formation for cTFD state of a

massive complex scalar theory in d = 1 + 1 dimensions with m̃ = 1, γ̃ = 10 and different charges.

Q̃ = 10−6 (blue), Q̃ = 10−1 (orange), Q̃ = 1/2 (dotted dashed green) and Q̃ = 1 (dotted red).

For large charges with respect to the thermal scale, there is an oscillatory behavior with period

∆t = πβ/Q̃. At late times, we observe a saturation to a constant value.

the final expression for each of those parts is as following

IEH = 2× Vd−1

8πGN

(
−2d

l2

)∫ r∞

rm

dr rd−1 (r∗∞ − r∗(r)) ,

IMaxwell = 2× Vd−1

8πGN
(1− 2γ)

(
2(d− 2)q2

) ∫ r∞

rm

dr
1

rd−1

(
r∗∞ − r∗(r)

)
,

Ijoint = −2× Vd−1

8πGN
rd−1
m log

(
l2|f(rm)|
α̃2R2

)
− 2× Vd−1

8πG
rd−1
∞ log

(
l2|f(r∞)|
α̃2R2

)
,

Ict = −2× Vd−1

8πGN
rd−1
m

[
log

(
(d− 1)2 l2ct α̃

2R2

r2
m l

2

)
+

2

d− 1

]
− 2× Vd−1

8πGN
rd−1
∞

[
log

(
(d− 1)2 l2ct α̃

2R2

r2∞ l2

)
+

2

d− 1

]
, (C.7)
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Figure 31. Up: The time dependence of Cκ=2 and C1 complexities for TFD state of a massless real

scalar theory in d = 1 + 1 dimensions with γ̃ = 10 and different λR. Down: The time dependence

of Cκ=2 and C1 complexities for cTFD state of a massless complex scalar theory in d = 1 + 1

dimensions with Q̃ = 10−1 and γ̃ = 10 and different λR. λR = 10 (dashed blue), λR = 5 (dotted

dashed orange), λR = 1 (dotted green), λR = 1/5 (red) and λR = 1/10 (purple).

where r∞ indicates the conformal boundary, rm is chosen for the joint points between two

horizons, α̃ refers to normalization of null boundaries of WDW patch6 and moreover total

action is Itot = IEH + IMaxwee + Ijoint + Ict. To find the complexity of formation, we also

need on-shell action for the vacuum state (pure AdS spacetime), Ivac = Ivac
Bulk + Ivac

joint + Ivac
ct ,

which its different parts are given by

Ivac
Bulk = 2× Vd−1

8πGN

(
−2d

l2

)∫ r∞

0
dr rd−1

(
r∗AdS
∞ − r∗AdS(r)

)
,

Ivac
joint = −2× Vd−1

8πGN
rd−1
∞ log

(
l2|fvac(r∞)|

α̃2R2

)
,

Ivac
ct = −2× Vd−1

8πGN
rd−1
∞

[
log

(
4l2ct α̃

2R2

r2∞ l2

)
+

2

d− 1

]
. (C.8)

It is easy to check that IR bulk divergences of total action in limit r → r∞ are exactly the

same as IR divergences for vacuum state. Therefore, holographic complexity of formation

∆CH =
1

π
(Itot − Ivac) , (C.9)

6One can choose different normalization for each null boundary of WDW patch but the final results do

not alter.
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Figure 32. Left: Penrose diagram of charged AdS-BH and WDW patch is shown by shaded region.

Right: Penrose diagram of charged AdS-BH and modified WDW patch is shown by shaded region.

In comparison with left panel, one part of WDW patch is removed where r− < r0 < r+. Existence

of this extra surface, r = r0, implies that one also needs to consider GH term, reparametrization

recovery counterterm together with two joint terms and bulk counterterm on that.

is finite and this cancellation of IR bulk divergences is consistent with the cancellation of

UV divergences in the field theory side, (C.1). Apart from cancellation of IR divergences,

there is another important reason for choosing AdS spacetime for reference state. It is

shown [9] that the complexity of extremal BH diverges and therefore it can not be used as

a meaningful tool for comparison. To compare with field theory results it will be useful to

define following dimensionless parameters

z =
l

r+
, y =

r−
r+
, x =

r

r+
, (C.10)

which by using them for small charges we have7

RT ∼ r+

4πL

(
d− (d− 2)yd−2

)
+O(y2(d−2)),

ν ≡
√
CJ
CT

Q̃ ∼ 2
√

2π (d− 1)

d
√
d (d+ 1)

[
y
d
2
−1 +

(
3

2
− 2

d

)
y

3d
2
−3 +O

(
y

3d
2
−1
)]
, (C.11)

where

CJ = (d− 2)
Γ[d]

2πd/2Γ[d/2]

ld−3

g2
, CT =

d+ 1

d− 1

Γ[d+ 1]

8π(d+2)/2Γ[d/2]

ld−1

GN
. (C.12)

The CJ and CT are central charges associated with the two-point functions of the boundary

currents and stress tensor

〈Jµ(x)Jν(0)〉 =
CJ

x2(d−1)
Aµν(x) + . . . , 〈Tµν(x)Tαβ(0)〉 =

CT
x2d
Bµν,αβ + . . . , (C.13)

7The ‘non-normalizable’ mode of the gauge potential is identified with µ̃, i.e. µ̃ = limr→bdy At.
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with

Aµν = ηµν − 2
xµxν
x2

, Bµν,αβ =
1

2

(
Aµν(x)Aαβ(x) +Aµβ(x)Aνα(x)

)
− 1

d
ηµν ηαβ . (C.14)

Let us calculate the different contributions in (C.7) and (C.8) for d = 2 + 1 and d = 3 + 1

separately in the following two subsections.

C.1 d = 2 + 1 dimensions

By defining

f̃(x, y) = z2f(r), x∗(x, y) = r∗(r)/z2r+, (C.15)

in d = 2 + 1 dimensions we have

f̃(x, y) =
1

x2
(x− 1)(x− y)

(
1 + x+ x2 + y + y2 + xy

)
,

x∗(x, y) =
(3 + 6y + 10y2 + 6y3 + 3y4)

(3 + 2y + y2)(1 + 2y + 3y2)
√

3 + 2y + 3y2
arctan[

1 + 2x+ y√
3 + 2y + 3y2

]

− 1

(−3 + y + y2 + y3)
log |x− 1| − y2

(1 + y + y2 − 3y3)
log(x− y)

− (1 + y)3

2(3 + 2y + y2)(1 + 2y + 3y2)
log

(
1 + x+ x2 + y + y2 + xy

)
, (C.16)

where r∗(r) =
∫
dr/f(r). According to (C.16) for boundary and joint surfaces one can see

x∗∞ =
π
(
3 + 6y + 10y2 + 6y3 + 3y4

)
2(3 + 2y + y2)(1 + 2y + 3y2)

√
3 + 2y + 3y2

,

xm ' y
(

1 + exp

(
− π

3
√

3y2
+O

(
1

y

)))
, (C.17)

which they all together imply that

IAdS = −V2 r
2
+

4GN

(
4 x2
∞
π

+
x2
∞
π

log

(
4 l2ct

l2

))
,

IEH = −V2 r
2
+

4GN

(
3 x2
∞
π

+
2
√

3

9
+

2y

3
√

3
+

(9 + 4
√

3π)y2

27π
+O(y3)

)
,

IMaxwell =
V2 r

2
+

4GN
(1− 2γ)

(
2

3
√

3
+

2y

3
√

3
+

(
4

9
√

3
+

4

3π

)
y2 +O(y3)

)
,

Ijoint =
V2 r

2
+

4GN

(
− x2

∞
π

log

(
l2x2
∞

R2 z2 α̃2

)
+

1

3
√

3
+
y2

π
log

(
R2z2α̃2y

l2

) )
,

Ict = −V2 r
2
+

4GN

(
x2
∞
π

+
x2
∞
π

log

(
4R2 z2 α̃2 l2ct

x2∞ l4

)
+
y2

π
+
y2

π
log

(
4R2z2α̃2l2ct

l4y2

))
. (C.18)

By using final expressions in (C.18) and noting to (C.9), (C.11) and (C.5), it is easy to

see that

∆CH

Sth
=

1

3
√

3π
+

27

64π6

162 log

 3
√

3 l
1
3

2
11
6 l

1
3
ct π

ν

 ν4 +O(ν6). (C.19)
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C.2 d = 3 + 1 dimensions

In d = 3 + 1 dimensions we have

f̃(x, y) =
(x2 − 1)(x2 − y2)(x2 + y2 + 1)

x4
, xm ' y

(
1 + exp

(
− π

2y3
+O(1/y)

))
,

x∗ (x, y) =

(
1 + y2

) 3
2

(2 + y2) (1 + 2y2)
arctan

(
x√

1 + y2

)
+

1

2 (1− y2) (2 + y2)
log
|x− 1|
x+ 1

− y3

2 (1− y2) (1 + 2y2)
log

x− y
x+ y

, (C.20)

which they all together imply that

IAdS =−V3 r
3
+

4GN

(
10x3

∞
3π

+
x3
∞
π

log

(
9 l2ct

l2

))
,

IEH =−V3 r
3
+

4GN

(
8x3
∞

3π
+

1

2
+
y2

2
+O(y4)

)
,

IMaxwell =
V3 r

3
+

4GN

(
1

2
+
y2

2
+

2y3

3π
+O(y4)

)
,

Ijoint =
V3 r

3
+

4GN

(
−x

3
∞
π

log

(
l2 x2
∞

R2 z2 α̃2

)
+

1

2
+
y3

π
log

(
R2 z2 α̃2y2

2l2

))
,

Ict =−V3 r
3
+

4GN

(
+

2x3
∞

3π
+
x3
∞
π

log

(
9R2 z2 α̃2 l2ct

x2∞ l4

)
+

2y3

3π
+
y3

π
log

(
9R2 z2 α̃2 l2ct

l4 y2

))
.

(C.21)

Having above results and noting to (C.9), (C.11) and (C.5) after short computation one

can see
∆CH

Sth
=

1

2π
+

320
√

10

27π5

(
log

(
2

5
4

√
5

3
√

3π

√
l

lct
ν

))
ν3 +O (ν)4 . (C.22)

For the neutral case, Q̃ = 0, the complexity of formation is proportional to thermal entropy

which is completely in agreement with the result of C1 complexity in LR basis. Accord-

ing to this agreement, it is claimed that [29] this norm of complexity is a corner stone of

holographic complexity. Unlike the neutral case, QFT result (C.1) is independent of refer-

ence state scale ωR but holographic results (C.19) and (C.22) depend to lct. Apart from

that, in comparison with (C.1) also some terms in Q̃ expansion are missed in holographic

results (C.19) and (C.22). Now we have at least four options. We can change the com-

plexity in the QFT side by using the charged dependent penalty factors to set these extra

terms zero or we can conclude that the CA proposal needs more boundary terms or we

can say that these missing terms are actually zero in the strong coupling regime or we can

conclude that lct is proportional to AdS radius l. If one chooses the first option, the new

UV charged dependent divergences appear which they do not have the same counterpart

in the holographic side because the on-shell action for the Maxwell term is finite and so

the holographic UV divergent part is independent of chemical potential. According to the

second option, recently two different boundary terms are proposed in [34] and [36]. In [34]
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a new boundary term for the Maxwell field is added to the action of Einstein-Hilbert-

Maxwell theory (C.6) in D = d+ 1 = 3 + 1 dimensions8

Iµ̃ =
γ

g2

∫
∂M

dΣµ F
µνAν . (C.23)

While introducing this boundary term does not change the equations of motion, it does

change the nature of variational principle of the Maxwell field. That is, it changes the

boundary conditions that must be imposed for consistency of the variational principle. If

we use the Maxwell equations, ∇µFµν = 0, then this boundary term can be converted into

a bulk term via stokes’s theorem as

Iµ̃,on-shell =
γ

2g2

∫
M

d4x
√
−GFµνFµν . (C.24)

According to (C.21), this new boundary term changes (C.22) to the following expression

∆CH

Sth
=

(1− 4γ)

3
√

3π
−
√

3γ

π2

(
GN
g2 l2

)
Q̃2 +O(Q̃4, l, lct), (C.25)

where we have used the (C.11). For γ = 0 and Q̃ = 0 we recover the known result [9]. In

comparison with the QFT result (C.1), it is clear that adding boundary term (C.23) just

recovers Q̃2 term but Q̃ and Q̃2 log Q̃ ones are remained absent. Apart from that, in the

zero charge limit, the complexity of formation changes in comparison with neutral case,

since this boundary term actually changes the boundary condition and therefore ensemble

of system under consideration. Furthermore, by using this extra term, one can not see the

dependence of complexity to the reference scale in general time, (4.49), since by comparison

with QFT result at zero time we may choose lct as a function of the AdS scale l and so no

other arbitrary scale remains for another times.

Instead of changing the variational principle in [34, 35], authors [36, 37] suggest a very

different understanding of the holographic complexity for JT gravity. This approach relies

on defining a new cut-off surface, r = r0, behind the outer horizon according to the left

panel in figure 32. Based on this proposal, one needs to remove one part of the WDW

patch and instead, add the following contributions to the action

IGH =
Vd−1

8πGN
rd−1

0

(
∂rf(r) +

2(d− 1)

r
f(r)

)(
r∗(r0)− r∗∞

)
,

Ijoint = − Vd−1

8πGN
rd−1

0 log

(
l2|f(r0)|
α̃2R2

)
,

Ict = − Vd−1

8πGN
rd−1

0

[
log

(
(d− 1)2 l2ct α̃

2R2

r2
0 l

2

)
+

2

d− 1

]
.

Inew
ct =

Vd−1

8πG
rd−1

0

(
2(d− 1)

l

√
f(r0)

(
r∗∞ − r∗(r0)

))
, (C.26)

where Inew
ct is standard volume counterterm which is calculated on the r = r0 hypersurface.

By choosing the behind the horizon cut-off r0 as following

x0 ≡
r0

r+
= y

(d−2)
2

(
1 + exp

[
− c3

y3
− c2

y2
− c1

y
+ c0 + c̃1y + . . .

])
, (C.27)

8Adding this term puts the electric and magnetic charges on an equal footing in the holographic com-

plexity.
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for d = 2 + 1 we have

Ir0EH =
V2 r

2
+

4GN

(
−3 x2

∞
2π
− 1

3
√

3
− y

3
√

3

)
+O

(
y

3
2

)
,

Ir0Maxwell =
V2 r

2
+

4GN

(
(1− 2γ) y

1
2

3
√

3
+

(1− 2γ) y

3
√

3

)
+O

(
y

3
2

)
,

Ir0GH =
V2 r

2
+

4GN

(
1

2
√

3
− y

1
2

3
√

3
+

3y

4π

)
+O

(
y

3
2

)
,

Ir0joint =
V2 r

2
+

4GN

(
y

4π
log

(
z4R4α̃4y

l4

))
+O

(
y

3
2

)
,

Ir0ct = −V2 r
2
+

4GN

y

2π

(
1− log

(
y l4

4z2 l2ctR
2 α̃2

))
,

Inew
ct ∼ O

(
y

3
4

)
. (C.28)

Also for d = 3 + 1 one can check that

Ir0EH =
V3 r

3
+

4GN

(
−4x3

∞
3π
− 1

4
+
y

4π
− 1+2π

8π
y2+

5y3

24π

)
+O

(
y4
)
,

Ir0Maxwell =
V3 r

3
+

4GN

(
1

4
− y

4π
+

(1+2π)

8π
y2+

y3

8π

)
+O

(
y4
)
,

Ir0GH =
V3 r

3
+

4GN

(
(π−2c3)

4π
− (1+2c2)

4π
y− (−1+4c1)

8π
y2− (−7−4c0+4log2)

8π
y3

)
+O

(
y4
)
,

Ir0joint =
V3 r

3
+

4GN

(
c3

2π
+
c2

2π
y+

c1

2π
y2+

1

2π

(
−c0+2log

[
zRy α̃√

2 l

])
y3

)
,

Ir0ct =−V3 r
3
+

4GN

y3

2π

(
2

3
−2log

[
l2 y

3z lctRα̃

])
, Inew

ct = 0. (C.29)

It is also easy to see that by choosing the behind horizon cut off according to (C.27) (for

small charges), not only the complexity of formation smoothly approach to the nuetral case

in the limit y → 0 but also the complexity growth rate matches with the Lloyd’s bound

in the late time in the same limit. Putting all ingredients (C.28) and (C.29) together the

complexity for formation for d = 2 + 1 and d = 3 + 1 respectively becomes

∆Cholo

Sth
=

(1− 2γ)

3
√

3π
−

 γ
√

3π
3
2

G
1
2
N

g l

 Q̃ (C.30)

+
GN

16π3g2l2

9− 16
√

3π γ − 54 log

2
5
3π

1
2

3

g l
1
3 l

2
3
ct

G
1
2
N

+ 54 log Q̃

Q̃2 +O(Q̃3),

and

∆Cholo

Sth
=

1

2π
−

 1
√

3π
5
2

G
1
2
N

g l

 Q̃+

(
2GN

3π3g2 l2

)
Q̃2+

+
8

3
√

3π
7
2

(
GN
g2 l2

) 3
2
(

7− 16 log

(
9π

2
13
4

g2 l lct

GN

)
+ 32 log Q̃

)
Q̃3 +O(Q̃4). (C.31)
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Intriguingly, holographic results (C.30)–(C.31) which are obtained in presence of behind

the horizon cut-off are compatible with field theory result (C.1) since we could recover all

the Q̃ terms. Moreover, the QFT result (C.1) does not depend on the reference scale and its

consistency with holographic results (C.30)–(C.31) implies that lct is actually proportional

to AdS scale. It is worth noting that the identification between lct and l implies that the

complexity of formation as a function of GN , g, l can be completely expressed as a ratio

of two boundary central charges, CJ/CT .9 Moreover, at finite chemical potential and zero

temperature Q̃ ≡ µ̃/T → ∞, the complexity of formation of holographic states (C.30)–

(C.31) diverges similarly to the complexity of formation of free field theory (C.1). According

to the above analysis, we see that the F1 complexity (4.35) not only is compatible with

holographic complexity for neutral BH but also works for U(1) electric charged ones.

To close this section let us emphasize that we have chosen an arbitrary length scale

lct ∼ l by comparing with the QFT results for complexity of formation. This identification is

obtained for zero time tL = tR = 0 and for another times, apart from geometrical variables

GN , l, g we also have the time τ = tL + tR itself. This extra dimensionful variable may

also appear in the expression of length scale lct. This time dependency of lct can cause the

complexity itself becomes a function of a completely new scale, similar to the appearance

of ωR in non-zero times in QFT side, (4.49). But this is not a good way to reconstruct the

dependence on ωR for nonzero times because of two reasons. Firstly, the time dependency

of lct causes the counterterterm action, Ict, breaks bulk general covariance. Secondly, this

time dependency implies that UV divergences of holographic complexity for AdS geometry

become time-dependent which by comparison with (C.8) it is clear that this can not be

correct. This observation needs to be considered more carefully and we hope to address a

resolution for that in near future.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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