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Abstract: We apply on-shell methods to the bottom-up construction of electroweak am-

plitudes, allowing for both renormalizable and non-renormalizable interactions. We use the

little-group covariant massive-spinor formalism, and flesh out some of its details along the

way. Thanks to the compact form of the resulting amplitudes, many of their properties,

and in particular the constraints of perturbative unitarity, are easily seen in this formalism.

Our approach is purely bottom-up, assuming just the standard-model electroweak spec-

trum as well as the conservation of electric charge and fermion number. The most general

massive three-point amplitudes consistent with these symmetries are derived and studied

in detail, as the primary building blocks for the construction of scattering amplitudes. We

employ a simple argument, based on tree-level unitarity of four-point amplitudes, to iden-

tify the three-point amplitudes that are non-renormalizable at tree level. This bottom-up

analysis remarkably reproduces many low-energy relations implied by electroweak sym-

metry through the standard-model Higgs mechanism and beyond it. We then discuss

four-point amplitudes. The gluing of three-point amplitudes into four-point amplitudes in

the massive spinor helicity formalism is clarified. As an example, we work out the ψcψZh

amplitude, including also the non-factorizable part. The latter is an all-order expression

in the effective-field-theory expansion. Further constraints on the couplings are obtained

by requiring perturbative unitarity. In the ψcψZh example, one for instance obtains the

renormalizable-level relations between vector and fermion masses and gauge and Yukawa

couplings. We supplement our bottom-up derivations with a matching of three- and four-

point amplitude coefficients onto the standard-model effective field theory (SMEFT) in the

broken electroweak phase. This establishes the correspondence with the usual Lagrangian

approach and paves the way for SMEFT computations in the on-shell formalism.
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1 Introduction

The bottom-up construction of effective-field-theory (EFT) Lagrangians proceeds from a

field content and imposed — spacetime, local, and global — symmetries [1]. Similarly, the

structure of on-shell amplitudes is stringently constrained by Lorentz and global internal

symmetries, combined with locality and unitarity (for reviews see, e.g., refs. [2–7]). This

parallel motivates the application of on-shell methods to the direct derivation of EFT

amplitudes. The advantages of this approach include the absence of gauge or operator

redundancies, and the prospect of further leveraging the power of on-shell techniques in

EFT contexts. As a first step in this direction, tree-level amplitudes involving a massive

color singlet of spin 0 or 1 and up to three gluons were derived using on-shell methods in

ref. [8], including the contributions of non-renormalizable operators up to dimension 13.

This procedure also gives a simple counting and classification of independent EFT operators

at a given dimension, providing an alternative to EFT Lagrangian constructions [9–20]. In

this paper, we apply these methods to the electroweak sector of the standard model (SM).

A recent addition to the on-shell toolbox, which is essential for SM applications, is the

systematic treatment of massive spinning particles introduced in ref. [21]. Each massive

momentum is decomposed as the sum of two lightlike vectors, which transform under the

SU(2) little group. The corresponding spinors then carry an SU(2) little-group index,

and symmetric combinations of these spinors are employed to represent particles of any

spin. Little-group covariance implies powerful selection rules on the allowed structure of

amplitudes. For related work and previous applications see refs. [8, 22–32].

Spontaneous electroweak symmetry breaking (EWSB) through the Brout-Englert-

Higgs mechanism [33, 34] is a crucial ingredient of the SM. In a bottom-up construction

of on-shell amplitudes, the natural objects to consider are the physical SM particles in the

broken phase. One of the main goals of this paper is to explicitly see how EWSB emerges

– 1 –
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from this construction. Given the electroweak particle content, the SU(2)L × U(1)Y lo-

cal symmetry should follow from perturbative tree-level unitarity imposed on a sufficient

number of four- and higher-point amplitudes [35–38]. The relations between couplings

and masses predicted by the SM Higgs mechanism should emerge in this way. At the

non-renormalizable level, perturbative unitarity would also yield relations between various

couplings, and in particular, between amplitudes differing only by the numbers of external

Higgs legs (see section 3.3 of ref. [39] for an example featuring a fermion dipole operator).

The standard-model effective field theory (SMEFT) should emerge below cutoffs paramet-

rically higher than the electroweak scale. Alternatively, by relaxing the requirement of

perturbative unitarity at the non-renormalizable level, our bottom-up construction can

be used to explore general non-renormalizable interactions, beyond the SMEFT, such as

non-linear realizations of SU(2)L ×U(1)Y [40–43].

A related study recently appeared in ref. [27], where broken-phase amplitudes involv-

ing certain bosonic SMEFT operators were computed. We instead adopt a bottom-up

approach, without imposing the SU(2)L×U(1)Y symmetry at the outset, and also include

fermion amplitudes. Massive three-point SM amplitudes were studied in ref. [23], focusing

on renormalizable interactions.1 There are some discrepancies between our results that

of ref. [23] where non-renormalizable contributions were argued to vanish in the massless

limit. Three-point amplitudes of supersymmetric theories and their high-energy limits were

studied in ref. [25], and used as building blocks for the construction of higher-point ampli-

tudes in theories with N = 4 supersymmetry [26]. It was demonstrated in ref. [24] that

the on-shell construction of amplitudes in the unbroken phase efficiently reproduces the

counting of dimension-six SMEFT operators.

We adopt a simplified electroweak-like spectrum with a pair of massive Dirac fermions

ψ,ψ′ of electric charges differing by one unit (plus the corresponding anti-fermions), the

massive Z and W± electroweak bosons, the Higgs h, and the photon. The fermion pair can

represent the up- and down-type quarks of any generation, or a charged lepton and neutrino.

Gluons are not considered and trivial color structures are understood where necessary. The

most general amplitudes consistent with electric charge and fermion number conservation

are constructed, including both renormalizable and non-renormalizable interactions. These

assumptions let us focus on the most phenomenologically relevant amplitudes but could

easily be relaxed. Considering Majorana particles would be more involved. Besides its

particle spectrum, the resulting theory is characterized by the coefficients of a finite num-

ber of three-point amplitudes and of an infinite set of higher-point contact terms. These

correspond to the coefficients of independent non-renormalizable operators.

We first construct and analyze all the three-point amplitudes. These depend on several

different scales, including the particle masses and the cutoff Λ̄ of the broken-phase theory.

As usual, three-point amplitudes can be formulated on-shell for any external masses by

analytically continuing the momenta to the complex plane. General prescriptions for con-

structing the allowed spinorial structures in three-point amplitudes of different masses and

1While submitting this paper, we also noted the new ref. [44] where decay processes are computed from

the renormalizable three-point amplitudes of ref. [23].
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spins were given in ref. [21]. In some cases, most notably the WWZ amplitude, it is actually

easier to directly build the list of independent spinor structures. As a cross-check, we use a

simple group-theory argument to determine the number of independent structures in each

three-point amplitude. With three external particles, this number is given by the number

of ways to form overall angular-momentum singlets from the combinations of three spins.

Having obtained the three-point amplitudes, our next task is to identify the non-

renormalizable tree-level terms. For this purpose, one needs to analyze the high-energy

growth of physical scattering amplitudes, starting with the four-point amplitudes. Terms

growing as E or faster must be suppressed by an appropriate power of the cutoff Λ̄. It

suffices however to examine the three-point amplitudes. Since these are defined in the com-

plex plane, one can consider their high-energy or massless limit, which encodes information

about the high-energy behavior of physical scattering amplitudes.

This high-energy limit was used in ref. [21] to uncover many properties of the Higgs

mechanism in two renormalizable examples: a fully Higgsed U(1), and a fully-Higgsed non-

abelian gauge theory. In our electroweak toy model, the high-energy limit of the amplitudes

easily reveals many known features of EWSB. Thus for example, we see that fermions

with a vector-like coupling to the Z do not interact with its longitudinal component in

this limit; conversely, for fermions with a chiral coupling to the Z, the coupling to the

longitudinal component is proportional to the fermion mass. While this high-energy limit

is equivalent to taking all the masses to zero at the same rate — preserving the particle

spectrum — different scenarios can be studied by taking the external masses to zero at

different rates. The fermion-fermion-Z amplitude for instance tells us that the vector mass

cannot be taken to zero faster than the fermion mass, unless the coupling is vector-like

(see section 3.1). The WWZ amplitude is of special significance, and the underlying SU(2)

gauge-group structure follows from the consideration of this three-point amplitude on its

own. For three degenerate bosons (i.e., for mZ = mW ), we show that the three vector

coupling is proportional to εabc. Unlike in the massless case, the three vectors can be taken

to have identical polarizations in this case, so that Bose symmetry under permutations

of all three bosons is readily seen. For mZ 6= mW , the renormalizable amplitude is fully

determined by a single coupling and the W , Z mass ratio, and automatically preserves

U(1)EM. Furthermore, only two types of non-renormalizable couplings are allowed. The

first is associated with the three-field-strength dimension-six operator. The other vanishes

in the limit mZ → mW . At tree level it is therefore proportional to m2
W −m2

Z . Indeed, in

the SM, this term is proportional to the electromagnetic coupling.

We then turn to the calculation of four-point tree-level amplitudes, and derive the

ψcψZh amplitude as an example. Generically, these amplitudes have factorizable parts,

featuring single-particle poles, and non-factorizable parts, with no poles. To derive the am-

plitudes one can write down the full list of kinematic structures, consistent with Lorentz

symmetry, and the little group in particular, allowing for single-particle poles. For the

massive four-point amplitudes we consider, each term contains a single pole, corresponding

to a particular factorization channel. The residue at each pole is given by the product of

the two on-shell, three-point amplitudes associated with this factorization channel. This

uniquely determines the factorizable part of the tree-level amplitude. This procedure can
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also be described as the gluing of two three-point amplitudes. Note that, since we only

work at tree-level, we can only consistently glue together two tree-level three-point ampli-

tudes. In our bottom-up derivation, the remaining, non-factorizable part features arbitrary

coefficients, corresponding to the unknown Wilson coefficients of non-renormalizable oper-

ators. Combinations of operators giving rise to three-point amplitudes that vanish on-shell

do not appear in this gluing procedure. Their contributions are accounted for by the non-

factorizable terms in the on-shell approach. The constructibility of EFT amplitudes was

studied in ref. [45]. A judicious choice of momentum shifts, with all-line holomorphic or an-

tiholomorphic shifts, was shown to give vanishing boundary terms in these examples. The

main result is very intuitive: contact-term contributions can only be inferred from lower-

point amplitudes if they are related to them by a symmetry [45]. Earlier applications of

factorization to the derivation of tree-level EFT amplitudes were studied in refs. [46, 47].

The ψcψZh amplitude is relevant for Higgs decay as well as Zh production at hadron

and lepton colliders. We derive the factorizable and non-factorizable components of this

amplitude at the tree level. As explained above, the non-factorizable part is determined

by Lorentz symmetry, and in particular by little-group considerations. The general, all-

order result is given by 12 independent spinorial structures. As in ref. [8], the expansion

of non-factorizable amplitude coefficients in (pi · pj)/Λ̄2 can be used to infer the number

of independent operators contributing at each Λ̄ order. At the leading order in the EFT

expansion, there are only four contact-terms. Imposing perturbative unitarity on four-point

(and higher-point) amplitudes would restrict the allowed contact terms, and reproduce the

constraints of SU(2)L × U(1)Y . Here we restrict our attention to the renormalizable part

of the ψcψZh amplitude. Perturbative unitarity determines the fermion mass in terms of

the Z-boson mass, the Yukawa coupling and the gauge coupling.

Finally, we provide the matching of all the unknown coefficients appearing in the three-

point and ψcψZh amplitudes to the broken-phase SMEFT (in the conventions of ref. [48]).

This completes the results obtained in ref. [27] with fermionic three-point amplitudes and

the four-point ψcψZh one. With this, all elements needed for computing the factorizable

contributions to other electroweak four-point amplitudes are available.

This paper is organized as follows. We describe the essentials of the massive-spinor

formalism [21] in section 2. The construction and discussion of three-point amplitudes are

addressed in section 3. At the end of this section, we comment on the matching to the am-

plitudes of the high-energy unbroken theory, and note how the unbroken SU(2)L × U(1)Y
emerges. Tree-level factorizable and non-factorizable contributions to the ψcψZh four-

point amplitude are then obtained in section 4, including the leading non-renormalizable

terms. We derive in particular the advertised relation between the gauge and Yukawa cou-

plings and the Z-boson and fermion masses. Our conventions and notations are defined

in section A, where we also clarify some elements of the massive spinor formalism. Subse-

quent appendices contain a matching of amplitude coefficients to the SMEFT in the broken

phase (section B), a compendium of massless amplitudes (section C), and a derivation of

the non-factorizable ψcψZh amplitudes for massless fermions (section D).
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2 Massive spinor formalism

Spinor helicity variables have been widely used for the computation of massless helicity

amplitudes (for reviews, see e.g. refs. [4, 6, 49]). With the four-momenta and external

polarizations written in terms of the basic building blocks of the Lorentz group, namely,

massless spinors, the amplitudes take compact forms, and their little-group structure is

manifest. Here we briefly summarize the essential elements of the spinor variables we will

use. For details, we refer the reader to section A.

A lightlike momentum is written in terms of a pair of chiral and anti-chiral spinors,

pαα̇ ≡ pµσµαα̇ = λαλ̃α̇ ≡ |p〉[p|, p̄α̇α ≡ pµσ̄µα̇α = λ̃α̇λα ≡ |p]〈p|, (2.1)

where the half-brackets are defined in appendix A. These spinors carry undotted or dotted

indices and transform as the (1/2, 0) and (0, 1/2) representations of the SL (2,C) Lorentz

group, respectively. Here and in the following, we interchangeably refer to these spinors

as dotted and undotted, or square- and angle-spinors. Little-group transformations, which

form a U(1) in the massless case, correspond to opposite phase rotations of square- and

angle-spinors,2

|p〉 → e−iξ|p〉 , and [p| → e+iξ[p| . (2.2)

These leave the momentum invariant, but phase-rotate the polarization associated with

the external fermion or vector of momentum p. Amplitudes of particles with non-zero spin

thus carry little-group charges, or weights, and these lead to selection rules on the allowed

spinor structures.

Different generalizations of this formalism for the treatment of massive particles have

been explored (see, e.g., refs. [21, 50, 51]). Here we adopt the method of ref. [21]. A massive

momentum (p2 = m2 > 0) can be decomposed in terms of chiral and anti-chiral spinors

similarly to eq. (2.1), but two pairs of massless spinors are now required,

pαα̇ = λIαλ̃Iα̇ = |pI〉[pI |, and p̄α̇α = −λ̃Iα̇λαI = −|pI ]〈pI |. (2.3)

Here I = 1, 2, and boldface is used to denote massive momenta and their corresponding

spinors. The equation of motion then reads,

p|pI ] = m|pI〉 , p̄|pI〉 = m|pI ] , [pI |p̄ = −m〈pI | , 〈pI |p = −m[pI | . (2.4)

Little-group transformations, which form an SU(2) in the massive case, rotate the

vectors pI , and leave p invariant,

|pI〉 →W I
J |pJ〉 , and [pI | →

(
W−1

) J
I

[pJ | . (2.5)

For real Lorentzian momenta, W I
J is a matrix in the SU(2) subgroup of SL (2,C).

Since any spin s can be obtained by combining spin-1/2 representations, the polariza-

tions of massive particles can be expressed as completely symmetric SU(2) tensors of rank

2Note that ξ is real for real Lorentzian momenta, such that eq. (2.1) is Hermitian. When the momenta

are complex the parameter ξ can be complex.
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2s. An amplitude with a massive spin-s particle of momentum p can then be written as

(see ref. [21]),

MI1...I2s = |p〉I1α1
. . . |p〉I2sα2s

M{α1...α2s} = |p]I1α̇1
. . . |p]I2sα̇2s

M̃{α̇1...α̇2s} , (2.6)

where I1 . . . I2s are massive little-group indices. The reduced amplitudes M and M̃ are

equivalent, as one can switch between the dotted and undotted spinors with eq. (2.4).

They are also completely symmetric in the SL (2,C) indices α and α̇.

Thus, the amplitudes we write below are given in terms of angle- and square-spinors,

and as usual, we abbreviate the spinor associated with external leg i by |pi] → |i] or

|pi〉 → |i〉. The multiple occurrences of boldfaced |i], |i〉 spinors in an amplitude are

understood to carry SU(2) little-group indices which are completely symmetrized. For

a fermion external leg, there is a single such spinor, while a vector external leg carries

two spinors whose indices are symmetrized. Thus for example, if particle 1 is a massive

vector, the amplitude could feature |1]|1] ≡ |1{I1 ]|1I2}]. Note that we define the symmetric

states using the appropriate Clebsch-Gordan coefficients (see eq. (A.34)). This convention

is convenient for handling physical states.

Obviously, the choice of the pair of vectors pI is arbitrary. Generically, this can be

used to choose arbitrary spin-quantization axes, and our general expressions do not assume

any particular direction. Different values for the I1 . . . I2s indices in eq. (2.6) yield the am-

plitudes for the different spin polarizations along the chosen direction. Massive-vector

amplitudes for transverse polarizations are for instance obtained with I1 = I2 = 1 and 2,

while I1 6= I2 yield the amplitude for zero polarization. For considering the high-energy

limit where helicity amplitudes are the natural choice, it will be convenient to choose the

spatial direction of pI along the direction of the particle momentum. The leading contri-

bution in the high-energy limit can then simply be obtained by unbolding the spinors [21].

Further details of this formalism and the high-energy limit are discussed in appendix A.

3 Three-point amplitudes

In this section, we study the massive three-point amplitudes of our simplified electroweak

theory, including non-renormalizable contributions. In our bottom-up approach, the only

dimensionful parameters are the masses and the EFT cutoff scale Λ̄. The Higgs vacuum

expectation value never appears explicitly. We distinguish Λ̄ in the broken-phase theory

from Λ in the unbroken SMEFT. The latter only appears explicitly in the matching of

section B. Terms suppressed by Λ̄n̄ correspond to SMEFT contributions of order mn/Λn̄+n

where m generically denotes external particle masses.

For each amplitude, we derive the most general set of independent kinematic structures

allowed. Structures generated by non-renormalizable couplings at the tree level can be

identified based on simple dimensional analysis in the high-energy limit. This limit should

of course be interpreted in the complex plane, where the amplitudes can be defined on-shell

independently of external particle masses. Angle- and square-spinors are then no longer

related by complex conjugation, and the massless three-point kinematics can be smoothly

– 6 –
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approached, with square-spinor bilinears scaling as E, and angle-spinor bilinears scaling as

m2/E, or vice versa. Here m stands for any of the external-state masses.

Assuming that the cutoff Λ̄ is parametrically higher than m, terms growing as E2

in three-point amplitudes correspond to non-renormalizable tree-level interactions and are

therefore assigned a prefactor 1/Λ̄. This simple rule of thumb follows from the high-energy

behavior of the four-point amplitudes at tree-level. Unitarity restricts the energy growth

of these amplitudes. Terms growing as E or faster should be suppressed by the cutoff Λ̄,

where perturbative unitarity is lost. Since the tree-level four-point amplitudes are obtained

by gluing two three-point amplitudes with a propagator scaling as 1/E2, three-point am-

plitudes growing as E2 should be suppressed by Λ̄ as well. Indeed, three-point amplitudes

have mass dimension 1, so O(E) terms are consistent with renormalizable couplings, while

O(E2) growths must be accompanied by an inverse mass. Such terms can of course be gen-

erated by the renormalizable SM couplings at the loop level, but these contributions cannot

be consistently included in the tree-level gluing we rely on. In full one-loop computations,

the high-energy growth of loop three-point functions shuts-off in the massless limit.

The implicit assumption in the discussion above is that the new physics at Λ̄ is decou-

pling and can be integrated out. If it is not, Λ̄ cannot be taken to be much higher than

m, and its precise value depends on the measured values of the different couplings. In all

cases considered, our results are consistent with the SMEFT. Eventually, the systematic

evaluation of four- and higher-point amplitudes should be performed to determine the ex-

act constraints applying to three-point amplitude coefficients in a bottom-up way. For our

toy electroweak theory, this task is however left for future work.

3.1 ψcψZ

We first consider the massive fermion-fermion-vector amplitude, with equal-mass fermions.

Since this is our first example, we will cover it in detail. It is not difficult to show that the

M(1ψc ,2ψ,3Z) amplitude is fully characterized by the following spinorial structures:

M(1ψc ,2ψ,3Z) =
cRRRψcψZ

Λ̄
[13][23]+

cLR0
ψcψZ

mZ
〈13〉[23]+

cRL0
ψcψZ

mZ
[13]〈23〉+

cLLLψcψZ

Λ̄
〈13〉〈23〉 . (3.1)

Our specific choice of dimensional normalization will prove appropriate for our tree-level

description. The cψcψZ coefficients are dimensionless and their superscripts refer to chi-

ralities.3 Different helicity amplitudes generically get contributions from all four terms,

with appropriate mass suppressions. Having assumed that 1ψc and 2ψ are conjugate of

each others (they have the same mass and opposite charges), CP would interchange their

labels in addition to flipping all helicities (i.e., interchanging square and angle brackets).4

3Recall that all particles are incoming. For our choice of massive momenta decomposition, the fermion

chirality label corresponds to the fermion helicity in the massless limit. Thus, for 1 and 2 being charge

conjugates of each other, the second and third terms with LR and RL give rise to the chirality preserving

gauge couplings, and the RR and LL terms are chirality violating. The vector labels are not as intuitive,

with the gauge coupling originating from the terms with 0 vector label.
4To be precise, parity sends |λI〉 ↔ |λ̃I ] and |λ̃I ]↔ −|λI〉, or equivalently |k〉 ↔ |k] and |q〉 ↔ |q] in the

two-lightlike spinors notation.
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The renormalizable spinor structures are thus self-conjugate, while the non-renormalizable

ones (of dipole type) are exchanged under CP. Since the overall phase of an amplitude is

not physical, statements about CP conservation have to be made at the squared amplitude

level. Considering for instance the interference of a renormalizable contribution with dipole

ones, we learn that the coefficients of the dipole terms are equal if CP is conserved, since

these terms are exchanged by CP.

In three-point amplitudes, Mandelstam variables are combinations of external masses

squared. All kinematics is therefore encoded in the spinor structures, and their coefficients

are pure constants. These coefficients, together with the external particle masses, fully

specify the amplitude. The number of independent kinematic structures can actually be

inferred from angular momentum considerations. In the ψcψZ case, there are four distinct

ways to form a singlet out of two spin-1/2 and one massive spin-1 particle: adding two spin

1/2, we can form states with total spin 0 and orbital angular momentum 1, or total spin 1

and orbital angular momentum 0, 1 or 2, each of which admits a total angular momentum

J = 1 matching the Z-boson spin. In contrast, higher-point amplitudes involve additional

relative orbital angular momenta, which allow for infinite ways to form invariants. Indeed,

these amplitudes generically depend on an infinite set of parameters, multiplying arbitrary

high powers of the Mandelstam variables. For three-point amplitudes, this counting is

equivalent to that of the number of irreducible representations appearing in the sum of the

three spins, since the orbital angular momentum configuration can always be adjusted to

form an overall singlet. In the present ψcψZ case, labeling irreducible representations by

their dimensions one indeed finds four of them: 2 ⊗ 2⊗ 3 = 1⊕ 3⊕ 3⊕ 5.

Following the reasoning outlined in the introduction to this section, we would like to

determine which spinorial structures can be associated with renormalizable interactions at

the tree level. For this purpose, we consider the massless limit of the theory, for constant

Λ̄, with all mass ratios held fixed. As mentioned above, for complex momenta, this can

be loosely thought of as the high-energy limit, with all masses held constant, and either

square or angle spinor products scaling as E →∞, with E/Λ̄ fixed.

The spinorial structures leading to the fastest energy growth in the ψcψZ amplitude of

eq. (3.1) are the first and fourth ones. They generate M(1+
ψc , 2

+
ψ , 3

+
Z ) and M(1−ψc , 2

−
ψ , 3

−
Z )

amplitudes scaling as E2:5

M(1+
ψc , 2

+
ψ , 3

+
Z )→ [13][23] cRRRψcψZ/Λ̄ , M(1−ψc , 2

−
ψ , 3

−
Z )→ 〈13〉〈23〉 cLLLψcψZ/Λ̄ . (3.2)

As discussed above, this behavior should be accompanied at the tree level by a factor of

1/Λ̄. This justifies our choice of normalization of these terms. Indeed, these amplitudes are

generated by SM loops and, at tree-level, by dipole operators in the SMEFT (see matching

in appendix B.1).6

5Here, either [ij] ∼ E and 〈ij〉 ∼ m2/E, or 〈ij〉 ∼ E and [ij] ∼ m2/E. Reference [23] argued that

these amplitudes, and more generally, other non-renormalizable ones, vanish in the massless limit, see e.g.,

eqs. (50) and (51). We disagree with these claims.
6In the SMEFT, these terms arise at dimension six, suppressed by 1/Λ2. From a bottom-up perspective,

a well-behaved high-energy limit for the ψcψZZ amplitude requires this 1/Λ2 suppression in a chiral theory

where cLR0
ψcψZ 6= cRL0

ψcψZ . Dipole operators of dimension five, suppressed only by 1/Λ, would however be
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No such constraint applies to the 〈13〉[23] and [13]〈23〉 spinor structures. These do

not give rise to E2 terms in the high-energy limit since, for instance, 〈13〉[23] = −〈132] =

〈1(1+2)2] = 0 for massless kinematics. They only generate amplitudes of acceptable linear

energy growth:

M(1−ψc , 2
−
ψ , 3

0
Z)→ +〈12〉 (cLR0

ψcψZ − cRL0
ψcψZ) mψ/

√
2mZ ,

M(1−ψc , 2
+
ψ , 3

−
Z )→ −〈13〉2

〈12〉
cLR0
ψcψZ ,

M(1−ψc , 2
+
ψ , 3

+
Z )→ +

[23]2

[12]
cLR0
ψcψZ ,

M(1+
ψc , 2

−
ψ , 3

−
Z )→ +

〈23〉2

〈12〉
cRL0
ψcψZ ,

M(1+
ψc , 2

−
ψ , 3

+
Z )→ − [13]2

[12]
cRL0
ψcψZ ,

M(1+
ψc , 2

+
ψ , 3

0
Z)→ −[12] (cLR0

ψcψZ − cRL0
ψcψZ) mψ/

√
2mZ ,

(3.3)

up to corrections of order m2
Z/E

2 and m2
ψ/E

2. Since parity flips chiralities by exchanging

angle and square brackets, we learn, by comparing the (++0) and (−−0) amplitudes, that

the longitudinal component of the Z boson has a pseudo-scalar, or parity-odd, coupling

to fermions in the high-energy limit. The high-energy relations between coefficients of

longitudinal and transverse amplitudes are also remarkable. They imply that vector-like

fermions, having parity conserving couplings to the transverse components of the Z boson

(cLR0
ψcψZ = cRL0

ψcψZ), do not couple to its longitudinal component in the high-energy limit.

On the other hand, chiral fermions for which cLR0
ψcψZ 6= cRL0

ψcψZ do couple to the longitudinal

component of the Z, with a strength proportional to their mass, in the high-energy limit.

The (++−), (+−0), (−+0), (−−+) amplitudes only arise at order c
R/LL/R 0
ψcψZ m and

c
R/LR/LR/L
ψcψZ m2/Λ̄ and are therefore subleading in the high-energy limit.

Limits to other amplitudes and theories. Going to the high-energy limit by keeping

all mass ratios constant allowed us to constrain the form of the ψcψZ amplitudes. Taking

instead mZ/E and mψ/E to zero at different rates (such that the mass ratios are modified),

allows us to make contact with the ψcψγ amplitudes of the next section, and with a theory

of massless fermions.

Let us first consider the limit in which mZ/E goes to zero faster than mψ/E. We can

then expand the amplitude coefficients in powers of mZ/mψ:

c
R/LL/R 0
ψcψZ =

∑
n

(
mZ

mψ

)n
a
R/LL/R 0
n (m/Λ̄). (3.4)

A smooth mZ/mψ → 0 limit for the transverse amplitudes of eq. (3.3) require a
R/LL/R 0
n<0 = 0.

In this limit, all a
R/LL/R 0
n>0 terms moreover give vanishing contributions to these transverse

allowed for fermions having vector-like cLR0
ψcψZ = cRL0

ψcψZ coupling. The presentation of an explicit derivation

of this result is left for future work.
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amplitudes, which thus only receive finite contributions from the n = 0 term. Additionally,

a smooth limit for the longitudinal amplitudes of eq. (3.3) requires aRL0
0 = aLR0

0 . We

therefore learn that massive fermions only have vector-like renormalizable couplings to

massless vectors in the high-energy limit. Note that the longitudinal amplitudes were

crucial in reaching this conclusion, although they are absent if one starts off with a massless

vector. In the next section, we will directly consider the massless vector amplitude and

obtain the same result. Conversely, the mass of a vector having chiral aRL0
0 6= aLR0

0

couplings to a fermion cannot be consistently taken to zero faster than the fermion mass.

On the other hand, if mψ/E goes to zero faster thanmZ/E, we must impose a
R/LL/R 0
n>0 = 0

for the transverse amplitudes of eq. (3.3) to be well behaved. All a
R/LL/R 0
n<1 terms moreover

give vanishing contributions to the longitudinal amplitudes in this limit. We therefore learn

that the coupling of a massless fermion to the longitudinal component of a vector vanishes

in the high-energy limit. The corresponding amplitude is suppressed by mZ/E compared

to transverse ones. This is in line with what we expect from the Higgs mechanism.

Summary. To summarize, by considering the high-energy limit of the ψcψZ amplitude,

we learn that:

• The [13][23] and 〈13〉〈23〉 spinorial structures are generated by non-renormalizable

interactions at tree level.

• In the high-energy limit, the fermion coupling to the longitudinal Z boson has a

pseudo-scalar spinor structure.

• In the high-energy limit, fermions with a vector-like LR0/RL0 coupling to the Z

boson do not interact with its longitudinal component.

• Fermions with chiral LR0/RL0 couplings to the Z boson, do interact with its lon-

gitudinal component in the high-energy limit, with a strength proportional to their

mass.

• A massive fermion only has vector-like LR0/RL0 coupling to a massless vector.

• The coupling of a massless fermion to the longitudinal component of a massive vector

vanishes in the high-energy limit.

• The mass of a fermion with chiral LR0/RL0 couplings to a massive vector, can only

be taken to vanish at least as fast as the vector mass.

This is a nice bottom-up derivation of results expected from the Higgs mechanism, and

specifically from the Goldstone boson equivalence theorem. Indeed, vector-like fermions

do not obtain their mass from the Higgs mechanism, and therefore do not couple to the

Goldstone component of the massive vector to leading order in the high-energy expansion.

Their masses are furthermore independent of the vector boson masses. In contrast, chiral

fermions must get their mass solely from some Higgs field, and thus couple to the longitudi-

nal Z boson with a coupling proportional to this mass. At this stage, however, no relation

between the ψcψh and longitudinal ψcψZ couplings is forced upon us. We will get back to

this point and derive this relation when considering the ψcψZh amplitude in section 4.
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3.2 ψcψγ

As discussed in ref. [21], the construction of three-point amplitudes with one massless

particle and two particles of the same mass requires the introduction of an ancillary spinor,

which we denote by ζ. In such cases, external states can indeed only be used to form

one independent spinor instead of two. Labeling the massive particles by 1, 2, and the

massless particle by 3, the spinors |3〉 and 1|3] are in particular not independent since

〈313] = 2 (p1 · p3) = m2
2 − m2

1 = 0. The proportionality constant between these two

spinors can be derived by contracting them with 〈ζ|. It is given by 〈ζ13]/〈ζ3〉. Up to

normalization, this is the x-factor of ref. [21]. Note that it carries helicity weight +1 for

particle 3. (Similarly, the spinors |3] and 1̄|3〉 are the same, up to the proportionality factor

[ζ13〉/[ζ3], which carries helicity weight −1 for particle 3.)

The construction of the negative-helicity ψcψγ− amplitudes can then proceed by con-

tracting the 〈1|, 〈2| massive spinors with εαβ [ζ13〉/[ζ3] or with |3〉, |3〉 structures. One

thus obtains that the ψcψγ− amplitude can be expressed as a linear combination of

[12]〈ζ13]/〈ζ3〉 and [13][23] (and similarly for the positive helicity amplitude, with an-

gle and square brackets exchanged). The Schouten identity and momentum conservation

(1 + 2 + 3 = 0) however lead to:

[12]〈ζ13]/〈ζ3〉 = m(〈ζ1〉[32] + 〈ζ2〉[31])/〈ζ3〉+ [13][23] ,

〈12〉[ζ13〉/[ζ3] = m([ζ1]〈32〉+ [ζ2]〈31〉)/[ζ3] + 〈13〉〈23〉 ,
〈12〉〈ζ13]/〈ζ3〉 = m(〈ζ1〉[32] + 〈ζ2〉[31])/〈ζ3〉 ,
[12][ζ13〉/[ζ3] = m([ζ1]〈32〉+ [ζ2]〈31〉)/[ζ3] ,

(3.5)

where m = m1 = m2 (see section A.4 for a detailed derivation). Using the massless

polarization vectors defined in eq. (A.39) and (A.40), the first two equalities allow us to

write the positive-helicity amplitude as a linear combination of (〈1ε+
3 2] + 〈2ε+

3 1]) and

[13][23] and similarly for the negative-helicity amplitude. Thus we obtain:

M(1ψc ,2ψ, 3
+
γ ) = cψcψγ(〈1ε+

3 2] + 〈2ε+
3 1]) +

cRRRψcψγ

Λ̄
[13][23] ,

M(1ψc ,2ψ, 3
−
γ ) = cψcψγ(〈1ε−3 2] + 〈2ε−3 1]) +

cLLLψcψγ

Λ̄
〈13〉〈23〉 ,

(3.6)

where cψcψγ , cRRRψcψγ , cLLLψcψγ are dimensionless functions of m/Λ̄ and mass ratios. In par-

ticular, the first terms on the right-hand side of eq. (3.6) are the electromagnetic gauge

interactions and correctly reproduce the g = 2 factor (see appendix A.6). An alternative

notation involves the 〈12〉〈ζ13]/〈ζ3〉, [13][23] and [12][ζ13〉/[ζ3], 〈13〉〈23〉 spinor struc-

tures. It is obtained from the above one by applying (backwards) the last two equalities

of eq. (3.5). The high-energy limits of the ψcψγ amplitudes have the same form as the

transverse ψcψZ ones provided in eq. (3.3). The exact expressions are obtained with the

following replacements:

cLR0
ψcψZ → cRL0

ψcψZ → −
√

2 cψcψγ . (3.7)

As suggested by our choice of normalization, the [13][23] and 〈13〉〈23〉 spinorial structures

are thus expected to only arise at the non-renormalizable (or loop) level.

– 11 –



J
H
E
P
0
1
(
2
0
2
0
)
1
1
9

It is remarkable that the amplitude formalism forces the cψcψγ terms to be purely

vectorial, without an axial-vector component. This confirms the conclusion derived in the

previous section from massive vector amplitudes, and their longitudinal components in

particular. The coefficients of the 〈1ε+
3 2] and 〈1ε−3 2] terms (as well as 〈2ε+

3 1] and 〈2ε−3 1]

ones) are moreover the same since the two photon helicities are parts of the same irreducible

representation of the Lorentz group. Altogether, one thus obtains that cψcψγ terms conserve

parity which for instance sends the 〈1ε+
3 2] spinorial structure onto the 〈2ε−3 1] one.

The presence of three independent coefficients is also confirmed by angular-momentum

considerations similar to those exposed in the previous section. Placing the two components

of the massless photon in a fundamental representation, the decomposition of the 2⊗ 2⊗ 2

product indeed involves three irreducible representations: 2 ⊕ 2⊕ 4.

3.3 ψcψ′W

The ψcψ′W amplitude takes the same form as the ψcψZ one:

M(1ψc ,2ψ′ ,3W ) =
cRRRψcψ′W

Λ̄
[13][23]+

cLR0
ψcψ′W

mW
〈13〉[23]+

cRL0
ψcψ′W

mW
[13]〈23〉+

cLLLψcψ′W

Λ̄
〈13〉〈23〉 ,

(3.8)

where cψcψ′W are again dimensionless. Because mψ 6= mψ′ in general, the high-energy-limit

expressions for (±±0) amplitudes become:

M(1−ψc , 2
−
ψ′ , 3

0
W )→ +〈12〉 (mψ′ c

LR0
ψcψ′W −mψ c

RL0
ψcψ′W )/

√
2mW , (3.9)

M(1+
ψc , 2

+
ψ′ , 3

0
W )→ −[12] (mψ c

LR0
ψcψ′W −mψ′ c

RL0
ψcψ′W )/

√
2mW . (3.10)

Limits to other amplitudes and theories. Taking mW /E to zero faster than both

mψ/E and mψ′/E, the expansion of c
R/LL/R 0
ψcψ′W coefficients in powers of mW /mψ is

c
R/LL/R 0
ψcψ′W =

∑
n

(
mW

mψ

)n
a
R/LL/R 0
n (m/Λ̄) . (3.11)

A smooth limit for transverse amplitudes (analogous to that of eq. (3.3) in the ψcψZ case)

requires a
R/LL/R 0
n<0 = 0. The transverse amplitudes therefore receive finite contributions from

a
R/LL/R 0
n=0 only. A smooth limit for the longitudinal amplitudes however requires mψ a

LR0
n=0 =

mψ′ a
RL0
n=0 . A fairly peculiar relation between the RL0 and LR0 couplings is therefore

obtained in theories where a massless vector couples to two fermions of different non-

vanishing masses.

3.4 ψcψh

It is straightforward to obtain the general form of the massive fermion-fermion-scalar am-

plitude:

M(1ψc ,2ψ,3h) = cRRψcψh[12] + cLLψcψh〈12〉 . (3.12)

This form does not depend on whether the scalar is massive or massless. The high-energy

limit does not lead to any further insights. For a massless fermion, M(1+
ψc , 2

+
ψ ,3h) →

cRRψcψh[12], M(1−ψc , 2
−
ψ ,3h) → cLLψcψh〈12〉 where c

R/LR/L
ψcψh are now evaluated towards mψ → 0.

We will however show in section 4 that perturbative unitarity requires that these couplings

actually vanish for a massless fermion, up to non-renormalizable contributions.
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3.5 ZZh and WWh

The massive V V h amplitude can be parametrized as

M(1V ,2V ,3h) =
cRRV V h

Λ̄
[12]2 +

c00
V V h

mV
[12]〈12〉+

cLLV V h
Λ̄
〈12〉2 , (3.13)

where V V stands for either ZZ or W+W−, and cV V h are dimensionless. The presence of

three independent terms is compatible with the angular-momentum considerations intro-

duced in section 3.1 since three irreducible representations are found in the product of two

spin-1 and one spin-0 representations: 3⊗ 3⊗ 1 = 1⊕ 3⊕ 5. Similarly to other amplitudes

involving scalars, this form does not depend on whether h is massive or not. Given that all

spinor structures in eq. (3.13) are symmetric under the exchange of 1 ↔ 2 spinor labels,

the W+W−h amplitudes are automatically invariant under charge conjugation.

In the high-energy limit (with mV /E → 0 for constant E/Λ̄ and mass ratios) the

fastest growing amplitudes are generated by the [12]2 and 〈12〉2 terms:

M(1+
V , 2

+
V , 3h)→ cRRV V h[12]2/Λ̄,

M(1−V , 2
−
V , 3h)→ cLLV V h〈12〉2/Λ̄.

(3.14)

which scale as E2. This justifies the choice of 1/Λ̄ for their normalizations. The [12]2 and

〈12〉2 terms should thus only arise at the non-renormalizable or loop level.

Subleading amplitudes, which grow like E, are generated by the [12]〈12〉 term for

(±00) and (0±0) helicities:

M(1−V , 2
0
V , 3h)→ +〈12〉〈13〉/〈23〉 (c00

V V h − 2cLLV V hmZ/Λ̄)/
√

2,

M(10
V , 2

−
V , 3h)→ −〈12〉〈23〉/〈13〉 (c00

V V h − 2cLLV V hmZ/Λ̄)/
√

2,

M(10
V , 2

+
V , 3h)→ −[12][23]/[13] (c00

V V h − 2cRRV V hmZ/Λ̄)/
√

2,

M(1+
V , 2

0
V , 3h)→ +[12][13]/[23] (c00

V V h − 2cRRV V hmZ/Λ̄)/
√

2.

(3.15)

Thus, the high-energy helicity amplitudes with a longitudinal Z boson have the same form

as amplitudes with the longitudinal Z replaced by a scalar (see eq. (C.4)), consistent with

the Goldstone boson equivalence theorem.

The (±∓0) amplitudes only receive contributions scaling as mV c
00
V V h or m2

V c
R/LR/L
V V h /Λ̄

and are therefore subleading in the high-energy limit:

M(1+
V , 2

−
V , 3h)→ −[13]2/[23]2 (c00

V V h − (cRRV V h + cLLV V h)mZ/Λ̄)mZ ,

M(1−V , 2
+
V , 3h)→ −[23]2/[13]2 (c00

V V h − (cRRV V h + cLLV V h)mZ/Λ̄)mZ .
(3.16)

Finally, for purely longitudinal (000) amplitude, we get

M(10
V , 2

0
V , 3h)→ −c00

V V h (m2
h − 2m2

V )/2mV − (cRRV V h + cLLV V h)m2
V /Λ̄ . (3.17)

This is the only amplitude in which the spinorial structure gives rise, in the high-energy

limit, to a factor of mh, leaving a factor of mV in the denominator for dimensional reasons.
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Limits to other amplitudes and theories. If mV /E goes to zero faster than mh/E,

the expansion of c00
V V h in powers of mV /mh,

c00
V V h =

∑
n

(
mV

mh

)n
an(mh/Λ̄) , (3.18)

is forced by the (000) amplitude of eq. (3.17) to start at least at n = 1 (i.e., an<1 = 0).

The (0±0), (±00) amplitudes of eq. (3.15) then vanish in this limit. Conversely, requiring

them to be non-vanishing constrains mh/E to go to zero at least as fast as mV /E.

In the opposite limit, if mh/E goes to zero faster than mV /E, a smooth limit for the

(0±0), (±00) amplitudes of eq. (3.15) requires an>0 = 0.

Summary. To summarize, we learn that,

• The coupling of a scalar h to two transverse vectors of equal polarizations, only arises

at the non-renormalizable or loop level.

• At the renormalizable level, the tree V V h amplitude is controlled by a single coupling.

Vector bosons of opposite polarizations are involved.

• The only renormalizable amplitudes that remain non-zero in the high-energy limit

are the (0±0) and (±00) ones, which involve one transverse and one longitudinal

vector.

• The (±∓0) and (000) amplitudes are proportional to vector and scalar masses in the

high-energy limit.

• Allowing mass ratio to vary, the renormalizable (0±0) and (±00) amplitudes only

remain non-vanishing provided mh/E → 0 at least as fast as mV /E.

These conclusions are again compatible with our knowledge about the Goldstone boson

equivalence theorem and of the Higgs mechanism.

3.6 γγh and γZh

The γγh amplitude can be obtained from the V V h one of the previous subsection, in the

mV /mh → 0 limit. The c00
V V h coupling then vanishes identically. So one obtains in general:

M(1+
γ , 2

+
γ ,3h) =

cRRγγh
Λ̄

[12]2, and M(1−γ , 2
−
γ ,3h) =

cLLγγh
Λ̄
〈12〉2. (3.19)

Thus there is no renormalizable γγh amplitude at tree-level.

Similarly for γZh amplitudes, one can only write the following spinorial structures:

M(1+
γ ,2Z ,3h) =

cRRγZh
Λ̄

[12]2, and M(1−γ ,2Z ,3h) =
cLLγZh

Λ̄
〈12〉2. (3.20)
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3.7 hhZ and hhγ

The vector coupling to two identical scalars vanishes because of Bose symmetry. To see

this, note first that the [33] and 〈33〉 bilinears vanish. The SU(2) little-group indices

must appear in a symmetric combination, but [3I3J ] = εIJm3 = −〈3I3J〉 is antisymmetric.

Thus the M(1h,2h,3Z) amplitude can only contain the 〈3(1 − 2)3] spinorial structure.

For identical scalars, the amplitude is however required to be symmetric under the 1↔ 2

exchange. Since no symmetric structure can be written down, one concludes that the hhZ

amplitude vanishes.7

Likewise, starting directly with a massless vector, the only possible structure is [3(1−
2)ζ〉/〈3ζ〉, with some auxiliary spinor ζ (or similarly with angle and square brackets ex-

changed). This spinorial structure is again antisymmetric under the 1 ↔ 2 exchange.

There is thus no M(1h,2h, 3γ) amplitude either.

3.8 hhh

The triple-Higgs amplitude is trivial:

M(1h,2h,3h) = mh chhh . (3.21)

3.9 WWZ

The WWZ amplitude has a central role in the theory, as it determines the underlying

non-abelian gauge structure. The derivation below only relies on the Lorentz structure,

namely, the fact that the three particles have spin 1, and that two of them are mass-

degenerate. Indeed, with no information about the remaining amplitudes, we have no

notion of charge, and the amplitude we write down below can be interpreted either as the

W+W−Z amplitude, with distinguishable W s, or as the amplitude of two indistinguishable

W s carrying an index a = 1, 2. As we will see below, the only renormalizable coupling

allowed preserves U(1)EM. This is related to the fact that only three massive vector bosons

participate in the interaction, corresponding to an SU(2) gauge theory. It is also instructive

to consider the amplitude for mZ = mW . The SU(2) group theory structure follows in this

case solely from Bose statistics of the three-point amplitude.

Constructing the massive WWZ amplitude following the prescription of eq. (4.27) in

ref. [21] is somewhat tedious. From the eleven spinorial structures originally generated,

eight independent ones survive after extensive use of the Schouten identity, momentum

conservation, and on-shell conditions. Another way to obtain the same result is to list

independent spinor contractions, and construct products of appropriate helicity weights.

All possible spinor bilinears can be employed:

〈12〉, 〈13〉, 〈23〉,
[12], [13], [23].

(3.22)

The [ijk〉 trilinears involving all three spinors can be reduced to bilinears by imposing

momentum conservation (j = −i − k) and using on-shell conditions like k|k〉 = +mk|k].

7This gives a short proof that ρ0 → 2π0 is forbidden.
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Quadrilinears and higher multilinears can be reduced in the same way. The [i(j − k)i〉 =

〈i(j−k)i] trilinears involving identical bra and ket spinors could have been expressed as dot

products of momenta if i was massless. They are equivalent to [iji〉 or [iki〉 structures, up

to terms involving bilinear products. In a triple-vector amplitude, since each spinor should

appear twice, a [i · i〉 trilinear would necessarily be multiplied by bilinears involving both

j and k, or by [j · j〉 and [k · k〉 trilinears. Both kinds of products are however reducible

to products of bilinears using the Schouten identity, momentum conservation and on-shell

conditions. One for instance obtains:

[iji〉〈kj〉 = [ijk〉〈ij〉 − [ijj〉〈ik〉 = mi〈ik〉〈ij〉 −mk[ik]〈ij〉 −mj [ij]〈ik〉,
[iji〉[jij〉 = −[ijij]〈ij〉+ [ijj〉〈iij] = −2(pi · pj)[ij]〈ij〉 −mimj(〈ij〉2 + [ij]2).

(3.23)

So one concludes that the amplitudes for three massive vectors can all be constructed from

products of the bilinears in eq. (3.22). The restriction that each spinor appears exactly

twice leads to eight independent terms:

M(1W ,2W ,3Z) = 〈12〉〈13〉〈23〉 cLLLWWZ/Λ̄
2

+ 〈12〉〈13〉[23] cL00
WWZ/mWmZ

+ 〈12〉[13]〈23〉 c0L0
WWZ/mWmZ

+ [12]〈13〉〈23〉 c00L
WWZ/m

2
W

+ 〈12〉[13][23] c00R
WWZ/m

2
W

+ [12]〈13〉[23] c0R0
WWZ/mWmZ

+ [12][13]〈23〉 cR00
WWZ/mWmZ

+ [12][13][23] cRRRWWZ/Λ̄
2 ,

(su
p

ersed
ed

b
y

eq
.

(3.31
))

(3.24)

where the cWWZ ’s are dimensionless coefficients, and their specific normalizations are cho-

sen for later convenience. Not all of these structures are actually independent. One rela-

tion will be found between them. There are indeed seven distinct ways to combine three

spin-one representations. Labeling representations by their dimensions, one indeed finds

3 ⊗ 3 ⊗ 3 = 1 ⊕ 3 ⊕ 3 ⊕ 3 ⊕ 5 ⊕ 5 ⊕ 7. Additional constraints, not apparent in eq. (3.24),

appear in the high-energy limit (mZ/E → 0, for mW /mZ and E/Λ̄ fixed). Eventually,

eq. (3.24) will be replaced by eq. (3.31).

The amplitudes with the fastest energy growth (E3) are,

M(1−W , 2
−
W , 3

−
Z )→ 〈12〉〈13〉〈23〉 cLLLWWZ/Λ̄

2,

M(1+
W , 2

+
W , 3

+
Z )→ [12][13][23] cRRRWWZ/Λ̄

2.
(3.25)

The 〈12〉〈13〉〈23〉 and 〈12〉[13][23] spinorial structure should thus only arise at the non-

renormalizable (or loop) level. This motivates our initial choice of normalization for those

terms. Amplitudes growing like E2 are produced by other terms which are thus also
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expected to only arise at the non-renormalizable (or loop) level. They are:

M(1−W , 2
−
W , 3

0
Z)→ +〈12〉2 (cL00

WWZ − c0L0
WWZ)/

√
2mZ ,

M(1−W , 2
0
W , 3

−
Z )→ −〈13〉2 (cL00

WWZ − c00L
WWZ)/

√
2mW ,

M(10
W , 2

−
W , 3

−
Z )→ +〈23〉2 (c0L0

WWZ − c00L
WWZ)/

√
2mW ,

M(10
W , 2

+
W , 3

+
Z )→ +[23]2 (c0R0

WWZ − c00R
WWZ)/

√
2mW ,

M(1+
W , 2

0
W , 3

+
Z )→ −[13]2 (cR00

WWZ − c00R
WWZ)/

√
2mW ,

M(1+
W , 2

+
W , 3

0
Z)→ +[12]2 (cR00

WWZ − c0R0
WWZ)/

√
2mZ .

(su
p

ersed
ed

b
y

eq
.

(3.34
))

(3.26)

A well-behaved high-energy limit can be obtained with the following ansatz:

(cL00
WWZ − c0L0

WWZ)/mZ ≡ 2c
[L0]0
WWZmW /mZΛ̄ ,

(cL00
WWZ − c00L

WWZ)/mW ≡ (c
{L0}0
WWZ + c

[L0]0
WWZ)/Λ̄ ,

(c0L0
WWZ − c00L

WWZ)/mW ≡ (c
{L0}0
WWZ − c

[L0]0
WWZ)/Λ̄ ,

(c0R0
WWZ − c00R

WWZ)/mW ≡ (c
{R0}0
WWZ + c

[R0]0
WWZ)/Λ̄ ,

(cR00
WWZ − c00R

WWZ)/mW ≡ (c
{R0}0
WWZ − c

[R0]0
WWZ)/Λ̄ ,

(c0R0
WWZ − cR00

WWZ)/mZ ≡ 2c
[R0]0
WWZmW /mZΛ̄ .

(3.27)

The cL00
WWZ , c0L0

WWZ , c0R0
WWZ and cR00

WWZ coefficients can then for instance be eliminated in

favor of the four new ones appearing on the right-hand side of eq. (3.27). The c
00R/L
WWZ terms

are then

+ ([12]〈13〉〈23〉 mZ/mW + 〈12〉[13]〈23〉+ 〈12〉〈13〉[23]) c00L
WWZ/mZmW

+ (〈12〉[13][23] mZ/mW + [12]〈13〉[23] + [12][13]〈23〉) c00R
WWZ/mZmW .

(3.28)

These two spinorial structures are however equivalent. Using the Schouten identity in a

form similar to that of eq. (3.5), one obtains:

〈313][12] = m1〈13〉[23] +m2[13]〈23〉 −m3[13][23] ,

[313〉〈12〉 = m1[13]〈23〉+m2〈13〉[23]−m3〈13〉〈23〉.
(3.29)

The left-hand side of the first equality times 〈12〉 is equal to that of the second one times

[12]. One therefore obtains an identity involving only products of bilinears:

m1〈12〉〈13〉[23] +m2〈12〉[13]〈23〉+m3[12]〈13〉〈23〉
= m1[12][13]〈23〉 +m2[12]〈13〉[23] +m3〈12〉[13][23] ,

(3.30)

which indeed demonstrates that the two spinorial structures in eq. (3.28) are equivalent.

We choose to keep them both and give them the same coefficient cWWZ = c00R
WWZ = c00L

WWZ .

Eventually, one therefore obtains that, at the renormalizable level, the WWZ amplitude
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features a single coupling, namely cWWZ ,

M(1W ,2W ,3Z) = +〈12〉〈13〉〈23〉 cLLLWWZ/Λ̄
2

+ 〈12〉(〈13〉[23]− [13]〈23〉) c[L0]0
WWZ/mZΛ̄

+ 〈12〉(〈13〉[23] + [13]〈23〉) c{L0}0
WWZ/mZΛ̄

+
(

[12]〈13〉〈23〉 rZW + 〈12〉[13]〈23〉+ 〈12〉〈13〉[23]

+ 〈12〉[13][23] rZW + [12]〈13〉[23] + [12][13]〈23〉
)
cWWZ/mZmW

+ [12](〈13〉[23]− [13]〈23〉) c[R0]0
WWZ/mZΛ̄ (3.31)

+ [12](〈13〉[23] + [13]〈23〉) c{R0}0
WWZ/mZΛ̄

+ [12][13][23] cRRRWWZ/Λ̄
2 ,

where we defined rZW ≡ mZ/mW , and as we will now see, c
[L0]0
WWZ = c

[R0]0
WWZ = 0. It

is remarkable that the non-trivial structure of the single renormalizable term is entirely

dictated by purely bottom-up considerations, without imposing electroweak symmetry. It is

parity invariant, and just flips sign under either C or CP. All spinorial structures except the

c
[L0]0
WWZ and c

[R0]0
WWZ ones are actually odd under the 1↔ 2 exchange associated with charge

conjugation. A CP conserving interference between, for instance, the renormalizable and

LLL/RRR terms is thus obtained if cRRRWWZ = cLLLWWZ . Since the renormalizable term is

antisymmetric under 1↔ 2 exchange, it also preserves U(1)EM: amplitudes with same-sign

W s vanish. In contrast, the even character of c
[L0]0
WWZ and c

[R0]0
WWZ terms implies that their

interferences with the renormalizable term violate C. Since the W+W−Z amplitude is

self-conjugate, we conclude that c
[L0]0
WWZ and c

[R0]0
WWZ must vanish. An explicit matching to

the SMEFT confirms this conclusion (see eq. (B.58)).

Massive degenerate vectors and Lie group structure constants. It is interesting

to consider our starting point, eq. (3.24) in the mW = mZ limit. Labeling the three vectors

by W a=1,2,3 and choosing them all to have the same helicity (with say, I = J = 1 for all),

Bose symmetry implies,8

M(1aW ,2
b
W ,3

c
W ) = εabc

{
+ 〈12〉〈13〉〈23〉 cLLLWWW /Λ̄

2

+
(
〈12〉〈13〉[23] + 〈12〉[13]〈23〉+ [12]〈13〉〈23〉

+ 〈12〉[13][23] + [12]〈13〉[23] + [12][13]〈23〉
)
cWWW /m

2
W

+ [12][13][23] cRRRWWW /Λ̄
2

}
, (3.32)

Thus, with only three vectors, the SU(2) structure constants emerge already at the level

of the three-point function. More generally, with n > 3 degenerate vectors, the εabc is

replaced by completely antisymmetric tensors Cabc. At this point, we can appeal to the

four-point function in the massless limit to obtain the Jacobi identity, which establishes the

identification of Cabc with the Lie algebra structure constants fabc. Restricting attention

8To see this, one can assign a three-index tensor prefactor to each of the spinor structures, and impose

overall Bose symmetry under, each particle exchange and a cyclic permutation of all three.
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to any subset of three out of the n vectors, we would again recover εabc; indeed, any

three generators form an SU(2) sub-algebra. Note that deriving the fabc structure in the

massive case is in some sense more straightforward that in the massless case. Here all three

vectors can have the same spin polarization, while in the massless case, the gauge coupling

corresponds to (±±∓) helicity amplitudes.

Since the four c
{L0}0
WWZ , c

{R0}0
WWZ , c

[L0]0
WWZ , c

[R0]0
WWZ terms are forbidden for vectors of identical

masses, they must be proportional to the mZ − mW mass difference in the mZ → mW

limit. Indeed, in the SM, the source of c
{L0}0
WWZ , c

{R0}0
WWZ terms (which preserve C) is the

additional U(1)Y (see eq. (B.59)). Additionally, in a gauge theory featuring a single SU(2),

spontaneous symmetry breaking leads to three degenerate massive bosons.

High-energy limit. In the high-energy limit, the amplitude of eq. (3.31) has non-

renormalizable terms growing as E3 and E2, as well as renormalizable terms scaling as E,

M(1−W , 2
−
W , 3

−
Z )→ 〈12〉〈13〉〈23〉 cLLLWWZ/Λ̄

2,

M(1+
W , 2

+
W , 3

+
Z )→ [12][13][23] cRRRWWZ/Λ̄

2,
(3.33)

and

M(1−W , 2
−
W , 3

0
Z)→ +〈12〉2 c[L0]0

WWZ

√
2/rZW Λ̄,

M(1−W , 2
0
W , 3

−
Z )→ −〈13〉2 (c

{L0}0
WWZ + c

[L0]0
WWZ)/

√
2Λ̄,

M(10
W , 2

−
W , 3

−
Z )→ +〈23〉2 (c

{L0}0
WWZ − c

[L0]0
WWZ)/

√
2Λ̄,

M(10
W , 2

+
W , 3

+
Z )→ +[23]2 (c

{R0}0
WWZ + c

[R0]0
WWZ)/

√
2Λ̄,

M(1+
W , 2

0
W , 3

+
Z )→ −[13]2 (c

{R0}0
WWZ − c

[R0]0
WWZ)/

√
2Λ̄,

M(1+
W , 2

+
W , 3

0
Z)→ −[12]2 c

[R0]0
WWZ

√
2/rZW Λ̄,

(3.34)

and

M(1−W , 2
−
W , 3

+
Z )→ −〈12〉3/〈13〉〈23〉 cWWZ ,

M(1−W , 2
0
W , 3

0
Z)→ +〈12〉〈13〉/〈23〉 (rZW cWWZ + (c

[R0]0
WWZ − c

[L0]0
WWZ)mW /rZW Λ̄),

M(1−W , 2
+
W , 3

−
Z )→ −〈13〉3/〈12〉〈23〉 (cWWZ + (c

{R0}0
WWZ + c

[R0]0
WWZ)mW /Λ̄),

M(1−W , 2
+
W , 3

+
Z )→ −[23]3/[12][13] (cWWZ + (c

{L0}0
WWZ + c

[L0]0
WWZ)mW /Λ̄),

M(10
W , 2

−
W , 3

0
Z)→ +〈12〉〈23〉/〈13〉 (rZW cWWZ − (c

[R0]0
WWZ − c

[L0]0
WWZ)mW /rZW Λ̄),

M(10
W , 2

0
W , 3

−
Z )→ +〈13〉〈23〉/〈12〉 ((2− r2

ZW )cWWZ + (c
{R0}0
WWZ + c

{L0}0
WWZ)mW /Λ̄),

M(10
W , 2

0
W , 3

+
Z )→ +[13][23]/[12] ((2− r2

ZW )cWWZ + (c
{R0}0
WWZ + c

{L0}0
WWZ)mW /Λ̄),

M(10
W , 2

+
W , 3

0
Z)→ +[12][23]/[13] (rZW cWWZ − (c

[R0]0
WWZ − c

[L0]0
WWZ)mW /rZW Λ̄),

M(1+
W , 2

−
W , 3

−
Z )→ −〈23〉3/〈12〉〈13〉 (cWWZ + (c

{R0}0
WWZ − c

[R0]0
WWZ)mW /Λ̄),

M(1+
W , 2

−
W , 3

+
Z )→ −[13]3/[12][23] (cWWZ + (c

{L0}0
WWZ − c

[L0]0
WWZ)mW /Λ̄),

M(1+
W , 2

0
W , 3

0
Z)→ +[12][13]/[23] (rZW cWWZ + (c

[R0]0
WWZ − c

[L0]0
WWZ)mW /rZW Λ̄,

M(1+
W , 2

+
W , 3

−
Z )→ −[12]3/[13][23] cWWZ .

(3.35)
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Limits to other amplitudes and theories. Taking mW to zero faster than mZ

(1/rZW = mW /mZ → 0) one can expand cWWZ , like other coefficients, in powers of

mW /mZ ,

cWWZ =
∑
n

(
mW

mZ

)n
an(m/Λ̄) , (3.36)

A smooth limit for (00±) amplitudes requires an<2 = 0. They only receive finite con-

tributions from an=2. The an≥2 terms are however irrelevant for all other amplitudes

in this limit. The purely non-renormalizable coefficients have mW /mZ expansions which

are forced by E3 and E2 amplitudes to only contain non-negative powers. The (±±0)

amplitudes therefore vanish in this limit.

Taking mZ/E to zero faster than mW /E, the fully transverse amplitudes of eq. (3.35)

require an>0 = 0 and only receive finite contributions from an=0. Lower powers are irrele-

vant for all other amplitudes. The purely non-renormalizable terms have a mZ/mW = rZW
expansion which is forced by E3 and E2 amplitudes to contain only non-negative powers.

The c
[L0]0
WWZ and c

[R0]0
WWZ coefficients are moreover required by (±±0) amplitudes to start

with a strictly positive power of mZ/mW = rZW .

3.10 WWγ

Instead of constructing the WWγ amplitude from scratch, it is instructive to obtain it

from the massless Z-boson limit of the WWZ amplitude. For the positive helicity photon

amplitude, M(1W ,2W , 3
+
γ ), one obtains from eq. (3.31):

+ 〈12〉〈13q〉〈23q〉 cLLLWWZ/Λ̄
2

+ [12]〈13q〉〈23q〉 cWWZ/m
2
W

+ 〈12〉(〈13q〉[23]− 〈23q〉[13]) c
[L0]0
WWZ/mZΛ̄

+ [12](〈13q〉[23]− 〈23q〉[13]) c
[R0]0
WWZ/mZΛ̄

+ 〈12〉(〈13q〉[23] + 〈23q〉[13]) (cWWZ + c
{L0}0
WWZ mW /Λ̄)/mZmW

+ [12](〈13q〉[23] + 〈23q〉[13]) (cWWZ + c
{R0}0
WWZ mW /Λ̄)/mZmW

+ 〈12〉[13][23] cWWZ/m
2
W

+ [12][13][23] cRRRWWZ/Λ̄
2 .

(3.37)

According to our discussion of the mZ/mW → 0 limit in the previous subsection, the

expansion of all cWWZ involves only non-negative powers of mZ/mW . The expansion

of c
[L0]0
WWZ and c

[R0]0
WWZ coefficients also starts with a strictly positive power. Given that

|3q〉 scales as mZ/
√
E, one obtains that the first four terms of eq. (3.37) vanish in the

mZ/mW → 0 limit.

Introducing an auxiliary spinor ζ, one can identify |3q〉/mZ → |ζ〉/〈3ζ〉 (and similarly

|3q]/mZ → |ζ]/[ζ3]). Using the equalities of eq. (3.5), one can also rewrite:

〈12〉[13][23] = mW (〈12〉 − [12])(〈1ζ〉[23] + 〈2ζ〉[13])/〈3ζ〉,
[12]〈13〉〈23〉 = mW ([12]− 〈12〉)([1ζ]〈23〉+ [2ζ]〈13〉)/[3ζ].

(3.38)
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The spinorial structures in the fifth to seventh lines in eq. (3.37) thus reduce to two inde-

pendent structures. One can also introduce the massless polarization vector of eq. (A.39)

and (A.40) to rewrite:

(〈1ζ〉[23] + 〈2ζ〉[13])/〈3ζ〉 = −(〈1ε+
3 2] + 〈2ε+

3 1])/
√

2 ,

([1ζ]〈23〉+ [2ζ]〈13〉)/[3ζ] = −(〈1ε−3 2] + 〈2ε−3 1])/
√

2 .
(3.39)

Thus, the massless Z-boson limit of the WWZ amplitude yields only three terms with a

positive-helicity Z:

− 〈12〉(〈1ε+
3 2] + 〈2ε+

3 1]) (2cWWZ + c
{L0}0
WWZ mW /Λ̄)/

√
2mW

− [12](〈1ε+
3 2] + 〈2ε+

3 1]) c
{R0}0
WWZ/

√
2Λ̄

+ [12][13][23] cRRRWWZ/Λ̄
2.

(3.40)

One can finally use eq. (3.38) to trade [12](〈1ε+
3 2] + 〈2ε+

3 1]) for a combination of

〈12〉(〈1ε+
3 2] + 〈2ε+

3 1]) and 〈12〉[13][23]/mW . Following the same reasoning for the

M(1W ,2W , 3
−
γ ) amplitude, and introducing new cWWγ coefficients, one thus finally ob-

tains:
M(1W ,2W , 3

+
γ ) = +[12][13][23] cRRRWWγ/Λ̄

2

+ 〈12〉[13][23] c00R
WWγ/mW Λ̄

+ 〈12〉(〈1ε+
3 2] + 〈2ε+

3 1]) cWWγ/mW ,

M(1W ,2W , 3
−
γ ) = +〈12〉〈13〉〈23〉 cLLLWWγ/Λ̄

2

+ [12]〈13〉〈23〉 c00L
WWγ/mW Λ̄

+ [12] (〈1ε−3 2] + 〈2ε−3 1]) cWWγ/mW ,

(3.41)

with, in particular,

− (2cWWZ + (c
{L0}0
WWZ + c

{R0}0
WWZ)mW /Λ̄)/

√
2→ cWWγ . (3.42)

The same result can also be obtained from eq. (4.12) of ref. [21].

The presence of five independent coefficients is compatible with the angular-momentum

counting introduced in section 3.1. Placing the two photon components in a fundamental

representation and labeling representations by their dimensions, one indeed obtains five

terms in the 3⊗ 3⊗ 2 = 2⊕ 2⊕ 4⊕ 4⊕ 6 decomposition.

3.11 ZZZ, ZZγ, Zγγ, and γγγ

In our discussion of the WWZ amplitude, we found that for three mass-degenerate vectors,

the V aV bV c amplitude is proportional to εabc. The ZZZ amplitude therefore vanishes

identically.

In amplitudes involving three identical massless vectors, permutation symmetry must

be enforced among the same helicity ones. Amplitudes involving three massless vectors

of identical helicity are formed as spinor bilinear products like 〈12〉〈13〉〈23〉. No fully

symmetric combination can be formed out of such structures. Amplitudes involving two

massless vectors of identical helicity take forms like the 〈12〉3/〈13〉〈23〉 one for the (−−+)
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case. They are thus antisymmetric under the exchange of the same-helicity vectors and

therefore also vanish if those are identical. We therefore conclude that no γγγ amplitude

can be written down.

Similarly, the ZZγ amplitude can be obtained from the WWγ one with a sym-

metrization under 1 ↔ 2 exchange. All the spinorial structures of the WWγ amplitude

are however antisymmetric under that exchange. So we conclude that no ZZγ amplitude

can be written down.

The M(1Z , 2
h2
γ , 3

h3
γ ) amplitude is restricted by little-group considerations to the fol-

lowing structures (see e.g. refs. [21]): [12]1+h2−h3 [13]1+h3−h2 [23]h2+h3−1 = [12][13][23],

〈12〉〈13〉〈23〉 which are also antisymmetric under the 2 ↔ 3 exchange and thus incompat-

ible with Bose statistics. So we conclude that no Zγγ amplitude can be written down in

agreement with the Landau-Yang theorem [52, 53].

3.12 High-energy theory and SU(2)L × U(1)Y

Our approach throughout this paper is purely bottom-up. We only assume the unbroken

symmetries of the SM, and we expect the SU(2)L×U(1)Y structure to emerge once unitarity

is imposed on the four- and higher-point amplitudes of the SM particles. It is instructive

however to briefly comment on how this gauge structure emerges if we instead assume that

the theory has a smooth massless limit, and make contact with the high-energy theory. The

high-energy theory comprises four massless spin-one degrees of freedom arising as linear

combinations of the W±, Z and the photon, as well as four scalars arising from the Higgs

h and the longitudinal components of the W± and Z.

The WWZ amplitude then includes interactions between three massless transverse

vectors, and we have already seen that, for degenerate vectors V a=1,2,3, it is proportional

to εabc. We can furthermore isolate a U(1)Y gauge boson, by defining the combination

B ∝
√

2cWWZ γ+ cWWγ Z, such that the renormalizable WWB amplitude vanishes in the

high-energy limit for transverse polarizations.9

The high-energy limit of the ψcψ′W amplitudes then implies that the fermions come

in specific SU(2)L representations. Similarly, the coupling of the scalar to the longitudinal

components of the vector implies that they should be embedded in a SU(2)L multiplet in

the high-energy theory. With one scalar and three longitudinal vector components, one

can form a complex doublet. A consistent factorization of the massless fermion-fermion-

vector-vector or scalar-scalar-vector-vector amplitudes moreover relate the fermion-vector,

scalar-vector, and triple-vector couplings [21] for both SU(2)L and U(1)Y vectors.

The SU(2)L×U(1)Y symmetry of the massless high-energy theory can thus be inferred

from known results mostly concerning massless amplitudes. We expect that the same

conclusion can be obtained by considering the high-energy limit of massive four- and higher-

point amplitudes. Their study is postponed to future work but we detail the specific

example of the ψcψZh amplitude in the next section.

9The appearance of this specific combination can be traced back to the renormalizable part of the

eq. (3.42) redefinition performed when taking the limit of the WWZ amplitude to the WWγ one.
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4 Four-point ψcψZh amplitude

We now turn to the construction of four-point, tree-level amplitudes. These generically have

factorizable parts, featuring single-particle poles, and non-factorizable parts, or contact-

terms, with no negative powers of the kinematic invariants. For the massive external

states considered here, constructing the factorizable part is straightforward: each pole is

associated with a particular factorization channel, and its residue is given by the product

of two on-shell three-point functions. This part of the amplitude can be simply obtained

by gluing two three-point amplitudes, with the appropriate propagator. Thus for example,

gluing two three-point amplitudes along a massive vector line gives,

− 1

p2 −m2

 ∑
I,J,Ĩ,J̃=1,2

MIJ
1 (p) +MJI

1 (p)

2
εIĨ εJJ̃

MĨ J̃
2 (p̃) +MJ̃ Ĩ

2 (p̃)

2


p2=m2

, (4.1)

where m is the vector mass, and p̃ stands for an outgoing momentum. Pictorially,

← p
MIJ

1 (p) MĨ J̃
2 (p̃) .

Recall that so far we have taken all momenta to be incoming. When gluing together two

three-point amplitudes, we need to consistently define the contractions of bolded spinors

for incoming and outgoing momenta. These are discussed in appendix A.5.

To obtain the non-factorizable component, we write the most general kinematic struc-

tures involving positive powers of the spinor products, that are consistent with little-group

constraints, similarly to the derivation of the three-point amplitudes. These structures ap-

pear with a-priori arbitrary coefficients. Combining the factorizable and non-factorizable

pieces we thus get the most general amplitude which consistently factorizes on single par-

ticle poles. Imposing SU(2)L × U(1)Y , or alternatively, requiring perturbative unitarity,

would imply specific relations between the contact-term coefficients and the couplings of

three-point amplitudes.

For definiteness, we will focus on the ψcψZh amplitudes relevant for Higgs decay

and associated production at both hadron and lepton colliders. The high-energy limit of

non-factorizable contributions does not lead to energy growths that are not matched by

appropriate power of the cutoff Λ̄. This does however occur for factorizable contributions,

which feature negative powers of the masses, and thus allow us to derive relations between

amplitude coefficients, satisfied up to m/Λ̄ corrections.

4.1 Non-factorizable contributions

Using momentum conservation, Schouten identities, on-shell conditions and Dirac matrix

algebra, it is possible to show that all non-factorizable contributions to the fully massive
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ψcψZh four-point amplitude can be reduced to the following twelve terms:

Mnf(1ψc ,2ψ,3Z ,4h) =
cRRRψcψZh

Λ̄2
[13][23] +

[12]

Λ̄3
〈3 {cRR0A

ψcψZh(1 + 2) + cRR0S
ψcψZh(1− 2)} 3]

+
cRL0
ψcψZh

Λ̄2
[13]〈23〉+

cRLRψcψZh

Λ̄3
[312〉[13] +

cRLLψcψZh

Λ̄3
〈321]〈23〉

+
cLR0
ψcψZh

Λ̄2
〈13〉[23] +

cLRRψcψZh

Λ̄3
[321〉[23] +

cLRLψcψZh

Λ̄3
〈312]〈13〉 (4.2)

+
cLLLψcψZh

Λ̄2
〈13〉〈23〉+

〈12〉
Λ̄3
〈3 {cLL0A

ψcψZh(1 + 2) + cLL0S
ψcψZh(1− 2)} 3].

In the case of three-point amplitudes, all kinematics dependence was included in the spinor

structures, leaving only constant coefficients. For four-point amplitudes such as that of

eq. (4.2), the twelve cψcψZh coefficients are functions of sij . At tree-level, each of them is

given as an expansion in positive powers of the sij .

In the construction of eq. (4.2), p4 is eliminated using momentum conservation. Each

term must contain a single angle- or square-bracket spinor for particles 1 and 2, as well as

two such spinors for particle 3, and therefore involves two spinor products. In order to find

the independent structures, one need only start with terms involving two spinor products

and up to one insertion of each of the momenta, since multiple insertions can be eliminated

using anti-commutation relations and/or on-shell conditions. We have verified explicitly

that these structures can be systematically reduced to eq. (4.2). The following equality is

for instance used to eliminate the RRL term (and the LLR one by exchanging square and

angle brackets):

[12]〈3123〉 = 2 [12] 〈3 {1 (p2 · p3)− 2 (p1 · p3)} 3]/m3

− 2(p1 · p2)[13][23]−m1[321〉[23]−m2[312〉[13]. (4.3)

Remarkably, the first term on the right-hand side has a well-defined m3 → 0 limit since the

leading (p2 ·p3)〈313]− (p1 ·p3)〈323] term vanishes identically. We also note that the second

line is equal to [12][3213], a structure that is thus also reducible to the ones of eq. (4.2).

The massless fermion amplitude can be obtained by simply unbolding the fermion spinors.

A direct derivation of the massless fermion amplitude is provided in appendix D. The agree-

ment between the results of eq. (4.2), eq. (D.5) in the massless fermion limit establishes the

independence of the twelve terms of eq. (4.2). This independence can also be verified nu-

merically, by considering vectors formed by the numerical values of the 12 spinor structures

for arbitrary choices of momenta, and verifying that they are linearly independent.
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The leading high-energy contributions are obtained by simple unbolding of the spinorial

structures in eq. (4.2) (see also a direct derivation from U(1) little group in appendix C.3):

Mnf(1+
ψc , 2

+
ψ , 3

+
Z , 4h)→ [13][23] cRRRψcψZh/Λ̄

2,

Mnf(1+
ψc , 2

+
ψ , 3

0
Z , 4h)→ 2 [12] {cRR0A

ψcψZh p3 · (p1 + p2) + cRR0S
ψcψZh p3 · (p1 − p2)}/Λ̄3,

Mnf(1+
ψc , 2

−
ψ , 3

0
Z , 4h)→ −[132〉 cRL0

ψcψZh/Λ̄
2,

Mnf(1+
ψc , 2

−
ψ , 3

+
Z , 4h)→ −〈12〉[13]2 cRLRψcψZh/Λ̄

3,

Mnf(1+
ψc , 2

−
ψ , 3

−
Z , 4h)→ [12]〈23〉2 cRLLψcψZh/Λ̄

3,

Mnf(1−ψc , 2
+
ψ , 3

0
Z , 4h)→ −[231〉 cLR0

ψcψZh/Λ̄
2,

Mnf(1−ψc , 2
+
ψ , 3

+
Z , 4h)→ 〈12〉[23]2 cLRRψcψZh/Λ̄

3,

Mnf(1−ψc , 2
+
ψ , 3

−
Z , 4h)→ −[12]〈13〉2 cLRLψcψZh/Λ̄

3,

Mnf(1−ψc , 2
−
ψ , 3

−
Z , 4h)→ 〈13〉〈23〉 cLLLψcψZh/Λ̄

2,

Mnf(1−ψc , 2
−
ψ , 3

0
Z , 4h)→ 2 〈12〉 {cLL0A

ψcψZh p3 · (p1 + p2) + cLL0S
ψcψZh p3 · (p1 − p2)}/Λ̄3.

(4.4)

This justifies the normalization adopted with inverse powers of Λ̄ (at tree level). In the

SMEFT, dimension-six operators (dipoles and vectors) lead to the four 1/Λ̄2 structures (see

appendix B.12). The missing Mnf(1+
ψc , 2

+
ψ , 3

−
Z , 4h) and Mnf(1−ψc , 2

−
ψ , 3

+
Z , 4h) amplitudes

are generated at orders 1/Λ̄4 (see eq. (C.8)) by the specific linear combination in the right-

hand side of eq. (4.3) and its analogue with square and angle brackets interchanged.

In the soft-Higgs limit, with the four-momentum p4 → 0, only the four 1/Λ̄2 terms

of eq. (4.2) survive, reproducing the list of structures found for the ψcψZ amplitude in

eq. (3.1). Indeed, at the level of the non-factorizable terms, this limit corresponds to

setting the Higgs field to its vacuum expectation value.

4.2 Factorizable contributions

Given the field content of our electroweak theory, the possible factorizable contributions to

the ψcψZh amplitudes are:

pZ,γ
2ψ

1ψc

4h

3Z

pψ

2ψ

1ψc

4h

3Z

pψ

2ψ

1ψc

4h

3Z

ph
2ψ

1ψc

4h

3Z

. (4.5)

We know however that, for identical scalars, the hhZ amplitude vanishes on-shell. Thus,

only s-channel Z and photon exchanges, as well as t- and u-channel fermion ones have to be

considered. We treat each of those contributions in turn, employing the gluing prescription

detailed in section A.5.

s-channel Z exchange. Let us start with the s-channel Z-boson exchange. The three-

point amplitudes to be joined are those of eq. (3.1) and (3.13). Applying the prescription
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of eq. (4.1), we obtain the following s-channel amplitude:

MZ(1ψc ,2ψ,3Z ,4h)× (s−m2
Z) =

= + (〈12〉 − [12]) 〈3(1 + 2)3] (cRL0
ψcψZ − cLR0

ψcψZ)c00
ZZh mψ/2m

2
Z

− 〈13〉[23] cLR0
ψcψZc

00
ZZh

− 〈23〉[13] cRL0
ψcψZc

00
ZZh

+ (〈12〉 − [12])〈3(1− 2)3] (cLLLψcψZ − cRRRψcψZ)c00
ZZh /4Λ̄

+ (〈12〉+ [12])〈3(1− 2)3] (cLLLψcψZ + cRRRψcψZ)c00
ZZh /4Λ̄

− (〈13〉[23] + 〈23〉[13]) (cLLLψcψZ + cRRRψcψZ)c00
ZZh mψ/Λ̄

+ 〈13〉〈312] cLR0
ψcψZc

LL
ZZh/Λ̄

+ 〈23〉〈321] cLR0
ψcψZc

LL
ZZh/Λ̄

− 〈13〉〈23〉 (cRL0
ψcψZ + cLR0

ψcψZ)cLLZZhmψ/Λ̄

+ [13]〈213] cLR0
ψcψZc

RR
ZZh/Λ̄

+ 〈23〉〈123] cLR0
ψcψZc

RR
ZZh/Λ̄

− [13][23] (cRL0
ψcψZ + cLR0

ψcψZ)cRRZZhmψ/Λ̄ ,

(4.6)

where only one non-renormalizable vertex has been allowed.

In the high-energy limit, the longitudinal component of the 〈3(1+2)3] spinorial struc-

ture tends to −s/
√

2 and cancels the propagator up to mass corrections. (The square root

of two arises from the Clebsch-Gordan coefficient in the prescription of eq. (A.34)). The

fastest growing s-channel amplitudes are thus:

MZ(1−ψc , 2
−
ψ , 3

0
Z , 4h)→ −〈12〉 ((cRL0

ψcψZ − cLR0
ψcψZ) mψ/m

2
Z − cLLLψcψZ (t− u)/sΛ̄) c00

ZZh/2
√

2,

MZ(1−ψc , 2
+
ψ , 3

−
Z , 4h)→ +〈13〉2/〈12〉 cLR0

ψcψZc
LL
ZZh/Λ̄,

MZ(1−ψc , 2
+
ψ , 3

+
Z , 4h)→ −[23]2/[12] cLR0

ψcψZc
RR
ZZh/Λ̄,

MZ(1+
ψc , 2

−
ψ , 3

−
Z , 4h)→ −〈23〉2/〈12〉 cRL0

ψcψZc
LL
ZZh/Λ̄, (4.7)

MZ(1+
ψc , 2

−
ψ , 3

+
Z , 4h)→ +[13]2/[12] cRL0

ψcψZc
RR
ZZh/Λ̄,

MZ(1+
ψc , 2

+
ψ , 3

0
Z , 4h)→ +[12] ((cRL0

ψcψZ − cLR0
ψcψZ) mψ/m

2
Z + cRRRψcψZ (t− u)/sΛ̄) c00

ZZh/2
√

2,

where we have used [12]/s→ −1/〈12〉 and 〈12〉/s→ −1/[12]. Compared to the expectation

deriving from our simplified argument based three-point amplitudes, we note that the

(−−00) and (++00) receive contributions of unacceptable E/m growths. Amplitudes

involving longitudinal vector bosons are well-known to give rise to such behaviors.

s-channel photon exchange. The s-channel photon exchange only arises at the non-

renormalizable level, since the γZh amplitude of eq. (3.20) receives no renormalizable

tree-level contribution. The result can be obtained from the mZ → 0 limit of the Z-boson

– 26 –



J
H
E
P
0
1
(
2
0
2
0
)
1
1
9

exchange with cLR0
ψcψZ → cRL0

ψcψZ → −
√

2 cψcψγ (following eq. (3.7)):

MA(1ψc ,2ψ,3Z ,4h)× s = −
√

2〈13〉〈312] cψcψγc
LL
γZh/Λ̄

−
√

2〈23〉〈321] cψcψγc
LL
γZh/Λ̄

+ 2
√

2〈13〉〈23〉 cψcψγcLLγZhmψ/Λ̄

−
√

2[13]〈213] cψcψγc
RR
γZh/Λ̄

−
√

2[23]〈123] cψcψγc
RR
γZh/Λ̄

+ 2
√

2[13][23] cψcψγc
RR
γZhmψ/Λ̄.

(4.8)

This form is also obtained from a direct gluing of the eq. (3.6) and (3.20) photon amplitudes.

t- and u-channel fermion exchanges. The t- an u-channel diagrams of eq. (4.5) involve

the three-point amplitudes of eq. (3.1) and (3.12). The prescription of eq. (4.1) leads to

the following t-channel amplitude:

Mt(1ψc ,2ψ,3Z ,4h)× (t−m2
ψ) =

=− 〈12〉〈313] cLLψcψhc
LR0
ψcψZ/mZ

− [12]〈313] cRRψcψhc
RL0
ψcψZ/mZ

+ 〈13〉[23] ((cRL0
ψcψZ − cLR0

ψcψZ)mψ/mZ − cLLLψcψZmZ/Λ̄)cRRψcψh

− 〈23〉[13] ((cRL0
ψcψZ − cLR0

ψcψZ)mψ/mZ + cRRRψcψZmZ/Λ̄)cLLψcψh

− 〈13〉〈23〉 (cLR0
ψcψZ + cLLLψcψZmψ/Λ̄)cLLψcψh

− 〈13〉〈312] cRRψcψhc
LLL
ψcψZ/Λ̄

− [13][23] (cRL0
ψcψZ + cRRRψcψZmψ/Λ̄)cRRψcψh

− [13]〈213] cLLψcψhc
RRR
ψcψZ/Λ̄ .

(4.9)

In the high-energy limit, the longitudinal component of the 〈313] spinor structure tends

to t/
√

2. The fastest growing amplitudes are then:

Mt(1−ψc , 2
−
ψ , 3

0
Z , 4h)→ −〈12〉 cLR0

ψcψZc
LL
ψcψh /

√
2mZ ,

Mt(1−ψc , 2
+
ψ , 3

−
Z , 4h)→ −〈13〉2/〈12〉 cLLLψcψZc

RR
ψcψh s/tΛ̄ ,

Mt(1+
ψc , 2

−
ψ , 3

+
Z , 4h)→ −[13]2/[12] cRRRψcψZc

LL
ψcψh s/tΛ̄ ,

Mt(1+
ψc , 2

+
ψ , 3

0
Z , 4h)→ −[12] cRL0

ψcψZc
RR
ψcψh /

√
2mZ ,

(4.10)

where again the (−−00) and (++00) ones receive energy-growing contributions not naively

expected from our simplified analysis of three-point amplitudes. Similarly, the u-channel
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contribution is:

Mu(1ψc ,2ψ,3Z ,4h)× (u−m2
ψ) =

= + 〈12〉〈323] cLLψcψhc
RL0
ψcψZ/mZ

+ [12]〈323] cRRψcψhc
LR0
ψcψZ/mZ

− 〈23〉[13] ((cRL0
ψcψZ − cLR0

ψcψZ)mψ/mZ + cLLLψcψZmZ/Λ̄)cRRψcψh

+ 〈13〉[23] ((cRL0
ψcψZ − cLR0

ψcψZ)mψ/mZ − cRRRψcψZmZ/Λ̄)cLLψcψh

− 〈13〉〈23〉 (cRL0
ψcψZ + cLLLψcψZmψ/Λ̄)cLLψcψh

− 〈23〉〈321] cRRψcψhc
LLL
ψcψZ/Λ̄

− [13][23] (cLR0
ψcψZ + cRRRψcψZmψ/Λ̄)cRRψcψh

− [23]〈123] cLLψcψhc
RRR
ψcψZ/Λ̄ ,

(4.11)

where 〈323] tends to u/
√

2 in the high-energy limit. The leading amplitudes are then:

Mu(1−ψc , 2
−
ψ , 3

0
Z , 4h)→ +〈12〉 cRL0

ψcψZc
LL
ψcψh /

√
2mZ ,

Mu(1−ψc , 2
+
ψ , 3

+
Z , 4h)→ +[23]2/[12] cRRRψcψZc

LL
ψcψhs/uΛ̄ ,

Mu(1+
ψc , 2

−
ψ , 3

−
Z , 4h)→ +〈23〉2/〈12〉 cLLLψcψZc

RR
ψcψhs/uΛ̄ ,

Mu(1+
ψc , 2

+
ψ , 3

0
Z , 4h)→ +[12] cLR0

ψcψZc
RR
ψcψh /

√
2mZ ,

(4.12)

and the (−−00) and (++00) again display a growth not expected from the three-point

amplitude analysis. Note that the u-channel amplitude is obtained from the t-channel one

by exchange of the fermion labels (including chirality labels, where needed).

Perturbative unitarity and the fermion mass. Perturbative unitarity constrains

the parameters of the ψcψZh amplitude. For the non-renormalizable terms, this gives

non-trivial relations among the coefficients of the factorizable and non-factorizable terms.

The s-wave coefficients of each helicity amplitude growing like a power of E/Λ̄, must be

smaller than a some numerical value such that unitarity is only lost at E = Λ̄. Since the

result of eq. (4.2) is an all-orders result, which can be expanded in powers of pi · pj/Λ̄2,

this implies quantitative relations between the coefficients in this expansion. We leave a

full exploration of these relations to future work.

Furthermore, at the renormalizable level, there is E/m energy growth in the sum of

contributions to the (±±00) amplitudes. To cancel this, one is forced to impose:

(cRL0
ψcψZ − cLR0

ψcψZ) (c00
ZZh mψ/2mZ − cLLψcψh) = 0 +O(m/Λ̄) ,

(cRL0
ψcψZ − cLR0

ψcψZ) (c00
ZZh mψ/2mZ − cRRψcψh) = 0 +O(m/Λ̄) .

(4.13)

One can distinguish two possibilities for satisfying this condition. One is that

cRL0
ψcψZ = cLR0

ψcψZ +O(m/Λ̄) . (4.14)

In this case, the fermion has a vector-like coupling to the Z boson, up to m/Λ̄ corrections.

No relation is then forced between its mass and its Yukawa coupling. The second possibility
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is that the fermion has chiral couplings to the Z boson, with cRL0
ψcψZ 6= cLR0

ψcψZ at zeroth order

in m/Λ̄. Then, its mass is directly related to the Yukawa coupling,

cRRψcψh = c00
ZZhmψ/2mZ = cLLψcψh , (4.15)

up to m/Λ̄ corrections (see also eq. (5.5) of ref. [39]).

In the SM, it is of course this second possibility that is realized, and the requirements

of eq. (4.13) are explicitly satisfied in the SMEFT (see appendix B.14). In the presence

of additional Higgses, which couple to ψ, this relation would be modified. Then, the low

energy theory would feature an additional scalar, h′, and the ψcψZh amplitude would get

a contribution from factorization on ψcψh′ and Zhh′. Indeed, with two different scalars,

the latter can be nonzero.

5 Conclusions

We adopted massive on-shell amplitude methods to examine a theory of the electroweak

spectrum from the bottom up, including both renormalizable and non-renormalizable in-

teractions. Our main objectives were first to explicitly demonstrate the emergence of the

patterns due to electroweak symmetry breaking and, second, to provide the necessary basis

for on-shell amplitude computations equivalent to those obtained from the Lagrangian of

the standard-model effective field theory (SMEFT).

We started by performing the bottom-up construction of all massive on-shell three-

point amplitudes with the electroweak field content. The only assumptions made concerned

the particle spectrum, as well as electric-charge and fermion-number conservation. A sim-

plified argument based on the tree-level unitarity of factorizable four-point amplitudes was

employed to distinguish renormalizable and non-renormalizable contributions to tree-level,

three-point amplitudes, without reference to a Lagrangian. The non-trivial structure of

the renormalizable ψcψγ, WWZ or WWγ amplitudes could for instance be obtained in a

purely bottom-up way. The emergence of properties expected from electroweak symmetry

breaking, the Higgs mechanism and the Goldstone equivalence theorem were highlighted.

Prescriptions for the treatment of massive spinors and the gluing of massive three-

point amplitudes into tree-level higher-point ones were clarified. The construction of both

factorizable and non-factorizable contributions to the ψcψZh four-point amplitude was de-

tailed as illustration. Imposing tree-level unitarity up to an arbitrarily high cutoff scale led

to the expected relation between renormalizable ZZh,ψcψh couplings and mZ ,mψ masses.

All renormalizable and non-renormalizable parameters appearing in the three-point

and non-factorizable four-point amplitudes were defined and matched at tree-level to the

broken-phase of the SMEFT. This laid the basis for future SMEFT computations using

on-shell amplitude methods. Operator redundancies due to field redefinitions are absent

in this approach.

Sticking to a bottom-up approach, all the four-fermion, two-fermion-two-boson and

four-boson amplitudes would next need to be considered. As in the ψcψZh case we dis-

cussed, the unitarity of these four-point amplitudes would impose further constraints on

both the renormalizable and non-renormalizable parameters introduced here. All relations
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deriving from the underlying SU(2)L×U(1)Y symmetry of the theory are expected to be ob-

tained from four- and higher-point amplitudes. For an electroweak-like particle spectrum,

this is indeed the only consistent ultraviolet completion. Before perturbative unitarity is

imposed, our bottom-up construction also applies to more general theories featuring for

instance a low-cutoff scale or non-linearly realized SU(2)L ×U(1)Y symmetry. The break-

down of unitarity in such theories may be best probed by amplitudes with n > 4 vector

boson and Higgs legs [54, 55]. The general, relatively compact expressions for n-point am-

plitudes obtained in our approach will be useful starting points for this study. It will also

be interesting to use these results in order to explore the relation between the high-energy

behavior and analytic structure of the amplitudes, and the non-analytic Higgs potentials

featured in EFTs beyond the SMEFT [56].

The soft limits of on-shell EFT amplitudes have yielded powerful restrictions on general

EFTs [57–63], and it would be interesting to explore them in the case at hand. Amplitudes

with Goldstone bosons should vanish in this limit, while the soft-Higgs limit amounts to

setting the Higgs to its vacuum expectation value [47].
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A Massless and massive spinors

We use the massive spinor formalism introduced in ref. [21]. We first introduce our nota-

tions and conventions. Our conventions for two-component spinors mostly follow ref. [64].10

The metric is

ηµν = ηµν = diag (+,−,−,−) , (A.1)

and hence p2 = m2 > 0 for massive particles. The gamma matrices are defined as

γµ =

(
0 (σµ)αβ̇

(σ̄µ)α̇β 0

)
, (A.2)

where σµ
αβ̇

= (δαβ̇ , ~σαβ̇) and σ̄µα̇β = (δα̇β , −~σα̇β) and,

σµαα̇σ̄
β̇β
µ = 2δβαδ

β̇
α̇ . (A.3)

10Thus, our conventions for raising and lowering SU(2) indices are consistent with refs. [21, 27, 30], but

different from ref. [8].
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The commutator for the dipole operators is defined as

σµν =
i

2
[γµ, γν ] . (A.4)

To simplify the notation we introduce the “half-brackets”

λα = 〈λ| , λα = |λ〉 , λ̃α̇ = [λ̃| , λ̃α̇ = |λ̃] , (A.5)

where the λα and λ̃α̇ are commuting and independent two-dimensional complex vectors

(undotted and dotted index spinors, respectively). Indices of the spinor brackets are con-

tracted by

〈λχ〉 = εαβλ
αχβ = λαχα = −λαχα = −χαλα = −〈χλ〉 ,

[λ̃χ̃] = εα̇β̇λ̃α̇χ̃β̇ = λ̃α̇χ̃
α̇ = −λ̃α̇χ̃α̇ = −χ̃α̇λ̃α̇ = −[χ̃λ̃] , (A.6)

which satisfy

〈λσµχ̃] = [χ̃σ̄µλ〉 . (A.7)

The two-component Levi-Civita tensors are defined as in ref. [64],11

εIJ = −εIJ = εαβ = −εαβ = εα̇β̇ = −εα̇β̇ =

(
0 1

−1 0

)
. (A.8)

For massive particles, the momentum is given by the massive spinor brackets,

pαα̇ = εIJλ
I
αλ̃

J
α̇ = λIαλ̃Iα̇ = |pI〉[pI |,

p̄α̇α = εIJ λ̃α̇I λ
α
J = −λ̃Iα̇λαI = −|pI ]〈pI |,

(A.9)

which satisfy

detpαα̇ = det p̄α̇α =
1

2
pαα̇p̄

α̇α = m2 . (A.10)

In eq. (A.9) we used boldface for the massive momentum. At this point, this is just a

matter of convenience, and we will use this notation throughout to help distinguish massive

from massless momenta. The significance of the bold spinor notation for treating massive

particles of nonzero spin will be explained below.

The equations of motion are,

p|λ̃I ] = m|λI〉 , p̄|λI〉 = m|λ̃I ] , (A.11)

[λ̃I |p̄ = −m〈λI | , 〈λI |p = −m[λ̃I | . (A.12)

In addition, the massive spinor bilinears satisfy,

〈λIλJ〉 = mδIJ , 〈λIλJ〉 = −mεIJ , 〈λIλJ〉 = mεIJ , (A.13)

[λ̃I λ̃J ] = −mδIJ , [λ̃I λ̃J ] = mεIJ , [λ̃I λ̃J ] = −mεIJ , (A.14)

11Note however that our convention for the totally antisymmetric tensor εµνρσ is opposite to that of

ref. [64]: we adopt ε0123 = +1 as in ref. [12], where the Warsaw basis of SMEFT operators is defined.
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and

λIαλ
β
I = |λI〉〈λI | = −mδ β

α , λ̃Iα̇λ̃Iβ̇ = |λ̃I ][λ̃I | = mδα̇
β̇
. (A.15)

For a real momentum, the dotted and undotted spinors are related by complex conjugation,(
λIα
)†

= λ̃Iα̇ ,
(
λ̃Iα̇
)†

= −λαI . (A.16)

For negative-energy spinors, the complex conjugation introduces an extra minus sign.

Dirac spinors are then given by,

uI(p) =

(
λIα
λ̃Iα̇

)
, vI(p) =

(
λIα
−λ̃Iα̇

)
, (A.17)

uI(p) =
(
−λαI λ̃Iα̇

)
, vI(p) =

(
λαI λ̃Iα̇

)
, (A.18)

and satisfy the equations of motion,(
/p−m

)
uI(p) = 0 ,

(
/p+m

)
vI(p) = 0 , (A.19)

uI(p)
(
/p−m

)
= 0 , vI(p)

(
/p+m

)
= 0 , (A.20)

orthogonality conditions,

uI(p)u
J(p) = 2mδJI , (A.21)

vI(p)v
J(p) = −2mδJI , (A.22)

uI(p)v
J(p) = vI(p)u

J(p) = 0 , (A.23)

and spin sums, ∑
I

uI(p)uI(p) = /p+m,
∑
I

vI(p)vI(p) = /p−m. (A.24)

A.1 The high-energy limit

For a given massive momentum p, different choices of pI=1 are possible (with pI=2 =

p − pI=1). In order to make contact with helicity amplitudes, the spatial direction of the

pI ’s can be chosen along the direction of motion of the particle. It will be convenient to

denote [8],

pµ = kµ + qµ , (A.25)

with

kµ =
E + p

2
(1, 0, 0, 1) , qµ =

E − p
2

(1, 0, 0,−1) . (A.26)

k then scales with E in the high-energy limit, while q scales with m2/E. We have,

pαα̇ = |k〉[k|+ |q〉[q| , (A.27)

p̄α̇α = |k]〈k|+ |q]〈q| , (A.28)

with 〈kk〉 = 〈qq〉 = [kk] = [qq] = 0, and

p2 = 2(k · q) = 〈kq〉[qk] = m2 . (A.29)
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The spinors |k〉 and |q〉 are given by,

|k〉 = eiφk
√
E + p

(
1

0

)
, [k| = e−iφk

√
E + p

(
1 0
)
, (A.30)

|q〉 = eiφq
√
E − p

(
0

1

)
, [q| = e−iφq

√
E − p

(
0 1
)
, (A.31)

where φk and φq are arbitrary phases.

Comparing eqs. (A.25)–(A.29) and eq. (2.3) we identify,

λ̃1α̇ = |λ̃1] = |k] , λ1α = |λ1〉 = −|k〉 ,
λ2
α = |λ2〉 = |k〉 , λ̃α̇2 = |λ̃2] = |k] ,

λ1
α = |λ1〉 = |q〉 , λ̃α̇1 = |λ̃1] = |q] ,

λ̃2α̇ = |λ̃2] = −|q] , λ2α = |λ2〉 = |q〉 ,

(A.32)

and
〈kq〉 = m, [qk] = m,

p|k] = m|q〉 , p|q] = −m|k〉 ,
p̄|k〉 = −m|q] , p̄|q〉 = m|k] .

(A.33)

Note that, choosing ~k parallel to ~p, the |pI〉 and |pI ] spinors reduce to massless spinors

of definite helicity, with I = 1 (I = 2) corresponding to positive (negative) helicities. Other

choices are naturally possible, and give different spin quantization axes.12

A.2 Massive particles of non-zero spin: bold notation

Obviously, the doublet of massless spinors can be used to span the polarizations of massive

fermions. Its utility is more general however, since any higher spin can be obtained from

symmetric combinations of spin-1/2 representations.

Reference [21] introduced bold notation to implicitly indicate symmetric combinations

of the SU(2) little-group indices of massive spinors. To keep track of massive momenta, we

will also bold massive fermion (or scalar) spinors and momenta, although a symmetrization

is only relevant for particles of spin one or higher. We find it convenient to use the standard

Clebsch-Gordan 1/
√

2 to define the symmetric combination of the two doublets,

〈31〉〈32〉 ≡

〈3
I1〉〈3I2〉 (I = J) ,

1√
2

(
〈3I1〉〈3J2〉+ 〈3J1〉〈3I2〉

)
(I 6= J) .

(A.34)

With this definition, simple prescriptions are obtained for amplitudesMIJ and polarization

vectors εIJ of definite helicities: X+ = X11, X− = X22 and X0 = X12 = X21.13

12For general expressions for the k, q spinors see ref. [8].
13Instead, with e.g. 〈31〉〈32〉 ≡ (〈3I1〉〈3J2〉 + 〈3J1〉〈3I2〉)/2, one would have to define longitudinal am-

plitudes and polarizations vectors as X0 =
√

2X12 =
√

2X21 to satisfy notably eq. (A.37) and (A.38).
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A.3 Massive polarization vectors

The polarization vector of a massive vector boson of momentum p and mass m is [30]:

εIJµ =
〈p|σµ|p]√

2m
, or equivalently, εIJαα̇ =

√
2
|p〉[p|
m

, (A.35)

which corresponds to two transverse (+, −) and one longitudinal (0) modes:

ε+
µ ≡ ε11

µ =
〈p1|σµ|p1]√

2m
,

ε−µ ≡ ε22
µ =

〈p2|σµ|p2]√
2m

,

ε0
µ ≡ ε12

µ = ε21
µ =

〈p1|σµ|p2] + 〈p2|σµ|p1]

2m
.

(A.36)

These massive polarization vectors satisfy the ordinary normalization for the vector boson,

εiµ(εµj )∗ = −δij , for i, j = +,−, 0 (A.37)

The polarization sum gives ∑
i=+,−,0

εiµ(εiν)∗ = −
(
gµν −

pµpν
m2

)
, (A.38)

which also corresponds to the numerator of the massive vector propagator in the unitary

gauge.

In the massless limit, the massive polarization vector matches the massless polarization

vectors; for I = J = 1,

ε11
αα̇ =

√
2
|p1〉[p1|
m3

=
√

2
|q〉[k|
〈kq〉

m→0−−−→
√

2
|ζ〉[p|
〈pζ〉

≡ ε+
αα̇ . (A.39)

where the k and q spinor notation is given in section A.1. For I = J = 2,

ε22
αα̇ =

√
2
|p2〉[p2|
m

= −
√

2
|k〉[q|
[qk]

m→0−−−→
√

2
|p〉[ζ|
[pζ]

≡ ε−αα̇ , (A.40)

where |ζ], |ζ〉, are reference spinors. Note that the definition of ε+
αα̇ has a relative sign

difference with respect to that of ref. [8].

A.4 Useful identities

If |i〉, |j〉 are independent spinors, any third spinor |k〉 can be written as,

|k〉 = a|i〉+ b|j〉, (A.41)

where a, b are complex coefficients. The coefficients a and b are determined by multiplying,

for instance by 〈i|. Then,

|i〉〈jk〉+ |j〉〈ki〉+ |k〉〈ij〉 = 0 , (A.42)

|i][jk] + |j][ki] + |k][ij] = 0 . (A.43)
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These relations are fundamentally equivalent to

εαβεγδ − εαγεβδ + εαδεβγ = 0 , (A.44)

εα̇β̇εγ̇δ̇ − εα̇γ̇εβ̇δ̇ + εα̇δ̇εβ̇γ̇ = 0 , (A.45)

which are satisfied since a fully antisymmetric tensor with four indices taking only two

different values must vanish. These different identities are known as the Schouten identi-

ties.14

Two spinor relations. The Schouten identity in eq. (A.44) gives the following relation

between two massive spinors of any spin,

0 =
(
εαβεγδ − εαγεβδ + εαδεβγ

)
λI1,γλ

J
2,δ

= −εαβ(λI1λ
J
2 )− λI,α1 λJ,β2 + λI,β1 λJ,α2 , (A.46)

which corresponds to

〈1I2J〉δβα = |2J〉α〈1
I |β − |1I〉α〈2

J |β . (A.47)

When |1〉 and |2〉 are massless non-collinear spinors, we obtain

δβα =
|2〉α〈1|

β − |1〉α〈2|
β

〈12〉
. (A.48)

Application for two-massive one-massless amplitudes. Let us consider the special

case of an amplitude involving three particles of arbitrary spins: two massive (m1,m2 6= 0)

and one massless (m3 = 0). Substituting |i〉 = |1I〉, |j〉 = |2J〉, and |k〉 = |3〉 into eq. (A.42),

one obtains

|3〉〈1I2J〉 = −|1I〉〈2J3〉 − |2J〉〈31I〉 . (A.49)

Multiplying by [ζ|p̄1 for some arbitrary spinor [ζ|, one obtains

[ζ13〉〈1I2J〉 = m1[ζ1I ]〈32J〉+m2[ζ2J ]〈31I〉+ [ζ3]〈31I〉〈32J〉 , (A.50)

similarly,

〈ζ13][1I2J ] = m1〈ζ1I〉[32J ] +m2〈ζ2J〉[31I ] + 〈ζ3〉[31I ][32J ] . (A.51)

The Schouten identities also lead to

〈ζ13]〈1I2J〉 = m1〈ζ2J〉[31I ] +m2〈ζ1I〉[32J ] , (A.52)

[ζ13〉[1I2J ] = m1[ζ2J ]〈31I〉+m2[ζ1I ]〈32J〉 . (A.53)

In the m1 = m2 limit, the above four equations imply:

〈ζ13]

〈ζ3〉
(
[1I2J ]− 〈1I2J〉

)
= [31I ][32J ] , (A.54)

[ζ13〉
[ζ3]

(
[1I2J ]− 〈1I2J〉

)
= −〈31I〉〈32J〉 . (A.55)

14We also have εIJεKL − εIKεJL + εILεJK = 0 . Note that εIJ = εαβ in our notation.
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We can obtain similar identities starting from,

m1〈1I3〉[3| = −[1I |13 = [1I |31− 2 (p1 · p3) [1I |
= [1I3]〈3|1 + (m2

1 −m2
2)[1I | . (A.56)

This gives,
[ζ13〉
[ζ3]

[1I3] = −m1〈1I3〉+ (m2
1 −m2

2)
[ζ1I ]

[ζ3]
, (A.57)

and, similarly,
[ζ13〉
[ζ3]

[2J3] = m2〈2J3〉+ (m2
1 −m2

2)
[ζ2J ]

[ζ3]
. (A.58)

These two identities lead to

[ζ13〉
[ζ3]

[1I3][2J3] =
1

2

{
−m1〈1I3〉[2J3] +m2〈2J3〉[1I3]

+ (m2
1 −m2

2)

[
[ζ1I ][2J3]

[ζ3]
+

[ζ2J ][1I3]

[ζ3]

]}
=
m2

1 +m2
2

2
[1I2J ]−m1m2〈1I2J〉

+
m2

1 −m2
2

2

[
[ζ1I ][2J3]

[ζ3]
+

[ζ2J ][1I3]

[ζ3]

]
. (A.59)

In the m1 = m2 limit, we find

[ζ13〉
[ζ3]

[1I3][2J3] = m2
(
[1I2J ]− 〈1I2J〉

)
, (A.60)

and similarly,
〈ζ13]

〈ζ3〉
〈1I3〉〈2J3〉 = −m2

(
[1I2J ]− 〈1I2J〉

)
. (A.61)

A.5 Massive gluing with non-zero spin

When gluing two amplitudes to obtain higher-point amplitudes, one (or more) external

leg has to be treated as outgoing. The spinors associated with this outgoing leg must be

contracted with the spinors associated with the incoming leg on the “other side”. Here

we clarify our conventions for the polarization associated with the external outgoing leg

and the resulting contractions. To derive these, we consider the product of two amplitudes

with a vector propagator, and require that the correct propagator is reproduced. For a

propagating vector of mass m, we have:

− 1

p2 −m2

 ∑
I,J,Ĩ,J̃=1,2

MIJ
1 (p) +MJI

1 (p)

2
εIĨ εJJ̃

MĨ J̃
2 (p̃) +MJ̃ Ĩ

2 (p̃)

2


p2=m2

. (A.62)

There are no J, J̃ indices for a propagating massive fermion, and no indices at all for a

propagating scalar. The overall minus sign corresponds to the two factors of i that appear

in each of the vertices in a Feynman-rule computation. In the second amplitude M2,
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the propagating momentum p is flipped from incoming to outgoing. (Our convention is

that all momenta are otherwise incoming.) We denote this outgoing momentum as p̃ and

the corresponding spinors as 〈p̃| and [p̃|. Special contraction rules apply for such flipped-

momenta spinors:
|pI ]〈p̃I | = +p̄ ,

|pI〉[p̃I | = +p ,

|pI〉〈p̃I | = +m,

|pI ][p̃I | = +m,
(A.63)

where the summation over I is implicit. A plus sign appears in the right-hand side of all

these sum rules, in contrast the usual (see eq. (A.9) and (A.15)):

|pI ]〈pI | = −p̄ ,
|pI〉[pI | = +p ,

|pI〉〈pI | = −m,

|pI ][pI | = +m.
(A.64)

For a propagating vector, flipping the momentum in one amplitude or the other (exchanging

1 and 2 labels above) yields the same final result. For fermion propagators (in fermion-

number conserving interactions), the fermion flow has to be followed. The flipped momen-

tum should be taken at the vertex with outgoing propagating fermion flow.

If all IJ indices are carried by polarization vectors, the prescription above consistently

reproduces the unitary gauge propagator:

1

p2 −m2

 ∑
I,J,Ĩ,J̃=1,2

εIJµ (p) + εJIµ (p)

2
εIĨ εJJ̃

εĨ J̃ν (p̃) + εJ̃ Ĩν (p̃)

2


p2=m2

= −
gµν −

pµpν
m2

p2 −m2
.

(A.65)

For a propagating fermion, one also obtains the desired expression:

1

p2 −m2

 ∑
I,Ĩ=1,2

(
|pI〉
|pI ]

)
εIĨ

(
〈p̃Ĩ | [p̃Ĩ |

) 
p2=m2

=
1

p2 −m2

(
m p

p̄ m

)
=

1

/p−m
. (A.66)

A.6 Spin magnetic dipole moment (g-factor)

To demonstrate the application of the massive spinor techniques, we give a detailed deriva-

tion of the fermion g-factor. Our derivation closely follows ref. [30], although we differ

by factors of two along the way. In the process, we also derive the Gordon identity using

the massive spinor formalism. We start from the amplitudes of eq. (3.6), whose terms are

separately well-behaved in the high-energy limit. The first and third (and also the second

and fourth) identities in eq. (3.5) give the following relations:

([12] + 〈12〉)〈ζ13]/〈ζ3〉 = 2m(〈ζ1〉[32] + 〈ζ2〉[31])/〈ζ3〉+ [13][23] ,

([12] + 〈12〉)[ζ13〉/[ζ3] = 2m([ζ1]〈32〉+ [ζ2]〈31〉)/[ζ3] + 〈13〉〈23〉 ,
(A.67)

or equivalently,

〈1ε+
3 2] + 〈2ε+

3 1] =
1√
2m

〈ζ13]

〈ζ3〉
([12] + 〈12〉)− 1√

2m
[13][23] ,

〈1ε−3 2] + 〈2ε−3 1] =
1√
2m

[ζ13〉
[ζ3]

([12] + 〈12〉)− 1√
2m
〈13〉〈23〉 .

(A.68)
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We can therefore also re-express eq. (3.6) as:

M(1ψc ,2ψ, 3
+
γ ) =

cψcψγ√
2mψ

〈ζ13]

〈ζ3〉
([12] + 〈12〉)−

cψcψγ√
2mψ

[13][23] +
cRRRψcψγ

Λ̄
[13][23] ,

M(1ψc ,2ψ, 3
−
γ ) =

cψcψγ√
2mψ

[ζ13〉
[ζ3]

([12] + 〈12〉)−
cψcψγ√

2mψ

〈13〉〈23〉+
cLLLψcψγ

Λ̄
〈13〉〈23〉 .

(A.69)

Note that in the high-energy limit, two 1/mψ singularities are canceled between the first

and second terms, so that one still obtains good high-energy behavior. The relations in

eq. (A.68) actually correspond to the Gordon identity [65]:15

v̄1γ
µu2 =

1

2m
v̄1(−p1 + p2)µu2 −

i

2m
v̄1σ

µν(p1 + p2)νu2 , (A.71)

where p1 and p2 are incoming momenta for 1ψc and 2ψ, respectively, and σµν ≡ i[γµ, γν ]/2.

Multiplying eq. (A.71) by ε+
3 or ε−3 and using three-point kinematics p1 + p2 = −p3, one

immediately finds that the first and second terms of the right-hand side coincide with that

of eq. (A.68). In the non-relativistic limit, the first term corresponds to an interaction

independent of 1,2 spins because all the coefficients of [1I2J ] and 〈1I2J〉 with any I, J are

the same, and the coefficient 〈ζ13]/〈ζ3〉 (or [ζ13〉/[ζ3]) corresponds to the spinor structure

of a φ+φ−γ amplitude (see section 3.7), namely the scalar QED interaction. On the other

hand, the second term is a spin-dependent magnetic dipole moment [4]. This can be seen

by noting that the second term of eq. (A.68) vanishes when the [1| and |2] spinors (or 〈1|
and |2〉 ones) are factored out and the resulting tensor contracted with εα̇β̇ (or εαβ) to

obtain the amplitude for a scalar from that of a fermion.

Using the relations (see derivation in eq. (B.24)),

[13][23] = − i√
2
v̄1σ

µνu2 ε
+
3,µp3,ν , 〈13〉〈23〉 = − i√

2
v̄1σ

µνu2 ε
−
3,µp3,ν , (A.72)

the second terms of eq. (A.69) become

cψcψγ
2mψ

i v̄1σ
µνu2 ε

+
3,µp3,ν ,

cψcψγ
2mψ

i v̄1σ
µνu2 ε

−
3,µp3,ν . (A.73)

Furthermore, matching onto the U(1)EM gauge theory, with the Dµψ = (∂µ + iQψeAµ)ψ

sign convention for the covariant derivative, provides cψcψγ = −Qψe (see eq. (B.21)).

Eventually, we obtain

−
Qψe

2mψ
i v̄1σ

µνu2 ε
±
3,µp3,ν , (A.74)

15One can easily check the Gordon identity itself in the massive spinor formalism:

〈1σµ2] + 〈2σµ1] =
1

2m
(−p1 + p2)µ ([12] + 〈12〉)

+
1

4m
(〈1 {σµ(1̄ + 2̄)− (1 + 2)σ̄µ}2〉+ [1 {σ̄µ(1 + 2)− (1̄ + 2̄)σµ}2]) . (A.70)
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which corresponds to the factor g = 2.16

B Tree-level matching to the broken-phase SMEFT

In this section, we match the coefficients of the massive three-point amplitudes of sec-

tion 3, and the four-point amplitude ψcψZh of section 4, onto the SMEFT in the broken

electroweak phase [48]. The Lagrangian of ref. [48], which includes operators of dimension

≤ 6, is based on the Warsaw basis [12]. All fields are canonically normalized (see also

refs. [67, 68]). The matching relations we provide extend the work of ref. [27] to include

fermionic three-point amplitudes, as well as the ψcψZh amplitude. Since our toy model

has a single generation, the CKM matrix is set to the unit matrix.

Working up to dimension-six, the SMEFT Lagrangian in the symmetric electroweak

phase is given by

LSMEFT = LSM +
∑
i

Ci
Λ2
Oi . (B.1)

In the broken electroweak phase, the covariant derivative becomes

Dµ = ∂µ + iḡ′B̄µY + iḡW̄ I
µT

I + iḡsḠ
A
µT

A , (B.2)

where

ḡ′ = Z−1
g′ g

′ , ḡ = Z−1
g g , ḡs = Z−1

gs gs , (B.3)

and

Zg′ = 1− v2

Λ2
CϕB , Zg = 1− v2

Λ2
CϕW , Zgs = 1− v2

Λ2
CϕG , (B.4)

16To see this, note that the magnetic field four-vector and spin operator are given by,

Bhµ = − 1

2m
εµνρσp

ν
2F

h,ρσ , with Fh,ρσ = −i(pρ3ε
h,σ
3 − pσ3 εh,ρ3 ) , (A.75)

Sµ =
1

2m
εµνρσp

ν
2J

ρσ , with Jρσ =
i

4
[γρ, γσ] , (A.76)

where h is the photon helicity (for ε0123 = +1 = −ε0123). One then for instance obtains:

S ·B+ =
1

2
√

2m2

(
2|3][3|2̄ 0

0 (m2)|3][3|

)
, (A.77)

and

v̄1S ·B+u2 = − 1√
2

[13][23] , v̄1S ·B−u2 = − 1√
2
〈13〉〈23〉 . (A.78)

The second terms of eq. (A.69) amplitudes are then,

+ cψcψγ v̄1S ·Bhu2/mψ . (A.79)

In the rest frame of ψ2 where p2 = (m, 0, 0, 0), S · Bh = −~S · ~Bh holds. Using cψcψγ = −Qψe, we obtain

the Hamiltonian

H = −Qψe~S · ~Bh/mψ . (A.80)

On the other hand, the spin magnetic dipole moment (and g-factor) is defined by

H = −~µψ · ~B , with ~µψ = g
Qψe

2mψ

~S , (A.81)

where the covariant derivative is Dµψ = (∂µ + iQψeAµ)ψ [66]. Compared to eq. (A.80), we obtain g = 2.

– 39 –



J
H
E
P
0
1
(
2
0
2
0
)
1
1
9

with v ' 246 GeV. ḠAµ is the canonically normalized gluon field, and the canonically

normalized W±µ bosons are

W±µ =
1√
2

(
W̄ 1
µ ∓ iW̄ 2

µ

)
, with mass mW =

1

2
ḡv . (B.5)

The canonically normalized Zµ and Aµ are a linear combination of B̄µ and W̄ 3
µ [48]. The

Z-boson mass is

mZ =
1

2

√
ḡ2 + ḡ′2v +

1

2

v3

Λ2

ḡḡ′√
ḡ2 + ḡ′2

CϕWB +
1

8

v3

Λ2

√
ḡ2 + ḡ′2CϕD . (B.6)

Finally, the canonically normalized Higgs field has mass:

m2
h = λv2 − (3Cϕ − 2λCϕ� + λCϕD/2)

v4

Λ2
. (B.7)

In order to fix ḡ, ḡ′, λ, and v from measurements, one has to choose an input scheme.

In an on-shell amplitude context, it would be appropriate to use pole masses as input pa-

rameters, necessarily complemented by an additional measurement like that of GF or αEM.

In order to treat fermion couplings generally, we define Iψ = ±1/2 for up-type quarks

or neutrinos, and down-type quarks or charged leptons, respectively. We also take Yu,d,e,ν =

1/6, 1/6,−1/2,−1/2. Qψ is their electric charge in units of e.

B.1 ψcψZ

The general form of the massive ψcψZ amplitude is

M(1ψc ,2ψ,3Z) =
cLR0
ψcψZ

mZ
〈13〉[23] +

cRL0
ψcψZ

mZ
[13]〈23〉+

cRRRψcψZ

Λ̄
[13][23] +

cLLLψcψZ

Λ̄
〈13〉〈23〉 .

(B.8)

Matching to the broken-phase SMEFT [48], we find

cLR0
ψcψZ = −

√
2Qψ

ḡ′2√
ḡ2 + ḡ′2

+
v2

Λ2

[
−
√

2
ḡ3ḡ′

(ḡ2 + ḡ′2)3/2
QψCϕWB −

1√
2

√
ḡ2 + ḡ′2CϕψR

]
, (B.9)

cRL0
ψcψZ =

√
2Iψ

ḡ2√
ḡ2 + ḡ′2

−
√

2Yψ
ḡ′2√
ḡ2 + ḡ′2

+
v2

Λ2

[
√

2
ḡḡ′

(ḡ2 + ḡ′2)3/2

(
−Yψ ḡ2 + Iψ ḡ

′2)CϕWB

− 1√
2

√
ḡ2 + ḡ′2

(
C1
ϕψL
− 2IψC

3
ϕψL

) ]
, (B.10)

cRRRψcψZ

Λ̄
=

v

Λ2

(
−4Iψ

ḡ√
ḡ2 + ḡ′2

CψW + 2
ḡ′√

ḡ2 + ḡ′2
CψB

)
, (B.11)

cLLLψcψZ =
(
cRRRψcψZ

)∗
. (B.12)
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Here, we used

ψ̄1γ
µPRψ2ε3,µ = v̄1γ

µPRu2ε3,µ = 〈1ε32] = −
√

2

m3
〈13〉[23] , (B.13)

ψ̄1γ
µPLψ2ε3,µ = −

√
2

m3
[13]〈23〉 , (B.14)

and

ψ̄1σ
µνPRψ2ε3,µp3,ν =

i

2
v̄1[γµ, γν ]PRu2ε3,µp3,ν =

i

2
[1 (σ̄µ3− 3̄σµ)2]ε3,µ

= − i
2

([13̄ε32] + [23̄ε31]) = − i
2

√
2

m3
([13̄3〉[32] + [23̄3〉[31])

=
√

2i[13][23] , (B.15)

ψ̄1σ
µνPLψ2ε3,µp3,ν =

√
2i〈13〉〈23〉 . (B.16)

B.2 ψcψγ

General form:

M(1ψc ,2ψ, 3
+
γ ) = cψcψγ(〈1ε+

3 2] + 〈2ε+
3 1]) +

cRRRψcψγ

Λ̄
[13][23] , (B.17)

M(1ψc ,2ψ, 3
−
γ ) = cψcψγ(〈1ε−3 2] + 〈2ε−3 1]) +

cLLLψcψγ

Λ̄
〈13〉〈23〉 , (B.18)

or equivalently (see the last two equalities of eq. (3.5)),

M(1ψc ,2ψ, 3
+) = cψcψγ

√
2

mψ

〈ζ13]

〈ζ3〉
〈12〉+

cRRRψcψγ

Λ̄
[13][23] , (B.19)

M(1ψc ,2ψ, 3
−) = cψcψγ

√
2

mψ

[ζ13〉
[ζ3]

[12] +
cLLLψcψγ

Λ̄
〈13〉〈23〉 . (B.20)

We obtain

cψcψγ = −Qψ

[
ḡḡ′√
ḡ2 + ḡ′2

− v2

Λ2

ḡ2ḡ′2

(ḡ2 + ḡ′2)3/2
CϕWB

]
, (B.21)

cRRRψcψγ

Λ̄
=

v

Λ2

(
−2

ḡ√
ḡ2 + ḡ′2

CψB − 4Iψ
ḡ′√

ḡ2 + ḡ′2
CψW

)
, (B.22)

cLLLψcψγ =
(
cRRRψcψγ

)∗
, (B.23)

where we used

ψ̄1σ
µνPRψ2ε

+
3,µp3,ν =

i

2
v̄1[γµ, γν ]PRu2ε

+
3,µp3,ν = − i

2

(
[13̄ε+

3 2] + [23̄ε+
3 1]
)

= − i
2

(
[13]〈3ε+

3 2] + [23]〈3ε+
3 1]
)

=
√

2i[13][23] , (B.24)

and similarly,

ψ̄1σ
µνPLψ2ε

−
3,µp3,ν =

√
2i〈13〉〈23〉 , (B.25)

ψ̄1σ
µνPRψ2ε

−
3,µp3,ν = ψ̄1σ

µνPLψ2ε
+
3,µp3,ν = 0 . (B.26)
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B.3 ψcψ′W

General form:

M(1ψc ,2ψ′ ,3W ) =
cLR0
ψcψ′W

mW
〈13〉[23]+

cRL0
ψcψ′W

mW
[13]〈23〉+

cRRRψcψ′W

Λ̄
[13][23]+

cLLLψcψ′W

Λ̄
〈13〉〈23〉 .

(B.27)

We obtain (incoming W−)

cLR0
ψcψ′W =

ḡ

2

v2

Λ2
C∗ϕud , (B.28)

cRL0
ψcψ′W = ḡ

(
1 +

v2

Λ2
C3
ϕψL

)
, (B.29)

cRRRψcψ′W

Λ̄
= −2

√
2
v

Λ2
Cψ′W , (B.30)

cLLLψcψ′W

Λ̄
= −2

√
2
v

Λ2
C∗ψW , (B.31)

where Cϕud is absent for the lepton case because there is no right-handed neutrino in the

SMEFT.

B.4 ψcψh

General form:

M(1ψc ,2ψ,3h) = cRRψcψh[12] + cLLψcψh〈12〉 . (B.32)

In addition, when h is a neutral scalar, the Hermitian condition for the effective Lagrangian

gives

cLLψcψh =
(
cRRψcψh

)∗
. (B.33)

We obtain

1

2
(cRRψcψh+cLLψcψh) = RecRRψcψh =−

mψ

v
+

v

Λ2

(
−mψCϕ�+

1

4
mψCϕD+

v√
2

ReCψϕ

)
, (B.34)

1

2
(cRRψcψh−cLLψcψh) = iImcRRψcψh = i

1√
2

v2

Λ2
ImCψϕ , (B.35)

where mψ is the fermion mass and it can be written by the Lagrangian parameters as

mψ

v
=

1√
2

(
yψ −

1

2

v2

Λ2
Cψϕ

)
, for ψ = e, u, d. (B.36)

B.5 ZZh

General form:

M(1Z ,2Z ,3h) =
c00
ZZh

mZ
[12]〈12〉+

cRRZZh
Λ̄

[12]2 +
cLLZZh

Λ̄
〈12〉2 . (B.37)
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We obtain

c00
ZZh = −

√
ḡ2 + ḡ′2

[
1 +

v2

Λ2

(
Cϕ� +

1

2
CϕD +

ḡḡ′

ḡ2 + ḡ′2
CϕWB

)]
, (B.38)

cRRZZh
Λ̄

= − 2

ḡ2 + ḡ′2
v

Λ2

[
ḡ2
(
CϕW + iCϕW̃

)
+ ḡ′2

(
CϕB + iCϕB̃

)
+ ḡḡ′

(
CϕWB + iCϕW̃B

) ]
, (B.39)

cLLZZh =
(
cRRZZh

)∗
. (B.40)

Above we used,

(pν1p
µ
2 − (p1 · p2) ηµν) ε1,µε2,ν = −1

2

(
[12]2 + 〈12〉2

)
, (B.41)

pρ1p
σ
2εµνρσε

µ
1ε

ν
2 = − i

2

(
[12]2 − 〈12〉2

)
, (B.42)

which follow from the Schouten identity and,17

εµνρσσ
[µ
αα̇σ

ν]

ββ̇
= −i

(
σ[ρσ̄σ]

) γ
α
εγβεα̇β̇ + i

(
σ̄[ρσσ]

)γ̇
β̇
εαβεα̇γ̇ . (B.43)

Note that in the Warsaw basis, the dual tensors are defined by X̃µν = 1
2εµνρσX

ρσ with

ε0123 = +1 [12], so that the coefficients CϕB̃, CϕW̃ , and CϕW̃B are purely real.

B.6 WWh

General form:

M(1W ,2W ,3h) =
c00
WWh

mW
[12]〈12〉+

cRRWWh

Λ̄
[12]2 +

cLLWWh

Λ̄
〈12〉2 . (B.44)

We obtain

c00
WWh = −ḡ

[
1 +

v2

Λ2

(
Cϕ� −

1

4
CϕD

)]
, (B.45)

cRRWWh

Λ̄
= −2

v

Λ2

(
CϕW + iCϕW̃

)
, (B.46)

cLLWWh =
(
cRRWWh

)∗
. (B.47)

B.7 γγh

General form:

M(1+
γ , 2

+
γ ,3h) =

cRRγγ
Λ̄

[12]2 , and M(1−γ , 2
−
γ ,3h) =

cLLγγ
Λ̄
〈12〉2 . (B.48)

We obtain

cRRγγ
Λ̄

= − 2

ḡ2 + ḡ′2
v

Λ2

[
ḡ′2
(
CϕW + iCϕW̃

)
+ ḡ2

(
CϕB + iCϕB̃

)
− ḡḡ′

(
CϕWB + iCϕW̃B

) ]
, (B.49)

cLLγγ =
(
cRRγγ

)∗
. (B.50)

17An alternative form is 4iεµνρσ = Tr[σ̄µσν σ̄ρσσ]− Tr[σµσ̄νσρσ̄σ] .
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B.8 γZh

General form:

M(1+
γ ,2Z ,3h) =

cRRγZ
Λ̄

[12]2 , and M(1−γ ,2Z ,3h) =
cLLγZ
Λ̄
〈12〉2 . (B.51)

We obtain

cRRγZ
Λ̄

= − 1

ḡ2 + ḡ′2
v

Λ2

[
2ḡḡ′

(
CϕW + iCϕW̃

)
− 2ḡḡ′

(
CϕB + iCϕB̃

)
+
(
ḡ′2 − ḡ2

) (
CϕWB + iCϕW̃B

) ]
, (B.52)

cLLγZ =
(
cRRγZ

)∗
. (B.53)

B.9 hhh

General form:

M(1h,2h,3h) = mhchhh . (B.54)

We obtain

mhchhh = −3v

[
λ+

v2

Λ2

(
−5Cϕ + 5λCϕ� −

5

4
λCϕD

)]
. (B.55)

B.10 WWZ

General form:

M(1W ,2W ,3Z) = 2
cWWZ

mZmW

(
mZ

mW
〈12〉[13][23] + [12]〈13〉[23] + [12][13]〈23〉

)
+
c

[L0]0
WWZ

mZΛ̄
〈12〉 (〈13〉[23]− [13]〈23〉) +

c
{L0}0
WWZ

mZΛ̄
〈12〉 (〈13〉[23] + [13]〈23〉)

+
c

[R0]0
WWZ

mZΛ̄
[12] (〈13〉[23]− [13]〈23〉) +

c
{R0}0
WWZ

mZΛ̄
[12] (〈13〉[23] + [13]〈23〉)

+
cRRRWWZ

Λ̄2
[12][13][23] +

cLLLWWZ

Λ̄2
〈12〉〈13〉〈23〉 . (B.56)

We obtain (with incoming W+ (1W ) and incoming W− (2W )),

2cWWZ = −
√

2
ḡ2√

ḡ2 + ḡ′2
+
√

2
ḡ3ḡ′

(ḡ2 + ḡ′2)3/2

v2

Λ2
CϕWB , (B.57)

c
[L0]0
WWZ = c

[R0]0
WWZ = 0 , (B.58)

c
{R0}0
WWZ

mZΛ̄
= − 1√

2mWmZ

ḡḡ′√
ḡ2 + ḡ′2

v2

Λ2

(
CϕWB + iCϕW̃B

)
, (B.59)

c
{L0}0
WWZ =

(
c
{R0}0
WWZ

)∗
, (B.60)

cRRRWWZ

Λ̄2
= −3

√
2

ḡ√
ḡ2 + ḡ′2

1

Λ2
(CW + iCW̃ ) , (B.61)

cLLLWWZ =
(
cRRRWWZ

)∗
. (B.62)
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Note that the renormalizable term in eq. (B.57) has the opposite sign from ref. [27].

In order to obtain these relations, we used the following identities:

[ηµν(p1 − p2)ρ + ηνρ(p2 − p3)µ + ηρµ(p3 − p1)ν ] εµ1ε
ν
2ε

ρ
3

= −
√

2

m1m2m3
(m1[12][13]〈23〉+m2[12]〈13〉[23] +m3〈12〉[13][23])

= −
√

2

m1m2m3
(m1〈12〉〈13〉[23] +m2〈12〉[13]〈23〉+m3[12]〈13〉〈23〉) ,

= − 1√
2m1m2m3

(
m1〈12〉〈13〉[23] +m2〈12〉[13]〈23〉+m3[12]〈13〉〈23〉

+m1[12][13]〈23〉+m2[12]〈13〉[23] +m3〈12〉[13][23]
)
, (B.63)

(p3,µηνρ − p3,νηµρ) εµ1ε
ν
2ε

ρ
3 =

1√
2m1m2

([12]〈13〉〈23〉+ 〈12〉[13][23]) , (B.64)

εµνρσp
σ
3ε

µ
1ε

ν
2ε

ρ
3 =

i√
2m1m2

([12]〈13〉〈23〉 − 〈12〉[13][23]) . (B.65)

{
p3,µp1,νp2,ρ − p2,µp3,νp1,ρ + ηµν [p1,ρ(p2 · p3)− p2,ρ(p1 · p3)]

+ ηνρ[p2,µ(p1 · p3)− p3,µ(p1 · p2)] + ηρµ[p3,ν(p1 · p2)− p1,ν(p2 · p3)]
}
εµ1ε

ν
2ε

ρ
3

=
1√
2

([12][13][23] + 〈12〉〈13〉〈23〉) . (B.66){
εµνρσ [pσ1(p2 · p3) + pσ2(p1 · p3) + pσ3(p1 · p2)] + εµνσδ(p1 − p2)ρp

σ
1p

δ
2

+ ενρσδ(p2 − p3)µp
σ
2p

δ
3 + ερµσδ(p3 − p1)νp

σ
3p

δ
1

}
εµ1ε

ν
2ε

ρ
3

=
3i√

2
([12][13][23]− 〈12〉〈13〉〈23〉) . (B.67)

B.11 WWγ

General form:

M(1W ,2W , 3
+
γ ) =

cWWγ

mW
〈12〉

(
〈1ε+

3 2] + 〈2ε+
3 1]
)

+
c00R
WWγ

mW Λ̄
〈12〉[13][23]

+
cRRRWWγ

Λ̄2
[12][13][23] ,

M(1W ,2W , 3
−
γ ) =

cWWγ

mW
[12]

(
〈1ε−3 2] + 〈2ε−3 1]

)
+
c00L
WWγ

mW Λ̄
[12]〈13〉〈23〉

+
cLLLWWγ

Λ̄2
〈12〉〈13〉〈23〉 ,

(B.68)

or equivalently (see the last two equalities of eq. (3.5)),

M(1W ,2W ,3
+
γ ) =

√
2cWWγ

m2
W

〈ζ13]

〈ζ3〉
〈12〉2 +

c00R
WWγ

mW Λ̄
〈12〉[13][23]+

cRRRWWγ

Λ̄2
[12][13][23] , (B.69)

M(1W ,2W ,3
−
γ ) =

√
2cWWγ

m2
W

[ζ13〉
[ζ3]

[12]2 +
c00L
WWγ

mW Λ̄
[12]〈13〉〈23〉+

cLLLWWγ

Λ̄2
〈12〉〈13〉〈23〉 .
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We obtain (with incoming W+ (1W ) and W− (2W )),

cWWγ =
ḡḡ′√
ḡ2 + ḡ′2

− ḡ2ḡ′2

(ḡ2 + ḡ′2)3/2

v2

Λ2
CϕWB , (B.70)

c00R
WWγ

mW Λ̄
= −

√
2

mW

ḡ√
ḡ2 + ḡ′2

v

Λ2

(
CϕWB + iCϕW̃B

)
, (B.71)

c00L
WWγ =

(
c00R
WWγ

)∗
, (B.72)

cRRRWWγ

Λ̄2
= −3

√
2

ḡ′√
ḡ2 + ḡ′2

1

Λ2

(
CW + iCW̃

)
, (B.73)

cLLLWWγ =
(
cRRRWWγ

)∗
. (B.74)

B.12 ψcψZh

General form (see eq. (4.2)):

Mnf(1ψc ,2ψ,3Z ,4h) =
cRRRψcψZh

Λ̄2
[13][23] +

[12]

Λ̄3
〈3 {cRR0A

ψcψZh(1 + 2) + cRR0S
ψcψZh(1− 2)} 3]

+
cRL0
ψcψZh

Λ̄2
[13]〈23〉+

cRLRψcψZh

Λ̄3
[312〉[13] +

cRLLψcψZh

Λ̄3
〈321]〈23〉

+
cLR0
ψcψZh

Λ̄2
〈13〉[23] +

cLRRψcψZh

Λ̄3
[321〉[23] +

cLRLψcψZh

Λ̄3
〈312]〈13〉 (B.75)

+
cLLLψcψZh

Λ̄2
〈13〉〈23〉+

〈12〉
Λ̄3
〈3 {cLL0A

ψcψZh(1 + 2) + cLL0S
ψcψZh(1− 2)} 3] .

At the level of dimension-six operators, we have,

cRL0
ψcψZh

Λ̄2
= −2

√
2

Λ2

(
C1
ϕψL
− 2IψC

3
ϕψL

)
, (B.76)

cLR0
ψcψZh

Λ̄2
= −2

√
2

Λ2
CϕψR , (B.77)

cRRRψcψZh

Λ̄2
=

2

Λ2

−2Iψ ḡCψW + ḡ′CψB√
ḡ2 + ḡ′2

, (B.78)

cLLLψcψZh =
(
cRRRψcψZh

)∗
, (B.79)

or equivalently

Mnf (1ψc ,2ψ,3Z ,4h) =
2

Λ2

−2Iψ ḡCψW + ḡ′CψB√
ḡ2 + ḡ′2

[13][23]− 2
√

2

Λ2

(
C1
ϕψL
−2IψC

3
ϕψL

)
[13]〈23〉

− 2
√

2

Λ2
CϕψR〈13〉[23]+

2

Λ2

−2Iψ ḡC
∗
ψW + ḡ′C∗ψB√
ḡ2 + ḡ′2

〈13〉〈23〉 . (B.80)

Unbolding 1 and 2 corresponds to the massless fermion amplitudes. Here, there is a non-

trivial cancellation of the vacuum expectation value in the second and third terms which

involve v/Λ2mZ . The mZ comes from the denominator of the massive polarization vector

in eq. (A.35).
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The matching onto the symmetric-phase SMEFT at dimension-six level provides [24],

Mnf
(

1+
ψc , 2

+
ψ , 3

+
Z , 4H

)
=

2
√

2

Λ2

−2IψgCψW + g′CψB√
g2 + g′2

[13][23] ,

Mnf
(

1−ψc , 2
−
ψ , 3

−
Z , 4H

)
=

2
√

2

Λ2

−2IψgC
∗
ψW + g′C∗ψB√
g2 + g′2

〈13〉〈23〉 ,

Mnf
(

1+
ψc , 2

+
ψ , 3

−
Z , 4H

)
=Mnf

(
1−ψc , 2

−
ψ , 3

+
Z , 4H

)
= 0 ,

Mnf
(

1+
ψc , 2

−
ψ , 3

±
Z , 4H

)
=Mnf

(
1−ψc , 2

+
ψ , 3

±
Z , 4H

)
= 0 ,

(B.81)

and

Mnf
(

1+
ψc , 2

−
ψ , 3H , 4Hc

)
=

1

Λ2

(
C1
ϕψL
− 2IψC

3
ϕψL

)
[1(3̄− 4̄)2〉 ,

Mnf
(

1−ψc , 2
+
ψ , 3H , 4Hc

)
=

1

Λ2
CϕψR〈1(3− 4)2] ,

Mnf
(

1+
ψc , 2

+
ψ , 3H , 4Hc

)
=Mnf

(
1−ψc , 2

−
ψ , 3H , 4Hc

)
= 0 ,

(B.82)

where H is a complex scalar field. Thus, the ψ2Xϕ (dipole) operators contribute to the

transverse modes of Z boson, while the ψ2ϕ2D operators contribute to the longitudinal

one in the high-energy limit.

B.13 The equivalence theorem

In the high-energy limit of the ψcψZ amplitude, the leading longitudinal amplitudes are

(see section 3.1)

M(1+
ψc , 2

+
ψ , 3

0
Z)→ −

mψ√
2mZ

(cLR0
ψcψZ − cRL0

ψcψZ) [12] , (B.83)

M(1−ψc , 2
−
ψ , 3

0
Z)→ +

mψ√
2mZ

(cLR0
ψcψZ − cRL0

ψcψZ) 〈12〉 . (B.84)

From the matching onto the broken-phase SMEFT in section B.1, we find

−
mψ√
2mZ

(
cLR0
ψcψZ − cRL0

ψcψZ

)
= Iψ

√
ḡ2 + ḡ′2

mψ

mZ

+
v2

Λ2

mψ

mZ

[
ḡḡ′√
ḡ2 + ḡ′2

IψCϕWB −
1

2

√
ḡ2 + ḡ′2

(
C1
ϕψL
− 2IψC

3
ϕψL
− CϕψR

)]

= 2Iψ
mψ

v
+
mψv

Λ2

(
−1

2
IψCϕD − C1

ϕψL
+ 2IψC

3
ϕψL

+ CϕψR

)
, (B.85)

where eq. (B.6) is used for mZ .

On the other hand, matching the Goldstone-boson amplitude ψcψG0, which has the

structure eq. (B.32), we obtain

cRRψcψG0 = i2I3
mψ

v
+
mψv

Λ2

(
−i1

2
I3CϕD − iC1

ϕψL
+ i2I3C

3
ϕψL

+ iCϕψR

)
, (B.86)

cLLψcψG0 = −cRRψcψG0 , (B.87)
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which correspond to the leading longitudinal ψcψZ couplings of eqs. (B.83), (B.84) includ-

ing non-renormalizable terms. This is exactly the Goldstone boson equivalence theorem

proved by using renormalizable massive vector-boson theories at the amplitude level up

to O(mZ/E) corrections and up to a factor in, where n is the number of longitudinally

polarized vector bosons [35–38].

Similarly, in the high-energy limit of the ψcψ′W amplitude, the leading amplitudes for

the longitudinal mode are (see section 3.3)

M(1+
ψc , 2

+
ψ′ , 3

0
W )→ − 1√

2mW

(mψ c
LR0
ψcψ′W −mψ′ c

RL0
ψcψ′W ) [12] , (B.88)

M(1−ψc , 2
−
ψ′ , 3

0
W )→ +

1√
2mW

(mψ′ c
LR0
ψcψ′W −mψ c

RL0
ψcψ′W ) 〈12〉 . (B.89)

The matching onto the broken-phase SMEFT in section B.3 gives

− 1√
2mW

(mψ c
LR0
ψcψ′W −mψ′ c

RL0
ψcψ′W ) =− 1√

2mW

[
mψ

ḡ

2

v2

Λ2
C∗ϕud−mψ′ ḡ

(
1+

v2

Λ2
C3
ϕψL

)]
=
√

2
mψ′

v
+

v

Λ2

(√
2mψ′C

3
ϕψL
− 1√

2
mψC

∗
ϕud

)
. (B.90)

Also, for a charged-Goldstone boson (incoming G−), from the SMEFT matching we

obtain

cRRψcψ′G− =
√

2
mψ′

v
+

v

Λ2

(√
2mψ′C

3
ϕψL
− 1√

2
mψC

∗
ϕud

)
, (B.91)

cLLψcψ′G− = −
√

2
mψ

v
+

v

Λ2

(
−
√

2mψC
3
ϕψL

+
1√
2
mψ′C

∗
ϕud

)
. (B.92)

Note that Cϕud is absent in the lepton sector. Again, the longitudinal modes are consistent

with cRRψcψ′G− and cLLψcψ′G− including dimension-six contributions, and we hence confirm the

Goldstone boson equivalence theorem.

B.14 ψcψZh unitarity relation

One can explicitly verify that the restriction of eq. (4.13) required to preserve perturbative

unitarity in the ψcψZh four-point amplitude is satisfied in SMEFT. At the renormalizable

level, it leads to (see eq. (B.34) and (B.38))

cRRψcψh = cLLψcψh = −
mψ

v
, and c00

ZZh = −
√
ḡ2 + ḡ′2 , (B.93)

so that, including also dimension-six contributions,

c00
ZZh

mψ

2mZ
− cRR(LL)

ψcψh = 0− v

Λ2

(
mψ

2
CϕD +

v√
2
C

(∗)
ψϕ

)
. (B.94)

C Massless amplitudes

For completeness, we collect in this section the massless three-point amplitudes. These are

fully determined by little-group covariance. Recall that three-point amplitudes can only

be written in terms of complex momenta, and involve either square or angle brackets (see

e.g., ref. [6]). Furthermore, they should vanish when all momenta tend to zero together

(and become real).
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C.1 Two fermions and a boson

FF ′S.

M(1+
F , 2

+
F ′ , 3S) = [12] c++

FF ′S ,

M(1−F , 2
−
F ′ , 3S) = 〈12〉 c−−FF ′S ,

M(1+
F , 2

−
F ′ , 3S) = 0 ,

M(1−F , 2
+
F ′ , 3S) = 0 .

(C.1)

FF ′V .

M(1−F , 2
+
F ′ , 3

−
V ) = −〈13〉2/〈12〉 c−+

FF ′V ,

M(1−F , 2
+
F ′ , 3

+
V ) = +[23]2/[12] c−+

FF ′V ,

M(1+
F , 2

−
F ′ , 3

−
V ) = +〈23〉2/〈12〉 c+−

FF ′V ,

M(1+
F , 2

−
F ′ , 3

+
V ) = −[13]2/[12] c+−

FF ′V ,

M(1+
F , 2

+
F ′ , 3

+
V ) = [13][23] c+++

FF ′V /Λ̃ ,

M(1−F , 2
−
F ′ , 3

−
V ) = 〈13〉〈23〉 c−−−FF ′V /Λ̃ ,

M(1+
F , 2

+
F ′ , 3

−
V ) = 0 ,

M(1−F , 2
+
F ′ , 3

+
V ) = 0 .

(C.2)

The coefficients of the (+−+) and (+−−) (or (−++) and (−+−)) amplitudes are identical

since the two helicities of the massless vector are part of the same irreducible representation

of the Lorentz group. The relative sign between them is fixed by re-expressing the ampli-

tudes in terms of polarization vectors. The 〈1ε±3 2] structures should for instance have iden-

tical coefficients. The [12]2/[13][23] spinorial structure that one could have written down

for the (++−) amplitude is forbidden as it does not vanish as all momenta tend to zero.

The same reasoning applies also to the 〈12〉2/〈12〉〈23〉 structure and the (−−+) amplitude.

C.2 Three bosons

SS′S′′.

M(1S , 2S′ , 3S′′) = Λ̃ cSS′S′′ , (C.3)

This amplitude only arises when the theory possesses a scale Λ̃.

SS′V .

M(1S , 2S′ , 3
+
V ) = [13][23]/[12] cSS′V ,

M(1S , 2S′ , 3
−
V ) = 〈13〉〈23〉/〈12〉 cSS′V ,

(C.4)

These amplitudes are antisymmetric under 1 ↔ 2 exchange and therefore vanish if S and

S′ are identical scalars. Again, we have imposed that the two amplitudes, expressed in

terms of polarization vectors (as (p1−p2) · ε±3 ) arise with the same coefficient since the two

vector helicities are part of the same irreducible representation of the Lorentz group. This

implies that parity is conserved in the massless SS′V amplitude.
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V V ′S.

M(1+
V , 2

+
V ′ , 3S) = [12]2 c++

V V ′S/Λ̃ ,

M(1−V , 2
−
V ′ , 3S) = 〈12〉2 c−−V V ′S/Λ̃ .

(C.5)

Here again, the two amplitudes that one can re-express in terms of polarization vectors as

(p1 · ε±2 )(p2 · ε±1 ) are forced to have identical coefficients.

V aV bV c.

M(1+
V a , 2

+
V b
, 3+
V c) = [12][13][23] c+++

V aV bV c
/Λ̃2 ,

M(1−V a , 2
−
V b
, 3−V c) = 〈12〉〈13〉〈23〉 c−−−

V aV bV c
/Λ̃2 ,

M(1−V a , 2
−
V b
, 3+
V c) = 〈12〉3/〈13〉〈23〉 cV aV bV c ,

M(1−V a , 2
+
V b
, 3−V c) = 〈13〉3/〈12〉〈23〉 cV aV bV c ,

M(1+
V a , 2

−
V b
, 3−V c) = 〈23〉3/〈12〉〈13〉 cV aV bV c ,

M(1−V a , 2
+
V b
, 3+
V c) = [23]3/[12][13] cV aV bV c ,

M(1+
V a , 2

−
V b
, 3+
V c) = [13]3/[12][23] cV aV bV c ,

M(1+
V a , 2

+
V b
, 3−V c) = [12]3/[13][23] cV aV bV c .

(C.6)

The (+++), (−−−) amplitudes, and that involving vectors of both helicities arise from

three different contractions of ε±1 , ε
±
2 , ε

±
3 polarization vectors and therefore have indepen-

dent couplings. The relevant structures are displayed in appendix B.10 for massive vectors.

C.3 Two fermions, one vector and one scalar

In this section, we derive the non-factorizable parts of the massless FF ′V S four-point

amplitude. It can be spanned by only one type of bracket, square or angle. We choose to

span the amplitude by

M(1h1F , 2
h2
F ′ , 3

h3
V , 4S) = [12]h1+h2−h3 [13]h1+h3−h2 [23]h3+h2−h1 ch1h2h3FF ′V S/Λ̃

h1+h2+h3 , (C.7)

where the cFF ′V S are dimensionless functions of sij/Λ̃. We however exclude spinor bilinear

in denominators and therefore implicitly use equalities of the type 1/[ij] = 〈ji〉/2(pi · pj)
to remove them. We then obtain:

M(1+
F , 2

+
F ′ , 3

+
V , 4S) = [13][23] c+++

FF ′V S/Λ̃
2 ,

M(1−F , 2
+
F ′ , 3

+
V , 4S) = 〈12〉[23]2 c−++

FF ′V S/Λ̃
3 ,

M(1+
F , 2

−
F ′ , 3

+
V , 4S) = 〈12〉[13]2 c+−+

FF ′V S/Λ̃
3 ,

M(1−F , 2
−
F ′ , 3

+
V , 4S) = [13][23]〈12〉2 c−−+

FF ′V S/Λ̃
4 ,

M(1+
F , 2

+
F ′ , 3

−
V , 4S) = 〈13〉〈23〉[12]2 c++−

FF ′V S/Λ̃
4 ,

M(1−F , 2
+
F ′ , 3

−
V , 4S) = [12]〈13〉2 c+−+

FF ′V S/Λ̃
3 ,

M(1+
F , 2

−
F ′ , 3

−
V , 4S) = [12]〈23〉2 c−++

FF ′V S/Λ̃
3 ,

M(1−F , 2
−
F ′ , 3

−
V , 4S) = 〈13〉〈23〉 c−−−FF ′V S/Λ̃

2 .

(C.8)
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D Non-factorizable ψcψZh for massless fermions

In this section, we derive the non-factorizable part of theM (ψcψZh) four-point amplitude

with massless fermions. We begin by pulling out the polarization of the massive Z

M
(

1h1ψc , 2
h2
ψ ,3Z ,4h

)
= 〈3|α〈3|βMαβ = [3|α̇[3|β̇M̄

α̇β̇ , (D.1)

where Mαβ (M̄ α̇β̇) is the reduced amplitude in the undotted (dotted) basis. We can span

the SL (2,C) space of the reduced amplitudes18 with the independent spinors |1〉α, |2〉β or

|1]α̇, |2]β̇ . There are four more helicity carrying structures which we can write

〈12〉, [12], 〈132], 〈231] , (D.2)

and only two of these are independent. Therefore, the reduced amplitudes can be spanned

by two of the structures in eq. (D.2), and two helicity spinors for the SL (2,C) part. The

little-group transformation properties and mass dimension, then fix the form of the reduced

amplitudes. Thus the reduced amplitudes in the undotted and dotted bases are given by

Mαβ = (|1〉2−B|2〉B)αβ 〈12〉−h1−h2−1〈132]B−h1+h2−1f2B+3h1−h2+1 ,

M̄ α̇β̇ = (|1]2−B|2]B)α̇β̇ [12]h1+h2−1〈231]B+h1−h2−1f2B−3h1−h2+1 ,
(D.3)

where B = 0, 1, 2, and f−` is a function of Mandelstam variables of mass dimension −`. We

can choose a convenient basis for each helicity amplitude, dotted or undotted, and obtain

M
(

1+
ψc , 2

+
ψ ,3Z ,4h

)
=

[13]2

〈231]
F̄

(++,1)
0 + [13][23]F̄

(++,2)
−2 + [23]2〈231]F̄

(++,3)
−4 ,

M
(

1+
ψc , 2

−
ψ ,3Z ,4h

)
=

[13]2

[12]
F̄

(+−,1)
−1 +

[13][23]〈231]

[12]
F̄

(+−,2)
−3 +

[23]2〈231]2

[12]
F̄

(+−,3)
−5 ,

M
(

1−ψc , 2
+
ψ ,3Z ,4h

)
=
〈13〉2

〈12〉
F

(−+,1)
−1 +

〈13〉〈23〉〈132]

〈12〉
F

(−+,2)
−3 +

〈23〉2〈132]2

〈12〉
F

(−+,3)
−5 ,

M
(

1−ψc , 2
−
ψ ,3Z ,4h

)
=
〈13〉2

〈132]
F

(−−,1)
0 + 〈13〉〈23〉F (−−,2)

−2 + 〈23〉2〈132]F
(−−,3)
−4 .

(D.4)

The forms in eq. (D.4) make it difficult to determine the EFT contribution. With some

simplifications, we can recast them into the more useful form

M
(

1+
ψc , 2

+
ψ ,3Z ,4h

)
=
c++

1

Λ̄2
[13][23] +

[12]

Λ̄3

(
c++

2 〈3(1 + 2)3] + c++
3 〈3(1− 2)3]

)
,

M
(

1+
ψc , 2

−
ψ ,3Z ,4h

)
=
c+−

1

Λ̄2
[13]〈23〉+

c+−
2

Λ̄3
〈12〉[13]2 +

c+−
3

Λ̄3
[12]〈23〉2 ,

M
(

1−ψc , 2
+
ψ ,3Z ,4h

)
=
c−+

1

Λ̄2
〈13〉[23] +

c−+
2

Λ̄3
[12]〈13〉2 +

c−+
3

Λ̄3
〈12〉[23]2 ,

M
(

1−ψc , 2
−
ψ ,3Z ,4h

)
=
c−−1

Λ̄2
〈13〉〈23〉+

〈12〉
Λ̄3

(
c−−2 〈3(1 + 2)3] + c−−3 〈3(1− 2)3]

)
.

(D.5)

18Any other structure with an open SL (2,C) index can be spanned by |1〉α, |2〉β or |1]α̇, |2]β̇ .
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