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Abstract: We investigate the maximum value of the spin-independent cross section (σSI)

in a dark matter (DM) model called the two-Higgs doublet model + a (2HDM+a). This

model can explain the measured value of the DM energy density by the freeze-out mecha-

nism. Also, σSI is suppressed by the momentum transfer at the tree level, and loop diagrams

give the leading contribution to it. The model prediction of σSI highly depends on values

of c1 and c2 that are the quartic couplings between the gauge singlet CP-odd state (a0)

and Higgs doublet fields (H1 and H2), c1a
2
0H
†
1H1 and c2a

2
0H
†
2H2. We discuss the upper

and lower bounds on c1 and c2 by studying the stability of the electroweak vacuum, the

condition for the potential bounded from the below, and the perturbative unitarity. We

find that the condition for the stability of the electroweak vacuum gives upper bounds on

c1 and c2. The condition for the potential to be bounded from below gives lower bounds

on c1 and c2. It also constrains the mixing angle between the two CP-odd states. The

perturbative unitarity bound gives the upper bound on the Yukawa coupling between the

dark matter and a0 and the quartic coupling of a0. Under these theoretical constraints, we

find that the maximum value of the σSI is ∼ 5× 10−47 cm2 for mA = 600 GeV, and the LZ

and XENONnT experiments can see the DM signal predicted in this model near future.
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1 Introduction

One of the great achievements in Cosmology is the precise determination of the energy

density of the dark matter (DM) by the Planck collaboration, Ωh2 = 0.120 ± 0.001 [1].

The measured value is explained successfully by DM models that use the freeze-out mech-

anism [2], which have been widely studied for a long time. Those models generally predict

non-zero DM-nucleon scattering cross section and have been searched by the direct detec-

tion experiments, such as the Xenon1T experiment [3]. However, no significant signals have

been observed until now, and the null results set upper bound on the DM-nucleon scatter-

ing cross section. The latest result by the Xenon1T experiment gives a severe constraint

on DM models.

If a DM particle is a gauge singlet fermion, χ, and couples to a scalar mediator, a0, with

pseudo-scalar type interaction, χ̄iγ5χa0, then it is possible to avoid this strong constraint

from the Xenon1T experiment while keeping the success of the freeze-out mechanism [4, 5].

– 1 –



J
H
E
P
0
1
(
2
0
2
0
)
1
1
4

The two-Higgs doublet model + a (2HDM+a) [6] is one of the models that realize this idea.1

In addition to the introduction of the DM and the mediator, the Higgs sector is extended

into the two-Higgs doublet model. The CP invariance is assumed in the dark sector and

the scalar sector. Then, the dark sector and the visible sector can interact through the

mixing between a0 and the CP-odd scalar (A0) in the two-Higgs doublet sector. The model

predicts rich phenomenology [10–17], and it is summarized in ref. [18].

The 2HDM+a predicts non-zero spin-independent DM-nucleon scattering cross section

(σSI) at loop level [6, 14, 16, 17, 19]. In particular, it was shown that if c2, which is a quartic

coupling between a0 and a Higgs doublet field H2, is large enough, the model can be tested

at the forthcoming direct detection experiments [19]. However, such a large coupling

causes theoretical problems. If the coupling takes large negative value, the potential can

be unbounded from the below. If the coupling is very large, it hits a Landau pole near the

electroweak scale and the model loses predictability.

In this paper, we study the constraint on the scalar potential from the boundedness of

the scalar potential, the stability of the electroweak vacuum, and perturbative unitarity.

Using these constraints, we investigate the upper and the lower bounds on the scalar quartic

couplings, and discuss the maximum value of σSI. We show that the maximum value of

σSI is below the current constraint from the Xenon1T experiment and above the prospect

of the LZ experiment [20] and the XENONnT experiment [21].

The rest of the paper is organized as follows. In section 2, we briefly describe the

2HDM+a. In section 3, we investigate theoretical constraints on the model parameters.

Conditions for the electroweak vacuum as the global minimum of the scalar potential, for

the potential to be bounded from below, and for perturbative unitarity for the quartic

couplings in the scalar potential are discussed. These conditions are used to find the upper

and the lower bounds on c1 and c2 and the upper bound on the mixing angle between

the two CP-odd states. In section 4, we scan the model parameter space and find the

maximum value of σSI under the constraint discussed in section 3. Section 5 is devoted to

our conclusion.

2 Model

The model contains a gauge singlet Majorana fermion χ as a DM candidate and a CP-odd

gauge singlet scalar a0 as a mediator. The standard model (SM) Higgs sector is extended

into the two-Higgs doublet model. We assume CP invariance both in the dark sector and

in the scalar sector. This assumption guarantees that the Yukawa interaction between χ

and a0 is always pseudo-scalar interaction. The Lagrangian is given by

L =
1

2
χ̄
(
i/∂ −mDM

)
χ− gχ

2
χ̄iγ5χa0

+
1

2
∂µa0∂

µa0 +DµH
†
1D

µH1 +DµH
†
2D

µH2 − Vscalar

+ (terms with the SM fermions and gauge bosons), (2.1)

1Other realizations are discussed in, for example, refs. [7, 8]. Another mechanism to avoid the constraint

from direct detection experiments is studied in ref. [9].
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where

Vscalar = m2
1H
†
1H1 +m2

2H
†
2H2 −m2

3

(
H†1H2 + (h.c.)

)
+

1

2
λ1(H

†
1H1)

2 +
1

2
λ2(H

†
2H2)

2 + λ3(H
†
1H1)(H

†
2H2) + λ4(H

†
1H2)(H

†
2H1)

+
1

2
λ5

(
(H†1H2)

2 + (h.c.)
)

+
1

2
m2
a0a

2
0 +

λa
4
a40 + κ

(
ia0H

†
1H2 + (h.c.)

)
+ c1a

2
0H
†
1H1 + c2a

2
0H
†
2H2. (2.2)

Since we assume the CP invariant scalar potential, all the couplings in the potential are

real. In this paper, we assume that the thermal relic abundance of χ explains the measured

value of the DM energy density [1], and gχ is fixed to realized it for a given parameter set

by the freeze-out mechanism.

We impose the condition that the potential has the electroweak vacuum,

〈a0〉 = 0, 〈H1〉 =

(
0

1√
2
v1

)
, 〈H2〉 =

(
0

1√
2
v2

)
. (2.3)

This electroweak vacuum is realized if m2
1 and m2

2 satisfy the following relations.

m2
1 = −v

2
1λ1 + v22λ345

2
+m2

3

v2
v1
, (2.4)

m2
2 = −v

2
2λ2 + v21λ345

2
+m2

3

v1
v2
, (2.5)

where λ345 = λ3 + λ4 + λ5. In the following, we assume m2
1 and m2

2 always satisfy these

relations. It is also important that a0 does not develop vacuum expectation value. Oth-

erwise, the scalar-type Yukawa interaction is induced in the dark sector due to the scalar

and pseudo-scalar mixing, and the model is strongly constrained from the direct detection

experiments.

After the electroweak symmetry breaking, there are two CP-even scalars (h and H),

two CP-odd scalars (a and A), a pair of charged scalars (H±), and three would-be Nambu-

Goldstone bosons that are eaten by W± and Z. The physical masses for h, H, a, A, and

H± are denoted to mh, mH , ma, mA, and mH± , respectively. The two CP-even scalars are

mixtures of the CP-even neutral components in H1 and H2, and its mixing angle is denoted

by α. Similarly, the two CP-odd scalars are mixtures of the CP-odd neutral components

in H1 and H2 and also a0. Its mixing angle is denoted by θ.

We introduce the following notations for later convenience,

tβ = tanβ =
v2
v1
, sβ = sinβ, cβ = cosβ, (2.6)

v =
√
v21 + v22, (2.7)

M2 =
v21 + v22
v1v2

m2
3. (2.8)
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Let us comment on the types of the Yukawa interaction. The model is classified into

four types based on the Yukawa interaction between the two-Higgs doublet fields and the

SM fermions, as in the two-Higgs doublet model with softly broken Z2 symmetry [22–24].

In the following analysis, we choose the type-I Yukawa interaction where H2 couples to the

SM fermions but H1 does not. The following discussion is independent from the types of

the Yukawa interaction because the type dependence is negligible for large σSI region of

the parameter space as we showed in our previous work [19], and the purpose of this paper

is to find the maximum value of σSI for a given parameter set.

We can express λi (i = 1, 2, 3, 4, 5), κ, and m2
a0 by the mixing angles and mass eigen-

values. In the followings, we take the mixing angle in the CP-even scalars as α = β − π/2.

This choice predicts the same hWW and the hZZ couplings as in the SM. We also take

M = mH = mA = mH± . This choice of the mass parameters enhances the custodial

symmetry in the scalar potential, and thus the constraints from the electroweak precision

measurements are automatically satisfied. With these parameter choices, the parameters

of the scalar potential are given by

λ1 = λ2 = λ3 =
m2
h

v2
, (2.9)

λ4 = −λ5 = −
m2
A −m2

a

v2
s2θ, (2.10)

κ = −
m2
A −m2

a

2v
sin 2θ, (2.11)

m2
a0 = m2

ac
2
θ +m2

As
2
θ −

c1 + c2t
2
β

1 + t2β
v2. (2.12)

As can be seen, |λ1,2,3| < 1. We can also show that |λ4,5| < 1 with a condition for the

boundedness of the scalar potential (eq. (3.17)) discussed in the next section.

3 Theoretical constraints on the scalar potential

In this section, we discuss the condition for the electroweak vacuum as the global minimum

of the scalar potential, the conditions for the potential to be bounded from below, and the

perturbative unitarity for the quartic couplings in the scalar potential. These constraints

are used to find the upper and the lower bounds on c1, c2, and θ.

3.1 Vacuum structure

Vacua other than the electroweak vacuum can exist depending on the given parameter

sets. We study the vacuum structure at the tree level and impose the condition that the

electroweak vacuum should be the global minimum. It is not necessary for the electroweak

vacuum to be the global minimum if its lifetime is much longer than the age of our Universe.

However, the lifetime is much shorter than the age of the Universe in most of the parameter

space.2 Therefore, we adopt the condition to be the global minimum in the current analysis.

2The lifetime is estimated by using SimpleBounce [25].
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3.1.1 〈H1〉 = 〈H2〉 = 0

In this case, the stationary condition for the scalar potential is given by

a0
(
m2
a0 + λaa

2
0

)
= 0. (3.1)

If m2
a0 < 0, we have vacua where a0 develops the vacuum expectation value. The sign of

m2
a0 depends on the values of c1, c2, and tβ as in eq. (2.12). Since we impose the condition

that the electroweak vacuum should be the global minimum, such vacua should not be

deeper than the electroweak vacuum.

At the vacuum with 〈a0〉 6= 0, the potential energy is given by

Vmin.|〈H1〉=〈H2〉=0,〈a0〉6=0 = −
m4
a0

4λa
. (3.2)

This should be larger than the potential energy at the electroweak vacuum,

Vmin.|〈H1〉6=0,〈H2〉6=0,〈a0〉=0 = −1

8

(
m2
hs

2
β−α +m2

Hc
2
β−α +

4(m2
H± −m2

H)t2β
(1 + t2β)2

)
v2. (3.3)

Therefore, we obtain the following condition for m2
a0 < 0,

λa

(
m2
hs

2
β−α +m2

Hc
2
β−α +

4(m2
H± −m2

H)t2β
(1 + t2β)2

)
>

2m4
a0

v2
. (3.4)

From eqs. (2.12) and (3.4), for sin(β − α) = 1 and M = mH = mA = mH± , we find

c1 + c2t
2
β

1 + t2β
<

√
λam2

h

2v2
+
m2
ac

2
θ +m2

As
2
θ

v2
. (3.5)

As a result, we obtain the upper bound on c1 or c2 for a given parameter sets.

3.1.2 One of 〈H1〉 and 〈H2〉 is zero

We investigate 〈H1〉 = 0 and 〈H2〉 6= 0. Without lose of the generality, we can parametrize

the vacuum as

〈H2〉 =

(
0

1√
2
σ2

)
. (3.6)

A stationary condition of this vacuum is given by

0 = −m2
3σ2. (3.7)

This condition is obtained in both 〈a0〉 = 0 and 〈a0〉 6= 0 cases. Since m2
3 6= 0, see eq. (2.8),

this condition implies σ2 = 0. This is contradict to 〈H2〉 6= 0. Therefore, we do not have

vacua that satisfy 〈H1〉 = 0 and 〈H2〉 6= 0.

In the same manner, we can show that we do not have vacua that satisfy 〈H1〉 6= 0

and 〈H2〉 = 0.
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3.1.3 〈H1〉 6= 0 and 〈H2〉 6= 0

We simplify the analysis as much as possible by using the gauge invariance in the potential.

Without lose of the generality, we can parametrize the Higgs fields as

〈H1〉 =

(
0

1√
2
σ1

)
, 〈H2〉 =

(
π+2

1√
2
(σ2 + iπ02)

)
, (3.8)

where σ1 is positive and σ2, π
0
2, and π+2 are real numbers. In this case, since the analysis

is complicated, we rely on numerical analysis.

3.2 Conditions for the potential to be bounded from below

The potential should be bounded from below. In other words, the potential should be

positive for the region where the field values are extremely large. We find the following

seven conditions for the boundedness of the scalar potential.

λ1 > 0, (3.9)

λ2 > 0, (3.10)

λa > 0, (3.11)√
λ1λ2 + λ̃3 > 0, (3.12)√
λ1λa

2
+ c1 > 0, (3.13)√

λ2λa
2

+ c2 > 0, (3.14)

√
λ1c2 +

√
λ2c1 ≥ 0,

or

√
λ1c2 +

√
λ2c1 < 0 and λaλ̃3

2 − c1c2 +

√(
λaλ1
2 − c21

)(
λaλ2
2 − c22

)
> 0.

(3.15)

where

λ̃3 = λ3 + min(0, λ4 − |λ5|). (3.16)

The derivation is given in appendix A.3 As can be seen, eqs. (3.13), (3.14), and (3.15) give

the lower bounds on c1 and c2.

We find that eq. (3.12) gives a constraint on θ. For sβ−α = 1 and M = mH = mA =

mH± , using eqs. (2.9) and (2.10), we can simplify eq. (3.12) as

|sin θ| < mh√
m2
A −m2

a

. (3.17)

3The scalar potential discussed in ref. [26] is the same as in this paper, but they find that the second

condition in eq. (3.15) should be applied for c1 or c2 < 0. The condition given in ref. [28], which was derived

from the result given in ref. [29], is consistent with our result. The condition given in ref. [30] is different

from ours.
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Figure 1. The upper bound on θ obtained from eq. (3.17). Here we take sβ−α = 1, ma = 100 GeV,

and mH = mH± = mA.

The constraint on |sin θ| by using this result for ma = 100 GeV is shown in figure 1. We

find that |sin θ| . 0.21 for mA = 600 GeV, and |sin θ| . 0.13 for mA = 1 TeV.

For sβ−α = 1 and M = mH = mA = mH± , we can also simplify other conditions with

physical observables as follows.√
λa
2

mh

v
+ c1 > 0, (3.18)√

λa
2

mh

v
+ c2 > 0, (3.19)

c1 + c2 ≥ 0,

or

c1 + c2 < 0 and λa
2

(
m2

h
v2
− 2(m2

A−m
2
a)

v2
s2θ

)
− c1c2 +

√(
λam2

h
2v2
− c21

)(
λam2

h
2v2
− c22

)
> 0.

(3.20)

3.3 Perturbative unitarity

Constraints on scalar quartic couplings are often derived from the perturbative unitarity

of two scalars to two scalars scattering processes. There are nine scalars in the model.

Therefore, the two to two scattering matrix that only includes scalars is a 45 × 45 matrix.

Since we consider the high energy limit and ignore the gauge couplings, the scattering

– 7 –
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processes are s-wave. In the following analysis, the Yukawa coupling, gχ, often takes O(1)

value, and thus we also include DM two body initial and final states in the matrix. The DM

particle takes two helicity states. In the high energy limit, we find that two DM particles

into two DM particles processes are s-wave, and two DM particles into two scalars processes

are p-wave. The former processes give stronger bound on gχ. We impose absolute values

of each eigenvalue of the matrix are less than 8π and find that [27, 28]

|c1| < 4π, (3.21)

|c2| < 4π, (3.22)

|λ3 ± λ4| < 8π, (3.23)∣∣∣∣12
(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ24

)∣∣∣∣ < 8π, (3.24)∣∣∣∣12
(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ25

)∣∣∣∣ < 8π, (3.25)

|λ3 + 2λ4 ± 3λ5| < 8π, (3.26)

|λ3 ± λ5| < 8π, (3.27)

g2χ < 4π, (3.28)

|xi| < 8π (i = 1, 2, 3), (3.29)

where xi are solutions of the following equation,

0 = x3 − 3 (λa + λ1 + λ2)x
2

+
(
−4c21 − 4c22 − 4λ23 − 4λ3λ4 − λ24 + 9λ1λ2 + 9λ1λa + 9λ2λa

)
x

+ 12c22λ1 + 12c21λ2 − 16c1c2λ3 − 8c1c2λ4 +
(
−27λ1λ2 + 12λ23 + 12λ3λ4 + 3λ24

)
λa.

(3.30)

For |λi| � 1 (i = 1, 2, 3, 4, 5), eq. (3.29) is simplified as

1

2

(
3λa +

√
16c21 + 16c22 + 9λ2a

)
< 8π, (3.31)

or

λa <
8π

3

(
1− c21 + c22

16π2

)
. (3.32)

Since λa > 0, this inequality implies that√
c21 + c22 < 4π. (3.33)

This gives stronger constraint on c1 and c2 than eqs. (3.21) and (3.22).

For sβ−α = 1 and M = mH = mA = mH± , using eqs. (2.9) and (2.10), we can simplify

the perturbative unitarity conditions λ1,2,3,4,5 (eqs. (3.23)–(3.27)) and express them with

masses of the scalars as follows.

|m2
h ± (m2

A −m2
a)s

2
θ| < 8πv2, (3.34)

|m2
h − 5(m2

A −m2
a)s

2
θ| < 8πv2. (3.35)
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Figure 2. The contours for σSI [cm2] for mDM = 800 GeV are shown by the dashed curves.

The blue solid lines show the LZ and XENONnT prospects [20, 21], In both panels, we take

mH = mH± = mA = 600 GeV, ma = 100 GeV, θ = 0.1, and λa = 1. The left (right) panel is for

tβ = 10 (1). The region between two black solid lines is below the neutrino floor [31]. The global

minimum does not break the electroweak symmetry in the region surrounded by the orange line

and filled with the spirals pattern. In the blue shaded region with hatching, the scalar potential is

unbounded from the below.

4 Spin-independent scattering cross section

We discuss the maximum value of σSI under the constraints discussed in section 3. We find

upper bounds on c1 and c2 from the stability of the electroweak vacuum, and lower bounds

from the boundedness of the scalar potential. Since gχ ∼ O(1) in the large σSI regime [19],

the perturbative unitarity also gives relevant constraint in the parameter space.

The left panel in figure 2 shows that the contours of σSI for mDM = 800 GeV with the

conditions discussed in sections 3.1 and 3.2. The other parameters except λa are the same

as one used in figure 8 in ref. [19], namely mH = mH± = mA = 600 GeV, ma = 100 GeV,

tβ = 10, θ = 0.1, and λa = 1. It is clearly shown that σSI is larger in the larger |c2| region

as discussed in ref. [19]. It is also shown that there is an upper bound on σSI from the

condition discussed in section 3.1. A large positive c2 predicts that the electroweak vacuum

is not the global minimum. This is because such a large positive c2 makes m2
a0 negatively

large as can be seen from eq. (2.12), and thus eq. (3.5) is not satisfied. A large negative

c2 does not satisfy eqs. (3.13)–(3.15) and makes the potential unbounded from the below.

These theoretical constraints on the scalar potential give the upper and lower bounds on

c2. Consequently, σSI cannot be arbitrary large. The right panel in figure 2 is a similar to

the left panel but with a smaller value of tβ . In this case, there are upper bounds both on

c1 and c2.

From figure 2, we find a correlation between σSI and the condition of the stability of the

electroweak vacuum. The contour of σSI and the boundary of the constraint of the stability

of the electroweak vacuum (the edge of the orange shaded region) are almost parallel to

– 9 –
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each other. We can understand this correlation as follows. For sβ−α = 1 and mH = mH± ,

the condition to avoid 〈a0〉 6= 0 vacuum given in eq. (3.4) is simplified as

λa >
2m4

a0

m2
hv

2
(for m2

a0 < 0). (4.1)

As discussed in ref. [19], both σSI and 〈σv〉 depend on the a–a–h coupling, gaah, that is

given by

gaah = s2θ

(
2m2

a +m2
h − 2m2

A

v

)
+ 2vc2θ

c1 + c2t
2
β

1 + t2β
(4.2)

=
2(m2

a −m2
a0)

v
+O(θ2), (4.3)

for sβ−α = 1 and mH = mH± = mA. Combining these two equations, we find

λa >
2v2

m2
h

(
m2
a

v2
− gaah

2v

)2

+O
(
θ2
)
. (4.4)

This condition is not satisfied with the large gaah, and thus the large gaah induces the

〈a0〉 6= 0 vacuum. On the other hand, the large gaah is necessary to obtain the larger

σSI. Therefore, there is a correlation between σSI and the condition of the stability of the

electroweak vacuum.

We can also see from figure 2 that the maximum value of σSI is near the boundary

of the stability of the electroweak vacuum. For the purpose of finding maximum value

of σSI, we need to find the maximum value of gaah that satisfies eq. (4.4). The c1 and

c2 dependent part of gaah, which is the second term in eq. (4.2), depends on tβ . This tβ
dependence vanishes for c1 = c2. We take c1 = c2 and tβ = 10 in the following analysis,

but the following results are insensitive to the choice of tβ .

The larger λa allows us to take larger gaah while keeping 〈a0〉 = 0, which can be seen

from eq. (4.4). On the other hand, the larger λa implies the breakdown of perturbative

calculation at a higher energy scale. In our analysis, gχ is typically O(1) to obtain the

measured value of the DM energy density, and it also implies the breakdown of perturbative

calculation at a higher energy scale. We calculate the running of the couplings at the 1-loop

level and estimate the cutoff scale Λ as the highest scale that satisfies eqs. (3.11), (3.28),

and (3.32). In the calculation, we assume that the input parameters are given at µ = mA.

The beta-functions of the couplings we used are given in appendix B. The smaller λa at

µ = mA becomes negative at higher scale because a0 couple to the fermionic DM that gives

a negative contribution to the beta function of λa. On the other hand, the beta function

is proportional to λ2a and positive for the larger λa. The cutoff scale gives the upper and

the lower bounds on λa at µ = mA.

Figure 3 shows the contours of σSI in λa–c2 planes. It is shown that the larger λa at

µ = mA keeps its value positive at any higher scale. We find that it is easy to make the cutoff

scale higher than O(100) TeV by choosing λa ' 1.5. Thus we can expect that unknown

UV physics does not modify our results for λa ' 1.5. We also find that σSI is maximized

– 10 –
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Figure 3. The contours for σSI [cm2] for mDM = 800 GeV are shown by the dashed curves. In the

left (right) panel, θ = 0.01 (0.1). In the thin (dense) blue-hatching region (\\\), λa(Λ) becomes

negative at Λ < 100 (10) TeV. In the lighter (darker) black region, eq. (3.28) or (3.32) is violated

at Λ < 100 (10) TeV. The other color notation is the same as in figure 2.

along the boundary of the orange shaded region where the electroweak symmetry is not

broken. For c1 = c2, eq. (3.5) is simplified as

c2 <

√
λam2

h

2v2
+
m2
ac

2
θ +m2

As
2
θ

v2
≡ c∗. (4.5)

In the following analysis, we choose c1 = c2 = 0.99c∗ for given parameter sets. This choice

of c1 and c2 maximizes σSI.

Figure 4 shows the contours of σSI in λa–θ plane. We find that σSI is larger in the

smaller θ regime. This is because the smaller θ requires larger gχ to obtain the measured

value of the DM energy density. The left and right panels are for mA = 600 GeV and 1 TeV,

respectively. We find that σSI is almost independent from mH,H±,A for θ < 0.01. This is

because the heavier scalars almost decouple both from the DM annihilation processes and

from the loop contributions to σSI. The cutoff scales are the only difference if we change mA;

a larger mA predicts higher cutoff scales. In the following analysis, we take θ = 0.001. With

this choice, σSI is maximized and is independent from mA. We also take mA = 600 GeV in

the following, which gives us a conservative bound from the RGE analysis.

Figure 5 shows the contours of σSI in λa–mDM plane. We take ma = 100, 200, 250, and

280 GeV in each panel. We find that the maximum value of σSI is almost independent of

the choice of ma, σSI . 5×10−47 cm2. This value is larger than the prospects of the LZ and

XENONnT experiments. Therefore, we have a chance to see the DM direct detection signal

near future. The constraint from the perturbative unitarity with the running couplings

gives a stronger bound for the larger ma due to the following reason. As can be seen

from eq. (4.5), c∗ and hence c1 and c2 become larger for the larger ma. The larger c1 and

c2 make the beta function of λa larger. Therefore, the constraint from the perturbative
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Figure 4. The contours for σSI [cm2] in λa–θ plane. The left (right) panel is for mA = 600

(1000) GeV. The color notation is the same in figure 3.

unitarity with the running couplings becomes severer for larger values of ma. It is also

shown that σSI becomes large for the large mDM regime. This is because larger values of

mDM requires larger values of gχ to obtain the right amount of the relic abundance. On the

other hand, larger values of gχ implies that the Landau pole arises at a lower scale because

gχ is asymptotic non-free. This gives an upper bound on mDM as shown in the figure.

5 Conclusion

The 2HDM+a is a DM model that can explain the measured value of the DM energy density

by the freeze-out mechanism and can avoid the constraint from the Xenon1T experiment.

The leading order contribution to σSI is given at the loop level, and σSI can be large enough

for the model to be tested by the forthcoming direct detection experiments.

In this paper, we have investigated the maximum value of σSI under theoretical con-

straints. We take into account the stability of the electroweak vacuum, the condition for the

potential bounded from the below, and the perturbative unitarity of two to two scattering

processes. As shown in figure 2, large |c1| and |c2| make σSI larger. However, the condi-

tion for the stability of the electroweak vacuum gives upper bounds on c1 and c2, and the

potential boundedness condition gives lower bounds on them. As a result, there exists the

maximum value of σSI for a given parameter set. It is also shown that σSI is maximized for

c1 = c2 = c∗, where c∗ is the maximum values of c1 and c2 to keep the electroweak vacuum

as the global minimum of the scalar potential. With this choice, the result is insensitive

to tβ . We found that a smaller θ makes σSI larger, as shown in figure 4. For the small θ

regime, σSI is almost independent of mH,H±,A. Finally, in figure 5, we found that σSI can

be larger than the prospects of the LZ and XENONnT experiments for mDM & 600 GeV.

We also found that the perturbative unitarity gives an upper bound on mχ. The maximum

value of the σSI is ∼ 5× 10−47 cm2 for mA = 600 GeV where the cutoff scale of this model

– 12 –
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Figure 5. The contours for σSI [cm2] in λa–mDM plane. We take ma = 100, 200, 250, and 280 GeV

in each panel. The color notation is the same in figure 3.

is estimated as 100 TeV. Therefore, if the LZ and XENONnT experiments observe the DM

signal in future, then this model predicts 600 GeV . mDM . 1 TeV.
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A Condition for the potential to be bounded below

The potential should be bounded below, namely the potential should be positive for the

region where the field values are extremely larger. In this section, we derive the condition

for the bounded below.

We focus on the region where the fields take large values, and thus the quadratic and

cubic terms in the potential are negligible in the analysis here,

V ∼ +
1

2
λ1(H

†
1H1)

2 +
1

2
λ2(H

†
2H2)

2 + λ3(H
†
1H1)(H

†
2H2) + λ4(H

†
1H2)(H

†
2H1)

+
1

2
λ5

(
(H†1H2)

2 + (h.c.)
)

+
λa
4
a40 + c1a

2
0H
†
1H1 + c2a

2
0H
†
2H2. (A.1)

We introduce the following parametrization,

H†1H1 = ρ2 sin θ cosφ, (A.2)

H†2H2 = ρ2 sin θ sinφ, (A.3)

H†1H2 = ρ2 sin θ
√

cosφ sinφe−iθ3 cosω, (A.4)

a20 = ρ2 cos θ, (A.5)

where ρ2 > 0, 0 ≤ θ ≤ π/2, and 0 ≤ φ ≤ π/2. Using these parameters, the scalar potential

is written as

V

ρ4
∼ Ṽ ≡ 1

2
λ1 sin2 θ cos2 φ+

1

2
λ2 sin2 θ sin2 φ

+
1

2

[
λ3 + (λ4 + λ5 cos θ3) cos2 ω

]
sin2 θ sin(2φ)

+
λa
4

cos2 θ +
1

2
c1 sin(2θ) cosφ+

1

2
c2 sin(2θ) sinφ. (A.6)

By imposing Ṽ > 0, we find constraints on the parameters.

There is a relation we will use in the rest of this section. Assume a > 0, b > 0, and

0 < θ < π/2, then

a cos2 θ + b sin2 θ + 2c sin θ cos θ > 0 (A.7)

if c+
√
ab > 0. The proof is the following.

a cos2 θ + b sin2 θ + 2c sin θ cos θ =
(√

a cos θ ±
√
b sin θ

)2
+ 2 sin θ cos θ

(
c∓
√
ab
)

= 2 sin θ cos θ


(√

a cos θ ±
√
b sin θ

)2
2 sin θ cos θ

+
(
c∓
√
ab
) .

(A.8)

The sign of the left-hand side is determined by the sign of the terms in the big parenthesis

in the right-hand side. It takes minimum if the terms depending on θ vanish, namely,√
a cos θ−

√
b sin θ = 0. Its minimum value is c+

√
ab. Since sin θ cos θ > 0, if c+

√
ab > 0

then the right-hand side is always positive.
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A.1 θ = 0

For θ = 0, which is the case for H1 = H2 = 0, we find

Ṽ = +
λa
4
. (A.9)

Therefore, λa > 0. This is eq. (3.11).

A.2 θ = π/2

For θ = π/2, the potential is the same as in the 2HDMs.

Ṽ =
1

2
λ1 cos2 φ+

1

2
λ2 sin2 φ+

1

2

[
λ3 + (λ4 + λ5 cos θ3) cos2 ω

]
sin(2φ). (A.10)

This potential is simplified for φ = 0 and π/2,

Ṽ =


1
2λ1 (φ = 0)

1
2λ2 (φ = π/2)

. (A.11)

Therefore, λ1 > 0 and λ2 > 0 are required. These are eqs. (3.9) and (3.10).

For θ = π/2 and 0 < φ < π/2, the potential is positive if√
λ1λ2 +

[
λ3 + (λ4 + λ5 cos θ3) cos2 ω

]
> 0. (A.12)

We can simplify this inequality. If

λ4 + λ5 cos θ3 ≥ 0, (A.13)

then

λ3 + (λ4 + λ5 cos θ3) cos2 ω ≥ λ3, (A.14)

and thus √
λ1λ2 +

[
λ3 + (λ4 + λ5 cos θ3) cos2 ω

]
≥
√
λ1λ2 + λ3. (A.15)

If

λ4 + λ5 cos θ3 < 0, (A.16)

then

λ3 + (λ4 + λ5 cos θ3) cos2 ω ≥ λ3 + (λ4 + λ5 cos θ3) ≥ λ3 + (λ4 − |λ5|) , (A.17)

and thus√
λ1λ2 +

[
λ3 + (λ4 + λ5 cos θ3) cos2 ω

]
≥
√
λ1λ2 + [λ3 + (λ4 − |λ5|)] . (A.18)

As a result, we can simplify
√
λ1λ2 +

[
λ3 + (λ4 + λ5 cos θ3) cos2 ω

]
> 0 as√

λ1λ2 + λ3 + min (0, λ4 − |λ5|) > 0. (A.19)

This is eqs. (3.12) and the same as a condition given in the 2HDMs with softly broken Z2

symmetry [32–35].
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A.3 φ = 0 and 0 < θ < π/2

For φ = 0 and 0 < θ < π/2, which is the direction along H2 = 0, we find

Ṽ =
1

2
λ1 sin2 θ +

λa
4

cos2 θ +
1

2
c1 sin(2θ). (A.20)

Since λ1 > 0 and λa > 0 are already guaranteed, this is positive if

c1 +

√
λ1λa

2
> 0. (A.21)

This is eqs. (3.13).

A.4 φ = π/2 and 0 < θ < π/2

For φ = π/2 and 0 < θ < π/2, which is the direction along H1 = 0, we find

Ṽ = +
1

2
λ2 sin2 θ +

λa
4

cos2 θ +
1

2
c2 sin(2θ). (A.22)

Since λ2 > 0 and λa > 0 are already guaranteed, this is positive if

c2 +

√
λ2λa

2
> 0. (A.23)

This is eqs. (3.14).

A.5 0 < φ < π/2 and 0 < θ < π/2

For 0 < φ < π/2 and 0 < θ < π/2, we need some algebra. First of all, we can rewrite Ṽ as

Ṽ =

(
1

2
λ1 cos2 φ+

1

2
λ2 sin2 φ+

1

2

[
λ3 + (λ4 + λ5 cos θ3) cos2 ω

]
sin(2φ)

)
sin2 θ

+
λa
4

cos2 θ + (c1 cosφ+ c2 sinφ) sin θ cos θ. (A.24)

Since we have already discussed the positivity of Ṽ for θ = 0 and π/2, we can assume the

coefficients of cos2 θ and sin2 θ are positive. Then, Ṽ is positive if

(c1 cosφ+c2 sinφ)+

√√√√(λ1 cos2 φ+λ2 sin2 φ+[λ3+(λ4+λ5 cos θ3) cos2 ω] sin(2φ)

)
λa
2
> 0.

(A.25)

This should be true for all θ3 and ω. There for, the following inequality should be satisfied,

(c1 cosφ+ c2 sinφ) +

√√√√(λ1 cos2 φ+ λ2 sin2 φ+ λ̃3 sin(2φ)

)
λa
2
> 0, (A.26)

where

λ̃3 = λ3 + min(0, λ4 − |λ5|). (A.27)
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Eq. (A.26) is satisfied for c1 cosφ+ c2 sinφ > 0. Therefore, eq. (A.26) is satisfied for c1 ≥ 0

and c2 ≥ 0. In the following, we simplify eq. (A.26) for c1 < 0 or c2 < 0.

For c1 cosφ+ c2 sinφ < 0, we can rewrite eq. (A.26) as√√√√(λ1 cos2 φ+ λ2 sin2 φ+ λ̃3 sin(2φ)

)
λa
2
> − (c1 cosφ+ c2 sinφ) . (A.28)

Since the both side are positive, we can square them and find(
λaλ1

2
− c21

)
cos2 φ+

(
λaλ2

2
− c22

)
sin2 φ+

(
λaλ̃3

2
− c1c2

)
sin 2φ > 0. (A.29)

We start from the case for c1 > 0 and c2 < 0. In this case, c1 cosφ + c2 sinφ < 0 for

φ0 < φ < π/2, where tanφ0 = c1
|c2| . It is useful to define

f(x) = Ax2 +B + 2Dx, (A.30)

where

A =
λaλ1

2
− c21, (A.31)

B =
λaλ2

2
− c22, (A.32)

D =
λaλ̃3

2
− c1c2. (A.33)

Eq. (A.29) is satisfied if f(x) > 0 for 0 < x < |c2|
c1

. We find

f(0) =
λaλ2

2
− c22 =

(√
λaλ2

2
+ c2

)(√
λaλ2

2
− c2

)
, (A.34)

f(cotφ0) =

(
|c2|
c1

√
λaλ1

2
−
√
λaλ2

2

)2

+ λa
|c2|
c1

(
λ̃3 +

√
λ1λ2

)
. (A.35)

These two are always positive thanks to c2 < 0, eq. (3.12), and eq. (3.14). Therefore,

f(x) > 0 at the boundary. It is easy to find that f(x) > 0 for 0 < x < |c2|
c1

if one of the

following conditions is satisfied,

A ≤ 0, (A.36)

or A > 0 and −D
A
≤ 0, (A.37)

or A > 0 and −D
A
≥ |c2|

c1
, (A.38)

or A > 0 and 0 < −D
A
<
|c2|
c1

and B − D2

A
> 0. (A.39)
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The first condition is that f(x) is convex upward. The second and third conditions are for

the min(f(x)) is out of 0 < x < cotφ0. The last condition is that the minimum exists for

0 < x < cotφ0 and it is positive. These conditions are simplified as

A ≤ c1
|c2|
√
B, (A.40)

or A <
c1
|c2|
√
B and −

√
AB < D, (A.41)

or A <
c1
|c2|
√
B and D ≤ −A |c2|

c1
. (A.42)

After substituting A, B, and D into these conditions, we find that Ṽ is positive for c1 > 0

and c2 < 0 if

λ1 ≤ λ2
c21
c22
, (A.43)

or λ1 > λ2
c21
c22

and
λaλ̃3

2
− c1c2 +

√(
λaλ1

2
− c21

)(
λaλ2

2
− c22

)
> 0. (A.44)

We find that eq. (A.42) is inconsistent with eq. (3.12).

In a similar manner, we find the conditions for c1 < 0 and c2 > 0 as

λ2 ≤ λ1
c22
c21
, (A.45)

or λ2 > λ1
c22
c21

and
λaλ̃3

2
− c1c2 +

√(
λaλ1

2
− c21

)(
λaλ2

2
− c22

)
> 0. (A.46)

For c1 < 0 and c2 < 0, c1 = 0 and c2 < 0, or c1 < 0 and c2 = 0, we find

λaλ̃3
2
− c1c2 +

√(
λaλ1

2
− c21

)(
λaλ2

2
− c22

)
> 0. (A.47)

Eqs. (A.43)–(A.47) are summarized as follows.
λ1 ≤ λ2

c21
c22
,

λ1 > λ1
c21
c22

and λaλ̃3
2 − c1c2 +

√(
λaλ1
2 − c21

)(
λaλ2
2 − c22

)
> 0.

(c1 > 0, c2 < 0)

(A.48)
λ2 ≤ λ1

c22
c21
,

λ2 > λ1
c22
c21

and λaλ̃3
2 − c1c2 +

√(
λaλ1
2 − c21

)(
λaλ2
2 − c22

)
> 0.

(c1 < 0, c2 > 0)

(A.49)

λaλ̃3
2
− c1c2 +

√(
λaλ1

2
− c21

)(
λaλ2

2
− c22

)
> 0. (c1 ≤ 0, c2 ≤ 0).

(A.50)
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They can be further simplified as follows.
√
λ1c2 +

√
λ2c1 ≥ 0,

√
λ1c2 +

√
λ2c1 < 0 and λaλ̃3

2 − c1c2 +

√(
λaλ1
2 − c21

)(
λaλ2
2 − c22

)
> 0.

(A.51)

Eq. (A.51) should be satisfied for any c1 and c2.

B Beta functions

(4π)2µ
dλa
dµ

= 18λ2a − 4g4χ + 4λag
2
χ + 8c21 + 8c22, (B.1)

(4π)2µ
dc1
dµ

= 8c21 −
3

2
c1
(
g21 + 3g22

)
+ 2c1

(
3λ1 + 3λa + g2χ

)
+ 2c2 (2λ3 + λ4) , (B.2)

(4π)2µ
dc2
dµ

= 8c22 −
3

2
c2
(
g21 + 3g22

)
+ 2c2

(
3λ2 + 3λa + g2χ + 3y2t

)
+ 2c1 (2λ3 + λ4) , (B.3)

(4π)2µ
dgχ
dµ

= 4g3χ. (B.4)
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