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Abstract: The recent comprehensive numerical study of critical points of the scalar po-

tential of four-dimensional N = 8, SO(8) gauged supergravity using Machine Learning

software in [1] has led to a discovery of a new N = 1 vacuum with a triality-invariant

SO(3) symmetry. Guided by the numerical data for that point, we obtain a consistent

SO(3)×Z2-invariant truncation of the N = 8 theory to an N = 1 supergravity with three

chiral multiplets. Critical points of the truncated scalar potential include both the N = 1

point as well as two new non-supersymmetric and perturbatively unstable points not found

by previous searches. Studying the structure of the submanifold of SO(3) × Z2-invariant

supergravity scalars, we find that it has a simple interpretation as a submanifold of the

14-dimensional Z3
2-invariant scalar manifold (SU(1, 1)/U(1))7, for which we find a rather

remarkable superpotential whose structure matches the single bit error correcting (7, 4)

Hamming code. This 14-dimensional scalar manifold contains approximately one quarter of

the known critical points. We also show that there exists a smooth supersymmetric domain

wall which interpolates between the newN = 1 AdS4 solution and the maximally supersym-

metric AdS4 vacuum. Using holography, this result indicates the existence of an N = 1 RG

flow from the ABJM SCFT to a new strongly interacting conformal fixed point in the IR.
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1 Introduction

The four-dimensional gauged supergravity of de Wit and Nicolai [2] has proven to be a

remarkably rich theory with a plethora of applications. It has an SO(8) gauge group and

the maximal N = 8 supersymmetry. Much of the interesting physics in this theory arises

from a highly nontrivial potential for the 70 scalar fields. It is perhaps fair to say that

unlocking that physics is tantamount to understanding the structure of the potential. In

– 1 –



J
H
E
P
0
1
(
2
0
2
0
)
0
9
9

particular, it has been a long standing problem to determine all of its critical points, which

lead to AdS4 vacuum solutions of the theory.

A systematic study of the nontrivial critical points, that is other than the maximally

supersymmetric SO(8)-invariant one with vanishing scalar fields, was initiated in [3, 4],

where several AdS4 vacua were found by imposing certain symmetry constraints and thus

effectively reducing the 70-dimensional scalar manifold to a smaller one, which could be

fully analyzed.

As shown in [5–7], the four-dimensional SO(8) gauged supergravity1 is a consistent

truncation of the eleven-dimensional supergravity on S7. Therefore, classifying the critical

points of the four-dimensional theory amounts to finding a large class of AdS4 equilibria

of eleven-dimensional supergravity with internal space that is topologically S7.

Those AdS4 vacua of the SO(8) gauged supergravity and their uplifts to eleven dimen-

sions are also interesting from the point of view of holography. Indeed, such backgrounds

are dual to conformal field theories arising on the worldvolume of coincident M2-branes.

The most studied and well-understood example is the ABJM theory [8], and its BLG ver-

sion [9, 10], which has maximal supersymmetry. Another example is the so called mABJM

SCFT which has N = 2 supersymmetry and arises as a particular mass deformation of

ABJM [11–13].

The vacuum structure of the SO(8) gauged supergravity suggests that there are also

conformal phases of M2-branes with N = 1 and N = 0 supersymmetry. In particular, the

G2-invariant and the U(1)×U(1)-invariant critical points found in [4] and [14], respectively,

preserve N = 1 supersymmetry. The SO(3) × SO(3)-invariant critical point found in [3]

has no supersymmetry but it is perturbatively stable [14]. There is a conjecture that all

non-supersymmetric AdS4 vacua are unstable [15]. However, it has not been explicitly

shown how the non-perturbative instability of the SO(3) × SO(3)-invariant critical point

might arise.

Due to the low amount of supersymmetry not much is known about these N = 0 and

N = 1 strongly interacting CFTs. Nevertheless, it is interesting to understand whether

there are any other supersymmetric or non-supersymmetric perturbatively stable critical

points of the SO(8) gauged supergravity since this will amount to non-trivial predictions

for the IR phases of the ABJM theory.

The consistent truncation of the maximal supergravity using a suitable symmetry

as introduced by Warner [3, 4] has remained the cornerstone for the analytic studies of

the potential since 1983. Between 2008 and 2010, there has been also a considerable

progress in developing numerical techniques to search for the critical points in the full 70-

parameter space. Those methods were used by one of us to explore the vacuum structure of

maximal gauged supergravity theories in three dimensions [16, 17] and then ported to four

dimensions in [18–20]. In particular, a new N = 1 supersymmetric critical point S12000002

was discovered in [18] and, using the numerical data as a guide, subsequently confirmed

analytically in [14].

1Throughout this paper, the SO(8) gauged supergravity means the original de Wit-Nicolai theory [2].
2Following [20], we label the critical points by the first 7 digits of the critical value of the potential.
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A new method for determining critical points in gauged supergravities based on the

embedding tensor formalism (see, e.g., [21], and the references therein) was proposed in [22]

and [23, 24] in 2011. While this method has not yet led to any new stable vacua of the

potential of the de Wit-Nicolai theory,3 it has been used (see, e.g., [23, 25–27]) to obtain new

analytic results for critical points in the deformed SO(8) gauged supergravities constructed

in [28]. It also provided for a simple proof in [29] that these theories, including the original

SO(8) gauged supergravity, have no supersymmetric vacua with N > 2 except for the

maximally supersymmetric one.

Recently, a new numerical approach based on Machine Learning (ML) software li-

braries, such as Google’s TensorFlow [30], was employed in [1] to simplify the analysis of

the potential resulting in the total of 192 critical points together with a precise informa-

tion about those points that includes the mass spectra of small fluctuations and unbroken

(super)symmetries. It is expected that this list of critical points should be nearly complete.

Perhaps the most interesting result of the search in [1] is a discovery of yet another N =

1 supersymmetric critical point, S1384096, which is invariant under a triality symmetric

SO(3) subgroup of the SO(8) gauge group. Moreover, this point gives rise to the only new

AdS4 solution that is perturbatively stable. Therefore, it is most interesting to understand

how to construct it using a more analytic approach. This is our goal in this paper.

The numerical data for the N = 1 critical point, S1384096, in [1] point towards

additional symmetry, which we identify as a discrete Z2 subgroup of the SO(8) gauge group.

The resulting SO(3)×Z2-invariant truncation of the N = 8 supergravity can be constructed

analytically. Its bosonic sector consists of the metric and three complex scalar fields.

Despite the small scalar sector, the potential in this truncation has 15 inequivalent critical

points with S1384096 amongst them. Surprisingly, two of those 15 critical points, S2096313

and S2443607, were not found by the numerical search in [1] and thus they represent new

AdS4 equilibria. However, they are not supersymmetric and are perturbatively unstable.

We also study some of the properties of the supersymmetric point S1384096 in more

detail. In particular, we compute the mass spectrum of excitations for all bosonic and

fermionic fields of the N = 8 supergravity around this point. Using holography, we map

it to the spectrum of operators in the dual N = 1 three-dimensional SCFT, which are

then organized into multiplets of N = 1 superconformal symmetry. Our explicit analytic

construction of the truncation with three complex scalar fields also allows us to initiate

the study of the web of holographic RG flows connecting the four supersymmetric critical

points in this model. We find explicit domain wall solutions which interpolate between

S1384096 and the maximally supersymmetric critical point of the N = 8 supergravity.

In the next section we discuss two SO(3)- and SO(3)×Z2-invariant truncations of the

maximal supergravity. In section 3 we show that the new N = 1 AdS4 solution found in [1]

corresponds to a critical point in the SO(3) × Z2-invariant truncation. In section 4, we

apply the same numerical technique as in [1] to the potential in the SO(3) × Z2-invariant

truncation and find the total of 15 critical points that also include two non-supersymmetric

and perturbatively unstable ones that were missed by previous searches. We show how other

3See, however, the construction of a new SO(4)-invariant point in [25].
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well-known critical points arise in our truncation. In section 6 we perform a preliminary

study of the holographic RG flows to the new N = 1 point. In section 7 we present an

N = 1 supergravity truncation of the maximal supergravity with 7 complex scalar fields

which contains all perturbatively stable critical points. We conclude with some comments

in section 8. Some group theory details, the full spectrum of four-dimensional supergravity

fields around the new N = 1 AdS4 vacuum, as well as more details on the two new non-

supersymmetric critical points are given in the appendices.

2 A consistent truncation

The starting point of our analytic search for the new N = 1 critical point, S1384096, is the

precise information about its symmetry that is given, together with the numerical data for

the position of the point and the spectrum of supergravity fluctuations, in [1]. Specifically,

we know that S1384096 lies within an SO(3)-invariant sector of the 70-dimensional scalar

manifold, E7(7)/(SU(8)/Z2), of the N = 8 supergravity. The particular SO(3) symmetry

is identified as the triality invariant subgroup of the SO(8) gauge group specified by the

following branchings of the three fundamental representations:

8v,s,c −→ 3⊕ 3⊕ 1⊕ 1 . (2.1)

Using the standard group theory summarized in appendix A, this completely determines

the embedding of that SO(3) into both SO(8) and E7(7) at the level of Lie algebras:

so(8) ⊃ so(3)× u(1)× u(1) and e7(7) ⊃ so(3)× g2(2) × su(1, 1) . (2.2)

Indeed, those embeddings are confirmed by the U(1) × U(1) unbroken gauge symmetry

and the presence of 8 + 2 = 10 scalar fluctuations4 that are SO(3) singlets in the N = 8

supergravity spectrum around that point.

It follows from (2.2) that the scalar manifold spanned by the SO(3)-invariant scalars

is the coset5

G2(2)

SO(4)
× SU(1, 1)

U(1)
. (2.3)

In fact, keeping track of all invariant fields in the N = 8 supergravity, one finds that the

(consistent) SO(3)-invariant truncation is to a four-dimensional N = 2 gauged supergrav-

ity coupled to an Abelian vector multiplet and two hypermultiplets. The scalars in the

hyper and the vector multiplets parametrize the first and second factor in (2.3), respec-

tively. While considerably simpler than the full N = 8 theory, this truncation is still too

complicated to effectively work with.

The crucial hint that allows us to further simplify the analytic search for S1384096

comes from the numerical values of the scalar fields at that point. It has been observed

in [1] that one can specify the position of this point in terms of 6 independent scalars when

4See, table 3 in appendix B.
5Incidentally, the first factor in the coset has appeared in the SU(3)-invariant truncation of the type

IIB supergravity [31, 32] and in the SO(3)-invariant consistent truncation of the maximal five-dimensional

SO(6) supergravity [33].
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using a certain parametrization of the E7(7)/SU(8) coset. This suggests the presence of an

additional discrete symmetry that might allow further truncation of the scalar manifold to

a smaller subspace.

To identify that discrete symmetry we will use the standard parametrization of the

scalar manifold of the N = 8 theory in which the scalar 56-bein is given by [2, 34]

V ≡

(
uij

IJ vijIJ

vklIJ uklKL

)
= exp

(
0 −1

4

√
2φijkl

−1
4

√
2 φ̄ijkl 0

)
∈ E7(7) , (2.4)

where the scalar fields, φijkl, are components of a complex selfdual 4-form in R8,

Φ =
1

24

√
2φijkl dx

i ∧ dxj ∧ dxk ∧ dxl , (2.5)

and the indices i, j, . . . transform in the 8v representation of SO(8). To simplify the nota-

tion, the wedge product above will be denoted by dxijkl.

We take the SO(3) symmetry of the truncation to act diagonally on the indices (123)

and (456) with the singlets (7) and (8). The invariant forms under this action are spanned

by:

Φ(1) = ω1

(
dx1267 − dx1357 + dx2347

)
+ ω1

(
dx1568 − dx2468 + dx3458

)
,

Φ(2) = ω2 dx
4567 + ω2 dx

1238 ,

Φ(3) = ω3

(
dx1245 + dx1346 + dx2356

)
+ ω3

(
dx1478 + dx2578 + dx3678

)
,

(2.6)

and

Φ(4) = ϑ1

(
dx1268 − dx1358 + dx2348

)
− ϑ1

(
dx1567 − dx2467 + dx3457

)
,

Φ(5) = ϑ2 dx
4568 − ϑ2 dx

1237 ,
(2.7)

where

ωa = s2a−1 + i s2a , a = 1, 2, 3 , ϑj = t2j−1 + i t2j , j = 1, 2 . (2.8)

Each Φ(α) contains a scalar and a pseudoscalar that parametrize an SU(1, 1)/U(1) coset.

The SU(1, 1) subalgebras of E7(7) generated by Φ(1), Φ(2) and Φ(3) mutually commute as

do the two subalgebras corresponding to Φ(4) and Φ(5). The Φ(1), Φ(2), Φ(4) and Φ(5)

correspond to the noncompact generators of G2(2) and Φ(3) to the SU(1, 1) that commutes

with that G2(2).

This truncation contains the smaller SU(3)-invariant truncation used by Warner [4]

and more recently discussed in [35]. It is obtained by setting ω1 = −ω2 and ϑ1 = −ϑ2,

which results in the noncompact group SU(2, 1)× SU(1, 1).

Using the numerical data for S1384096 in [1], we find that, modulo a suitable SO(8)

gauge rotation, the critical point of the potential lies within the 6-dimensional subspace

spanned by Φ(1), Φ(2) and Φ(3). We also find that the fluctuation of the gravitino field,

ψµ
8, remains massless as required by the unbroken N = 1 supersymmetry.

Consider the following discrete symmetry

gS : (x1, x2, x3, x4, x5, x6, x7, x8) −→ (x1, x2, x3,−x4,−x5,−x6,−x7, x8) . (2.9)
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Clearly, gS is an SO(8) rotation that does not belong to the SO(3) symmetry subgroup.

Under the action of gS , the forms in (2.6) are even while the ones in (2.7) are odd, and the

correct supersymmetry is preserved. This provides us with an additional discrete symmetry

for the truncation to 6 scalar fields, where the truncation simply amounts to setting

t1 = t2 = t3 = t4 = 0 . (2.10)

In the next section we will confirm directly that the critical point S1384096 indeed lies in

the SO(3)× Z2 invariant sector, where the Z2 is generated by the SO(8) rotation gS .

To summarize, we have been led by the group theory and numerical data to consider

a SO(3)× Z2-invariant truncation of the N = 8 d = 4 supergravity with the scalar coset

SU(1, 1)

U(1)
× SU(1, 1)

U(1)
× SU(1, 1)

U(1)
. (2.11)

The first two factors above are embedded in the first factor in (2.3) and the last factor

above corresponds to the second factor in (2.3). The resulting theory is an N = 1 d = 4

supergravity coupled to 3 scalar multiplets. The N = 8 fields that remain in this truncation

are indicated by the star in tables 3–6.

To recast the bosonic sector of this N = 1 d = 4 supergravity in a canonical form [36],

we use the usual complex coordinates, za, on each SU(1, 1)/U(1). First set

s2a−1 + is2a = λae
i ϕa , a = 1, 2, 3 , (2.12)

with the sa given in (2.8), and then define

za = tanh

(
1

2
λa

)
ei ϕa , a = 1, 2, 3 . (2.13)

In this parametrization of the scalar fields, the bosonic Lagrangian of the truncated

four-dimensional supergravity is given by

L =
1

2
R−Kab̄∂µza∂µz̄b̄ − g2P . (2.14)

The scalar kinetic term is determined by the Kähler metric of the coset (2.11) with Kähler

potential

K = −3 log(1− z1z̄1)− log(1− z2z̄2)− 3 log(1− z3z̄3) , (2.15)

where the integer coefficients of the logarithms are the embedding indices of the numerator

SU(1, 1)’s in (2.11) in E7(7). The Kähler metric and its inverse are defined by

Kab̄ = ∂a∂b̄K , Kab̄ = (Kab̄)−1 . (2.16)

The potential can be succinctly written as

P = 2eK
(
Kab̄∇aW∇b̄W − 3WW

)
, (2.17)

– 6 –
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where the holomorphic superpotential is6

W = (z3 − 1)(z3
1z2z

2
3 + z3

1z2z3 + z3
1z2 + 3z3z

2
1 − 3z1z2z3 − z2

3 − z3 − 1) , (2.18)

and the Kähler covariant derivative is given by

∇a(·) = ∂a(·) + (·)∂aK . (2.19)

3 The new N = 1 critical point

In this section we will look first for those critical points of the potential (2.17) that preserve

theN = 1 (or more) supersymmetry of our truncation. The expectation is that those points

should include the new supersymmetric point, S1384096.

Supersymmetric critical points correspond to the “covariant extrema” of the holo-

graphic superpotential (2.18) satisfying

∇aW = 0 , ∇b̄W = 0 , a, b̄ = 1, 2, 3 . (3.1)

It is easy to check that any solution to (3.1) is also a critical point of the potential (2.17).

In the domain |za| < 1, (3.1) unpack to the following system of septic polynomial

equations

z2
1z2 + 2z1z3 − z2z3 + z2

1z2z3 + z2
1z2z

2
3 − z̄1(1 + z3 − z2

1z3 + 2z1z2z3 + z2
3) = 0 ,

z3
1 − 3z1z3 + 3z1z

2
3 − z3

1z
3
3 − z̄2(1− 3z2

1z3 + 3z2
1z

2
3 − z3

3) = 0 ,

z2
1 − z1z2 − 2z2

1z3 + 2z1z2z3 + z2
3 − z3

1z2z
2
3

−z̄3(1− z3
1z2 − 2z2

1z3 + 2z1z2z3 + z2
1z

2
3 − z1z2z

2
3) = 0 ,

(3.2)

plus the three complex conjugate equations.

Finding all solutions to the system (3.2) analytically, if feasible at all, will require

techniques that go beyond what is employed in the present article. However, one can fully

analyze (3.2) using standard numerical routines such as NSolve[·] in Mathematica [37]. In

this way we recover three known supersymmetric critical points with the SO(8), G2 and

SU(3) × U(1) invariance, respectively. As we discuss in section 4.2, each can be found

analytically by performing a further truncation that reduces (3.2) to a simpler system.

We also find four numerical solutions at approximately

z1 = 0.1696360± 0.1415740 i , z1 = −0.1696360∓ 0.1415740 i ,

z2 = 0.4833214± 0.3864058 i , z2 = −0.4833214∓ 0.3864058 i , (3.3)

z3 = −0.3162021± 0.5162839 i , z3 = −0.3162021± 0.5162839 i .

The value of the potential at these points is

P ≈ −13.840964 , (3.4)

which is the same as at S1384096 in [1].

6The holomorphic superpotential can be read-off from the component of the A1
ij-tensor of the N = 8

supergravity along the unbroken supersymmetry.

– 7 –



J
H
E
P
0
1
(
2
0
2
0
)
0
9
9

As we discuss in more detail in appendix C, there is a residual action of the SO(8) gauge

symmetry on the coset (2.11). Indeed, solutions in the two columns in (3.3) are related

by the rotation, gH , defined in (C.3). In turn, solutions within each column are related by

complex conjugation. This degeneracy is expected given the corresponding invariance of

the system of equations in (3.1) or, equivalently, (3.2). However, those complex conjugate

solutions are not related by an SO(8) rotation and thus represent two distinct critical

points of the potential in the N = 8 supergravity.7 To complete the identification of the

solutions (3.3) with the new supersymmetric point, S1384096, and its complex conjugate,

S1384096, in [1], one can also perform an explicit change of variables (D.1) accompanied

by an SO(8) rotation.

The critical values (3.3) of the coordinates, za, a = 1, 2, 3, can be efficiently deter-

mined to an arbitrary precision from the roots of the following system of integer coefficient

polynomials:8

PRe z1(x) = 256x24 + 5632x22 + 78592x20 − 2135808x18 − 543360x16 − 4684032x14

− 12045600x12 − 15419808x10 − 6033744x8 − 1553904x6 − 222264x4

− 17496x2 + 729 ,

PIm z1(y) = 16y12 − 96y11 + 144y10 + 848y9 − 944y8 + 2000y7 − 3504y6 + 3456y5

− 2028y4 + 740y3 − 164y2 + 20y − 1 . (3.5)

PRe z2(x) = 60715264x24 − 256862720x22 + 937708288x20 − 2138845440x18

+ 3067400064x16 − 2992061952x14 + 1409137632x12 − 388837152x10

+ 229269744x8 − 95418000x6 + 4147848x4 + 1627128x2 + 59049 ,

PIm z2(y) = 7792y12 + 4320y11 + 26256y10 + 16832y9 + 62032y8 + 107504y7 + 70872y6

+ 37872y5 + 14172y4 + 19880y3 + 4900y2 − 1372y − 2401 , (3.6)

PRe z3(x) = 16x17 + 96x16 + 496x15 + 672x14 + 456x13 − 1584x12 − 1384x11 − 816x10

+ 1388x9 − 1512x8 + 462x7 + 2028x6 + 537x5 + 810x4 − 819x3 − 639x2

− 180x− 27 ,

PIm z3(y) = 768y24 − 48128y22 + 1018112y20 − 2517248y18 + 4496192y16 − 8476736y14

+ 7496864y12 − 8223008y10 + 4957568y8 − 1487120y6 + 233460y4

− 18900y2 + 675 . (3.7)

Polynomials PRe za(x) and PIm za(y), a = 1, 2, have precisely two real roots, ±x∗a, and

one real root, y∗a, respectively, such that za = x∗a + i y∗a, x
∗
a, y
∗
a > 0, lie in the unit disk.

Similarly, PRe z3(x) and PIm z3(y) have one real root, x∗3, and two real roots, ±y∗3, y∗3 > 0,

with |z∗3 | < 1. Then

(z∗1 , z
∗
2 , z
∗
3) , (−z∗1 ,−z∗2 , z∗3) , (z̄∗1 , z̄

∗
2 , z̄
∗
3) , (−z̄∗1 ,−z̄∗2 , z̄∗3) , (3.8)

7Since such “conjugate” critical points have the same values of the potential and the same mass spectra

of fluctuations around them, they were identified as a single point in the numerical searches [1, 20].
8See, section 5. In appendix E.1, we also give the minimal polynomials for the complex coordi-

nates (3.5)–(3.7).
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are the four solutions to (3.1) that we found above in (3.3). By acting on these solutions

with the SO(8) rotation gC defined in (C.3), we obtain 4 additional solutions that exhaust

the critical points of the potential (2.17) with this critical value. Those 8 critical points

of (2.17) represent two different critical points of the N = 8 supergravity.

The exact value of the potential at these critical points is given by the negative real

root of the following polynomial [1],

515 v12 − (28 · 34 · 7 · 53 · 107 · 887 · 1567) v8 + (215 · 317 · 210719) v4 − 220 · 330 = 0 . (3.9)

The mass spectra of the fermion and scalar fluctuations of N = 8 supergravity are the

same around each of the points and have been obtained as part of the numerical search

in [1]. Those results are summarized in tables 4, 6 and 3 in appendix B. In particular, the

presence of a single unit mass gravitino mode in the spectrum shows that there is N = 1

unbroken supersymmetry. In appendix B we also find the masses of the fluctuations of the

vector fields, which allows us to verify explicitly that the entire spectrum of operators in

the dual three-dimensional superconformal field theory can be arranged into multiplets of

the N = 1 superconformal algebra, osp(1|4). This provides a nontrivial consistency test

for the calculation of the spectra and of the unbroken supersymmetry.

4 All critical points of the truncated potential

Although the truncated potential (2.17) can be written in a closed analytic form, to deter-

mine all of its critical points we have to resort to numerical methods outlined in section 5.

Here, we summarize the results of that search, which yielded critical points with 15 differ-

ent values of the cosmological constant, including the two new ones that were not captured

by the search in [1].

Given a critical point at (z1, z2, z3), the reality of the potential implies that there is

another (conjugate) critical point at (z̄1, z̄2, z̄3). In appendix C, we argue that unless z3 is

real, the two points are not related by an SO(8) rotation and thus represent two distinct

critical points of the potential in the N = 8 supergravity. In addition, we show that each

point in the coset (2.11) lies on an orbit of the discrete subgroup of SO(8) that preserves

the coset. This discrete subgroup is generated by the rotations gH and gC defined in (C.3).

Generically, the corresponding orbit through a point (z1, z2, z3) consists of 4 points:

(z1, z2, z3) , (−z1,−z2, z3) , (z̄1, z̄2, z3) , (−z̄1,−z̄2, z3) , (4.1)

obtained by applying the rotations 1, gH , gC and gHgC , respectively. Clearly, when z1

and z2 (z1z2 6= 0) are both either real or imaginary, that orbit degenerates to just two

points. For some points we also find additional discrete SO(8) rotations (C.1) that preserve

the coset (2.11) at that particular point giving rise to additional critical points of the

potential (2.17).

The end result is that for each critical value of the potential (2.17) at (z1, z2, z3),

there are either two orbits or a single orbit of critical points, namely (4.1) and its complex
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conjugate, or just (4.1) when z3 is real. In N = 8 supergravity those SO(8) orbits corre-

spond two “conjugate” critical points, Sn1 . . . n7 and Sn1 . . . n7, or a single point, Sn1 . . . n7,

respectively.

All points in this section have at least an SO(3) symmetry, which is the continuous

symmetry of the truncation. We should note that there are other critical points in [1] that

are SO(3)-invariant: S0847213, S1075828, S1195898, S1271622, S2503105 . However, their

symmetry is incompatible with the symmetry of our truncation since it corresponds to a

different embedding of SO(3) in SO(8).

In the following we list all the critical points of the potential (2.17). For each point

we give its location, the value of the potential, the continuous symmetry, and the SO(8)

rotations for the orbit(s). All but two of those points were discovered in previous searches

as indicated by the references where they first appeared. For all but two points the location

and the critical value of the potential are known in either a closed analaytic form or via a

minimal polynomial. In some cases where the explicit analytic form is too involved, we do

not list it in the text.

The mass spectra of scalar fluctuations around the known points can be found in [1].9

For the two new points, the mass spectra are given in appendix D. Perhaps unsur-

prisingly, the only perturbatively stable points, that is with the scalar masses satisfy-

ing the Breitenlohner-Freedman bound [38], are the supersymmetric ones and the non-

supersymmetric SO(3) × SO(3)-invariant point, S1400000. In particular, both new points

are perturbatively unstable. Overall, for the solutions S0668740, S0698771, S0800000, and

S1424025, all instabilities in this truncation are due to modes that are not SO(3) singlets

and thus can be seen only within the full N = 8 supergravity. For the SU(4)-invariant

solution S0800000 this observed previously in [35].

4.1 The critical points

S0600000 [2]

z1 = z2 = z3 = 0 , (4.2)

P = −6 . (4.3)

Symmetry: SO(8), N = 8. Orbit: 〈1〉.

S0668740 [39]

z1 = −z2 = −z3 =
1

2

(
3 +
√

5−
√

10 + 6
√

5

)
≈ 0.1985088 , (4.4)

P = −2 · 53/4 ≈ −6.687403 . (4.5)

Symmetry: SO(7)+ , N = 0. Orbit: 〈1, gH〉 .

PRe z1,2,3(x) = x4 + 6x3 + 6x2 + 6x+ 1 . (4.6)

9Also, see earlier work referred to in [1].

– 10 –



J
H
E
P
0
1
(
2
0
2
0
)
0
9
9

S0698771 & S0698771 [40, 41]

z1 = −z2 = −z3 = −i(2−
√

5) ≈ 0.2360680i , (4.7)

P = −55/2

8
≈ −6.987712 . (4.8)

Symmetry: SO(7)− , N = 0. Orbits: 〈1, gH〉.

PIm z1,2,3(x) = x2 + 4x− 1 . (4.9)

S0719157 & S0719157 [5]

z1 = −z2 = −z3 =
1

4

(
3 +
√

3− 31/4
√

10
)(

1− i 3−1/4

√
2 +
√

3

)
(4.10)

≈ 0.1425648 + 0.2092695 i ,

P = −27/2 · 313/4

55/2
≈ −7.191576 . (4.11)

Symmetry: G2, N = 1 . Orbits: 〈1, gH , gC , gHgC〉 .

PRe z1,2,3(x) = 8x4 + 24x3 + 24x2 + 24x+ 3 ,

PIm z1,2,3(x) = 64x8 − 704x6 + 240x4 − 32x2 + 1 .
(4.12)

S0779422 [4]

z1 = −z2 = i

√
5− 2

√
6 ≈ 0.3178372 i , z3 =

√
3− 2 ≈ −0.2679492 , (4.13)

P = −9
√

3

2
≈ −7.794229 . (4.14)

Symmetry: SU(3)×U(1) , N = 2 . Orbit: 〈1, gH〉 .

PIm z1,2(x) = x4 − 10x2 + 1 , PRe z3(x) = x2 + 4x+ 1 . (4.15)

S0800000 [4]

z1 = −z2 = i (
√

2− 1) ≈ 0.4142136 i , z3 = z̄3 = 0 , (4.16)

P = −8 . (4.17)

Symmetry: SU(4) , N = 0 . Orbit: 〈1, gH〉 .

PIm z1,2(x) = x2 + 2x− 1 . (4.18)

S0869597 [20]

z1 = i

√
9 + 2

√
21− 2

√
41 + 9

√
21 ≈ 0.1659702i ,

z2 =
i

67

√
7521 + 738

√
21− 2

√
11962961 + 2775249

√
21 ≈ 0.4641278i , (4.19)

z3 =
1

4

(
− 1−

√
21 +

√
2
(

3 +
√

21
))
≈ −0.4220824 ,

P = −4

5

√
54 + 14

√
21 ≈ −8.695969 . (4.20)
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Symmetry: SO(3)×U(1) , N = 0 . Orbit 〈1, gH〉 .

PIm z1(x) = x8 − 36x6 − 10x4 − 36x2 + 1 ,

PIm z2(x) = 4489x8 − 30084x6 + 49190x4 − 30084x2 + 4489 ,

PRe z3(x) = x4 + x3 − 3x2 + x+ 1 .

(4.21)

S0880733 [14]

z1 = z2 = i

√
3 + 2

√
3− 2

√
5 + 3

√
3 ≈ 0.2789600i ,

z3 = −1

2
+

31/4

√
2
−
√

3

2
≈ −0.435421 , (4.22)

P = −2

√
9 + 6

√
3 ≈ −8.807339 . (4.23)

Symmetry: SO(4) , N = 0 . Orbit: 〈1, gH , gR, gHgR〉 .

PIm z1,2(x) = x8 − 12x6 − 10x4 − 12x2 + 1 ,

PRe z3(x) = x4 + 2x3 + 2x+ 1 .
(4.24)

S0983994 & S0983994 [20]

z1 ≈ 0.184246 , z2 ≈ 0.5073269 , z3 ≈ 0.1331835 + 0.4676097 i , (4.25)

P = −5 · 151/4 ≈ −9.839948 . (4.26)

Symmetry: SO(3)×U(1) , N = 0 . Orbits: 〈1, gH〉 .

PRe z1(x) = x8 − 28x6 − 42x4 − 28x2 + 1 ,

PRe z2(x) = 289x8 − 1372x6 + 1302x4 − 1372x2 + 289 ,

PRe z3(x) = 1397x4 − 2380x3 + 4350x2 − 2380x+ 245 ,

PIm z3(x) = 1951609x8 − 12150144x6 + 22045824x4 − 17915904x2 + 2985984 .

(4.27)

S1039230 & S1039230 [25]

z1 = z2 =

√
5− 2

√
6 ≈ 0.3178372 , z3 = −i

√
2−
√

3 ≈ −0.517638i , (4.28)

P = −6
√

3 ≈ −10.39230 . (4.29)

Symmetry: SO(4) , N = 0 . Orbits: 〈1, gH , g′R, gHg′R〉 .

PRe z1,2(x) = x4 − 10x2 + 1 , PIm z3(x) = x4 − 4x2 + 1 . (4.30)

S1384096 & S1384096 [1]

z1 ≈ 0.1696360 + 0.1415740 i ,

z2 ≈ 0.4833214 + 0.3864058 i , (4.31)

z3 ≈ −0.3162021− 0.5162839 i ,

P ≈ −13.840964 . (4.32)
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Symmetry: SO(3) , N = 1 . Orbit: 〈1, gH , gC , gHgC〉 .

Comment: see section 3.

S1400000 [3]

z1 = z2 =
1

2
(1 + i)

√
3−
√

5 ≈ 0.4370160(1 + i) , z3 = z̄3 = 0 , (4.33)

P = −14 . (4.34)

Symmetry: SO(3)× SO(3) , N = 0 . Orbit: 〈1, gH , gC , gHgC〉 .

PRe z1,2(x) = PIm z1,2(x) = 4x4 − 6x2 + 1 . (4.35)

Comment: this point is non-supersymmetric, but perturbatively stable [14].

S1424025 [20]

z1 ≈ 0.4490422 + 0.4843455 i ,

z2 ≈ 0.3750597 + 0.2850151 i , (4.36)

z3 ≈ −0.04539020 ,

P ≈ −14.24026 . (4.37)

Symmetry: SO(3) , N = 0 . Orbit: 〈1, gH , gC , gHgC〉 .

Comment: coordinates are known algebraically, cf. appendix E.2.

S2096313 & S2096313

z1 = −i (2−
√

5) ≈ 0.2360680 i ,

z2 = − i
2

(1−
√

5) ≈ 0.6180340 i , (4.38)

z3 =
2

41

(
15− 2

√
5
)
− i

41

√
21
(

49− 12
√

5
)
≈ 0.5135543− 0.5262366 i ,

P = −75

8

√
5 ≈ −20.96314 . (4.39)

Symmetry: SO(3)×U(1) , N = 0 . Orbits: 〈1, gH〉 .

PIm z1(x) = x2 − 4x− 1 , PIm z2(x) = x2 − x− 1 ,

PRe z3(x) = 41x2 − 60x+ 20 , PIm z3(x) = 1681x4 − 2058x2 + 441 .
(4.40)

S2443607 & S2443607

z1 ≈ 0.2187103 + 0.1800635 i ,

z2 ≈ −0.2046730 + 0.4973759 i , (4.41)

z3 = 0.4188443− 0.6668735 i ,

P ≈ −24.43607 . (4.42)
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Symmetry: SO(3) , N = 0 . Orbits: 〈1, gH , gC , gHgC〉 .

Comment: coordinates are known algebraically, cf. appendix E.2.

4.2 Subtruncations

The locations of the critical points above suggest a number of futher truncations to simpler

subsectors. In particular we have the G2-invariant truncation, which in the parametrization

used in [42] is obtained by setting

z1 = −z2 = −z3 = z. (4.43)

The superpotential and the Kähler potential reduce then to

WG2 = z7 + 7z4 + 7z3 + 1 , KG2 = −7 log(1− zz̄) . (4.44)

Within this truncation one finds 6 critical points: the SO(8) point, S0600000, the SO(7)+

point, S0668740, the SO(7)− points, S0698771 and S0698771, and the G2 points, S0719157

and S0719157.

Other simple truncations to one complex scalar field are the SO(4) × SO(4)-invariant

truncation obtained by setting

z1 = z3 = 0 , z2 = z , (4.45)

with

WSO(4)×SO(4) = 1 , KSO(4)×SO(4) = − log(1− zz̄) , (4.46)

and the SU(3)×U(1)2-invariant truncation

z1 = z2 = 0 , z3 = −z , (4.47)

with

WSU(3)×U(1)2 = z3 + 1 , KSU(3)×U(1)2 = −3 log(1− zz̄) . (4.48)

Although there are no critical points other than the maximally supersymmetric S0600000

one, those truncations admit nontrivial generalizations of the RG flows dual to three di-

mensional field theories with interfaces [42].

5 Numerical searches — an outline of the method

The TensorFlow code that was published alongside [1] is readily adapted to search for

critical points not on the full 70-dimensional scalar manifold but on submanifolds that

are invariant under some residual symmetry, such as the six-dimensional space studied

here. As for the unconstrained problem, one starts from some random linear combination

of the six E7(7) generators that is sufficiently close to the origin for the numerical value

of the potential to still be reliable, and then numerically minimizes the violation of the

(un-truncated) stationarity-condition.
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This way, one manages to discover all the critical points on the scalar manifold listed

in section 4.1 after about 10 000 such iterations. We observe that some tweaks to the

code as published can improve search efficiency further. In particular, it turns out to

be beneficial to not use a second order numerical optimization method (such as BFGS)

directly, but to first perform a few hundred gradient descent steps per iteration before

switching to such a more advanced method. Intuitively, if a second order optimization

method gets to see from the start a sum of stationarity-violation contributions having very

different scale, it will tend to be mostly sensitive to the most important contribution’s

second order approximation and hence in its first few steps move to very similar positions

on the manifold, counteracting the need for good exploration.

Even with such tricks, the TensorFlow based search is fundamentally only a probabilis-

tic method that converges to the various critical points with very uneven likelihood. So, it

might be conceivable that, even with much computational effort, some critical points re-

main undiscovered. It hence makes sense to look for alternative approaches to the problem

of finding critical points of algebraic functions (or, equivalently, intersections of algebraic

varieties) on spaces of moderate dimension.

While simple techniques based on interval arithmetic or affine arithmetic appear too

limited to conveniently study the restricted six-dimensional potential at hand, this problem

is still well within reach of modern computational algebraic geometry.

For a task like this, one will typically want to first employ a modern computational

algebraic geometry package such as [43] to reduce/factorize the problem, and then use

an adaptive-precision homotopy continuation solver such as Bertini2 [44] that uses the

algorithm described in [45] to systematically find solutions of the generalized problem with

complex coordinates. These solutions then have to be filtered, discarding all those with

non-real coordinates. Depending on the difficulty of the task, computations may take

hours to days with Bertini2, and while this approach might hypothetically still miss some

solutions, this is not observed to happen in practice.

These numerical algebraic geometry methods found the same list of critical points for

our six-scalar model as the TensorFlow based search. We also note that for the eight-

dimensional scalar manifold studied in [46], the same numerical methods manage to repro-

duce the list of critical points presented in that publication without uncovering additional

ones.10

For all critical points listed in section 4, one can obtain algebraic expressions for their

location, the potential, and other physical properties via inverse symbolic computation (i.e.

employing the PSLQ algorithm). However, for S1424025 and S2443607, these expressions

become rather lengthy.

6 Holographic RG flows

The truncation derived in section 2 makes it feasible to study explicitly supersymmetric

holographic RG flows to the new N = 1 critical point. For other supersymmetric critical

points that lie within our truncation such flows have been constructed previously in [47–51].

10We thank Jonathan Hauenstein for performing these calculations.
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Point δα

S0600000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

S0719157 3.44949 1.40825 1.40825 0.591752 0.591752 −1.44949

S0779422 3.56155 2.56155 1.33333 0.666667 −0.561553 −1.56155

S1384096 4.80254 3.71632 1.25126 0.748735 −1.71632 −2.80254

Table 1. Asymptotic exponents, δα, at the four supersymmetric critical points.

The RG flows we are interested in are given by domain wall solutions of the BPS

equations in N = 8 d = 4 supergravity with the metric of the form

ds2 = e2A(r)ds2
1,2 + dr2 , (6.1)

where ds2
1,2 is the metric on the three-dimensional Minkowski space. Setting the super-

symmetry variations of the supergravity fermion fields to zero, the standard analysis, see

e.g. [51], yields the following system of BPS equations:

z′a(r) = ∓
√

2 g eK/2Kab̄ W
|W|
∇b̄W , z̄′b̄(r) = ∓

√
2 g eK/2Kab̄ W

|W|
∇aW , (6.2)

A′(r) = ±
√

2 g |W| , (6.3)

for the dependence of the scalar fields, za and z̄a, and the metric function, A, on the

radial coordinate.11 In an N = 1 theory these equations are completely determined by the

Kähler potential and the superpotential of the truncated model as indeed they are in (6.2)

and (6.3). The choice of sign in (6.2) reflects the freedom to choose the sign of the radial

coordinate r in (6.1). In the calculations below we choose the upper sign in (6.2).

It follows from the discussion in sections 3 and 4 that the system of ODEs (6.2) has

critical points at the SO(8) vacuum S0600000, the G2 vacua S0719157, the SU(3)× U(1)

vacuum S0779422, as well as the new N = 1 SO(3) vacuum S1384096. The expectation

is that there should be a web of domain wall solutions corresponding to RG flows between

the superconformal fixed points of the dual ABJM theory. Indeed, in a simpler setting that

included the first three points only, families of such flows were constructed explicitly in [51].

To study these domain wall solutions it proves convenient to split the complex scalar

fields, za, into their real and imaginary parts, za = xa + i ya, a = 1, 2, 3. At each critical

point, the real fields, (x1, y1), (x2, y2) and (x3, y3), collectively denoted by φα, α = 1, . . . , 6,

have the asymptotic expansions

φα(r) =
6∑

β=1

Aαβ e
−δβr/L + . . . , L2 = − 3

P
, (6.4)

where L is the radius of the corresponding AdS4 solution determined by the value of the

potential P at a given critical point. The exponents δα are related to the scaling dimensions,

11As usual, a prime denotes a derivative with respect to r.
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∆α, of the dual operators by

δα = ∆α or δα = 3−∆α . (6.5)

The BPS equations (6.2) can be integrated numerically and, as expected, we find fam-

ilies of domain wall solutions interpolating between the SO(8) vacuum and the new SO(3)

vacuum. Examples of such solutions are shown in the middle column in figure 1. There are

also finely tuned solutions that realize holographically a “triangular RG flow” starting from

the SO(8) vacuum in the UV, approaching one of the two G2 vacua and then ultimately

ending in the SO(3) vacuum in the deep IR. Plots of those flows are shown in the left and

right columns in figure 1. Similarly, there are supersymmetric triangular RG flows, see fig-

ure 2, interpolating between the SO(8), the SU(3)×U(1), and the G2 critical points. Those

solutions were first studied in [51] and are also present within the consistent truncation here.

However, using a simple shooting method we were not able to find similar triangular

RG flows involving the SO(8), the SU(3) × U(1), and the SO(3) points or for that matter

all four supersymmetric points. Indeed, a more exhaustive numerical search using Machine

Learning, to be discussed elsewhere, strongly suggests that such RG flows do not exist

within our 6-scalar SO(3)×Z2-invariant truncation. Still, we suspect that those flows might

exist within a larger truncation, perhaps the Z2 × Z2 × Z2-invariant truncation discussed

in section 7, whose remarkable properties make it a compelling candidate to look at.

To interpret this web of RG flows in the dual ABJM SCFT, it is convenient to employ

the N = 1 superspace language and, using the same notation as in [51], consider the

following combinations of the eight chiral superfields,

Z̃a = Φ2a−1 + iΦ2a , a = 1, 2, 3, 4 . (6.6)

Then the deformation of the ABJM superpotential,

∆W =
1

2
m3

(
Z̃2

1 + Z̃2
2 + Z̃2

3

)
+

1

2
m7Φ2

7 +
1

2
m8Φ2

8 . (6.7)

breaks the conformal invariance of the ABJM theory, but preserves N = 1 supersymmetry.

For general values of the mass parameters m3, m7 and m8, the deformation preserves the

SO(3) symmetry. The structure of the holographic RG flows above suggests that the IR

dynamics of this model is controlled by a new interacting N = 1 SCFT, which is the field

theory dual of the new N = 1 vacuum S1384096. Note that for m3 = 0 we recover the RG

flows to the G2 and SU(3)×U(1) critical points discussed in [51].

7 A Z2 × Z2 × Z2-invariant truncation

A lesson one should draw from the construction of the critical point S1384096 above, as

well as from a similar construction in [14] of the N = 1 supersymmetric critical point,

S1200000, which is not captured by our truncation, is that discrete symmetries may lead

to simple, explicit truncations of the N = 8 supergravity that are accessible analytically.

In both of these constructions, the scalar manifold of the truncated theory is simply a

product of three Poincaré disks, SU(1, 1)/U(1). One may note that the same coset arises
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Figure 1. Numerical solutions to the BPS equations for RG flows from the SO(8) point to the

SO(3) point. The generic flows (middle column) asymptote to flows through the G2 point (side

columns). The top row shows the flows in the superimposed z1, z2 and z3-planes. The colored dots

represent the supersymmetric critical points: SO(8) (black), G2 (green), SU(3) × U(1) (orange),

and SO(3) (red). The middle row gives the radial dependence of the real scalars, x1, . . . , y3. The

bottom row gives A′ along the flows, which asymptotes to a constant that depends on the radius

of the AdS4 vacuum.
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Figure 2. The RG-flow from the SO(8) point to the SU(3) × U(1) point asymptotic to the G2

point.
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in the so-called STU-model with a particularly simple superpotential [52]. Observing that

in our construction, two of the three SU(1, 1) factors are embedded non-regularly into

E7(7), it seems suggestive to try interpreting the subspace studied here as originating from

a collapsing of roots, starting from the maximal number of regularly embedded SU(1, 1)’s.

Both the enlargement of SU(1, 1) × SU(1, 1) to G2(2) when dropping the Z2 symmetry

(which is obtained from SO(8) by collapsing three roots) as well as the coefficients in the

Kähler potential (2.15) suggest that one should look for a regular embedding of SU(1, 1)×7

into E7(7). The remarkable properties of this subgroup have been discussed in the context of

qubit entanglement and black holes, cf. [53] and subsequent research, with a comprehensive

review in [54], “curious supergravities” [55] and cosmology [56].

It turns out that an N = 1 supersymmetric truncation with the scalar manifold given

by the product of 7 Poincaré disks, [
SU(1, 1)

U(1)

]7

, (7.1)

can be obtained using a discrete Z2 × Z2 × Z2 ⊂ SO(8) symmetry. It can be constructed

explicitly as follows.

Consider the S ≡ Z2 × Z2 × Z2 group generated by the following SO(8) rotations:

g1 = diag (1, 1, 1, 1,−1,−1,−1,−1) ,

g2 = diag (1, 1,−1,−1, 1, 1,−1,−1) ,

g3 = diag (1,−1, 1,−1, 1,−1, 1,−1) ,

(7.2)

in 8v. The non-identity elements of this group are naturally labelled by the 7 points on

the Fano plane (see, e.g., [57])

h1 = g1, , h2 = g2 , h3 = g3 , h4 = g1g2 , h5 = g2g3 h6 = g3g1 , h7 = g1g2g3 ,

(7.3)

such that the product along each line is the identity. It is straightforward to verify explicitly

that the Lie subalgebra of e7(7) invariant under S is precisely su(1, 1)⊕7, with the compact

generators, ha, of u(1)⊕7 given by the matrices ha = i ha, a = 1, . . . , 7 in (7.3). Note that

the generators hj are orthogonal to so(8) in su(8). Since each su(1, 1) corresponds to a

complex scalar field in the truncation, there is a natural identification of the resulting 7

complex scalars, ζa, with the points on the Fano plane,

ζa ←→ ha = i ha , a = 1, . . . , 7 . (7.4)

As in section 2, the superpotential can be read off from the eigenvalue of the A1
ij tensor

along the unbroken supersymmetry. A direct calculation yields the result

WZ3
2

= ζ1ζ2ζ3ζ4ζ5ζ6ζ7

+ ζ1ζ2ζ3ζ7 + ζ1ζ2ζ5ζ6 + ζ1ζ3ζ4ζ5 + ζ1ζ4ζ6ζ7 + ζ2ζ3ζ4ζ6 + ζ2ζ4ζ5ζ7 + ζ3ζ5ζ6ζ7

+ ζ1ζ2ζ4 + ζ1ζ3ζ6 + ζ1ζ5ζ7 + ζ2ζ6ζ7 + ζ2ζ3ζ5 + ζ3ζ4ζ7 + ζ4ζ5ζ6 + 1 ,

(7.5)
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where each cubic term, together with the complementary quartic term,12 corresponds to

one of the 7 lines in the Fano plane.

Even more remarkably, the terms in this polynomial match the 16 code words in

the single-error-correcting (7, 4) Hamming code [58]. This particular binary code encodes

each of the 16 possible 4-bit messages 0000, 0001, 0010, . . . , 1111 as a different 7-bit code

word in such a way that for each of the 7-bit code words, flipping an arbitrary single

bit still always allows reliable reconstruction of the original message. Due to Fano plane

symmetry, the group of bit-permutations that leaves the Hamming code invariant is the

simple group PSL(2,F7) ' GL(3,F2) of order 168.

The (7, 4) Hamming code is sometimes also called the (7, 4, 3) Hamming code,

since changing one code word into another code word requires flipping at least

three bits. This code is not self-dual. Its dual, i.e. the set of all code words

of length seven that have zero inner product (in F2) with the (7, 4, 3) Hamming

code, form the less well known (7, 3, 4) “little Hamming code” that (with our im-

plicit conventions for labeling the Fano plane vertices) consists of the eight code

words 0000000, 0010111, 0101101, 0111010, 1001011, 1011100, 1100110, 1110001. The set of

points in Z7 whose coordinates are modulo-2 congruent to these eight code words form

the E7 lattice. Concretely, the first ‘shell’ of equidistant-from-origin points appears at

distance-squared 4 and has 126 elements that correspond to the roots of E7. Performing

the same construction with the (7, 4, 3) Hamming code rather than its dual (7, 3, 4) little

Hamming code gives not the E7 root lattice, but its dual E∗7 weight lattice: the first shell

of equidistant-from-origin points here appears at distance-squared 3 and has 56 elements.

One notes that adding a parity bit to the (7, 4) Hamming code produces the self-

dual (8, 4) Hamming code, which the above construction gives rise to the self-dual E8 lattice.

Considering that the maximal subgroup embedding E7(7) × SL(2) ⊂ E8(8) gives rise to an

eighth hyperbolic disc, it seems natural to speculate that maximal gauged three-dimensional

supergravity may have a corresponding (8, 4) Hamming code superpotential [59].

From the kinetic terms, or equivalently from the same embedding indices of su(1, 1)’s

in e7(7), we find the canonical Kähler potential

K = −
7∑

a=1

log(1− ζaζ̄a) . (7.6)

This completely specifies the truncation with the scalar potential in this sector given

by (2.17).

One can check that all truncations of interest with fewer SU(1, 1)/U(1) factors can be

obtained by imposing additional continuous symmetry with respect to some subgroup of

SO(8). This amounts to setting some scalars equal (up to a sign) and/or setting them to

zero. For example, the truncation discussed in this paper can obtained by setting

ζ1 = −z2 , ζ2 = ζ6 = ζ7 = −z3 , ζ3 = ζ4 = ζ5 = z1 , (7.7)

12Complementary terms are defined by their product given by ζ1ζ2 . . . ζ7.
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S0600000 S0668740 S0698771 S0719157 S0779422 S0800000

S0847213 S0869596 S0880733 S0983994 S1006758 S1039230

S1046017 S1067475 S1068971 S1075828 S1165685 S1200000

S1301601 S1362365 S1366864 S1384096 S1384135 S1400000

S1424025 S1470986 S1473607 S1477609 S1497038 S1571627

S1600000 S1637792 S1637802 S1650772 S1652212 S1805269

S1810641 S2096313 S2099077 S2140848 S2389433 S2443607

S2457396 S2519962 S2547536 S2702580 S2707528 S3305153

Table 2. The critical points in the Z3
2-invariant sector.

upon which WZ3
2

reduces to (2.18) and the Kahler potential (7.6) to (2.15). Similarly, the

SO(2)× SO(2)× Z2 × Z2-invariant truncation in [14] is obtained by setting

ζ1 = ζ3 = i ξ1 , ζ2 = ζ7 = 0 , ζ4 = ζ5 = ξ2 , ζ6 = ξ0 , (7.8)

where ξi are the scalar fields in [14]. Finally, the superpotential of the STU model is

obtained by keeping just one cubic term, for example by setting

ζ3 = ζ5 = ζ6 = ζ7 = 0 . (7.9)

A preliminary numerical search has revealed 48 critical points listed in table 2.13 As ex-

pected, those points include all 5 supersymmetric points: S0600000, S0719157, S0779422,

S1200000, S1384096, and the non-supersymmetric stable point, S1400000. It is clear that

this truncation should be the natural arena to study the holographic RG flows between the

supersymmetric critical points and to look for the interplay between the structure of the

critical points and the underlying octonion structure in the truncation. For further details

we refer the reader to the follow up publication [60].

8 Conclusions

In this paper we presented an explicit construction of a new AdS4 vacuum of N = 8 super-

gravity which preservesN = 1 supersymmetry. We also discussed the spectrum of all super-

gravity fields around this vacuum and its relation to operators in the holographically dual

CFT. Moreover, we constructed numerical holographic RG flow solutions which interpolate

between this new vacuum and other supersymmetric vacua of the N = 8 supergravity.

One interesting outcome of combining an explicit analytic truncation with the nu-

merical methods using TensorFlow or Bertini2 is a discovery of two additional non-

supersymmetric and perturbatively unstable AdS4 vacua that were not identified in the

numerical search in [1]. A possible explanation is that the numerical algorithms in [1] were

applied to the full 70-dimensional scalar manifold of the N = 8 supergravity whereas here

13We thank Fridrik Freyr Gautason for an independent calculation of these points.
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the search could be restricted to a simpler and explicitly known potential that depends on

6 scalars only. This also points to a possible strategy for refining the numerical search by

restricting it to scalar submanifolds that are invariant under continuous and/or discrete

symmetries of the points that had been found already.

Out of all known AdS4 vacua in the N = 8 supergravity there are only 6 that are

perturbatively stable. The SO(3) × Z2 supergravity truncation discussed in this paper

contains 5 of these vacua. The one not included is the U(1)×U(1) N = 1 vacuum studied

in [14, 19]. The larger truncation with 14 scalar fields presented in section 7 contains

all 6 perturbatively stable AdS4 vacua and therefore is a natural starting point for the

study of explicit holographic RG flows between them. In fact, by imposing additional U(1)

symmetry, one may further truncate to 10 scalar fields, while preserving all the interesting

critical points. At the end such an analysis will elucidate the phase structure of the ABJM

SCFT and will provide a rich testing ground for the “µ-theorem” discussed in [61].

The results presented here and in [1] suggest that one should apply similar techniques to

investigate the vacuum structure of other maximal supergravity theories using an amalgam

of analytic and numerical methods. Two particularly interesting examples which can be

embedded in string theory and have well-understood holographic duals are the N = 8

ISO(7) gauged four-dimensional supergravity [23, 62, 63] and the maximal five-dimensional

SO(6) gauged supergravity. We expect to report some preliminary results shortly [64].
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A Some group theory

We use the convention in which the gravitino, ψµ
i, transforms in 8v, the spin-1/2 fermions

are in the 56v while the scalars and the pseudoscalars in 35+ = 35s and 35− = 35c repre-

sentations of so(8). The metric is neutral under so(8) and the gauge field is in the adjoint.

The commutant of the so(3) ' su(2) symmetry algebra in so(8) is u(1)×u(1). It arises

from the following chain of maximal subalgebras:

so(8) ⊃ su(4)× u(1)2 ⊃ su(3)× u(1)1 × u(1)2 ⊃ su(2)× u(1)1 × u(1)2 . (A.1)
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The corresponding branchings of the so(8) representations relevant for our analysis are

as follows:14

8v −→ 41 + 4̄−1 −→ 31,1 + 1−3,1 + 3̄−1,−1 + 13,−1

−→ 31,1 + 1−3,1 + 3̄−1,−1 + 13,−1 .
(A.2)

For the vectors, the branching is

28 −→ 150 + 62 + 6−2 + 10

−→ 80,0 + 34,0 + 3̄−4,0 + 10,0 + 3−2,2 + 3̄2,2 + 3−2,−2 + 3̄2,−2 + 10,0

−→ 50,0 + 30,0 + 34,0 + 3−4,0 + 10,0 + 3−2,2 + 32,2 + 3−2,−2 + 32,−2 + 10,0 .

(A.3)

For the scalars we have

35s −→ 20′0 +62 +6−2 +14 +10 +1−4

−→ 6̄−4,0 +80,0 +64,0 +3−2,2 + 3̄2,2 +3−2,−2 + 3̄2,−2 +10,4 +10,0 +10,−4

−→ 5−4,0 +1−4,0 +50,0 +30,0 +54,0 +14,0 +3−2,2 +32,2

+3−2,−2 +32,−2 +10,4 +10,0 +10,−4 ,

(A.4)

and for the pseudoscalars we find

35c −→ 10−2 +150 +102

−→ 6̄2,−2 +3−2,−2 +1−6,−2 +80,0 +34,0 + 3̄−4,0 +10,0 +6−2,2 + 3̄2,2 +16,2

−→ 52,−2 +12,−2 +3−2,−2 +1−6,−2 +50,0 +30,0 +34,0 +3−4,0

+10,0 +5−2,2 +1−2,2 +32,2 +16,2 .

(A.5)

To determine the commutant of so(3) in e7(7) in (2.2), we also need

35v −→ 102 +150 +10−2

−→ 62,2 +3−2,2 +1−6,2 +80,0 +34,0 +3−4,0 +10,0 +6−2,−2 +32,−2 +16,−2

−→ 52,2 +12,2 +3−2,2 +1−6,2 +50,0 +30,0 +34,0 +3−4,0 +10,0

+5−2,−2 +1−2,−2 +32,−2 +16,−2 .

(A.6)

Finally for the spin-1/2 fields we have

56v −→ 20−1 +201 +41 + 4̄−1 +4−3 + 4̄3

−→ 6̄−1,−1 +83,−1 +3−5,−1 + 3̄−1,−1 +61,1 +8−3,1 + 3̄5,1 +31,1

+31,1 +1−3,1 + 3̄−1,−1 +13,−1 +31,−3 +1−3,−3 + 3̄−1,3 +13,3 (A.7)

−→ 5−1,−1 +1−1,−1 +53,−1 +33,−1 +3−5,−1 +3−1,−1 +51,1 +11,1 +5−3,1 +3−3,1

+35,1 +31,1 +31,1 +1−3,1 +3−1,−1 +13,−1 +31,−3 +1−3,−3 +3−1,3 +13,3 .

The singlets under so(3) are the metric, two Abelian gauge fields, 2 spin-3/2 fields, 10

scalars, and 6 spin-1/2 fields. This is precisely the matter contents of a four-dimensional

N = 2 gauged supergravity coupled to 1 vector multiplet and 2 full hypermultiplets.

14We use the same group theory conventions as in [65].

– 23 –



J
H
E
P
0
1
(
2
0
2
0
)
0
9
9

B The full spectrum of N = 8 supergravity

In this appendix we present the masses of all bosonic and fermionic fields of the four-

dimensional N = 8 supergravity around the SO(3) invariant N = 1 AdS4 vacuum,

S1384096, studied in the main text. The spectrum of the spin-0, spin-1/2, and spin-

3/2 fields and their SO(3) representations were already presented in [1] and is summarized

in table 3, table 4, and table 6, respectively. The spin-2 graviton is of course massless and

not charged under SO(3) and the spectrum and SO(3) representations of the spin-1 vector

fields are presented in table 5. The latter masses are computed using the general mass

formulae for spin-1 fields in [21].

Using the standard AdS/CFT dictionary, see [66] for a review, the spectrum of these

fields is mapped to the spectrum of operators in the dual N = 1 SCFT. The conformal

dimensions of the dual operators of spin s can be computed using formulae in table 7. We

use the dimensionless mass mL of the supergravity fields, where L is the AdS4 scale. We

have also indicated a reference where the derivation of each of the formulae can be found.

To understand how the spectrum of supergravity excitations maps to operators in the

dual three-dimensional N = 1 SCFT it is useful to recall some aspects of the representation

theory of the N = 1 superconformal algebra, see [67] for a recent discussion. Operators

in the N = 1 SCFT are labelled by their conformal dimension ∆ and spin s and will

be denoted by |∆, s〉.15 These operators belong to one of the superconformal multiplets

summarized in table 8.

Using the information in tables 3–6 we can organize the spectrum of operators in the

N = 1 SCFT dual to the SO(3) AdS4 vacuum in the following superconformal multiplets:

• Short spin-3/2. This is simply the energy momentum multiplet which is neutral under

so(3) and contains the following operators

|5
2
,

3

2
〉 |3, 2〉 . (B.1)

The supergravity modes corresponding to these operators are the spin-3/2 mode in the

last line of table 6 and the metric.

• Short spin-1/2. This is the conserved so(3) current and contains the following operators

|3
2
,

1

2
〉 |2, 1〉 . (B.2)

The supergravity modes corresponding to these operators are in the 3 of so(3) and

correspond to the massless vector and spin-1/2 modes in table 5 and table 4, respectively.

15The authors of [67] label the operators with j = 2s.
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# m2L2 SO(3) irreps ∆

1∗ 16.26186 1 5.802541

1 16.09544 1 5.783158

1∗ 8.656777 1 4.802541

1 8.529126 1 4.783158

1∗ 8.094691 1 4.716316

3 5.322114 3 4.251747

3 5.182218 3 4.226210

5 3.817573 5 3.963244

1∗ 2.662058 1 3.716316

25 0 5⊕ 6× 3⊕ 2× 1 3

5 −0.108916 5 2.963244

5 −1.099493 5 2.572617

8 −1.396494 5⊕ 3 0.5761462 or 2.423854

1∗ −1.685601 1 0.7487353 or 2.251265

1∗ −2.188131 1 1.251265 or 1.748735

3 −2.244202 3 1.423854 or 1.576146

5 −2.244727 5 1.427383 or 1.572617

Table 3. Masses of the 70 supergravity scalars at the N = 1 SO(3)-invariant point, the cor-

responding SO(3) representations, and the conformal dimensions of the dual operators. The con-

formal dimensions are obtained using the standard AdS/CFT formula m2L2 = ∆(∆ − 3) and

choosing the root of this quadratic equation which obeys the unitarity bound ∆ ≥ 1/2. When

−9/4 ≤ m2L2 < 5/4 one has a choice of alternate quantization, see [68], and both possible confor-

mal dimensions are presented.

• Long spin-1. There are three such multiplets. We present all operators in them below

and indicate also the so(3) representations

|2.704760, 1〉 |3.204759,
1

2
〉 |3.204759,

3

2
〉 |3.704760, 1〉 , 3 ,

|2.783158, 1〉 |3.283158,
1

2
〉 |3.283158,

3

2
〉 |3.783158, 1〉 , 1 ,

|2.847013, 1〉 |3.347013,
1

2
〉 |3.347013,

3

2
〉 |3.847013, 1〉 , 3 .

(B.3)

The supergravity modes corresponding to these operators are the spin- 1
2 , spin-1, and

spin-3
2 modes of the corresponding dimension in table 4, table 5, and table 6, respectively.
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# m2L2 SO(3) irreps ∆

1 14.45932 1 5.302541

1 14.31228 1 5.283158

3 13.64583 3 5.194026

1 12.71861 1 5.066316

3 11.62481 3 4.909518

3 10.57386 3 4.751747

3 10.40843 3 4.726210

1 7.378374 1 4.216316

3 5.070367 3 3.751747

3 4.956009 3 3.726210

5 3.854328 5 3.463244

3 3.411457 3 3.347013

1 3.179652 1 3.283158

3 2.906203 3 3.204759

5 2.027360 5 2.923854

5 0.3278901 5 2.072617

8 0.1796520 5⊕ 3 1.923854

1 0.0631340 1 1.751265

3 0 3 3/2

Table 4. Masses of the 56 spin-1/2 supergravity fermions at the N = 1 SO(3)-invariant point, the

corresponding SO(3) representations, and the conformal dimensions of the dual operators.

# m2L2 SO(3) irreps ∆

3 7.322116 3 4.251748

3 7.182220 3 4.226210

3 5.258471 3 3.847013

1 4.962811 1 3.783158

3 4.610963 3 3.704760

3 1.564444 3 2.847013

1 1.396495 1 2.783158

3 1.201444 3 2.704760

5 0.603506 5 2.423854

3 0 3 2

Table 5. Masses of the 28 supergravity vector fields at the N = 1 SO(3)-invariant point, the

corresponding SO(3) representations, and the conformal dimensions of the dual operators.
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# m2L2 SO(3) irreps ∆

3 3.411457 3 3.347013

1 3.179652 1 3.283158

3 2.906203 3 3.204759

1∗ 1 1 5/2

Table 6. Masses of the 8 spin-3/2 supergravity fermions at the N = 1 SO(3)-invariant point, the

corresponding SO(3) representations, and the conformal dimensions of the dual operators.

Spin Dimension

0 ∆ = 3
2 ±

√
9
4 +m2L2 [66]

1
2 ∆ = 3

2 + |mL| [69]

1 ∆ = 3
2 ±

√
1
4 +m2L2 [70]

3
2 ∆ = 3

2 + |mL| [71, 72]

Table 7. Dimensions of operators dual to fields of spin, s, and mass, m.

Name Primary Descendants Unitarity bound

Identity (B1) |0,0〉 - ∆ = 0

Short scalar (A′2) |12 ,0〉 |12 ,
1
2〉 ∆ = 1

2

Short spin (A1) |s+1,s〉 |s+ 3
2 ,s+ 1

2〉 ∆ = s+1; s> 0

Long scalar (L′ ) |∆,0〉 |∆+ 1
2 ,

1
2〉; |∆+1,0〉 ∆> 1

2

Long spin (L) |∆,s〉 |∆+ 1
2 ,s+ 1

2〉; |∆+ 1
2 ,s−

1
2〉; |∆+1,s〉 ∆>s+1; s> 0

Table 8. The N = 1 superconformal multiplets. The first column indicates also the notation for

each multiplet used in [67].

• Long spin-1/2. There are three such multiplets. We present all operators in them below

and indicate also the so(3) representations

|3.751747,
1

2
〉 |4.251748, 1〉 |4.251747, 0〉 |4.751747,

1

2
〉 , 3 ,

|3.726210,
1

2
〉 |4.226210, 1〉 |4.226210, 0〉 |4.726210,

1

2
〉 , 3 ,

|1.923854,
1

2
〉 |2.423854, 1〉 |2.423854, 0〉 |2.923854,

1

2
〉 , 5 .

(B.4)

The supergravity modes corresponding to these operators are the spin-0, spin- 1
2 , and

spin-1 modes of the corresponding dimension in table 3, table 4, and table 5, respectively.
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• Long scalar. There are seven such multiplets. We present all operators in them along

with their so(3) representations below

|4.802541, 0〉 |5.302541,
1

2
〉 |5.802541, 0〉 , 1 ,

|4.783158, 0〉 |5.283158,
1

2
〉 |5.783158, 0〉 , 1 ,

|3.716316, 0〉 |4.216316,
1

2
〉 |4.716316, 0〉 , 1 ,

|2.963244, 0〉 |3.463244,
1

2
〉 |3.963244, 0〉 , 5 ,

|1.572617, 0〉 |2.072617,
1

2
〉 |2.572617, 0〉 , 5 ,

|1.423854, 0〉 |1.923854,
1

2
〉 |2.423854, 0〉 , 3 ,

|1.251265, 0〉 |1.751265,
1

2
〉 |2.251265, 0〉 , 1 .

(B.5)

The supergravity modes corresponding to these operators are the spin-0 and spin- 1
2

modes of the corresponding dimension in table 3 and table 4, respectively.

In addition to the modes discussed above it should be noted that due to the spontaneous

breaking of the N = 8 supersymmetry and the so(8) gauge symmetry of the supergravity

theory there are spin-0 and spin-1/2 modes that are “eaten” by the usual (super)Higgs

mechanism. These are the spin-1/2 modes in the 3rd, 4th and 5th line of table 4 as well

as the spin-0 mode in the 10th line of table 3.

It should also be noted that for spin-0 modes with mass in the range −9
4 ≤ m

2L2 < −5
4

there is an ambiguity in assigning a conformal dimension of the dual CFT operator. This

happens because for both choices of sign in table 7 ∆ obeys the unitarity bound. Invoking

supersymmetry however uniquely fixes the choice of sign in table 7 and we have chosen the

only possible sign that allows for organizing the bottom five entries in table 3 into N = 1

superconformal multiplets.

C Discrete SO(8) rotations

Consider the SO(3) subgroup of SO(8) introduced in section 2. It is straightforward to

check that any SO(8) rotation that commutes with this subgroup must be of the form

cosα 0 0 sinα 0 0 0 0

0 cosα 0 0 sinα 0 0 0

0 0 cosα 0 0 sinα 0 0

∓ sinα 0 0 ± cosα 0 0 0 0

0 ∓ sinα 0 0 ± cosα 0 0 0

0 0 ∓ sinα 0 0 ± cosα 0 0

0 0 0 0 0 0 cosβ sinβ

0 0 0 0 0 0 ∓ sinβ ± cosβ


. (C.1)
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Choosing the upper sign, we obtain the two parameter family of rotations, g(α, β),

corresponding to the U(1) × U(1) gauge group of the N = 2 supergravity of the SO(3)-

invariant truncation. For the lower sign, the rotations are given by

g(−α,−β + π) gS , (C.2)

where gS is the generator (2.9) of the discrete Z2 symmetry that defines our truncation.

Since the scalar fields sa, a = 1, . . . , 6, are by construction invariant under gS , any

residual nontrivial action of the SO(8) subgroup given in (C.1) on the coset (2.11) must

come from the U(1) × U(1) transformations that preserve (2.10). At a generic point in

the coset, this leaves a discrete Z2 × Z4 subgroup of SO(8) generated by gH ≡ g(0, π)

and gC ≡ g(π/2, π/2), which are elements of order 2 and 4, respectively. However, since

g2
C = g(π, π) acts trivially on the coset, we end up with only Z2 × Z2 worth of SO(8)

rotations that preserve the scalar manifold in the SO(3) × Z2-invariant truncation. Those

are generated by the transformations

gH : (z1, z2, z3) −→ (−z1,−z2, z3) ,

gC : (z1, z2, z3) −→ (−z̄1,−z̄2, z3) .
(C.3)

Hence any point in the coset lies on an SO(8) orbit obtained by acting on that point with 1,

gH , gC and gHgC . When both z1 and z2 are either real or imaginary, the orbit degenerates

to two points.

At special points of the coset there might be additional rotations, g(α, β), that

map it onto another point on the coset. In particular, this happens for two criti-

cal points, S0880733 and S1039230, in section 4, with the special rotations given by

gR ≡ g(−3π/4, π/4) and g′R ≡ g(−π/4, π/4), respectively.

While both rotations in (C.3) are obviously symmetries of the potential (2.17), only gH
preserves the superpotential (2.18). This is just the reflection of the fact that the second

transformation acts nontrivially on the supersymmetry by mapping the N = 1 supergravity

given by the SO(3) × Z2-invariant truncation to an equivalent one obtained by a different

discrete Z2 symmetry.

Finally, we note that 4-form Φ(3) in (2.6) is invariant under the transformations (C.1).

In particular, this implies that z3 is invariant under the discrete symmetries above.

D New critical points S2096313 and S2443607

In this appendix we present numerical data for the two new critical points, S2096313 and

S2443607, in the same format as in [1]. The parametrization of the scalar coset (2.11) in

terms of sa, a = 1, . . . , 6 introduced in section 2 is related to the one in [1] and in the tables
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below by:

A =
1

8
(2s1 + s5) , B =

1

8
(s1 − s3 + 2s5) , C =

1

8
(s5 − 2s1) ,

D =
1

8
(s1 − s3 − 2s5) , E = −s5

8
, F =

1

8
(−s1 − s3) , (D.1)

G =
1

8
(s2 + s4 − s6) , H =

1

8
(−s2 − s4 − s6) , I =

1

8
(−3s2 + s4 + 3s6) ,

J =
1

8
(3s2 − s4 + 3s6) ,

where the parameters A, . . . , J satisfy

A−B−E+F = 0 , B−D+4E = 0 , C+D−E−F = 0 , 3G+3H+I+J = 0 . (D.2)

D.1 Point S2096313

S2096313 : so(8)→ so(3) + u(1)

V/g2 ≈ −20.9631372891

8c → 2× 3 + 1++ + 1−−, 8v,s → 3+ + 3− + 1+ + 1−,

28 → 5 + 2× 3++ + 3× 3 + 2× 3−− + 2× 1

m2/m2
0[ψ] : 7.7501++1− , 2.5503++3−

m2/m2
0[χ] : 15.5001++1− , 7.8753++++3−−− , 5.1373++3− , 5.1003++3− ,

4.5965++5− , 2.4751++++1−−− , 0.8751++1− , 0.7545++5− ,

0.7273++3− , 0.1603++3−

m2/m2
0[φ] : 18.400c1+++++1−−−− , 10.000s1+++1−− , 9.600s5+++5−− , 8.728m1 ,

8.596m5 , 0.400m3 , 0.000s3+++3+3−− , 0.000c5+2×3+++2×3−−+1,

0.000m3 , −0.596m5 , −0.612m1 , −1.200s1+++1−− , −2.000m3 ,

−2.400m∗5 , −2.516m∗1

Mαβ = diag (−3A,−3A,A,A,A,A,A,A)

Mα̇β̇ = diag (C,D,B,B,C,D,D,C)

A ≈ −0.1641598793, B ≈ −0.5046414602, C ≈ −0.0723920925,

D ≈ 0.4088197326

D.2 Point S2443607

S2443607 : so(8)→ so(3)

V/g2 ≈ −24.4360747652

8v,s,c → 2× 3 + 2× 1, 28 → 5 + 7× 3 + 2× 1

m2/m2
0[ψ] : 11.5681, 11.4631, 4.3543, 3.7263

m2/m2
0[χ] : 23.1371, 22.9261, 18.9083, 18.9083, 10.7141, 10.7111, 8.7083,

7.4513, 6.2993, 6.1413, 5.7575, 5.7445, 2.1223, 2.0641, 1.6245,

1.4173, 1.2575, 1.2551, 0.2013, 0.0823
m2/m2

0[φ] : 55.474m1 , 55.474m1 , 20.600m1 , 20.559m1 , 19.887m5 , 19.876m5 , 8.040m1 ,

7.864m3 , 7.464m3 , 5.996m5 , 4.125m1 , 0.000s3+1, 0.000m5+5×3+1,

−0.023m3 , −0.562m1 , −0.743m5 , −2.513m∗3 , −2.836m∗5 , −3.205m∗1
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Mαβ =



A 0 0 0 0 B 0 0

0 E 0 0 C 0 0 0

0 0 F 0 0 0 0 D

0 0 0 F 0 0 −D 0

0 C 0 0 E 0 0 0

B 0 0 0 0 A 0 0

0 0 0 −D 0 0 F 0

0 0 D 0 0 0 0 F


Mα̇β̇ = diag (G,G,G,H,H,H, I, J)

A ≈ 0.2540142811, B ≈ 0.3965710947, C ≈ −0.1697655242,

D ≈ 0.0009726589, E ≈ 0.0291540284, F ≈ −0.1415841547,

G ≈ 0.4106803872, H ≈ 0.0401731985, I ≈ −0.6761535338,

J ≈ −0.6764072234

D.3 Supplementary material

Numerical data for the position of the two new critical points, S2096313 and S2443607, in

the same format as in [1], can be found in the supplementary material. Algebraic data on

the locations of critical points S1424025 and S2443607, which give rise to formulae that are

too complicated to be included in the text of this work, are also available as supplementary

material attached to this paper.

E Minimal polynomials

The PSLQ algorithm used to obtain the minimal polynomials in sections 3 and 4 may also

be used directly in the complex domain.16

As our coordinates map the hyperbolic plane to the unit disk, the relevant minimal

polynomials for coordinates will be palindromic. If ζ is a zero, then ζ−1 will also be a zero,

and this invariance under ζ 7→ ζ−1 makes the highest-order coefficient match the lowest-

order coefficient, etc. It so turns out that for many critical points, a de-palindromizing

substitution (via the inverse of a Zhukovsky transform, ζ 7→ ζ + ζ−1), followed by a re-

scaling, again leads to a palindromic polynomial.

E.1 Minimal polynomials for S1384096

The minimal polynomials for the coordinates of the new N = 1 vacuum, Pzi(ζ), i = 1, 2, 3,

turn out to be “doubly” palindromic, and this property can be exploited to simplify their

presentation.

16We thank Moritz Firsching for pointing this out to us and computing all the minimal polynomials in

this appendix.
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Let

S1(ζ) = ζ12 + 2ζ10 + 387ζ8 − 7276ζ6 + 59179ζ4 − 248970ζ2 + 416025 ,

S2(ζ) = 237169ζ12 − 5533444ζ10 + 54887568ζ8 − 295250296ζ6 + 905373664ζ4

− 1496099520ζ2 + 1038128400 ,

S3(ζ) = 3ζ6 + 30ζ5 + 191ζ4 + 690ζ3 + 1337ζ2 + 1314ζ + 521 .

(E.1)

Define the polynomials, Mi(ζ), as follows

Mi(2ζ) = (4ζ)ord(Si)Si(ζ + ζ−1) , (E.2)

Then

Pzi(ζ) = ζord(Mi)Mi(ζ + ζ−1) , i = 1, 2, 3 , (E.3)

are the minimal polynomials with integer coefficients for S1384096.

E.2 Minimal polynomials for S1424025 and S2443607

The minimal polynomials for the coordinates of the critical points S1424025 and S2443607

also allow “double depalindromization”, and this property was exploited to obtain these ex-

pressions. Unfortunately, they are too complicated to be shown in the text, having degrees

208, 208, and 52 for S1424025, and degrees 464, 464, and 232 for S2443607. The supple-

mentary material provides executable Python code that lists and verifies these polynomials.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] I.M. Comsa, M. Firsching and T. Fischbacher, SO(8) Supergravity and the magic of machine

learning, JHEP 08 (2019) 057 [arXiv:1906.00207] [INSPIRE].

[2] B. de Wit and H. Nicolai, N = 8 supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].

[3] N.P. Warner, Some properties of the scalar potential in gauged supergravity theories, Nucl.

Phys. B 231 (1984) 250 [INSPIRE].

[4] N.P. Warner, Some new extrema of the scalar potential of gauged N = 8 supergravity, Phys.

Lett. B 128 (1983) 169 [INSPIRE].

[5] B. de Wit, H. Nicolai and N.P. Warner, The embedding of gauged N = 8 supergravity into

d = 11 supergravity, Nucl. Phys. B 255 (1985) 29 [INSPIRE].

[6] B. de Wit and H. Nicolai, The consistency of the S7 truncation in D = 11 supergravity, Nucl.

Phys. B 281 (1987) 211 [INSPIRE].

[7] H. Nicolai and K. Pilch, Consistent truncation of d = 11 supergravity on AdS4 × S7, JHEP

03 (2012) 099 [arXiv:1112.6131] [INSPIRE].

[8] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091

[arXiv:0806.1218] [INSPIRE].

– 32 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP08(2019)057
https://arxiv.org/abs/1906.00207
https://inspirehep.net/search?p=find+EPRINT+arXiv:1906.00207
https://doi.org/10.1016/0550-3213(82)90120-1
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B208,323%22
https://doi.org/10.1016/0550-3213(84)90286-4
https://doi.org/10.1016/0550-3213(84)90286-4
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B231,250%22
https://doi.org/10.1016/0370-2693(83)90383-0
https://doi.org/10.1016/0370-2693(83)90383-0
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B128,169%22
https://doi.org/10.1016/0550-3213(85)90128-2
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B255,29%22
https://doi.org/10.1016/0550-3213(87)90253-7
https://doi.org/10.1016/0550-3213(87)90253-7
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B281,211%22
https://doi.org/10.1007/JHEP03(2012)099
https://doi.org/10.1007/JHEP03(2012)099
https://arxiv.org/abs/1112.6131
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.6131
https://doi.org/10.1088/1126-6708/2008/10/091
https://arxiv.org/abs/0806.1218
https://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1218


J
H
E
P
0
1
(
2
0
2
0
)
0
9
9

[9] J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes,

Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].

[10] A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66

[arXiv:0709.1260] [INSPIRE].

[11] M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons theories

and AdS4/CFT3 correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519] [INSPIRE].

[12] I. Klebanov, T. Klose and A. Murugan, AdS4/CFT3 squashed, stretched and warped, JHEP

03 (2009) 140 [arXiv:0809.3773] [INSPIRE].

[13] D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-theorem: N = 2 field

theories on the three-sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].

[14] T. Fischbacher, K. Pilch and N.P. Warner, New supersymmetric and stable,

non-supersymmetric phases in supergravity and holographic field theory, arXiv:1010.4910

[INSPIRE].

[15] H. Ooguri and C. Vafa, Non-supersymmetric AdS and the Swampland, Adv. Theor. Math.

Phys. 21 (2017) 1787 [arXiv:1610.01533] [INSPIRE].

[16] T. Fischbacher, The many vacua of gauged extended supergravities, Gen. Rel. Grav. 41

(2009) 315 [arXiv:0811.1915] [INSPIRE].

[17] T. Fischbacher, Mapping the vacuum structure of gauged maximal supergravities: an

application of high performance symbolic algebra, Ph.D. thesis, Max Planck Inst., Potsdam,

Germany (2003) [hep-th/0305176] [INSPIRE].

[18] T. Fischbacher, Fourteen new stationary points in the scalar potential of SO(8)-gauged

N = 8, D = 4 supergravity, JHEP 09 (2010) 068 [arXiv:0912.1636] [INSPIRE].

[19] T. Fischbacher, Numerical tools to validate stationary points of SO(8)-gauged N = 8 D = 4

supergravity, Comput. Phys. Commun. 183 (2012) 780 [arXiv:1007.0600] [INSPIRE].

[20] T. Fischbacher, The encyclopedic reference of critical points for SO(8)-gauged N = 8

supergravity. Part 1: cosmological constants in the range −Λ/g2 ∈ [6 : 14.7),

arXiv:1109.1424 [INSPIRE].

[21] M. Trigiante, Gauged supergravities, Phys. Rept. 680 (2017) 1 [arXiv:1609.09745]

[INSPIRE].

[22] G. Dibitetto, A. Guarino and D. Roest, Charting the landscape of N = 4 flux

compactifications, JHEP 03 (2011) 137 [arXiv:1102.0239] [INSPIRE].

[23] G. Dall’Agata and G. Inverso, On the vacua of N = 8 gauged supergravity in 4 dimensions,

Nucl. Phys. B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].

[24] G. Inverso, Fluxes and non-perturbative effects in string and M/F theory and their

supergravity description, Ph.D. thesis, Rome U., Rome, Italy, 29 October 2013.

[25] A. Borghese, A. Guarino and D. Roest, Triality, periodicity and stability of SO(8) gauged

supergravity, JHEP 05 (2013) 107 [arXiv:1302.6057] [INSPIRE].

[26] A. Borghese, A. Guarino and D. Roest, All G2 invariant critical points of maximal

supergravity, JHEP 12 (2012) 108 [arXiv:1209.3003] [INSPIRE].

[27] A. Borghese, G. Dibitetto, A. Guarino, D. Roest and O. Varela, The SU(3)-invariant sector

of new maximal supergravity, JHEP 03 (2013) 082 [arXiv:1211.5335] [INSPIRE].

– 33 –

https://doi.org/10.1103/PhysRevD.77.065008
https://arxiv.org/abs/0711.0955
https://inspirehep.net/search?p=find+EPRINT+arXiv:0711.0955
https://doi.org/10.1016/j.nuclphysb.2008.11.014
https://arxiv.org/abs/0709.1260
https://inspirehep.net/search?p=find+EPRINT+arXiv:0709.1260
https://doi.org/10.1088/1126-6708/2008/09/072
https://arxiv.org/abs/0806.1519
https://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1519
https://doi.org/10.1088/1126-6708/2009/03/140
https://doi.org/10.1088/1126-6708/2009/03/140
https://arxiv.org/abs/0809.3773
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.3773
https://doi.org/10.1007/JHEP06(2011)102
https://arxiv.org/abs/1103.1181
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.1181
https://arxiv.org/abs/1010.4910
https://inspirehep.net/search?p=find+EPRINT+arXiv:1010.4910
https://doi.org/10.4310/ATMP.2017.v21.n7.a8
https://doi.org/10.4310/ATMP.2017.v21.n7.a8
https://arxiv.org/abs/1610.01533
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.01533
https://doi.org/10.1007/s10714-008-0736-z
https://doi.org/10.1007/s10714-008-0736-z
https://arxiv.org/abs/0811.1915
https://inspirehep.net/search?p=find+EPRINT+arXiv:0811.1915
https://arxiv.org/abs/hep-th/0305176
https://inspirehep.net/search?p=find+EPRINT+hep-th/0305176
https://doi.org/10.1007/JHEP09(2010)068
https://arxiv.org/abs/0912.1636
https://inspirehep.net/search?p=find+EPRINT+arXiv:0912.1636
https://doi.org/10.1016/j.cpc.2011.11.022
https://arxiv.org/abs/1007.0600
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.0600
https://arxiv.org/abs/1109.1424
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.1424
https://doi.org/10.1016/j.physrep.2017.03.001
https://arxiv.org/abs/1609.09745
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.09745
https://doi.org/10.1007/JHEP03(2011)137
https://arxiv.org/abs/1102.0239
https://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0239
https://doi.org/10.1016/j.nuclphysb.2012.01.023
https://arxiv.org/abs/1112.3345
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3345
https://doi.org/10.1007/JHEP05(2013)107
https://arxiv.org/abs/1302.6057
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.6057
https://doi.org/10.1007/JHEP12(2012)108
https://arxiv.org/abs/1209.3003
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3003
https://doi.org/10.1007/JHEP03(2013)082
https://arxiv.org/abs/1211.5335
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.5335


J
H
E
P
0
1
(
2
0
2
0
)
0
9
9

[28] G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged

supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].

[29] A. Gallerati, H. Samtleben and M. Trigiante, The N > 2 supersymmetric AdS vacua in

maximal supergravity, JHEP 12 (2014) 174 [arXiv:1410.0711] [INSPIRE].

[30] M. Abadi et al., TensorFlow: a system for large-scale machine learning, in 12th USENIX

symposium on operating systems design and implementation (OSDI 16), (2016), pg. 265.

[31] S. Ferrara and S. Sabharwal, Quaternionic manifolds for type II superstring vacua of

Calabi-Yau spaces, Nucl. Phys. B 332 (1990) 317 [INSPIRE].

[32] M. Bodner and A.C. Cadavid, Dimensional reduction of type IIB supergravity and

exceptional quaternionic manifolds, Class. Quant. Grav. 7 (1990) 829 [INSPIRE].

[33] K. Pilch and N.P. Warner, N = 1 supersymmetric renormalization group flows from IIB

supergravity, Adv. Theor. Math. Phys. 4 (2002) 627 [hep-th/0006066] [INSPIRE].

[34] E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].

[35] N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner, Supergravity instabilities of

non-supersymmetric quantum critical points, Class. Quant. Grav. 27 (2010) 235013

[arXiv:1006.2546] [INSPIRE].

[36] D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge Univ. Press, Cambridge, U.K.

(2012).

[37] Wolfram Research Inc., Mathematica, version 11.3, Champaign, IL, U.S.A. (2019).

[38] P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys.

144 (1982) 249 [INSPIRE].

[39] B. de Wit and H. Nicolai, A new SO(7) invariant solution of d = 11 supergravity, Phys. Lett.

B 148 (1984) 60 [INSPIRE].

[40] B. Biran, F. Englert, B. de Wit and H. Nicolai, Gauged N = 8 supergravity and its breaking

from spontaneous compactification, Phys. Lett. B 124 (1983) 45 [Erratum ibid. B 128 (1983)

461] [INSPIRE].

[41] B. de Wit and H. Nicolai, The parallelizing S7 torsion in gauged N = 8 supergravity, Nucl.

Phys. B 231 (1984) 506 [INSPIRE].

[42] N. Bobev, K. Pilch and N.P. Warner, Supersymmetric Janus solutions in four dimensions,

JHEP 06 (2014) 058 [arXiv:1311.4883] [INSPIRE].

[43] D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic

geometry, https://faculty.math.illinois.edu/Macaulay2/.

[44] D.J. Bates, J.D. Hauenstein, A.J. Sommese and C.W. Wampler, Bertini: a software package

for numerical algebraic geometry, Bertini home page, (2013).

[45] J.D. Hauenstein and C.W. Wampler, Unification and extension of intersection algorithms in

numerical algebraic geometry, Appl. Math. Comput. 293 (2017) 226.

[46] N. Bobev, V.S. Min and K. Pilch, Mass-deformed ABJM and black holes in AdS4, JHEP 03

(2018) 050 [arXiv:1801.03135] [INSPIRE].

[47] C.-H. Ahn and K. Woo, Supersymmetric domain wall and RG flow from 4-dimensional

gauged N = 8 supergravity, Nucl. Phys. B 599 (2001) 83 [hep-th/0011121] [INSPIRE].

– 34 –

https://doi.org/10.1103/PhysRevLett.109.201301
https://arxiv.org/abs/1209.0760
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.0760
https://doi.org/10.1007/JHEP12(2014)174
https://arxiv.org/abs/1410.0711
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.0711
https://doi.org/10.1016/0550-3213(90)90097-W
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B332,317%22
https://doi.org/10.1088/0264-9381/7/5/013
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,7,829%22
https://doi.org/10.4310/ATMP.2000.v4.n3.a5
https://arxiv.org/abs/hep-th/0006066
https://inspirehep.net/search?p=find+EPRINT+hep-th/0006066
https://doi.org/10.1016/0550-3213(79)90331-6
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B159,141%22
https://doi.org/10.1088/0264-9381/27/23/235013
https://arxiv.org/abs/1006.2546
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.2546
https://doi.org/10.1016/0003-4916(82)90116-6
https://doi.org/10.1016/0003-4916(82)90116-6
https://inspirehep.net/search?p=find+J+%22AnnalsPhys.,144,249%22
https://doi.org/10.1016/0370-2693(84)91611-3
https://doi.org/10.1016/0370-2693(84)91611-3
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B148,60%22
https://doi.org/10.1016/0370-2693(83)91400-4
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B124,45%22
https://doi.org/10.1016/0550-3213(84)90517-0
https://doi.org/10.1016/0550-3213(84)90517-0
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B231,506%22
https://doi.org/10.1007/JHEP06(2014)058
https://arxiv.org/abs/1311.4883
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.4883
https://faculty.math.illinois.edu/Macaulay2/
https://doi.org/10.7274/R0H41PB5
https://doi.org/10.1016/j.amc.2016.08.023
https://doi.org/10.1007/JHEP03(2018)050
https://doi.org/10.1007/JHEP03(2018)050
https://arxiv.org/abs/1801.03135
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.03135
https://doi.org/10.1016/S0550-3213(01)00008-6
https://arxiv.org/abs/hep-th/0011121
https://inspirehep.net/search?p=find+EPRINT+hep-th/0011121


J
H
E
P
0
1
(
2
0
2
0
)
0
9
9

[48] C.-H. Ahn and T. Itoh, An N = 1 supersymmetric G2 invariant flow in M-theory, Nucl.

Phys. B 627 (2002) 45 [hep-th/0112010] [INSPIRE].

[49] C.-H. Ahn and K.-S. Woo, Domain wall and membrane flow from other gauged d = 4, N = 8

supergravity. Part 1, Nucl. Phys. B 634 (2002) 141 [hep-th/0109010] [INSPIRE].

[50] C.-H. Ahn and K.-S. Woo, Domain wall from gauged d = 4, N = 8 supergravity. Part 2,

JHEP 11 (2003) 014 [hep-th/0209128] [INSPIRE].

[51] N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner, Holographic, N = 1 supersymmetric RG

flows on M2 branes, JHEP 09 (2009) 043 [arXiv:0901.2736] [INSPIRE].

[52] D.Z. Freedman and S.S. Pufu, The holography of F -maximization, JHEP 03 (2014) 135

[arXiv:1302.7310] [INSPIRE].

[53] M.J. Duff and S. Ferrara, E7 and the tripartite entanglement of seven qubits, Phys. Rev. D

76 (2007) 025018 [quant-ph/0609227] [INSPIRE].

[54] L. Borsten, M.J. Duff and P. Levay, The black-hole/qubit correspondence: an up-to-date

review, Class. Quant. Grav. 29 (2012) 224008 [arXiv:1206.3166] [INSPIRE].

[55] M.J. Duff and S. Ferrara, Four curious supergravities, Phys. Rev. D 83 (2011) 046007

[arXiv:1010.3173] [INSPIRE].

[56] S. Ferrara and R. Kallosh, Seven-disk manifold, α-attractors and B modes, Phys. Rev. D 94

(2016) 126015 [arXiv:1610.04163] [INSPIRE].

[57] J.C. Baez, The octonions, Bull. Am. Math. Soc. 39 (2002) 145 [Erratum ibid. 42 (2005) 213]

[math.RA/0105155] [INSPIRE].

[58] R.W. Hamming, Error detecting and error correcting codes, Bell Syst. Tech. J. 29 (1950) 147.

[59] T. Fischbacher, Binary error correcting codes and maximal supergravity, work in progress.

[60] N. Bobev, T. Fischbacher and K. Pilch, Holography and the seven-disk manifold, in progress.

[61] S. Gukov, Counting RG flows, JHEP 01 (2016) 020 [arXiv:1503.01474] [INSPIRE].

[62] G. Dall’Agata, G. Inverso and A. Marrani, Symplectic deformations of gauged maximal

supergravity, JHEP 07 (2014) 133 [arXiv:1405.2437] [INSPIRE].

[63] A. Guarino and O. Varela, Dyonic ISO(7) supergravity and the duality hierarchy, JHEP 02

(2016) 079 [arXiv:1508.04432] [INSPIRE].

[64] N. Bobev, T. Fischbacher, F. Gautason and K. Pilch, Searching for vacua of SO(6)-gauged

maximal five-dimensional supergravity, in progress.

[65] N. Yamatsu, Finite-dimensional Lie algebras and their representations for unified model

building, arXiv:1511.08771 [INSPIRE].

[66] E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT

correspondence, in Strings, Branes and Extra Dimensions: TASI 2001: Proceedings, (2002),

pg. 3 [hep-th/0201253] [INSPIRE].

[67] C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of superconformal symmetry in

diverse dimensions, JHEP 03 (2019) 163 [arXiv:1612.00809] [INSPIRE].

[68] I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys.

B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

– 35 –

https://doi.org/10.1016/S0550-3213(02)00058-5
https://doi.org/10.1016/S0550-3213(02)00058-5
https://arxiv.org/abs/hep-th/0112010
https://inspirehep.net/search?p=find+EPRINT+hep-th/0112010
https://doi.org/10.1016/S0550-3213(02)00313-9
https://arxiv.org/abs/hep-th/0109010
https://inspirehep.net/search?p=find+EPRINT+hep-th/0109010
https://doi.org/10.1088/1126-6708/2003/11/014
https://arxiv.org/abs/hep-th/0209128
https://inspirehep.net/search?p=find+EPRINT+hep-th/0209128
https://doi.org/10.1088/1126-6708/2009/09/043
https://arxiv.org/abs/0901.2736
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.2736
https://doi.org/10.1007/JHEP03(2014)135
https://arxiv.org/abs/1302.7310
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.7310
https://doi.org/10.1103/PhysRevD.76.025018
https://doi.org/10.1103/PhysRevD.76.025018
https://arxiv.org/abs/quant-ph/0609227
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D76,025018%22
https://doi.org/10.1088/0264-9381/29/22/224008
https://arxiv.org/abs/1206.3166
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.3166
https://doi.org/10.1103/PhysRevD.83.046007
https://arxiv.org/abs/1010.3173
https://inspirehep.net/search?p=find+EPRINT+arXiv:1010.3173
https://doi.org/10.1103/PhysRevD.94.126015
https://doi.org/10.1103/PhysRevD.94.126015
https://arxiv.org/abs/1610.04163
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.04163
https://doi.org/10.1090/S0273-0979-01-00934-X
https://arxiv.org/abs/math.RA/0105155
https://inspirehep.net/search?p=find+J+%22Bull.Am.Math.Soc.,39,145%22
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1007/JHEP01(2016)020
https://arxiv.org/abs/1503.01474
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.01474
https://doi.org/10.1007/JHEP07(2014)133
https://arxiv.org/abs/1405.2437
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.2437
https://doi.org/10.1007/JHEP02(2016)079
https://doi.org/10.1007/JHEP02(2016)079
https://arxiv.org/abs/1508.04432
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.04432
https://arxiv.org/abs/1511.08771
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.08771
https://arxiv.org/abs/hep-th/0201253
https://inspirehep.net/search?p=find+EPRINT+hep-th/0201253
https://doi.org/10.1007/JHEP03(2019)163
https://arxiv.org/abs/1612.00809
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.00809
https://doi.org/10.1016/S0550-3213(99)00387-9
https://doi.org/10.1016/S0550-3213(99)00387-9
https://arxiv.org/abs/hep-th/9905104
https://inspirehep.net/search?p=find+EPRINT+hep-th/9905104


J
H
E
P
0
1
(
2
0
2
0
)
0
9
9

[69] M. Henningson and K. Sfetsos, Spinors and the AdS/CFT correspondence, Phys. Lett. B 431

(1998) 63 [hep-th/9803251] [INSPIRE].

[70] W.S. l’Yi, Correlators of currents corresponding to the massive p form fields in AdS/CFT

correspondence, Phys. Lett. B 448 (1999) 218 [hep-th/9811097] [INSPIRE].

[71] A. Volovich, Rarita-Schwinger field in the AdS/CFT correspondence, JHEP 09 (1998) 022

[hep-th/9809009] [INSPIRE].

[72] S. Corley, The massless gravitino and the AdS/CFT correspondence, Phys. Rev. D 59 (1999)

086003 [hep-th/9808184] [INSPIRE].

– 36 –

https://doi.org/10.1016/S0370-2693(98)00559-0
https://doi.org/10.1016/S0370-2693(98)00559-0
https://arxiv.org/abs/hep-th/9803251
https://inspirehep.net/search?p=find+EPRINT+hep-th/9803251
https://doi.org/10.1016/S0370-2693(99)00009-X
https://arxiv.org/abs/hep-th/9811097
https://inspirehep.net/search?p=find+EPRINT+hep-th/9811097
https://doi.org/10.1088/1126-6708/1998/09/022
https://arxiv.org/abs/hep-th/9809009
https://inspirehep.net/search?p=find+EPRINT+hep-th/9809009
https://doi.org/10.1103/PhysRevD.59.086003
https://doi.org/10.1103/PhysRevD.59.086003
https://arxiv.org/abs/hep-th/9808184
https://inspirehep.net/search?p=find+EPRINT+hep-th/9808184

	Introduction
	A consistent truncation
	The new N=1 critical point
	All critical points of the truncated potential
	The critical points
	Subtruncations

	Numerical searches — an outline of the method
	Holographic RG flows
	A Z(2) x Z(2) x Z(2)-invariant truncation
	Conclusions
	Some group theory
	The full spectrum of N=8 supergravity
	Discrete SO(8) rotations
	New critical points S2096313 and S2443607
	Point S2096313
	Point S2443607
	Supplementary material

	Minimal polynomials
	Minimal polynomials for S1384096
	Minimal polynomials for S1424025 and S2443607


