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1 Introduction

In quantum field theories, the renormalization group (RG) flow drives theories at high ultra-

violet (UV) energies to theories at low infrared (IR) energy. In this paper, we describe a

method to construct IR correlators directly within the UV theory, by inserting certain

codimension-one defects into UV correlators. This allows us to represent the entire IR

theory in terms of the UV theory.

While this approach might also be useful in more general situations, in this paper we

will only deal with quantum field theories admitting a topological twist compatible with

the RG flow. The topological twist provides a good handle on defects allowing us to relate

the twisted theories in the IR and UV of RG flows. For brevity and concreteness we will

restrict our discussion to two-dimensional quantum field theories, such as 2d N = (2, 2)

supersymmetric QFTs, but we expect our method to be applicable in any dimension.

Starting point of the construction are RG defects as introduced in [1]. These are

domain walls between UV and IR theories obtained in the following way. Consider a

perturbation of a scale invariant quantum field theory by a relevant local operator. The

RG flow drives the theory from the original theory in the UV to some other theory in the

IR. If the perturbation is restricted to a finite region of space-time, the RG flow drives

the theory to the IR on the domain of the perturbation, while leaving it at the UV on

the rest of space-time. Along the way, it creates a domain wall R on the boundary of the

perturbation domain, separating the IR theory from the UV theory:

UV

UV

Perturbation
perturbed

UV

UV

RG-flow

RIR

UV

(1.1)

The RG defects R obtained in this way capture the entire relation between UV and IR

theories. They project UV degrees of freedom onto the IR theory and embed IR degrees

of freedom into the UV theory.

In order to get a good handle on defect lines, in particular the behavior of correlation

functions under changes of their position, we now pass to the topologically twisted theory.

Compatibility of the RG flow with the topological twist assures that the respective RG

defect descends to a defect between the topologically twisted IR and UV theories. We
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still refer to this defect as RG defect and to the topologically twisted theories as IR and

UV theories. (Note that the notion of RG defects as defined in [1] does not require a

topological twist. In fact, examples of RG defects are known in full CFTs [2]. We expect

the ideas presented below to also be applicable in this more general context, albeit in a

more intricate way.)

Fusion1 of RG defects R with their downward oriented versions R† gives rise to the

trivial identity defect in the IR theory, R ⊗ R† ∼= IIR, while fusion in the opposite order

yields non-trivial defects P = R† ⊗R in the UV theory:

R R†

=

IIR

= and

R† R

=

P

(1.2)

The first equation is a central property of RG defects, which ensures locality in the sense

that islands of IR theories trivially connect:

R

R

UV

=

R
UV

It also implies that the defects P are projection defects, i.e. they are idempotent under

fusion, P ⊗ P ∼= P . They project onto IR degrees of freedom in the UV theory.

Another consequence of (1.2) is that right R-loops evaluate to the identity:

R UV

IR

=

IR

(1.3)

(Since the IR carries less information than the UV, the above loop-condition does not

hold for left R-loops.) This can be used to express correlation functions of the IR theory

in terms of UV correlators by the following trick familiar from the discussion of dualities

and generalized orbifolds [3–6]: Because of equation (1.3), a given IR correlator is not

changed upon insertion of right R loops, cf. step I in the example (1.4) below. Since we are

dealing with a topological quantum field theory, the UV islands created in this way can be

expanded without changing the correlation function until they cover the entire space-time

surface, see step II in (1.4). The result is a correlation function in the UV theory with a

network of the projection defect P inserted. For instance, a disk correlator in the IR with

1In a TQFT one can move parallel defects infinitely close together resulting in a new, fused defect. We

will denote fusion of defects by ‘⊗’.
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boundary condition BIR can be represented as UV correlator

〈

IRBIR

〉 I
= 〈 R UV

IRBIR

〉 II
= 〈 UV

BUV

〉 (1.4)

Of course, steps I and II involve many choices leading to representations of one and the

same IR correlation function by possibly different P -networks in the UV. The latter can

be related by sequences of local transformations generated by identities satisfied by the

defects P and their junctions.

Carrying out this procedure on the level of correlators immediately reveals how objects

of the IR theory are represented in the UV. For instance, IR bulk fields appear as field

insertions on the defect P . Right boundary conditions BIR are mapped to boundary

conditions BUV = R† ⊗ BIR in the UV. Similarly, IR defects DIR are mapped to defects

DUV = R† ⊗ DIR ⊗ R in the UV. This in particular applies to the defects associated to

symmetries of the IR theory. These symmetry defects encode the action of the symmetry

group on all objects of the theory, and they fuse according to the multiplication in the

symmetry group. Lifting IR symmetry defects to the UV one obtains UV defects, whose

fusion is still governed by the IR symmetry group. This yields a realization of the IR

symmetry group in the UV, which however is not an honest representation. After all, the

identity defect in the IR corresponding to the neutral element in the IR symmetry group is

lifted to the projection defect P in the UV. Thus, the lifted symmetries are only invertible

on the IR degrees of freedom.

In fact, given the projection defect P , the objects in the UV theory representing IR

objects can be characterized completely within the UV theory without any reference to

R: IR bulk fields are represented by defect fields on P , right IR boundary conditions are

represented by right UV boundary conditions BUV which are invariant under fusion with

P , P ⊗ BUV
∼= BUV. IR defects are represented by defects DUV in the UV, which are

invariant under fusion with P from both sides, DUV ⊗ P ∼= DUV
∼= P ⊗DUV, etc. Given

the respective projection defect P , one can therefore completely describe the IR theory in

the framework of the UV theory.

Through perturbations by different relevant operators, a UV theory might permit many

different RG flows leading to possibly different IR theories at various engery scales. All

of these theories with all their symmetries etc. can be described by projection defects in

one and the same UV theory. This applies in particular if the theory is asympotically free

in the UV, in which case all possible IR theories can be realized by means of projection

defects in a free theory.
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Remarkably, the description of IR correlators in terms of UV correlators containing

networks of the projection defect P = R† ⊗ R provides a radically new view on bulk

perturbations: instead of perturbing the theory on the entire space-time, we can restrict

the perturbation on a network of thin strips. These strips can even be made infinitely

thin, effectively reducing the bulk perturbation to a (one-dimensional) perturbation of the

identity defect in the UV theory. RG flow leaves the bulk theory at the UV, but drives the

identity defect to some projection defect P in the IR.

IUV

=
Perturbation RG flow

RR†

=

P

Concretely, one obtains the correlation function of the IR theory from the one at UV by first

inserting an (invisible) network of the identity defect, which in particular passes through

all bulk insertions and runs parallel to every boundary and also on both sides of any defect.

The IR correlation function can then be obtained by a defect RG flow on this network.

UV

IR UV

RG flow on bulk RG flow on identity defect I

!
=

(1.5)

Under the flow UV boundary conditions and defects flow to their respective fusion with P .

In this way, bulk RG flows can be entirely studied in the fixed UV bulk theory by means

of perturbations of the UV identity defect.

The fact that one can describe IR theories in the UV without reference to the RG

defects R by using the respective projection defects P = R† ⊗ R suggests applying this

procedure to general projection defects P , which do not a priori arise from RG flows. In

this way, new ‘P -projected’ theories can be constructed from any projection defect P in a

given TQFT.

Interestingly, it turns out that any projection defect factorizes as P = R†⊗R for some

defect R separating the P -projected theory from the original one. What is more, the defect

R satisfies the locality property of RG defects, i.e. the left equation of (1.2). Hence, in fact

all projection defects factorize into RG type defects.
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The construction described above is in fact closely related to the generalized orbifold

procedure [4, 5, 7, 8]. It differs from it in that we drop the technical assumption that left

and right adjoints of defects agree D† ∼= †D, which is in particular not satisfied in the

examples we present in this paper: the flows between orbifolds of Landau-Ginzburg models

with a single chiral superfield studied in [1].

The Zd-orbifold of the Landau-Ginzburg model with chiral superfield X and super-

potential W (X) = Xd, which we denote by Md admits RG flows to Landau-Ginzburg

orbifolds Md′ for all d′ < d. Applying the procedure described above to these flows yields

a realization of all models Md′ in terms of projection defects in Md for d′ < d. In partic-

ular, taking d→∞ one obtains a representation of all models Md′ in the theory of a free

twisted chiral field.

The paper is organized as follows: In section 2 we briefly introduce defect lines in 2d

TQFTs, focussing on aspects which are important for our construction. The construction

is then spelled out in section 3. Section 4 is devoted to a detailed discussion of the example

of RG flows between Landau-Ginzburg orbifolds, in which the respective defects can be

concretely described by means of matrix factorizations. We conclude with a discussion of

open questions in section 5. Some more technical discussions and a brief outline of the

generalized orbifold construction are relegated to various appendices.

2 Defects in 2d TQFTs

In this section, we set the stage by briefly introducing some aspects of defect lines in 2d

topological quantum field theories (TQFTs). We do this mainly to introduce notation. For

more details on defect lines, see e.g. [9–11].

Defect lines are line operators, which (since they have codimension 1) can also separate

different 2d TQFTs on the same space-time surface. Locally, a neighborhood around a point

on a defect D : T → T ′ separating two TQFTs T and T ′ can be depicted as2

D
T ′

T

Defect lines carry local degrees of freedom, called defect fields, which can be inserted at

points on defects. Defect fields can also separate different defects or glue together defects at

junctions. We denote the space of defect changing fields between two defects D,D′ : T → T ′

by Hom(D,D′). Every defect carries the identity field 1D ∈ Hom(D,D).

D

D′

T ′ T

2Note that defect lines are oriented.

– 5 –



J
H
E
P
0
1
(
2
0
2
0
)
0
9
7

In every 2d TQFT T there is a special invisible or identity defect IT , whose insertion

does not change correlation functions, and which can be connected to any other de-

fect. The defect fields on this defect are just the bulk fields of the underlying 2d TQFT,

Hom(IT , IT ) ∼= HT .

Due to topological invariance, defects and field insertions can be moved on the space-

time surface without changing correlation functions, as long as field insertions or defects

do not cross. This in particular implies an associative operator product on defect fields

Hom(D,D′)⊗Hom(D′, D′′)→ Hom(D,D′′).

Similarly, parallel defect lines can be brought close together, leading to the notion of

defect fusion: When brought close together, defects D′ : T ′ → T ′′ and D : T → T ′ fuse to

the defect D′ ⊗D : T → T ′′:

D′ D

T ′′ T ′ T =

D′ ⊗D

T ′′ T .

Topological invariance yields certain obvious compatibility relations between the operator

product of defect fields and defect fusion, which we won’t spell out here. We will however

briefly mention one feature of topological defects, which will be of particular importance

for our construction.

Due to topological invariance one can bend a defect (to the right or left) without

changing correlators. This is described by the following two Zorro move identities (relations

like this hold locally when inserted in any correlator):

D

D

D†

ẽvD

c̃oevD

T ′

T

=

D

D

T ′
T

id
and D

D†

D†

T ′

T

c̃oevD

ẽvD

=

D†

D†

T
T ′

id
. (2.1)

These diagrams involve additional structure: First of all, bending D to the right results

in a downwards oriented version D† of D, its right-adjoint. Secondly, dotted lines de-

pict the (invisible) identity defect I, which connects to the defects D and D† in defect

(junction) fields

ẽvD : D ⊗D† → IT ′

c̃oevD : IT → D† ⊗D,
called evaluation and coevaluation maps, respectively. Of course, one can equally well bend

the defect D to the left

†D D

T

T ′
and

†DD

T ′

T
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giving rise to the left-adjoint †D of D. Topological invariance implies an analogous Zorro

move identity involving D and †D and the respective (co-)evaluation maps

evD : †D ⊗D → IT

coevD : IT ′ → D ⊗ †D.

Of course for all defects D,
(†D)† ∼= D ∼= † (D†). For more details on adjunctions of

defects, see [12].

In the main text of this paper, defect loops will play an important role. The description

of loops of a defect D in this framework requires a morphism φ ∈ Hom(†D,D†), by which

such loops can be closed

D φ

†D

D†

T ′

T

.

For many classes of 2d TQFTs (such as non-orbifold LG-models with an even number of

chiral fields), there is a canonical isomorphism D† ∼= †D,3 for any defect D, which can be

used for this purpose. This is not true in general, however. So we cannot resort to these

canonical maps. Instead, we will construct natural loop closing homomorphisms for the

special class of defects which appear in our construction.

3 RG-networks in 2d TQFTs

3.1 Projections from RG defects

Starting point of our construction are RG defects as defined in [1]. These defects arise when

2d field theories are perturbed by local operators only on part of the space-time surface.

The RG flow drives the theory to the IR on the perturbation domain, while leaving it at

the UV on the rest, thus creating a defect on the boundary of the perturbation domain

separating the IR from the UV theory as in (1.1). This RG defect encodes all aspects of

the relationship between UV and IR theories.4

Next, we pass to the context of 2d topological quantum field theories via the topological

twist. Indeed, we assume that the 2d QFT under consideration allows for a topological

twist which moreover is compatible with the RG flow.5 Then the RG defects descend to

topological defects between topologically twisted IR and UV theories, which we will still

refer to as RG defects.

Arising from local perturbations, RG defects have rather special properties. Locality

postulates that perturbations on two adjacent domains is nothing but the perturbation on

3or equivalently D†† ∼= D.
4For instance, in [1] RG-defects are used to describe how boundary conditions behave under perturbations

of the bulk theory.
5Examples of such theories are 2d N = (2, 2) superconformal field theories perturbed by chiral or twisted

chiral fields.
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the union of the domains. This implies that fusion of an RG defect R with its opposite

defect R† in the UV theory yields the identity defect IIR in the IR:

R R†

IR UV IR =

IIR

IR IR .

In other words, there is an isomorphism R ⊗ R†
∼=−→ IIR to the identity defect in the IR

theory, which together with its inverse yields the following relations:

∼=

∼=

R R†UV

IR

=

IR

and

IR
R R†

R R†
∼=

∼=

=

IR

R R†

(3.1)

Since IIR is self-adjoint, R⊗R† ∼= IIR is equivalent to R⊗ †R ∼= IIR, and similar relations

hold for †R.

One important consequence of this is that one can close right R loops in a way that

makes them evaluate to the identity. (This is not true for left R loops, i.e. those enclosing

the IR theory, which are not invertible in the case of non-trivial RG flows.) The loop-

closing morphism φ : †R→ R† is obtained by moving the isomorphisms in the first relation

in (3.1) along the defect to the right:

∼=

∼=

R R†UV

IR

=

R†

†R

R UV

IR

φ

with φ :=

∼=

†R

R†

R

IR
I

UV

∼=

R†

†R

R

: †R −→ R†

Utilizing that right R loops evaluate to the identity it is possible to express correlation

functions of the IR theory in terms of correlation functions in the UV by the following

trick: Given a correlation function of the IR theory, one can insert right R loops without

changing it. Expanding these islands of UV theory until they cover the entire surface, the

IR correlation function is transformed into a correlation function of the UV theory with a

network of defects as in equation (1.4).

The network is built out of the defect P := R† ⊗ R (in the following represented

by green lines which we take as upwards oriented if an orientation is not specified) and

– 8 –
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its junctions

P P

P

=

R†

R†

R

R

and

P P

P

=

R†

R†

R

R

which we call multiplication and comultiplication, respectively.

The defect P together with its junctions has some rather special features, which easily

follow from the properties of R. In particular, P ⊗P ∼= P , and the following relations hold:

(1)
= and

(2)
=

We call the first one loop-omission property (or separability) and the second one projection

property. Beyond these, P also obeys the following identities:

associativity: = , coassociativity: =

and the Frobenius identities: = =

Moreover, P comes with a unit

=

R† R

for which = = .

Indeed, instead of P = R† ⊗ R we could just as well have chosen P ′ = †P = †R ⊗ R as

building block of the network above. The latter defect equally satisfies the relations above

with the only difference that instead of a unit, it has a counit

=
†R R

for which = = .

In summary, any correlation function of the IR theory can be written as a correlator in the

UV with a P -network inserted. The correlation function is invariant under local changes

– 9 –
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of the P -network generated by loop-omission and projection properties, the associativity

and coassociativity relations and the Frobenius identities. This in particular reflects the

fact that the resulting correlation function does not depend on how exactly the UV islands

are inserted into the IR correlators and how they are expanded.

3.2 Representing the IR in the UV

Having expressed the IR correlators in terms of UV correlators in the last section, we

now discuss how the defining structures of IR correlators such as bulk fields, boundaries,

defects and symmetries are represented in the UV theory. The results can be summarized

as follows: If one characterizes the respective IR object by its relation to the IR identity

defect IIR, then its UV realization is obtained by replacing the IR identity defect by the

defect P of the UV theory, cf. table 1. For simplicity we will restrict the discussion to the

case of unital projection defect P = R†⊗R. The results are the same for the counital case,

and the argument is similar.

IR bulk fields. Let us first discuss bulk fields of the IR theory. Upon expanding the

UV islands in the IR, bulk fields become defect fields on P , i.e. elements in Hom(P, P )

(represented in diagrams by dots on defects). Due to topological invariance, they have to

be compatible with the multiplication on P . Namely,

R

R

R†

R†

=

R

R

R†

R†

=

R

R

R†

R†

implying

= =

Considering the algebra P as P -bimodule, the IR bulk fields become P -bimodule morphisms

of P in the UV. By the same argument these morphisms also respect the P -comodule

structure on P :

= =

Now, not only are IR bulk fields lifted to P -bimodule morphisms of P in the UV, the

Hilbert space of bulk fields of the IR theory is in fact isomorphic to the space of P -bimodule

morphisms of P . More precisely, the map

IR

7−→
R

R†
UV

– 10 –
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IR object IR realization UV realization

Identity defect

Separable Frobenius algebra IIR (Co-)unital projection defect P

IR bulk fields

IIR-bimodule morphisms of IIR P -bimodule morphisms of P

Left boundary

conditions

Right IIR-modules Right P -modules

Right boundary

conditions

Left IIR-modules Left P -modules

Defects

IIR-bimodules P -bimodules

Defect changing

fields

IIR-bimodule morphisms P -bimodule morphisms

Defect fusion
fusion in the IR

D ⊗D′
fusion of UV lifted defects

DUV ⊗D′UV

Adjunction
D†

†D

D†PUV = P ⊗D†UV ⊗ P
†PDUV = P ⊗ †DUV ⊗ P

Table 1. Dictionary of IR structures lifted into the UV.
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sending IR bulk fields to P -bimodule morphisms of P is an isomorphism. This is spelled

out in appendix A.1.

In fact, due to the special properties of P , all morphisms of P , i.e. all defect fields on

P are automatically P -bimodule morphisms of P and at the same time also P -bicomodule

morphisms of P , see appendix A.2. Thus, the IR bulk Hilbert space is isomorphic to the

space of defect fields on P .

IR boundary conditions and defects. Next, let us discuss left IR boundary condi-

tions. Upon inserting and expanding UV islands in the IR theory, a left IR boundary

condition BIR is lifted to the UV boundary condition BUV := BIR ⊗ R. The latter comes

equipped with a map

BUV ⊗ P → BUV

BUV

arising from

BIR

R

R

UV .

It satisfies the identities

BUV

=

BUV

and

BUV

=

BUV

.

In other words, BUV is a right P -module. In fact, the unit of P induces a P -comodule

structure on any P -module, hence also on BUV:

BUV

≡

BUV

.

Therefore, left IR boundary conditions lift to right P -modules in the UV, which automat-

ically are also P -comodules.

Conversely, all right P -modules arise in this way from IR boundary conditions. To see

this, note that due to the special properties of the defect P , a left UV boundary condition B

is a right P -module iff B ∼= B⊗P as shown in appendix A.3. Hence, given a right P -module

B, the IR boundary condition BIR = B⊗R† satisfies BIR⊗R = B⊗R†⊗R = B⊗P ∼= B.

Thus, left IR boundary conditions are in one-to-one correspondence with right P -modules

in the UV.6

6Indeed, this also holds if one chooses to construct the network using P ′ = †R⊗R instead of P = R†⊗R.

In that case however BUV = BIR ⊗ †R inherits a natural P ′-comodule structure, which by means of the

counit on P ′ also induces a P ′-module structure on BUV .

– 12 –



J
H
E
P
0
1
(
2
0
2
0
)
0
9
7

Analogously one finds that right IR boundary conditions BIR lift to left P -modules

BUV = R† ⊗BIR in the UV, and defects DIR of the IR theory lift to P -bimodules DUV =

R† ⊗DIR ⊗R. Importantly, P itself is the UV lift of the IR identity defect:

R

I

=

A straight-forward generalization of the discussion of IR bulk fields shows that IR

defect fields are lifted to bimodule morphisms of the respective UV lifted defects, which

again due to the special properties of P are nothing but the defect fields of the UV lifts.

Fusion of IR defects. Because of R⊗R† ∼= IIR, the lift of fused IR defects is the fusion

of the lifted defects:

R

D ⊗ D̃

∼=

R R

D D̃

This is a rather special property closely tied to the projection property of P .

Adjunction of IR defects. While fusion of defects in the IR lifts to fusion in the UV,

adjunction is not compatible with the lift from IR to UV. If for instance, an IR defect DIR

is lifted to a defect DUV = R† ⊗DIR ⊗R in the IR, then the right adjoint of the latter in

the UV theory is given by D†UV = R†⊗D†IR⊗R††, which in general does not coincide with

the lift R† ⊗D†IR ⊗ R of the right adjoint of DIR to the UV theory. However, the two are

related: Selfadjointness of the IR identity defect yields R†† ⊗R† ∼= IIR, and hence the UV

lift of the adjoint can be expressed as R† ⊗D†IR ⊗R ∼= D†UV ⊗ P ∼= P ⊗D†UV ⊗ P , leading

to the notion of IR adjunction in the UV theory, which we denote by

D†PUV := P ⊗D†UV ⊗ P .

Similarly, the UV lift of a left adjoint defect is given by7

†PDUV = P ⊗ †DUV ⊗ P .

These formulas are very natural. After all, the defining relation of adjoints are the Zorro

move identities (2.1), which involve the identity defect. Lifting these identities from the

7The same formulas for left and right IR adjunction hold if one chooses to construct the network using

the counital P ′ = †R⊗R instead of P = R† ⊗R.
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IR theory to the UV replaces the identity defect with the defect P :

DUV

=

DIR

R† R

For instance, lifting the IR Zorro move identities for the right adjoint to the UV results in

the relations

DUV

D
†P
UV =

DUV

and

D†PUV

DUV
=

D†PUV

.

It is easy to see that fusing the UV adjoint from both sides with P yields a defect which

satisfies the P -Zorro move identities, cf. appendix A.4.

A special case is P itself: Since it is the UV lift of the IR identity defect, which is

selfadjoint, P is selfadjoint with respect to P -adjunction: P ∼= P †P = P ⊗ P † ⊗ P .

IR symmetries. Also symmetries of the IR theory can be easily described in the UV.

As noted in [3] (see also [13]), symmetries of 2d field theories can be described by symmetry

defects gI which describe the action of an element g of the symmetry group on any object

in field theory. The symmetry defects fuse according to the multiplication in the symmetry

group: gI⊗hI = g·hI (g ·h denotes the product in the symmetry group). Now, IR symmetry

defects lift to the UV as any other defect: gI 7→ gIUV = R†⊗gI⊗R. Since IR fusion lifts to

UV fusion, the fusion of the lifted symmetry defects still respects the multiplication in the

symmetry group, gIUV ⊗ hIUV = g·hIUV. In that sense, the IR symmetry group is already

present in the UV theory. However it is not realized as a symmetry group in the UV, since

the lift of the IR identity defect, which is the symmetry defect associated to the neutral

element of the symmetry group, does not lift to the identity defect, but rather to P . So the

lifted symmetry defects are in general not invertible defects in the UV, but instead satisfy

gIUV ⊗ g−1IUV = P .

IR projectors and subsequent flows. Projection defects P2 = (R2)
† ⊗ R2 in the IR

theory associated to some RG flow from the IR theory to some theory IR2 can also be

lifted to the UV. The corresponding defects in the UV theory are given by

P̃ = R† ⊗ P2 ⊗R = R† ⊗R†2 ⊗R2 ⊗R = (R2 ⊗R)† ⊗ (R2 ⊗R) .

These are precisely the projection defects built out of the RG defect R2 ⊗R associated to

the concatenation of RG flows from the UV via IR to theory IR2.
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IR correlation functions. Having described how to realize IR objects inside the UV

theory, it is straight-forward to represent IR correlators in the UV theory: First, prepare

the IR correlator by placing identity defects through all field insertions, in particular bulk

fields and at defect cusps. Then replace all IR objects by the respective UV objects as

described above. Importantly, this includes the IR identity defect, which has to be replaced

by the UV projection defect P . The resulting UV correlator coincides with the original

IR correlator.

〈
IR

〉 = 〈
UV

〉

3.3 Bulk RG flow as defect flow

The previous discussion suggests a radically new view on bulk RG flow. Namely, that

bulk perturbations of a 2d theory can be understood as a perturbation of a defect network

in the fixed UV bulk theory. More precisely, insertion and expansion of UV islands in

the perturbed theory confines the perturbation on ever smaller domains, which eventu-

ally become one-dimensional. Hence, perturbed correlation functions are nothing but UV

correlation functions with networks of perturbed identity defects inserted. RG flow then

does not change the bulk UV theory, but only drives the identity defect in the UV to some

projection defect P , cf. (1.5).

The two-dimensional RG flow in the bulk can hence be reduced to a one-dimensional

RG flow on the identity defect IUV. Such defect flows are of course much easier to handle,

because the underlying bulk theory does not change. For instance, UV bulk fields (IUV-

endomorphisms) and boundaries (IUV-modules) flow to bulk fields and boundaries in the

UV theory, which are compatible with P , i.e. to P -bimodule morphisms of P and P -

modules, respectively.

Thus, if one can get a handle on perturbations of the identity defect in a given TQFT,

the structures (bulk space, boundaries, correlators, etc.) associated to the corresponding

perturbed bulk theory can be easily extracted.

3.4 IR theories from projections

In the previous discussion, we represented correlation functions of a perturbed 2d TQFT

as correlation functions of the unperturbed UV theory with a defect network inserted.

While the starting point of the construction were RG defects R, the correlation functions

of the perturbed theory only depended on the projection defect P = R†⊗R. This suggests

applying this method to arbitrary unital or counital projection defects P , which have

the same properties as the defects associated to RG flows discussed in section 3.1: The
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projection property, P ⊗ P ∼= P means that there are two junctions8

multiplication

and

comultiplication

satisfying the loop-omission (separability) and projection properties:

= and = .

The junctions turn P into an algebra as well as a coalgebra. We require P to either have9

a unit , i.e. = =

or a counit , i.e. = = .

As is shown in appendix A.6, the existence of a unit for a projection defect implies coasso-

ciativity, while the existence of a counit implies associativity. In fact, for projection defects,

associativity, coassociativity and the Frobenius identities

= and =

= =

are all equivalent to one another, cf. appendix A.6. Thus, unital or counital projection

defects satsify all of them.

8As before, P is depicted in green, oriented from bottom to top.
9The special case in which P has a unit as well as a counit is discussed in appendix A.5.
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As in the context of RG defects discussed in section 3.2, replacing the identity defect

I in a 2d TQFT by an arbitrary projection defect P , and inserting P networks into the

correlation functions one obtains correlation functions of a new, P -projected 2d TQFT.

The relation between the projected and unprojected theories is exactly the same as the

relation between IR and UV theories discussed in section 3.2.

While apriori, projection defects P do not arise from a bulk perturbations, we will

show in the next section that in fact they always factorize into RG type defects.

3.5 Factorization of projection defects

We now come full circle by showing that any (unital or counital) projection defect P

factorizes as

P = R† ⊗R in caseP is unital

P = †R⊗R in caseP is counital ,

where R is an RG type10 defect between the P -projected theory on one side and the original

unprojected theory on the other. By analogy to the case of RG flows, we call the original,

unprojected theory UV and the P -projected theory IR.

The basic idea is simple: as P is a (co)algebra, it can be viewed as a left and/or right

(co)module over itself. Thus, the defect P can be regarded as a defect in the original

(UV) theory (the defect P itself), a defect in the P -projected (IR) theory (the identity

defect), or a defect separating one of those from the other. To indicate which of the

interpretations we are referring to, we denote the respective defects as PUV|UV, PIR|IR,

PIR|UV or PUV|IR, respectively. For instance, viewed as a left P -(co)module and a right

IUV-(co)module P represents the defect PIR|UV between the P -projected (IR) theory and

the original (UV) theory

UVIR

PIR|UV

.

This defect plays the role of the RG defect R.

To show that it is indeed of RG type, we first need to determine its adjoints. We will

restrict our discussion to the case that P is unital. (There is an analogous argument for

the case of counital P .) Since PIR|UV is a defect between IR and UV theory, the adjoints

10R⊗R† is isomorphic to the identity defect.

– 17 –



J
H
E
P
0
1
(
2
0
2
0
)
0
9
7

have to satisfy mixed Zorro identities:

PIR|UV

=

PIR|UV

and

(
PIR|UV

)†
=

(
PIR|UV

)†
for the right adjoint and

PIR|UV

=

PIR|UV

and

† (PIR|UV

)
=

† (PIR|UV

)
for the left adjoint. Here, the defect P plays the role of the identity defect on the IR side of

the defect. For unital P , comultiplication induces a coevaluation map IUV → P → P ⊗ P ,

and, as is shown in appendix A.7(
PIR|UV

)†
= PUV|IR

†(PIR|UV

)
=
(
†P
)
UV|IR

.

(†P denotes the left adjoint of P in the UV theory.) Now, since fusion over the IR theory

is the same as fusion in the UV, it follows from the projection property of P that

PUV|UV = P ∼= P ⊗ P = PUV|IR ⊗ PIR|UV = (PIR|UV)† ⊗ PIR|UV .

Moreover, the identity defect in the IR theory is represented by P in the UV theory,

and hence

IIR = PIR|IR = P ∼= P ⊗ P = PIR|UV ⊗ PUV|IR = PIR|UV ⊗ (PIR|UV)† .

Thus, any unital projection defect P factorizes as P = R† ⊗R, where R = PIR|UV has the

property that R⊗R† ∼= IIR. Note that all the defects R, R† and IIR are represented by P

in the UV theory, and the isomorphism R⊗R† → IIR and its inverse are just given by the

multiplication and comultiplication of P , respectively. The loop-omission and projection

property of P then imply

= and =
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Similar considerations lead to an analogous factorization of counital projection defects P .

The role of the RG defect is again played by R = PIR|UV. But the adjoints differ from the

unital case: (
PIR|UV

)†
=
(
P †
)
UV|IR

† (PIR|UV

)
= PUV|IR,

which leads to slightly different factorizations

PUV|UV = P ∼= P ⊗ P = PUV|IR ⊗ PIR|UV = †(PIR|UV)⊗ PIR|UV ,

and

IIR = PIR|IR = P ∼= P ⊗ P = PIR|UV ⊗ PUV|IR = PIR|UV ⊗ †(PIR|UV) .

If P comes with both, a unit and a counit, it is self-adjoint (P † ∼= P ∼= †P , see

appendix A.5), and the left and right adjoint of the induced RG defect R are isomorphic,

R† ∼= †R.

3.6 Relation to the generalized orbifold procedure

The method described in section 3.5 above to construct a new 2d TQFT by replacing

the identity defect by a projection defect P is very close to and in fact inspired by the

generalized orbifold procedure [4, 5, 7, 8, 14, 15] (see appendix B for a quick summary).

In that procedure a new 2d theory is defined from an original one by inserting networks

of a defect A into the correlation functions of the original theory. The difference to our

construction is the requirements imposed on A.

In the generalized orbifold construction the defect A has to be a separable Frobenius

algebra,11 cf. appendix B. This condition is very similar to the properties of projection

defects with two differences: On the one hand the defect A does not have to satisfy the

projection property, but is on the other hand required to have both, a unit and a counit,

which we do not demand of projection defects. Moreover, it is often assumed in the

generalized orbifold procedure that left and right adjoints of any defect D are isomorphic,

i.e. D† ∼= †D, so that further conditions such as pivotality and symmetry can be demanded

(see e.g. [5]). We do not require such a condition, and in fact it is not met in our examples

discussed in section 4.

A projection defect P has both a unit and counit if and only if left and right adjoints

of the respective RG defects are isomorphic(
PIR|UV

)† ∼= PUV|IR ∼= †(PIR|UV

)
,

cf. appendix A.5. In that case P is a separable Frobenius algebra, and the construction

described in section 3.5 is a special case of the generalized orbifold construction. Indeed,

the projection property of P brings about interesting simplifications in the generalized

orbifold construction, which we will spell out in the remainder of this section.

11a unital, counital, associative, coassociative algebra and coalgebra satisfying loop-omission and Frobe-

nius properties.
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Let A be a separable Frobenius algebra in a given 2d theory. We will represent it by

green line segments in diagrams. Defects in the generalized orbifold theory defined by A

are given by defects in the underlying 2d theory, which are A-(bi)modules. Let D and D̃

be two such (bi)modules. Their fusion in the generalized orbifold theory is given by their

tensor product D ⊗A D̃ over the algebra A, pictorially

D D̃

≡
D D̃

.

In general, it is different from the fusion D ⊗ D̃ in the underlying unorbifolded theory.

Indeed, similarly to projection defects, also separable Frobenius algebras always fac-

torize into defects between the orbifold and the underlying unorbifolded theory and their

adjoints. Namely, considered as a left A- and right I-module,12 A represents a defect R

between orbifolded and unorbifolded theory. Considered as right A- and left I-module it

represents the adjoint defect R† ∼= †R. Now, for any separable Frobenius algebra we have

A⊗A A ∼= A, or pictorially

= = .

Hence, A as a defect in the unorbifolded theory factorizes as A ∼= R† ⊗A R. However, for

generic A the defect R is not of RG type, i.e. R ⊗ R† is not isomorphic to the identity

defect in the orbifold theory. Hence, bubbles of a generalized orbifold theory inserted in

the unorbifolded theory do not in general connect trivially:

6=

Instead, pushing two bubbles of the generalized orbifold against each other creates a non-

trivial defect at the interface of the two bubbles. Thus, the generalized orbifold cannot be

obtained by a local perturbation of the original theory. This is only true if A additionally

satisfies the projection property.

In that case, fusion in the generalized orbifold simplifies dramatically – it reduces to

fusion in the unorbifolded theory. Namely, for a separable Frobenius algebra the projection

property can be rephrased as

= ⇔ =

12I is the identity defect of the underlying unorbifolded theory.
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leading to the following simplification for defect fusion in the orbifold theory:

D D̃

unit
=

D D̃

proj.
=

D D̃

=

D D̃

.

4 RG-networks in Landau-Ginzburg orbifolds

In this section we will apply our construction in the context of topologically twisted Landau-

Ginzburg models. More precisely, we will consider Landau-Ginzburg models Md with a

single chiral superfield X and superpotential W (X) = Xd. These models admit relevant

perturbations generated by deformations of the superpotential by lower degree polynomials.

For instance, the modelMd can be perturbed by adding a term λXd′ to the superpotential.

For d′ < d this perturbation is relevant and the renormalization group flow drives the

theory from the modelMd in the UV (λ = 0) to the modelMd′ (λ =∞) in the IR. These

perturbations are chiral and hence preserve A-type supersymmetry. The corresponding

RG defects are therefore A-type defects. We prefer to work with B-type defects in Landau-

Ginzburg models, because they are much better understood. For that reason, we will

consider the mirror dual situation instead: RG flows between Landau-Ginzburg orbifolds

Md/Zd andMd′/Zd′ generated by twisted chiral perturbations. The respective RG defects

have been constructed in [1].

We will start by giving a brief outline of the description of B-type defects in Landau-

Ginzburg models by means of matrix factorizations. Then we will review the construction

of the respective RG defects from [1]. Finally, we will use our construction to realize the

IR theories by means of projection defects in the UV theories. In particular, we will show

how to realize all the Landau-Ginzburg orbifolds Md/Zd in the theory of a free twisted

chiral field.

4.1 B-type defects in Landau-Ginzburg models

As put forward by Kontsevich, B-type defects in Landau-Ginzburg models can be described

in terms of matrix factorizations [13, 16–19].

A matrix factorization of a polynomial W ∈ S = C[x1, . . . , xn] consists of a Z2-graded

free module D = D0 ⊕ D1 over the polynomial ring S, with an odd endomorphism dD :

D → D, which squares to W times the identity map, i.e. d2D = W idD. One often unfolds

matrix factorizations into 2-periodic complexes

D : D1

dD1

dD0

D0 , dD =

(
0 dD1

dD0 0

)
.

These complexes are twisted by W : dD1 ◦ dD0 = W idD0 and dD0 ◦ dD1 = W idD1 .

Now, topological Landau-Ginzburg models are completely specified by their chiral

superfields X1, . . . , Xn and their superpotential W (X1, . . . , Xn). B-type defects D between
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two LG models with superpotential W (X1, .., Xn) and V (Z1, . . . , Zm)

D

V (Z1, . . . , Zm) W (X1, . . . , Xn)

,

can be described by matrix factorizations of the difference V −W of the respective super-

potentials. By abuse of notation we also denote the matrix factorization by D and write

D : W → V .

The space of defect-changing fields Hom(D,D′) between two defects represented by

matrix factorizations D,D′ : W → V is given by the homology of the induced Z2-graded

complex on the space of homomorphisms HomS(D,D′) of the respective S-modules.13

More precisely,

Hom(D,D′) = H∗d(HomS(D,D′)) ,

with differential dφ = dD′ ◦ φ− (−1)degφ ◦ dD , for φ ∈ HomS(D,D′) .

Here deg denotes the Z2-degree. The space of defect-changing fields is Z2-graded with

even and odd elements corresponding to bosons and fermions, respectively. The operator

product of defect-changing fields is just the composition of homomorphisms.

Defect fusion is described by the tensor product of matrix factorizations [13]. Namely,

let U ∈ C[X1, . . . , Xm], V ∈ C[Y1, . . . , Yn], W ∈ C[Z1, . . . , Zo] and D : W → V and

D′ : V → U be matrix factorizations of V − W and U − V , respectively. Then the

fused defect is given by the tensor product D′ ⊗ D of matrix factorizations. This is the

matrix factorization built on the Z2-graded C[X1, . . . , Xm, Z1, . . . , Zo]-module D′⊗C[Y1,...,Yn]

D with homomorphism

dD′⊗D = dD′ ⊗ idD + idD′ ⊗ dD .

This differential is to be understood with Koszul signs, meaning that

(idD′ ⊗ dD)(ν ⊗ ω) = (−1)deg(ν)⊗ dD(ω).

Since the factorized polynomials add upon taking the tensor product, this is indeed a

matrix factorization of (U − V ) + (V −W ) = U −W , i.e. D′ ⊗D : W → U .14

Adjunctions of B-type defects in LG models have been studied in [12, 20] (see [21] for

a nice review). Adjoints are given by

D† ∼= D∨[n] , †D ∼= D∨[m] , (4.1)

where D∨ is the dual of a matrix factorization D, consisting of the dual modules (D∨)i =

(Di)
∨, and the maps

dD∨ =

(
0 d∨D0

−d∨D1 0

)
.

13Note that the Hom-complex is untwisted!
14A priori, tensor product matrix factorizations like this are of infinite rank. It can be shown however, that

tensor products of finite-rank matrix factorizations are isomorphic to finite-rank matrix factorizations [13].
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Moreover, (·)[m] denotes the shift of Z2-degree by m: (D[m])i = Di+m and dD[m]i =

(−1)mdD(i+m).

Indeed, boundary conditions are a special case of defects, namely those with a trivial

theory on one side. The trivial LG theory is of course the theory with no chiral fields and

zero superpotential. Right (left) B-type boundary conditions of a Landau-Ginzburg theory

with superpotential W can therefore be described by matrix factorizations of W (−W ).

B-type defects in Landau-Ginzburg orbifolds. The description of B-type defects in

Landau-Ginzburg models by means of matrix factorizations extends in a straight-forward

manner to the context of Landau-Ginzburg orbifolds. Whenever the polynomial ring

C[X1, . . . , Xn] carries an action of a finite group GW which leaves a polynomial W in-

variant, the Landau-Ginzburg model defined by W can be orbifolded by GW leading to a

new 2d TQFT which by abuse of notation we denote by W/GW [22].

Now let V ∈ C[X1, . . . , Xn] and W ∈ C[Y1, . . . , Ym] be two superpotentials and GV
and GW orbifold groups. Then B-type defects between the respective LG orbifolds can be

described by G = GV ×GW -equivariant matrix factorizations of V −W [1, 23, 24]. These

are matrix factorizations D : W → V as before, which are additionally equipped with a

representation ρD of G. The latter has to be compatible with the module structure on D

and has to commute with dD. Denoting by ρ the representation of G = GV ×GW on the

combined polynomial ring S = C[X1, . . . , Xn, Y1, . . . , Ym] this means that for all g ∈ G

ρD(g)(s · p) = ρ(g)(s) · ρD(g)(p), ∀s ∈ S, p ∈ D = D0 ⊕D1,

ρD(g) ◦ dD = dD ◦ ρD(g) .

Given two equivariant matrix factorizations D,D′ : W → V , the complex HomS(D,D′)

carries an action of G = GV ×GW which commutes with the differential d, inducing a rep-

resentation on the homology H∗d(HomS(D,D′)). The space of defect-changing fields in the

orbifold theory is then given by the G-invariant part HomG(D,D′) = (H∗d(HomS(D,D′)))G.

The operator product of defect-changing fields is again just composition of homomorphisms.

Defect fusion carries over from the unorbifolded LG models by taking invariant parts.

More precisely, let U ∈ C[X1, . . . , Xm], V ∈ C[Y1, . . . , Yn] and W ∈ C[Z1, . . . , Zo] be

polynomials invariant under actions of groups GU , GV , GW on the respective polynomial

rings. And let D : W → V and D′ : V → U be GW × GV -, respectively GV × GU -

equivariant matrix factorizations. Then the tensor product D′ ⊗D is a GU × GV × GW -

equivariant matrix factorization of U −W . Fusion of the defects in the orbifold theory is

then given by the GV -invariant part D′⊗GV D := (D′ ⊗D)GV of D′⊗D, which is of course

GU ×GW -equivariant.

Adjunction of defects D in the orbifold theory is given by adjunction (4.1) in the

underlying unorbifolded theory, where however the G-action on the adjoints is twisted.

This can be seen in a systematic way in the generalized orbifold construction [4, 5, 7, 8]

which offers a completely general framework to describe orbifold theories using defects

in the underlying unorbifolded theory. We outline the generalized orbifold procedure in

appendix B, and in particular spell out the formula for adjoints.
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4.2 Defects Md/Zd →Md′/Zd′

For the case of Landau-Ginzburg orbifolds Md/Zd the discussion simplifies somewhat. An

element a ∈ Zd of the orbifold group acts on the chiral field X by X 7→ e
2πia
d X.

A defect D : Xd/Zd → Zd
′
/Zd′ is given by a G = Zd′ × Zd-equivariant matrix factor-

ization of Zd
′ −Xd. Since G is commutative, its representations on D can be specified by

G-gradings or -charges of the generators of the free S = C[Z,X]-module D = D0⊕D1. We

will indicate them in square brackets and specify a G-equivariant matrix factorizations as

D : SM


[lM , rM ]

[lM+1, rM+1]
...

[l2M−1, r2M−1]


dD1

dD0

SM


[l0, r0]

[l1, r1]
...

[lM−1, rM−1]

 ,

cf. [1] for more details. Adjoints then take the form, cf. appendix C.4,

D† : SM


[−r0 + 1,−l0]
[−r1 + 1,−l1]

...

[−rM−1 + 1,−lM−1]


dTD1

−dTD0

SM


[−rM + 1,−lM ]

[−rM+1 + 1,−lM+1]
...

[−r2M−1 + 1,−l2M−1]



†D : SM


[−r0,−l0 + 1]

[−r1,−l1 + 1]
...

[−rM−1,−lM−1 + 1]


dTD1

−dTD0

SM


[−rM ,−lM + 1]

[−rM+1,−lM+1 + 1]
...

[−r2M−1,−l2M−1 + 1]


(4.2)

Note that left adjoints differ from right adjoints by a shift in G-charges by [−1, 1]. We

write †D = D†{[−1, 1]}.
An important example is the identity defect Id : Xd/Zd → Zd/Zd which is represented

by the following Zd × Zd-equivariant matrix factorization (cf. appendix C.6)

Id : Sd


[1, 0]

[2,−1]

[3,−2]
...




Z 0 . . . 0 −X
−X Z

0 −X Z
...

. . .
. . .

0 −X Z


dId0

Sd


[0, 0]

[1,−1]

[2,−2]
...

 .

One easily reads off that this defect is self-adjoint, i.e. I†d
∼= Id ∼= †Id.
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4.3 RG defects in LG orbifolds

As alluded to above, Landau-Ginzburg orbifolds Md/Zd exhibit relevant perturbations by

twisted chiral fields. The corresponding RG flows drive the theory from Md/Zd in the UV

to another orbifold Md′/Zd′ with d′ < d in the IR. The associated RG defects have been

constructed in [1]. They preserve B-type supersymmetry and can therfore be described by

Zd′ ×Zd-equivariant matrix factorizations of Zd
′ −Xd. Indeed, due to a singularity in the

parameter space, there are different flows fromMd/Zd toMd′/Zd′ . The corresponding RG

defects R = R(m,n0, . . . , nd′−1) are specified by m ∈ Zd, and integers n0, . . . , nd′−1 ≥ 1,

such that n0 + . . .+ nd′−1 = d. They are represented by matrix factorizations

R : Sd
′

 [1,−m]
[2,−m−n1]

[3,−m−n1−n2]

...




Z 0 . . . 0 −Xn0

−Xn1 Z

0 −Xn2 Z
...

. . .
. . .

0 −Xnd′−1 Z


dR0

Sd
′

 [0,−m]
[1,−m−n1]

[2,−m−n1−n2]

...

 ,

(4.3)

where, S = C[X,Z]. For more details see [1]. In the following we will sometimes take the

subscripts of the ni to be elements in Zd′ by defining ni+z d′ = ni for all z ∈ Z.

Using this concrete realization of RG defects, one can now explicitly carry out the

construction outlined in section 3 and represent the LG orbifolds Md′/Zd′ in Md/Zd for

any d′ < d. In order to construct the respective projection defects, we need right and

left adjoints of the defects R, which can easily be read off from formula (4.2). They are

given by

R† : Sd
′

 [m+1,0]
[m+1+n1,−1]

[m+1+n1+n2,−2]
...




Z −Xn1

Z −Xn2

. . .
. . .
Z −Xnd′−1

−Xn0 Z


dR†0 = dTR0

Sd
′

 [m+1,−1]
[m+1+n1,−2]

[m+1+n1+n2,−3]
...


and

†R : Sd
′

 [m,1]
[m+n1,0]

[m+n1+n2,−1]
...




Z −Xn1

Z −Xn2

. . .
. . .
Z −Xnd′−1

−Xn0 Z


d†R0 = dTR0

Sd
′

 [m,0]
[m+n1,−1]

[m+n1+n2,−2]
...


A straight-forward calculation presented in appendix D.1 then shows that indeed

R⊗Zd R
† ∼= Id′

R⊗Zd
†R ∼= Id′ ,
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i.e. the defects R are indeed of RG type. Fusion in the opposite order yields the respective

projection defects (see appendix D.2 for the explicit calculation). For the unital projection

defect P = R† ⊗Zd′ R one obtains

P : Sd
′


[m+1,−m]

[m+1+n1,−m−n1]
[m+1+n1+n2,−m−n1−n2]

...
[m+1+

∑d′−1
l=1 nl,−m−

∑d′−1
l=1 nl]


dP1

dP0

Sd
′


[m+1+

∑d′−1
l=1 nl,−m]

[m+1,−m−n1]
[m+1+n1,−m−n1−n2]

...
[m+1+

∑d′−2
l=1 nl,−m−

∑d′−1
l=1 nl]

 ,

where

dP1 =


Zn0 0 . . . 0 −Xn0

−Xn1 Zn1

0 −Xn2 Zn2

...
. . .

. . .

0 −Xnd′−1 Znd′−1

 . (4.4)

The counital projection defects P ′ = †R⊗Zd′ R is given by the left adjoint P ′ = †P of P .

The morphism

φ := †R

R†

R

IR
I

UV
R†

†R

R

: †R −→ R†

which is used to close right R-loops can also be determined explicitly. It is not hard to see

that it is given by

φ =

(
φ0 0

0 φ1

)
with φ0 = φ1 =


0 Xn1−1

. . .
. . .
. . . Xnd′−1

Xn0−1 0

 .

4.4 Representing Md′/Zd′ in Md/Zd for d′ < d

The projection defects constructed from RG defects in the previous section can now be

used to represent Landau-Ginzburg orbifolds Md′/Zd′ in orbifolds Md/Zd for d′ < d.

Bulk Hilbert space. The orbifolds Md′/Zd′ only possess a single bulk chiral field,

namely the identity field. Therefore, the bulk Hilbert space in the B-twisted model is trivial,

it just contains the vaccuum. One easily checks, that this is also true for Hom(P, P ). Hence,

– 26 –



J
H
E
P
0
1
(
2
0
2
0
)
0
9
7

the bulk Hilbert space of Md′/Zd′ agrees with the space of defect fields on the projection

defect in Md/Zd.15

Boundary conditions. Next, we demonstrate how to represent the boundary conditions

of Md′/Zd′ as P -invariant boundary conditions in the models Md/Zd.
Elementary left boundary conditions in a theory Md/Zd are represented by the Zd-

equivariant matrix factorizations

Bd
k,N : C[X]

(
[N + k]

) Xk

−Xd−k
C[X]

(
[N ]
)

of −Xd, where k ∈ {1, . . . , d− 1} and N ∈ Zd.
As is shown in appendix D.3, a UV boundary condition BUV = Bd

k,N is invariant under

fusion with P , i.e. BUV ⊗ P ∼= BUV iff

k = ni + . . .+ ni−l

and N =

[
−m−

i∑
a=1

na

]

for an i ∈ Zd′ and an l ∈ {0, . . . , d′ − 2}. These are of course nothing but the lifts BIR⊗Zd′R

of IR boundary conditions to the UV. Namely, for BIR = Bd′
l,M one finds [1]

BIR ⊗Zd′ R = Bd
(n−M−l+1+...+n−M ),(−m−

∑−M
a=1 na)

.

IR symmetries. The Landau-Ginzburg orbifold modelMd′/Zd′ exhibits a Zd′-symmetry.

The action of an element a ∈ Zd′ on the theory is described by the symmetry defect

aId′ = Id′{[a, 0]} ∼= Id′{[0,−a]} obtained by shifting the charges of the identity defect Id′

by [a, 0] or equivalently by [0,−a]. These defects fuse according to the group multiplication

in the symmetry group Zd′ :

aId′ ⊗Zd′ bId′ = a+bId′ , for a, b ∈ Zd′ .

As any IR defects, they lift into the UV theory Md/Zd by fusion with RG defects

aId′ 7−→ R† ⊗Zd′ aId′ ⊗Zd′ R =: aP.

These lifted defects also fuse according to multiplication in the symmetry group, i.e. aP⊗Zd

bP = a+bP , and therefore give a realization of the IR symmetry in the UV. The neutral

element of the group however lifts to the defect 0P = P and not to the identity defect in

the UV. The lifted IR symmetries are therefore not invertible in the full UV theory, and

hence are not symmetries of the UV theory.

15Since the bulk Hilbert spaces are trivial, this is not that interesting. However, there is a way to describe

also the twisted chiral fields in the B-twisted LG orbifoldsMd/Zd. Namely, being orbifold twist fields, they

can be realized as defect changing fields between symmetry defects. This realization then lifts from IR to

UV using projection defects, i.e. one can realize the twisted chiral fields in Md′/Zd′ by defect changing

fields in Md/Zd.
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The explicit form of aP can be easily derived by means of a slight variation of the

calculation of P as carried out in appendix D.4. The result is

aP : Sd
′


[m+1,−m−

∑−a
j=1 nj ]

[m+1+n1,−m−
∑1−a
j=1 nj ]

[m+1+n1+n2,−m−
∑2−a
j=1 nj ]

...
[m+1+

∑d′−1
l=1 nl,−m−

∑d′−1
l=1 nl]


dP1

dP0

Sd
′


[m+1+

∑d′−1
l=1 nl,−m−

∑−a
j=1 nj ]

[m+1,−m−
∑1−a
j=1 nj ]

[m+1+n1,−m−
∑2−a
j=1 nj ]

...
[m+1+

∑d′−2
l=1 nl,−m−

∑d′−1−a
l=1 nl]

 ,

where

dP1 =


Zn0 0 . . . 0 −Xn0−a

−Xn1−a Zn1

0 −Xn2−a Zn2

...
. . .

. . .

0 −Xnd′−1−a Znd′−1

 .

For a = 0, this is the matrix factorization describing P . The lifted IR symmetry defects aP

are obtained from it by shifting the exponents of X by a steps while keeping left Zd-charges

fixed and adapting the right ones accordingly.

4.5 The limit d→∞

As discussed in the beginning of this section, the RG flows between LG orbifoldsMd/Zd are

nothing but the mirror versions of flows between LG modelsMd generated by deformations

of the superpotentials W = Xd by lower degree polynomials. Indeed, all the models Md′

can be obtained as perturbations of the free chiral field theory (W = 0) by superpotential

deformations. Thus, employing our procedure provides a representation of all the models

Md′ inside the theory of a free chiral field, which can be thought of as the limit M∞ =

limd→∞Md of the models Md.

In order to make this more explicit we again take the mirror perspective. The rep-

resentation of the respective RG defects in terms of matrix factorizations then allows

us to explicitly realize all the LG orbifolds Md′/Zd′ by means of projection defects in

the theory of the free twisted chiral field. The latter can be described as the limit

M∞/Z∞ = limd→∞Md/Zd and can be thought of as a U(1)-equivariant version of the

free chiral field.

RG defects between Md′/Zd′ and M∞/Z∞ can be obtained as limits of the RG de-

fects (4.3) representing flowsMd/Zd →Md′/Zd′ , where one ni is sent to∞ while the others

are kept fixed. Since d =
∑

i ni, then also d→∞. Indeed, we can choose n0 →∞ and com-

pensate for this choice by allowing a shift of the charges of R by [k, 0], k ∈ Zd′ . In the limit,

entries Xn0 in the matrix factorization have to be replaced by 0, and the Zd-equivariance

turns into a U(1)-equivariance. This way, one obtains the Zd′ × U(1)-equivariant matrix

factorizations

R∞ : Sd
′


[k + 1,−m]

[k + 2,−m− n1]
[k + 3,−m− n1 − n2]

...


dR1

dR0

Sd
′


[k,−m]

[k + 1,−m− n1]
[k + 2,−m− n1 − n2]

...
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of Zd
′
. They are specified by integers m ∈ Z, n1, . . . , nd′−1 ∈ N and k ∈ Zd′ . The maps

are given by

dR1 =


Z 0 . . . 0 0

−Xn1 Z

0 −Xn2 Z
...

. . .
. . .

0 −Xnd′−1 Z



dR0 =



Zd
′−1 0 0 . . .

Zd
′−2Xn1 Zd

′−1 0 . . .

Zd
′−3Xn1+n2 Zd

′−2Xn2 Zd
′−1 . . .

Zd
′−4Xn1+n2+n3 Zd

′−3Xn2+n3 Zd
′−2Xn3

. . .
...

...
...

. . .


.

These matrix factorizations represent RG defects between Md′/Zd′ and M∞/Z∞. Indeed

R∞ ⊗R†∞ ∼= IIR as is spelled out in appendix D.5.

In explicit calculations, it is not difficult to see that fusion commutes with the limit

d → ∞, at least as long as the theory squeezed between the defects is kept fixed in the

limit. In particular, the limit d→∞ of projection defects is the fusion P∞ = R†∞⊗R∞ of

the limit of RG defects. The projection defect realizing Md′/Zd′ within the limit theory

M∞/Z∞ takes the form

P∞ : Sd
′


[m+1,−m]

[m+1+n1,−m−n1]
[m+1+n1+n2,−m−n1−n2]

...
[m+1+

∑d′−1
l=1 nl,−m−

∑d′−1
l=1 nl]


dP1

dP0

Sd
′


[m+1+

∑d′−1
l=1 nl,−m]

[m+1,−m−n1]
[m+1+n1,−m−n1−n2]

...
[m+1+

∑d′−2
l=1 nl,−m−

∑d′−1
l=1 nl]

 ,

where S = C[Z,X] and

dP1 =


0 0

−Xn1 Zn1

−Xn2 Zn2

. . .
. . .

−Xnd′−1 Znd′−1

 .

5 Conclusion

We conclude with a list of questions for future investigation.

• It would be interesting to apply the construction outlined in this paper to other

examples of RG flows and to find representations of more elaborate 2d TQFTs in

free theories by means of projectors.

The treatment of flows between LG orbifolds discussed in section 4 easily carries over

to flows between orbifolds of free chiral field theories. The latter theories can be
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obtained from LG orbifolds by setting the superpotentials to zero. The respective

RG defects can be described in terms of matrix factorizations and have been worked

out in [25]. Somewhat more interesting examples are the bulk flows described in

terms of gauged linear sigma models in [26] and [27, 28]. In all these examples, the

flows are triggered by twisted chiral perturbations yielding RG defects preserving

B-type supersymmetry. It would of course be interesting to apply this method to

chiral perturbations as well. Unfortunately much less is known about A-type defects.

• In the example of LG orbifolds Md/Zd one could explicitly compare the bulk flows

studied in section 4.3 with the corresponding flows of the identity defects. While the

identity defects can be described by means of matrix factorizations, the respective

relevant perturbations are by twisted chiral fields. Such perturbations are not as

easily treated in the matrix factorization framework as defect perturbations by chiral

fields such as the ones discussed in [29]. In the case at hand however, the twisted

chiral fields generating the perturbations are orbifold twist fields. As such, they do

have a representation in the matrix factorization framework as defect changing fields.

This possibly allows for an explicit analysis of the respective defect perturbations

in this case. Hence, it might be possible to work out in this concrete example how

the projection defects P associated to bulk flows arise as perturbations of identity

defects.

• We have argued that bulk RG flows can be interpreted as flows on the identity

defect of the UV theory. Now, bulk flows between N = 2 SCFTs give rise to tt∗

equations [30, 31]. It would be very interesting to see, whether these equations also

have a natural interpretation in terms of the flows on the identity defect.

• The construction described in this paper heavily relies on topological covariance. So

an obvious question is whether it has any bearing on non-topological QFTs (beyond

topologically twisted supersymmetric theories). One can of course perturb the iden-

tity defect in non-topological QFTs. Also, RG defects exist in more general theories

(see e.g. [2] for an example). However, fusion of non-topological defects is singular

in general. Still, at least in some cases it is possible to define a reasonable notion of

fusion [32, 33], so that defects P can be constructed from RG defects. The role of

these defects is less clear, but it would be very interesting to study them in examples.

Perhaps they are related to the line operators appearing in the context of integrable

perturbations of conformal field theories [34–38].

• While the discussion in this paper is restricted to 2d TQFTs, we expect that bulk

perturbations of TQFTs can be described by means of codimension-one projection

defects in any dimension. Indeed, the generalized orbifold construction has been ex-

tended from dimension two to higher dimensions in [39]. It would be very interesting

to apply the methods described in this paper to higher-dimensional TQFTs.

– 30 –



J
H
E
P
0
1
(
2
0
2
0
)
0
9
7

Acknowledgments

FK thanks Friedrich-Naumann-Stiftung and the Chinese Scholarship Council for supporting

him throughout this project. DR’s work is supported by hits. For ease of readability accross

the literature, we have borrowed the defect coloring scheme from [8].

A Properties of projection defects

A.1 IR bulk fields in the UV

Here, we show that if a projection defect P in the UV factorizes as P ∼= R† ⊗ R with

R ⊗ R† ∼= IIR, then P -bimodule morphisms on P are one-to-one with IR bulk fields (IIR-

bimodule morphisms of IIR). The latter are mapped into the UV by the homomorphism

7→ , (A.1)

where the junctions are given by the isomorphisms P ∼= R† ⊗ R. (To keep the notation

light, we refrain from putting arrows on RG defects. We mark UV and IR theory by

dark, respectively light background.) By the projection property the right hand side is

a P -bimodule morphism of P . We claim that the inverse to the homomorphism (A.1) is

given by

7→ .

Let us first check that the composition IR → UV → IR evaluates to the identity on IR

bulk fields:16

7→ 7→ P∼=R†⊗R
=

R⊗R†∼=IIR=

Similarly, the composition UV→ IR→ UV is the identity on P -bimodule morphisms of P :

7→ 7→ P∼=R†⊗R
=

bimod. mor.
=

loop
=

16For readability, IIR has been omitted.

– 31 –



J
H
E
P
0
1
(
2
0
2
0
)
0
9
7

Therefore we have established that the map (A.1) is an isomorphism from the space of IR

bulk fields to the space of P -bimodule morphisms of P .

A.2 Bimodule equal bicomodule morphisms

For any projection defect, bimodule morphisms over itself are automatically cobimodule

morphisms and vice versa. In other words, the two types of morphisms are one-to-one:

= =
1:1←→ = =

This is easy to see. A bimodule morphism for example (left-hand side above) automati-

cally obeys

loop
=

bimod. mor.
=

proj.
=

bimod. mor.
=

proj.
= .

The argument that bicomodule morphisms also respect the bimodule structure follows by

turning the diagrams above upside down.

Indeed, if the projection defect P comes with a unit then all morphisms of P automat-

ically respect the bicomodule structure, and by the above also the bimodule structure on

P . (This easily follows from the projection property.) Hence, in this case all morphisms of

P are bimodule morphisms and bicomodule morphisms. The same is true if P has a counit.

A.3 P -modules B and B ⊗ P ∼= B

In this appendix we show that for a projection defect P , any left boundary condition

B is a right P -module if and only if B ⊗ P ∼= B. This in particular means that left IR

boundary conditions can be represented by left boundary conditions B in the UV which are

invariant under fusion with P , i.e. B⊗P ∼= B. This statement extends to right boundaries

and defects.

First, a left P -module (whose comodule structure is induced by the unit on P ) obeys

B ⊗ P ∼= B:

B

(co)module
=

unit
=

proj.
=

unit
=

and

B

=
module

=
loop + unit

= .

– 32 –



J
H
E
P
0
1
(
2
0
2
0
)
0
9
7

If on the other hand a left boundary condition B satisfies B ⊗ P ∼= B, B inherits the

P -module structure of P itself. Namely, there are junctions B ⊗ P → B and B → B ⊗ P
such that

B

= and

B

= .

This implies that

B B

define P -module, respectively P -comodule structures on B, which are also inverse to each

other and hence provide isomorphisms B ⊗ P ∼= P .

A.4 P -adjunction

In this appendix we show that the adjunction of IR defects is lifted to the UV by the

following formulas

D†P = P ⊗D† ⊗ P
†PD = P ⊗ †D ⊗ P.

where P is the corresponding projection defect, and D is a defect in the UV theory repre-

senting an IR defect. We will only consider the first equation and will furthermore restrict

to the case that P is unital. The arguments for the second equation and the counital case

are similar. The IR right adjoints have to satisfy the following Zorro move identities

D

UV

D†P
=

D

,

D†P

D =

D†P

.

These are satisfied for D†P above when we choose the following natural (co-)evaluation

maps

D ⊗D†P

P
,

D†P ⊗D

P

D†P ⊗ P

D†P

,

D†P

P ⊗D†P
.17
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Namely,

D†P

D

=
D†

D

=

D

and

D†P

D†P

≡ unit
=

proj.
= =

D†P

.

using unit condition, Zorro-move and the definition of D†P in the last step. For counital

P and left-adjoints the above diagrams have to be flipped appropriately.

The defect P is a P -module and a P -comodule, so it can be regarded as an IR defect.

As such, it should be selfadjoint, and, using the above notion of IR adjunction one finds

that this is indeed the case: P †P ∼= P ∼= †PP . If for instance P is unital, the two maps

P † ⊗ P

P

and

P † ⊗ P

P

are inverse to each other and hence provide isomorphisms P ∼= P † ⊗ P . The projection

property of P , P ⊗P ∼= P implies that P †P = P ⊗P †⊗P ∼= P . The argument for counital

P is analogous.

A.5 Projections with unit and counit

If a projection defect has a unit as well as a counit, it is automatically self-adjoint as there

are natural (co)evaluation maps:

= =

17The lower maps follow as natural generalizations from the generalized orbifold procedure [5, Prop. 4.7].

Namely,

= =
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The equalities follow from the two Frobenius and (co)unit properties. If P has a unit, any

P -module automatically carries a P -comodule structure. Vice versa, any P -comodule is

automatically a P -module in case P has a counit. If P has both, a unit and a counit, these

two constructions are compatible: Starting with a P -module, a P -comodule structure is

induced which in turn induces a P -module structure. This P -module structure is identical

to the original one:

=

As discussed in section 3.5, all projection defects P factorize into RG type defects

P ∼= R† ⊗R. For example, unitary P factorize as(
PIR|UV

)†
= PUV|IR

†(PIR|UV

)
=
(
†P
)
UV|IR

.

For selfadjoint projection defects P , the respective RG type defects R then satisfy †R ∼= R†.

A.6 Equivalence of (co)multiplication and Frobenius properties for projec-

tions

Here, we show the equivalence of associativity, coassociativity and the two Frobenius prop-

erties for projection defects and how they follow from the existence of a (co)unit. The

identities in question are:

ass.
= and

coass.
=

Frob. 1
= and

Frob. 2
=

Equivalence is shown by the following chain of implications

associativity⇒ Frob. 2⇒ coassociativity⇒ Frob. 1⇒ associativity.

associativity ⇒ Frob. 2:

proj.
=

ass.
=

loop
=
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Frob. 2 ⇒ coassociativity:

proj.
=

Frob. 2
=

loop
=

coassociativity ⇒ Frob. 1:

proj.
=

coass.
=

loop
=

Frob. 1 ⇒ associativity:

proj.
=

Frob. 1
=

loop
=

Next, we show how the existence of a unit for a projection defect implies coassociativity:

unit ⇒ coassociativity:

unit.
=

proj.
=

proj. + unit
=

In the last step we applied the projection property to the left and the lower defect. Turning

these diagrams upside down shows how associativity follows from the existence of a counit.

A.7 Adjoints of induced RG defects

Right and left adjoints of the induced RG defect PIR|UV must satisfy the Zorro move

identities

PIR|UV

=

PIR|UV

and

(
PIR|UV

)†
=

(
PIR|UV

)†
,
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PIR|UV

=

PIR|UV

and

† (PIR|UV

)
=

† (PIR|UV

)
.

We will discuss the case that P has a unit. The counital case can be treated analogously.

Indeed, it is easy to see that (
PIR|UV

)†
= PUV|IR,

i.e. P regarded as defect from IR to UV is the right adjoint of P regarded as a defect from

UV to IR. The evaluation map is just given by the algebra P⊗P → P and the coevaluation

map is induced by the unit IUV → P → P ⊗ P . (The Zorro identities immediately follow

from associativity and the unit condition.) It is slightly more involved to see that the left

adjoint is given by
† (PIR|UV

)
=
(
†P
)
UV|IR

,

the left adjoint of P regarded as a defect from the IR to the UV theory. Evaluation and

coevaluation are given by the maps

†P

†P

P

:=
†P

†P

P

and

P

P

†P
:=

P

†PP

P ,

which define the right P -module structure of †P and the right †P -comodule structure of

P , respectively. The first Zorro identity then follows from the UV Zorro move and loop

omission, while the second one additionally requires associativity and the unit property.

B Generalized orbifold theories

The generalized orbifold procedure [4, 5, 7, 8] is a method to produce a new theory out of

a given 2d TQFT T by inserting networks of an endo-defect A : T → T into its correlation

functions. These modified correlation functions are well-defined if the defect A satisfies the

following special properties. It has to come with (co)multiplication and (co)unit fields

A⊗A→ A, A→ A⊗A, A→ I, I → A

which make A into a separable Frobenius algebra, i.e. it obeys the (co)associativity and

(co)unit conditions

= , = = , = , = =
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as well as the Frobenius and loop-omission properties:

= = , = .

The respective orbifold theory is denoted by (T,A). An obvious example for a defect

satsifying the above conditions is the identity defect A = I in any TQFT. Orbifolding by

I of course just gives back the original theory, (T, I) ∼= T . In the following we will briefly

outline how objects in the orbifold (T,A) are defined in terms of objects in A.

For any two TQFTs T and T ′ with defects A and A′ as above an A-A′-bimodule D is

a defect D : T ′ → T with junctions A⊗D → D, D ⊗A′ → D such that

= , = = , = .

For two such bimodules D and D̃, HomA,A′(D, D̃) denotes the space of all defect changing

fields D → D̃ commuting with the bimodule structure, i.e.

= , = .

Via the unit, such modules are automatically also comodules, cf. [5, eqn. (4.1)]:

:= , := .

With these notations at hand, one can now represent objects of the generalized orbifold

theory (T, A) in terms of objects of T as follows:

i) Its invisible defect is A.

ii) Its bulk Hilbert space is HomA,A(A,A), the space of A−A-bimodule endomorphisms

of A.

iii) Boundary conditions B of (T,A) are those boundary conditions B of T carrying an

appropriate A-module structure.

iv) The space of boundary condition changing fields between boundary conditions B and

B̃ is given by HomA(B, B̃), the space of A-module morphisms from B to B̃.

v) Defects D from (T ′, A′) to (T,A) are A-A′-bimodules.

vi) The space of defect changing fields from defects D to D̃ is given by HomA,A′(D, D̃),

the space of A−A′-bimodule morphisms from D to D̃.
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vii) The fusion product D ⊗A D̃ in the orbifold theory (T,A) of two defects D and D̃ is

given by the image of the fusion D ⊗ D̃ in the unorbifolded theory T under

viii) The adjoints of defects D in the orbifold theory are defined in the following way in

terms of the adjoints in the unorbifolded theory. The A-actions on any defect D in

(T,A) induce actions on its non-orbifold adjoints †D and D†:

†D

†D

,

†D

†D

,

D†

D†

,

D†

D†

The action of an algebra A on any module can be twisted by an algebra automorphism

α : A→ A. So for any defect D in the orbifold theory, one can define twisted defects

α(D) and (D)α by twisting the left, respectively right A-action:

α(D)

= α

D

,

(D)α

= α

D

Left and right adjoints in the orbifold theory can be obtained by twisting the respec-

tive adjoints in the unorbifolded theory by the Nakayama automorphism

γA = .

More precisely, the left and right adjoints in the orbifold theory18 are given by [5,

Prop. 4.7]
∗D = γ−1

A

(
†D
)
, D∗ =

(
D†
)
γA′

. (B.1)

For ∗D, the (co)evaluation maps are given by

evD =

∗D D

◦ ξ, coevD = ϑ ◦
D ∗D

with the inclusion and projections maps ξ : ∗D ⊗A D → ∗D ⊗D and ϑ : D ⊗ ∗D →
D ⊗A ∗D. There are similar formulas for the (co)evaluation maps for D∗.

18In this appendix we denote adjunction in the orbifold by ‘∗’ to distinguish it from the adjunction ‘†’ in

the unorbidolded theory.
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C Orbifold minimal models as generalized orbifolds

Here, we construct the Landau-Ginzburg orbifolds Md/Zd as generalized orbifolds follow-

ing [5, Chapter 7]. To distinguish objects in the orbifold from objects in the unorbifolded

theory, we adopt the following notation, which is different from the one used in the main

text: the identity defect in Md is denoted by I, whereas the identity defect in the orbifold

theory is represented by the orbifold defect A. Also, adjunction in the orbifold is denoted

by ‘∗’ to distinguish it from adjunction ‘†’ in the unorbifolded theory. This notation is

only used in this appendix. In section 4 of the main text, we do not explicitly refer to

the orbifold construction and therefore do not need this distinction. There, I denotes the

identity defect and ‘†’ the adjunction in the orbifold theory Md/Zd.

C.1 Orbifold identity defect

The models Md/Zd are standard orbifolds. In this case the defect A is given by the

direct sum of the defects implementing the respective actions of all the symmetries in the

orbifold group: A = ⊕g∈Zd (gI). The symmetry defects gI can be represented by the

rank-one matrix factorizations (η = e2πi/d)

gI : C[Z,X]ed+[g]

ηgZ −X

Zd−Xd

ηgZ−X

C[Z,X]e[g]. (C.1)

where [g] denotes the representative of g ∈ Zd in {0, . . . , d−1}, and the ea, a ∈ {0, . . . , 2d−
1} are the generators of the respective rank-one free modules (gI)0,1. gI is the right twist

of the identity defect I in Md by g ∈ Zd.
Since A is the direct sum of the gI, the modules A0 and A1 are rank-d free modules

generated by e0, . . . , ed−1 and ed, . . . , e2d−1, respectively. In the basis (ea), the differential

of the matrix factorization A takes the form

(dA)ab = δa,b−d(η
aZ −X) + δa−d,b

d∑
l=1

η−l·aZd−lX l−1

for a, b = 0, . . . , 2d− 1.

The following maps give A a separable Frobenius structure [5, Prop. 7.1]:

1. The unit I = 0I ↪→ A is given by the obvious inclusion while the counit is the

projection multiplied by d

A� I , ei 7→ d ·

{
ei , i ∈ {0, d}
0 , otherwise

2. Multiplication and comultiplication

Y d

Zd Xd

,

Y d

Zd Xd
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are given by

A⊗A → A

e[g] ⊗ Y qe[h] 7→ (ηgZ)q e[g+h]

e[g] ⊗ Y qed+[h] 7→ (ηgZ)q ed+[g+h]

e[g]+d ⊗ Y qe[h] 7→ 0

e[g]+d ⊗ Y qe[h]+d 7→ 0

and

∆ : A→ A⊗A

e[g] 7→
1

d

∑
h∈Zd

[
e[g−h] ⊗ e[h] + ed+[g−h] ⊗

{
∂Z,Y

Zd −Xd

ηhZ −X

}Z→ηg−hZ
ed+[h]

]

ed+[g] 7→
1

d

∑
h∈Zd

[
e[g−h] ⊗ ed+[h] + ηhed+[g−h] ⊗ e[h]

]
,

(C.2)

where g, h ∈ Zd and q ∈ N. Moreover, ∂Z,Y Zi = Zi−Y i
Z−Y and {. . .}Z→ηg−hZ means that

all instances of Z within the brakets have to be replaced by ηg−hZ after performing all

operations. These formulas can be obtained from the natural junctions of symmetry

defects hI with the identity defect I = 0I. The calculation for the comultiplication

is sketched in appendix C.7.1 below.

In appendix C.6 below, we will reexpress the orbifold identity defect A using an equivari-

ant basis.

C.2 Nakayama automorphism

The Nakayama automorphism (cf. appendix B) takes the form [8, Example 3.1]

γA =
∑
g∈Zd

det(g) · 1gI

where det(g) denotes the matrix representing the action of g on the chiral fields of the

model to the right of A. In our case, g acts on X by multiplication with ηg and hence γA
reduces to

γA : A→ A

ea 7→ ηaea.

A Frobenius algebra B is symmetric iff γB = idB [5, 40]. Since γA 6= idA, A is not symmet-

ric. Therefore, left and right adjoints of defects in the orbifold theory (see equation (B.1))

generally differ (
D†
)
γA′

= D∗ 6∼= ∗D = γ−1
A

(
†D
)
.

This means that we do not have a general prescription of how to close defect loops in

Md/Zd. However, loops of RG defects can be closed with an explicit natural morphism.
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C.3 Bulk space

The (c, c)-bulk space of the orbifoldMd/Zd contains only the identity id : A→ A. However,

in the unorbifolded theory the defect A carries additional fields – one for each g 6= 0:

ψg : A→ A

e[h] 7→
Zd −Xd

(ηiZ −X)(ηh+gZ −X)
ed+[g+h]

ed+[h] 7→ e[g+h]

These correspond to the twist fields in the orbifold theory.

C.4 Defects and their adjoints

Consider a rank-M Zd′×Zd-equivariant matrix factorization D of Zd
′−Xd with equivariant

generators f0, . . . , fM−1 of D0 and fM , . . . , f2M−1. Let [lk, rk] be the Zd′ × Zd-charges of

fk. As discussed in the second part of C.7, these charges determine the A-action on D.

Denoting the chiral fields as in

Z

Y

X and X

Y

Z ,

one obtains

A⊗D → D

ea ⊗ Y pfk 7→ δ|ea|,0 · (ε
aZ)p · εa·lk · fk.

and

D ⊗A→ D

fk ⊗ Y pea 7→ δ|ea|,0 · fk · η
−a·rk(η−aX)p

where ε = e
2πi
d′ and η = e

2πi
d are elementary d′th, respectively dth roots of unity.

In appendix C.6 below, we will define equivariant generators for A itself, and will

reexpress the A-action on D in terms of these generators.

The adjoints in the orbifold theory are given by ∗D = γ−1
A

(†D) and D∗ =
(
D†
)
γA′

, see

equation (B.1). Here D† ∼= D∨[1] ∼= †D denotes adjunction in the unorbifolded models, cf.

section 4.1. An explicit calculation carried out in the last part of appendix C.7 determines

the induced A-action on D†, cf. equation (C.10). From this, one can read off the Zd × Zd′

charges of the equivariant generators f †k and †fk of D† and †D to be

[−rk+M + 1,−lk+M + 1].

Here, we have extended the range of indices of the charges r and l to Z by identification

modulo 2M , i.e. ri+2Mz = ri and li+2Mz = li for i ∈ {0, . . . , 2M − 1} and z ∈ Z.
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Twisting by the Nakayama automorphism one then obtains the charges of the gener-

ators f∗k and ∗fk of the matrix factorizations describing the orbifold adjoints D∗ and ∗D.

They are given by
[−rk+M ,−lk+M + 1]

and [−rk+M + 1,−lk+M ],

respectively. By construction, ∗D and D∗ obey the Zorro moves whose building blocks are

provided in C.8.

C.5 Left boundary conditions and their adjoints

As special case of defects, a left boundary condition in Md/Zd is a Zd-equivariant matrix

factorization B of −Xd. Using the same notation as in appendix C.4, we denote the

generators of the modules B0 and B1 by fk and their Zd-charges by [rk] which as in

the general case determine the A-action on B. The induced charges on the right and left

adjoint generators f †k of B† and †fk of †B are [−rk+M +1] and [−rk+1], respectively. Using

B∗ = B† and ∗B = γ−1(†B), the charges of the adjoint generators f∗k and ∗fk become

f∗k : [−rk+M + 1]
∗fk : [−rk]

The explicit expressions of the relevant (co-)evaluation maps for defects as well as bound-

aries are given in appendix C.8.

C.6 Equivariant generators of the orbifold identity defect

One can define equivariant generators of the orbifold identity matrix factorization A (cf.

section C.1) by

e′b =
1

d

∑
c

δ|eb|,|ec|η
−(b+|eb|)cec,

where the original generators ec are expressed in terms of the equivariant ones as

ec =
∑
b

δ|eb|,|ec|η
c(b+|ec|)e′b

In this basis, the matrix factorization A takes the equivariant form

A : C[Z,X]

 [1, 0]

[2,−1]
...





Z 0 . . . 0 −X

−X . . .

0
...

. . .
...

...
...

0 −X Z


C[Z,X]

 [0, 0]

[1,−1]
...

 .

(This is the form used in [1].) The A-action on equivariant matrix factorizations determined

in appendix C.7 and used in appendix C.4 simplifies in this basis.
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Consider a Zd×Zd-equivariant matrix factorization D of Zd−Xd. Let f0, . . . , fM−1 and

fM , . . . , f2M−1 be Zd × Zd-equivariant generators of D0 and D1, respectively. Denote the

Zd×Zd-charges of fk by [lk, rk]. In terms of the equivariant generators e′i of A, the A-action

Z

Y

X and X

Y

Z (C.3)

becomes
A⊗D → D, e′a ⊗ Y pfk 7→ δa,[p+lk] Z

p fk

D ⊗A→ D, fk ⊗ Y pe′a 7→ δa,[−rk−p] fkX
p.

C.7 Important calculations

In this appendix we sketch some calculations used in the main text and the previous sections

of this appendix.

C.7.1 Comultiplication of identity defect A

Following [5, 12], we define λ−1
hI

: hI → I ⊗ hI to be the natural junction of the identity

defect with the symmetry defect hI. It is given by

e[h] 7→ 1⊗ e[h] + θ ⊗
{
∂Z,Y

Zd −Xd

ηhZ −X

}
ed+[h]

ed+[h] 7→ 1⊗ ed+[h] + ηhθ ⊗ e[h].

Here X and Z are the chiral fields of the models to the right, respectively left of the

defects, and Y is the chiral field of the model sandwiched between the defects I and hI.

Twisting by g from the left (i.e. fusion by gI from the left) one obtains junction fields

∆g,h := g

(
λ−1
hI

)
: g+hI → gI ⊗ hI:

e[g+h] 7→ e[g] ⊗ e[h] + ed+[g] ⊗
{
∂Z,Y

Zd −Xd

ηhZ −X

}Z→ηgZ
ed+[h]

ed+[g+h] 7→ e[g] ⊗ ed+[h] + ηhed+[g] ⊗ e[h].

(Here, the notation {. . .}Z→ηgZ means that all instances of Z in the brackets have to be

replaced by ηgZ after performing all calculations.)

Summing up all the ∆g,h yields the comultiplication

∆ =
1

d

∑
g,h

∆g,h : A→ A⊗A

e[g] 7→
1

d

∑
h∈Zd

∆g−h,h(e[g])

ed+[g] 7→
1

d

∑
h∈Zd

∆g−h,h(ed+[g])

of the identity defect A in the orbifold. It is spelled out completely in equation (C.2).
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A actions on equivariant defect. According to [5, Section 7.1], the data of a G×H-

equivariant defect is encoded in its left and right fusion with the symmetry defects AG and

AH . Namely, it is described by a matrix factorization together with isomorphisms

• ϕg : gD → D such that ϕe = idD and ϕg1 ◦ g1(ϕg2) = ϕg1+g2 and

• φh : Dh → D such that φe = idD and φh1 ◦ (φh2)h1 = φh1+h2 .

Here, one can think of gD as the matrix factorization where all variables Zi to the left

of D have been replaced by g(Zi), see for example gI in (C.1). Also, for some morphism

α : D → D′ of matrix factorizations, g(α)h : gDh → gD
′
h is the same morphism considered

as a morphism between the respective twisted matrix factorizations. However, special

attention has to be paid to morphisms including an identification of variables. For example,

the left and right I-actions λD : I ⊗ D → D and ρD : D ⊗ I → D identify the middle

variable with the one on the left or right, respectively. The identification of variables in

the twisted versions g(λD) and (ρD)−h must respect the twist.

Following the proof of Thm. 7.2 in [5], the above data determine the left AG-action

on D: ∑
g∈G

(
AG ⊗D � gI ⊗D

g(λD)−−−−→ gD
ϕg−→ D

)
.

The right action includes the canonical isomorphism hI → I−h which we will comment

on later: ∑
h∈H

(
D ⊗AH � D ⊗ hI → D ⊗ I−h

(ρD)−h−−−−→ D−h
φ−h−−→ D

)
. (C.4)

Turning to our example, set G = Zd′ and H = Zd and consider a G ×H-equivariant

defect D, i.e. a Zd′ × Zd-equivariant matrix factorization D of Zd
′ −Xd. Let f0, . . . , fM−1

and fM , . . . , f2M−1 be equivariant generators of D0, respectively D1. Denote the Zd′ ×Zd-
charges of ek by

[lk, rk].

In other words the action of (g, h) ∈ Zd′ × Zd is given by

ZpfkX
q 7→ (εgZ)p · εg·lkfkηh·rk · (ηhX)q (C.5)

where ε = e
2πi
d′ , η = e

2πi
d .

We now reformulate this group action in terms of left and right A-actions. It is not

hard to see that in our case the above isomorphisms are given by19

ϕg : gD → D φh : Dh → D

fk → εg·lkfk fk → fkη
h·rk .

The explicit form of the left A-action on D then turns out to be

A⊗D → D

ea ⊗ Y pfk 7→ δ|ea|,0 · (ε
aZ)p · εa·lk · fk

19ϕg ◦ g(ϕh) = ϕg+h is trivial and dD ◦ ϕg = ϕg ◦ g(dD) amounts to dD being a degree zero map, i.e. ek
and dD(ek) carrying the same Zd′ × Zd charges.
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for the same choice of variables as in (C.3) (| · | denotes the Z2-charge). This coincides with

the expected action (C.5). The right A-action on the other hand takes the form

D ⊗A→ D

fk ⊗ Y pea 7→ δ|ea|,0 · fk · η
−a·rk(η−aX)p

where we emphasize the crucial minus sign for the right charges which differs from the

expected (C.5). It originates from the fact that the symmetry defect A was defined as the

direct sum of the left twisted identity morphisms which requires us to include the canonical

isomorphism

hI → I−h

ei 7→ ηh·|ei|ei, i = 0, 1

in the construction (C.4).

Left A-action on right adjoint. As explained in appendix B item viii), adjoints of

defects in the orbifold theory are induced by their non-orbifold counterpart. Here, given

an equivarant matrix factorization D of Zd
′ −Xd, we explicitely calculate the induced left

A-action (i.e. the left charges, see previous calculation) on the non-orbifold adjoint D†.

This leads to the charges of the right adjoint in the orbifold theory as D∗ ∼= (D†)γ .

Let f0, . . . , fM−1 be equivariant generators of D0 and fM , . . . , f2M−1 equivariant gen-

erators of D1. We denote the Zd′ × Zd-charges of fk by [lk, rk]. Then, D†0 and D†1 are

generated by f †0 , . . . , f
†
M−1 and f †M , . . . , f

†
2M−1 respectively, where f †i = f∨i+M for i < M

and f †i = f∨i−M for i ≥M . (‘∨’ denotes the dual.)

From the explicit expressions of the (co-)evaluation maps [12] we obtain

A⊗D† → D†

ea ⊗ f †i 7→ −δ|ea|,0δ|f†i |,0
M−1∑
k=0

Res


(

[∂Xd0]X→X
′′ ·η−ar,0 ·∂X,η

−aX′′d1+

+ηa[∂X,X
′′
d0]X→η

aX ·[∂Xd1]X→X
′′ ·η−ar,1

)Z→Z′
i,k

dX ′′

d ·X ′′d−1

 f †k

− δ|ea|,0δ|f†i |,1
2M−1∑
k=M

Res


(

[∂Xd1]X→X
′′ ·η−ar,1 ·∂X,η

−aX′′d0+

+ηa[∂X,X
′′
d1]X→η

aX ·[∂Xd0]X→X
′′ ·η−ar,0

)Z→Z′
i−M,k−M

dX ′′

d ·X ′′d−1

 f †k
(C.6)

for the following choice of variables

X

X ′′
Z ′

D†
= X

X ′′

Z ′

D†
.
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Here η = e2πi/d, and ηr,0 and ηr,1 are the diagonal matrices

ηr,0 = diag(ηr0 , . . . , ηrM−1)

ηr,1 = diag(ηrM , . . . , ηr2M−1).

Moreover, ∂X,X
′′

is the divided difference operator which is defined as ∂X,X
′′
g(X, . . .) =

g(X,...)−g(X′′,...)
X−X′′ on any polynomial g, and the residue Res

[
g·dX′′
X′′d−1

]
picks out the prefactor

of X ′′d−2 in the polynomial g ∈ C[Z ′, X,X ′′].

We now simplify expression (C.6) by calculating the X ′′d−2-term in the numerator.

We first derive a few identities which follow from the very definition of a graded matrix

factorization.

From the basic property of matrix factorizations d0d1 = (Zd
′ −Xd)1 one can deduce

∂X,X
′′
(−d ·Xd−1) = [∂Xd0|X→X

′′
· ∂X,X′′d1 + ∂X,X

′′
d0 · [∂Xd1|X→X

′′

+
{(
∂X,X

′′
∂Xd0

)
· d1 + d0 ·

(
∂X,X

′′
∂Xd1

)}
.

Now, we will simplify the derivation by assuming that the matrices d0 and d1 do not contain

terms Xn for n ≥ d. This is certainly true for all the matrix factorizations relevant in this

paper, namely the ones associated to RG and projection defects, boundary conditions etc.

Under this assumption, the curly bracket part of the last equation does not contain a term

∼ X ′′d−2, and hence{
[∂Xd0]

X→X′′ · ∂X,X′′d1 + ∂X,X
′′
d0 · [∂Xd1|X→X

′′
}
ik

= −dX ′′d−2δik + . . . (C.7)

where . . . contains only powers (X ′′)n with n < d − 2. In order to make contact with

equation (C.6) we replace ∂X,X
′′
d0 in (C.7) by ∂X,X

′′
d0|X→η

aX which does not alter the

leading X ′′-term:{
[∂Xd0]

X→X′′ · ∂X,X′′d1 + ∂X,X
′′
d0|X→η

aX · [∂Xd1|X→X
′′
}
ik

= −dX ′′d−2δik + . . . (C.8)

Also, since d1 is of grade zero

η−ar,0 · [d1|X→η
−aX = d1 · η−ar,1

which together with the definition of the divided difference operator yields

η−ar,0 · ∂
X,η−aX′′d1

∣∣∣ leading
X′′-term

= ∂X,X
′′
d1

∣∣∣ leading
X′′-term

· ηa · η−ar,1 . (C.9)

Here, ∂X,η
−aX′′d1

∣∣∣ leading
X′′-term

is the matrix d1 with all entries Xp+1 replaced by (η−a · X ′′)p
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and similarly for ∂X,X
′′
d1

∣∣∣ leading
X′′-term

. Finally, we evaluate the first summand of (C.6):

− δ|ea|,0δ|f†i |,0
M−1∑
k=0

Res


(

[∂Xd0]X→X
′′ ·η−ar,0 ·∂X,η

−aX′′d1+

+ηa[∂X,X
′′
d0]X→η

aX ·[∂Xd1]X→X
′′ ·η−ar,1

)
i,k

dX

d ·X ′′d−1


Z→Z′

f †k

(C.9)
= −δ|ea|,0δ|f†i |,0

M−1∑
k=0

Res


(

[∂Xd0]X→X
′′ ·∂X,X′′d1·ηa·η−ar,1+...

+ηa[∂X,X
′′
d0]X→η

aX ·[∂Xd1]X→X
′′ ·η−ar,1

)
i,k

dX

d ·X ′′d−1


Z→Z′

f †k

= −δ|ea|,0δ|f†i |,0
M−1∑
k=0

Res


(

[∂Xd0]X→X
′′ ·∂X,X′′d1+

+[∂X,X
′′
d0]X→η

aX ·[∂Xd1]X→X
′′

)
i,k

· η−a(rk+M−1)dX

d ·X ′′d−1


Z→Z′

f †k

(C.8)
= −δ|ea|,0δ|f†i |,0

M−1∑
k=0

Res

[
(−dX ′′d−2δik + . . .)dX

d ·X ′′d−1

]Z→Z′
· η−a(rk+M−1)f †k

= δ|ea|,0δ|f†i |,0
ηa(−ri+M+1)f †i .

Here, with ‘. . .’ we indicate that we omitted terms which do not contribute to the residue.

The second summand in equation (C.6) can be determined in a similar way and also

takes a similar form. We find that the left charges of D† are the negative right charges of

D shifted by +1:

A⊗D† → D†

ea ⊗ f †i 7→ δ|ea|,0η
a(−ri+M+1)f †i .

(C.10)

C.8 (Co)evaluation maps

Finally, we provide the explicit (co)evaluation maps used in calculations in the main text.

They follow from the generalized orbifold construction, (cf. appendix B) and the expressions

of [12]. Throughout, [. . .] denotes the representative in {0, . . . , d − 1} modulo d. Further-

more, ∂Z,XZi = Zi−Xi

Z−X , σ =

(
1 0

0 −1

)
, η = e

2πi
d , ε = e

2πi
d′ , ηr = diag(ηr0 , ηr1 , ηr2 , . . .),

εl = diag(εl0 , εl1 , εl2 , . . .) and ε1+l = diag(ε1+l0 , ε1+l1 , ε1+l2 , . . .).

Orbifold evaluation map (left)

evD =

∗D D

Zd
′

Xd

X ′d

◦ ξ,
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where ξ : ∗D ⊗A D → ∗D ⊗D is the inclusion.

evD : ∗D ⊗A D → A

∗fk ⊗ Znfi 7→
1

d

∑
h∈Zd

Res

[
Zn
(
σ · ∂ZdD · ηhr

)
(k+M),i

d′ · Zd′−1

]
e[h]

+
1

d

∑
j

∑
h∈Zd

Res


Zn
(
σ · ∂ZdD · ηhr ·

[
∂X,X

′
dD

]X→ηhX
· σ
)

(k+M),i

d′ · Zd′−1

 ed+[h]

Orbifold evaluation map (right)

ẽvD =

D∗D

Xd′
Z ′d

Zd

◦ ξ

where ξ : D ⊗A D∗ → D ⊗D∗ is the inclusion.

ẽvD : D ⊗A D∗ → A

fi ⊗Xnf∗k 7→ −
1

d′

∑
h∈Zd′

e[−h]Res

(∂XdD · εhl
)Z→Z′
(k+M),i

Xn

d ·Xd−1


− 1

d′

∑
h∈Zd′

ed′+[−h]Res


(
∂XdZ→Z

′
D · εh1+l · ∂Z,ε

hZ′dD

)
(k+M),i

Xn

d ·Xd−1


Orbifold coevaluation map (left)

coevD = ϑ ◦

D ∗D

XdZd
′

Z ′d
′

where ϑ : D ⊗ ∗D → D ⊗A ∗D is the projection.

coevD : A→ D ⊗A ∗D

ea 7→ δ|ea|,0
∑
ij

(−1)|ej |
({

∂Z,Z
′
dD

}Z 7→εaZ)
ij

εalifi ⊗ f∗(j+M)

+ δ|ea|,1
∑
i

(−1)|ei|εalifi ⊗ f∗(i+M)
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Orbifold coevaluation map (right)

c̃oevD = ϑ ◦

D∗ D

Zd

Xd′

X ′d
′

where ϑ : D ⊗D∗ → D ⊗A D∗ is the projection.

c̃oevD : A→ D∗ ⊗D

ea 7→ δ|ea|,0
∑
ij

(
∂X,η

−aX′dD

)
ji
f∗(i+M) ⊗ fjη

−arj

+ δ|ea|,1η
a
∑
i

(−1)|ei|f∗(i+M) ⊗ fiη
−ari

Orbifold evaluation map (right) for boundaries

ẽvB =

B∗B

Xd

ẽvB : B ⊗A B∗ → C

fi ⊗Xpf∗k 7→ −Res

[
Xp (∂XdB)(k+M),i dX

d ·Xd−1

]
Orbifold coevaluation map (left) for boundaries

coevB =

B ∗B

Xd

coevB : C→ B ⊗A ∗B

1 7→
∑
i

fi ⊗ ∗fi

D Explicit calculations for RG defects in LG orbifolds

In this appendix we explicitly check that the RG defects R between LG orbifolds presented

in section 4 satisfy the RG property that R ⊗ R† ∼= I (appendix D.1) and determine the

corresponding projection defects P = R† ⊗R (appendix D.2). We show how IR boundary

conditions and symmetries are realized in the UV (appendices D.3 and D.4) and we perform

the calculation R∞⊗R†∞ ∼= IIR (appendix D.5). For the purpose of this appendix we again

adopt the generalized orbifold notation of appendix C.
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D.1 R⊗A R∗ ∼= A

Here, we show that R ⊗A R∗ ∼= A. (In this appendix we adopt the following notation

from appendix C: ⊗A denotes fusion in the generalized orbifold theory defined by A, while

⊗ denotes the fusion in the unorbifolded theory. Moreover, ∗ denotes adjunction in the

orbifold theory, while † refers to adjunction in the unorbifolded theory.) Fusion of B-type

defects has been discussed in [13], for the orbifold version see [1].

As explained in those papers, matrix factorizations of W over a polynomal ring R are

related to finitely generated modules over R̂ := R/(W ) as free resolutions of such modules

always turn two-periodic after finitely many steps [41]. The two-periodic part then gives a

matrix factorization of W .

In order to calculate R⊗AR∗, we fix the coordinates on all three parts of the worldsheet

to be Z, X and Y :

R R∗

IR UV IR

Zd
′

Xd Y d′

The matrix factorization describing R is given by

R : R1

dR1 =


Z 0 . . . 0 −Xn0

−Xn1 Z

0 −Xn2 Z
...

. . .
. . .

0 −Xnd′−1 Z



dR0

R0,

see section 4.3. The generators f[i], i ∈ Zd′ , of R0 carry Zd′ ×Zd-charges [i,−m−
∑i

l=1 nl]

while the generators ed′+[i] of R1 have charges [i+ 1,−m−
∑i

l=1 nl].

According to section 4.2, the right adjoint R∗ is given by the matrix factorization

R∗ : R∗1

dR∗1 =



Y −Xn1 0 . . . 0

0 Y −Xn2

... Y
. . .

0
. . . −Xnd′−1

−Xn0 Y


dR∗0

R∗0,

The generators f∗[k], k ∈ Zd′ , of R∗0 carry Zd×Zd′-charges [+m+
∑k

l=1 nl + 1,−k− 1], and

the generators f∗d′+[k] of R∗1 carry charges [+m+
∑k

l=1 nl + 1,−k − 1].
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Following the tensor product formula of section 4.1, the matrix factorization describing

R ⊗A R∗ is the one associated to the Zd-invariant part of the C[Z, Y ]/(Zd
′ − Y d′)C[Z, Y ]-

module

M := coker

(
idR0 ⊗ dR∗1 dR1 ⊗ idR∗0
dR0 ⊗ idR∗1 −idR1 ⊗ dR∗0

)
.

The two-periodic resolution of M is isomorphic to the two-periodic part of the resolution of

M ′ := coker (dR1 ⊗ idR∗0, idR0 ⊗ dR∗1) .

The module M ′ is generated by f l[i],[k] := f[i] ⊗X lf∗[k]. They satisfy the relations

Zf[i] = Xni+1f[i+1] and Y f∗[k] = Xn[k]f∗[k−1],

which allow to reduce the generators to f l[i],[k] with 0 ≤ l < min(ni, nk+1). These carry

Zd′ × Zd × Zd′-charges

[i,−m−
i∑

j=1

nj + l +m+

k∑
j=1

nj + 1,−k − 1].

The Zd-invariant part (M ′)Zd is generated by the Zd-invariant generators of M ′, which are

given by f̂[i] := fni−1[i],[i−1]. They carry Zd′ × Zd′-charges [i,−i] and satisfy the relations

Zf̂[i] = Y f̂[i+1].

Hence, (M ′)Zd is isomorphic to the module coker(dA1), which implies that the matrix

factorization R ⊗A R∗ is isomorphic to the identity defect A in Md′/Zd′ . Taking the left

adjoint of this equation immediately yields R⊗A ∗R ∼= A as well.

D.2 The projection defect P

Having shown R⊗AR∗ ∼= A in the previous appendix, we are now in a position to determine

the projection defect P = R∗⊗AR. The projection P ′ = ∗R⊗AR based on the left adjoint
∗R can then easily be obtained by left adjunction P ′ = ∗P .

The calculation of P follows the same route as the calculation of R ⊗A R∗ in ap-

pendix D.1 above. First, we fix the chiral fields on all three parts of the worldsheet to be

Y , Z and X:

R∗ R

UV IR UV

Y d Zd
′

Xd

The matrix factorizations R and R∗ are described in appendix D.1. As in the derivation

of R ⊗A R∗ ∼= I, the matrix factorization R∗ ⊗ R is given by the two-periodic part of the

free resolution of the Zd′-invariant part of the C[X,Y ]/(Y d −Xd)C[X,Y ]-module

M ′ := coker(dR∗1 ⊗ idR0 , idR∗0 ⊗ dR1).
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The latter is generated by

f l[k],[i] := f∗[k]Z
l ⊗ f[i]

subject to the relations

Y nkf∗[k−1] = Zf∗[k] and Zf[i] = Xni+1f[i+1].

These relations allow to reduce the generators to the ones with l = 0. The remaining

generators f0[k],[i] carry Zd × Zd′ × Zd-chargesm+

[k]∑
j=1

nj + 1,−k − 1 + i,−m−
[i]∑
j=1

nj

 .
The Zd′-invariant part of M ′ is generated by the Zd′-invariant generators, i.e. those f0[k],[i],

for which [−k− 1 + i] = 0. These are the f̂[i] := f0[i−1],[i], which are subject to the relations

Y ni f̂[i] = Xni+1 f̂[i+1].

They carry Zd × Zd-charges m+

[i−1]∑
j=1

nj + 1,−m−
[i]∑
j=1

nj

 .
Comparing with the matrix factorization P given in equation (4.4), one finds that (M̃ ′)Zd′ ∼=
coker(p1) (where Z has to be replaced by Y in p1). Hence, R∗ ⊗ R is isomorphic to the

matrix factorization P given in section 4.3.

D.3 Boundary conditions satisfying B ⊗A P ∼= B

We now determine the boundary conditions, which are invariant under fusion with P .

Elementary left boundary conditions in Md/Zd are given by the Zd-equivariant matrix

factorizations

BUV : C[Z]
(

[N + k]
) Zk

−Zd−k
C[Z]

(
[N ]
)
.

of −Zd, where k,N ∈ Zd, k 6= 0, cf. section 4.4. The aim is to identify those boundary

conditions, for which BUV⊗AP ∼= BUV. To do so, we just calculate the fusion as is done in

the previous appendices. We denote the generators of B0 and B1 by b0 and b1, respectively.

They have Zd-charge [N ], respectively [N+k]. The generators f̂[i] of P0 have Zd×Zd-charge

[m+ 1 +
∑[i−1]

l=1 n[l],−m−
∑[i]

l=1 n[l]], cf. appendix D.2.

To determine the fusion BUV ⊗ P , we again employ the method described in ap-

pendix D.1. For this, we determine generators and relations of the Zd-invariant part of the

C[X]/XdC[X]-module M ′ := coker(dB1 ⊗ idP0, idB0 ⊗ dP1):

b0Z
k = 0

Znif[i] = Xn[i+1]f[i+1]

(D.1)
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For BUV ⊗A P ∼= BUV to hold, out of all the generators b0Z
q ⊗ f[i] of the fusion product

exactly one generator may survive in (M ′)Zd . It must

• be invariant under the left Zd-action, i.e.N + q +m+ 1 +

[i−1]∑
l=1

nl

 = 0

• carry right Zd-charge [N ], i.e. −m− [i]∑
l=1

nl

 = [N ]

• has to be a generator with respect to C[X] and in particular cannot be eliminated

by (D.1), i.e.

q < ni and q < k

and

• it has to satisfy b0Z
q ⊗ f[i]Xk = 0.

The first two conditions fix N = −m−
∑[i]

j=1 and imply q = ni−1 which is consistent with

q < ni. The last condition becomes

k ∈ {ni, ni + ni−1, . . . , ni + . . .+ ni−d′−2} .

These conditions are equivalent to BUV ⊗A P ∼= BUV and imply that BUV must be of

the form

BUV : C[Z]
Zni+...+ni−I

−Zd−ni−...−ni−I
C[Z]

(
−m−

∑i
l=1 nl

)
for arbitrary i ∈ Zd′ and I ∈ {0, . . . , d′ − 2}.

D.4 IR symmetry defects in the UV

Following section 4.4, the IR Zd′-symmetry is realized in the UV by means of the defects

R∗ ⊗A aId′ ⊗A R =: aP.

As aId′ ⊗A R is described by the same matrix factorization as R but with all left charges

shifted by +a, we can employ the same set-up as in appendix D.2 and only shift charges

by +a where necessary. The corresponding module M ′ is generated by

f l[k],[i] := f∗[k]Z
l ⊗ f[i]
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with Zd × Zd′ × Zd-chargesm+

[k]∑
j=1

nj + 1,−k − 1 + l + i+ a,−m−
[i]∑
j=1

nj


subject to the relations

Y nkf∗[k−1] = Zf∗[k] and Zf[i] = Xni+1f[i+1].

While the relations can be used to reduce generators to those with l = 0, Zd′-invariance

gives the condition [i + a − k − 1] = 0. The remaining generators f̂[i] := f0[i−1],[i−a] of

(M ′)Zd′ obey

Y ni f̂ [i] = Xni−a+1f[i+1]

and carry Zd × Zd-charges m+

[i−1]∑
j=1

nj + 1,−m−
[i−a]∑
j=1

nj

 .
One now easily reads off that (M ′)Zd′ is isomorphic to the cokernel of the matrix p1 of

the matrix factorization aP given in section 4.3. Thus, the lifted symmetry defects are

isomorphic to these matrix factorizations.

D.5 R∞ ⊗U(1) R
∗
∞
∼= IIR

In this appendix we show that one can insert loops of the U(1)-equivariant Landau-

Ginzburg theory with a single chiral superfield and zero superpotential into the Landau-

Ginzburg orbifold models Md′/Zd′ , d′ ≥ 3 without affecting correlators. The respective

RG defects are described by the matrix factorizations R∞ of Zd
′

presented in section 4.5:

R∞ : Sd
′

 [k+1,−m]
[k+2,−m−n1]

[k+3,−m−n1−n2]

...


dR1 =


Z 0 ... 0 0

−Xn1 Z
0 −Xn2 Z
...

. . .
. . .

0 −Xnd′−1 Z



dR0

Sd
′

 [k,−m]
[k+1,−m−n1]

[k+2,−m−n1−n2]

...

 .

Here m ∈ Z, k ∈ Zd′ and n1, . . . , nd′−1 ∈ N. Moreover, S = C[Z,X] and

dR0 =



Zd
′−1 0 . . . . . . 0

Zd
′−2Xn1 Zd

′−1 0 . . . 0

Zd
′−3Xn1+n2 Zd

′−2Xn2 Zd
′−1 . . .

...
...

...
. . .

. . . 0

Xn1+...+nd′−1 ZXn2+...+nd′−1 . . . Zd
′−2Xnd′−1 Zd

′−1


.
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The adjoint

R∗∞ : S̃d
′

 [m+1,−k]
[m+1+n1,−k−1]

[m+1+n1+n2,−k−2]
...




Y −Xn1

Y −Xn2

. . .
. . .
Y −Xnd′−1

Y


dR∗0

S̃d
′

 [m+1,−k−1]
[m+1+n1,−k−2]

[m+1+n1+n2,−k−3]
...



can be obtained by taking the limit d → ∞ of R∗. It is a matrix factorization of −Y d′ .

S̃ = C[X,Y ] and dR∗0 is given by −dTR0 with Z replaced by Y .

According to section 4.1, the fusion product R∞⊗U(1)R
∗
∞ is given by the U(1)-invariant

part of the tensor product matrix factorization R∞ ⊗ R∗∞. The U(1)-invariant generators

of the latter are

g(i,j) := fi ⊗Xni+...+nj+1−1f∗j [k + i,−k − 1− j]
g(d′+i,j) := fd′+i ⊗Xni+...+nj+1−1f∗j [k + 1 + i,−k − 1− j]
g(i,d′+j) := fi ⊗Xni+...+nj+1−1f∗d′+j [k + i,−k − j]

g(d′+i,d′+j) := fd′+i ⊗Xni+...+nj+1−1f∗d′+j [k + 1 + i,−k − j]

for 1 ≤ i ≤ d′ − 1 and 0 ≤ j ≤ i− 1. The Zd′ × Zd′-charges of the generators are specified

in square brackets. Here, fi and f∗i label the generators of R∞ and R∗∞, respectively. The

generators with 0 ≤ i < d′ are Z2-even and the ones with d′ ≤ i < 2d′ are Z2-odd. Setting

l =
i(i+ 1)

2
+ j, 0 ≤ l ≤M :=

(d′ + 1)(d′ − 2)

2
,

one can order the generators as follows

gl = g(i,j)

gM+l = g(d′+i,d′+j)

g2M+l = g(d′+i,j)

g3M+l = g(i,d′+j).

(
R∞ ⊗U(1) R

∗
∞
)
0

is then generated by the gl and gM+l for 0 ≤ l ≤M and
(
R∞ ⊗U(1) R

∗
∞
)
1

by the g2M+l and g3M+l for 0 ≤ l ≤M .

In terms of the generators, the U(1)-invariant tensor product matrix factorization

d = dR ⊗U(1) 1 + 1⊗U(1) dR∗ =:

(
d1

d0

)
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takes the form
(d1)(p,q),(d′+i,j) = δq,j(Zδp,i − δp,i+1)

(d1)(d′+p,d′+q),(d′+i,j) = δp,iθ(j − q)Y d′−1−(j−q)

(d1)(p,q),(i,d′+j) = δp,i(Y δq,j − δq+1,j)

(d1)(d′+p,d′+q),(i,d′+j) = δq,jθ(p− i)Zd
′−1−(p−i)

(d0)(d′+i,j),(p,q) = δj,qθ(i− p)Zd
′−1−(i−p)

(d0)(i,d′+j),(p,q) = −δi,pθ(q − j)Y d′−1−(q−j)

(d0)(d′+i,j),(d′+p,d′+q) = −δi,p(Y δj,q − δj+1,q)

(d0)(i,d′+j),(d′+p,d′+q) = δj,q(Zδi,p − δi,p+1)

(D.2)

where 1 ≤ i, p ≤ d′, 0 ≤ j < i, 0 ≤ q < p and θ(x) =

{
1, x ≥ 0

0, x < 0
. For example, for d′ = 5

one obtains

d1 =



Z Y

−1 Z Y −1

Z Y

−1 Z Y −1

−1 Z Y −1

Z Y

−1 Z Y −1

−1 Z Y −1

−1 Z Y −1

Z Y

Y 4 Z4

Y 4 Y 3 Z3 Z4

Y 4 Z4

Y 4 Y 3 Y 2 Z2 Z3 Z4

Y 4 Y 3 Z3 Z4

Y 4 Z4

Y 4 Y 3 Y 2 Y Z Z2 Z3 Z4

Y 4 Y 3 Y 2 Z2 Z3 Z4

Y 4 Y 3 Z3 Z4

Y 4 Z4


Stripping off trivial summands this matrix factorization reduces to the IR identity matrix

factorization (S′ = C[Z, Y ])

IIR : S′
d′


[1, 0]

[2,−1]

[3,−2]
...

[d′,−d′ + 1]




Z 0 . . . 0 −Y
−Y Z

0 −Y Z
...

. . .
. . .

0 −Y Z


dIIR0

S′
d′


[0, 0]

[1,−1]

[2,−2]
...

[d′ − 1,−d′ + 1]
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In order to see this, we perform a change of basis on (D.2):

d1 = S · d̃1 · T−1, d0 = T · d̃0 · S−1,

where S and T−1 are defined by

(S)(p,q),(i,j) = δq,j(δp,i − Zδp+1,i)

(S)(p,q),(d′+i,d′+j) = 0

(S)(d′+p,d′+q),(i,j) = −δp+1,iY
d′−1−(j−q)θ(j − q)

− δi,j+1

[
Zd
′−p+i−1Y q−iθ(q − i) + Zi−1−pY d′+q−iθ(i− 2− p)

]
(S)(d′+p,d′+q),(d′+i,d′+j) = δq,j(δp,i + θ(i− p− 1)Zi−p) + δi,d′−1δj,0θ(q − 1)Zd

′−1−pY q

and

(T−1)(d′+p,q),(d′+i,j) = δq,jδp,i

+ δi,d′−1

(
−δq,jZd

′−1−pθ(d′ − 1− p) + δp,d′−1Y
q−jθ(q − j − 1)

)
(T−1)(p,d′+q),(d′+i,j) = −δi,d′−1δq+1,pθ(q − j − 1)Zd

′−1−qY q−1−j

(T−1)(d′+p,q),(i,d′+j) = −δq,jY
(
δp+1,i + Zi−p−1θ(i− p− 2)

)
+ δq+1,jZ

i−p−1θ(i− p− 1)

(T−1)(p,d′+q),(i,d′+j) = δp,iδq,j + δq,jδq+1,pθ(i− p− 1)Zi−p.

Here again 1 ≤ i, p ≤ d′, 0 ≤ j < i, 0 ≤ q < p. Then

(d̃1)(p,q),(d′+i,j) = −δq,jδp,i+1 + Zδi,d′−1δp,d′−1δq,d′−2δj,d′−2

(d̃1)(d′+p,d′+q),(d′+i,j) = δp,d′−1δi,d′−1(Wδq,j+1 − Y δq,0δj,d′−2)
(d̃1)(p,q),(i,d′+j) = −Y δp,iδq,jδi,j+1 + Zδp+1,iδp,jδp,q+1

(d̃1)(d′+p,d′+q),(i,d′+j) = δi,p+1δq,jW + δi,1δj,0δp,d′−1δq,0Z

and

(d̃0)(d′+i,j),(p,q) = −δi+1,pδj,qW + δi,d′−1δj,d′−2δp,q+1Z
pY d′−1−p

(d̃0)(i,d′+j),(p,q) = −δi,j+1δp,q+1

(
θ(p− i)Y d′−1−p+iZp−i

+θ(i− p− 1)Zd
′−i+pY i−p−1

)
(d̃0)(d′+i,j),(d′+p,d′+q) = δp,d′−1δi,d′−1

(
δj+1,q − Y d′−1δj,d′−2δq,0

)
(d̃0)(i,d′+j),(d′+p,d′+q) = −δi,p+1δj,q + δp,d′−1δq,0δi,j+1Z

d′−iY j

are matrix factorization of W = Zd
′ − Y d′ which reduce to the indentity matrix factoriza-

tion.
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In the example d′ = 5 d1 above turns into

d̃1 =



−Y Z

−1

−Y Z

−1

−1

−Y Z

−1

−1

−1

Z −Y
0 0 W

0 0 W

W

0 0 W

W

W

−Y Z

W

W

W


which is easily recognized as the matrix associated to a sum of the identity matrix factor-

ization IIR with a number of trivial rank-one matrix factorizations.

In the general case, the generators not belonging to trivial summands are the ones

labelled by the restricted index sets

{(i, j) |i = j + 1} ⊂
{

(i, j)
∣∣i = 1, . . . , d′ − 1; j = 0, . . . , i− 1

}{
(d′ + i, d′ + j)

∣∣i = d′ − 1, j = 0
}
⊂
{

(d′ + i, d′ + j)
∣∣i = 1, . . . , d′ − 1; j = 0, . . . , i− 1

}{
(d′ + i, j)

∣∣i = d′ − 1, j = d′ − 2
}
⊂
{

(d′ + i, j)
∣∣i = 1, . . . , d′ − 1; j = 0, . . . , i− 1

}{
(i, d′ + j) |i = j + 1

}
⊂
{

(i, d′ + j)
∣∣i = 1, . . . , d′ − 1; j = 0, . . . , i− 1

}
Restricting to these generators yields the IR identity defect IIR.
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