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Abstract: In the Swampland philosophy of constraining EFTs from black hole mechanics

we study charged black hole evaporation in de Sitter space. We establish how the black

hole mass and charge change over time due to both Hawking radiation and Schwinger

pair production as a function of the masses and charges of the elementary particles in the

theory. We find a lower bound on the mass of charged particles by demanding that large

charged black holes evaporate back to empty de Sitter space, in accordance with the thermal

picture of the de Sitter static patch. This bound is satisfied by the charged spectrum of the

Standard Model. We discuss phenomenological implications for the cosmological hierarchy

problem and inflation. Enforcing the thermal picture also leads to a heuristic remnant

argument for the Weak Gravity Conjecture in de Sitter space, where the usual kinematic

arguments do not work. We also comment on a possible relation between WGC and

universal bounds on equilibration times. All in all, charged black holes in de Sitter should

make haste to evaporate, but they should not rush it.2
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1 Introduction

The Swampland program [1, 2] (see [3, 4]) aims to discover, itemize and establish the set

of consistency conditions imposed on a low-energy Effective Field Theory (EFT) by de-

manding that it can consistently coupled to quantum gravity. The current status of the

program is a plethora of proposed Swampland constraints with varying degrees of support,

ranging from absence of global symmetries [5–13] (see [14] for proposals on how strong

should the breaking be), the Weak Gravity Conjecture and all of its variants [15–54], or

Swampland Distance Conjecture [1, 55–70], to the conjecture that there are no weakly

coupled long-lived de Sitter solutions [71–78]. Some of these conjectures are supported

by heuristic black hole arguments [10] or independent holographic evidence (in the AdS

context) [12, 13, 79], but all of them are ultimately relying on a vast amount of exam-

ples from string compactifications (or, in the dS or non-supersymmetric AdS cases, lack

thereof [71, 80, 81]).
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The ample evidence for some Swampland constraints in string theory gives us confi-

dence they are probably correct, but it is equally important that at least in some cases we

seem to have identified a physical principle underlying the conjecture. For instance, the

conjecture that there are no global symmetries, which has been shown to hold in detail

in AdS/CFT [12, 13], was originally motivated by UV-insensitive arguments about black

holes and remnants. The fact that the conjecture seems to hold in every example could

be taken as evidence that the original heuristics was probably correct. If the principle is

correct, we can consider applying it in situations where it is not firmly established. For

instance, consider (B−L). This is a global symmetry of the SM lagrangian, and based on

the above one would imagine that is gauged or broken in the real world, even if nobody

has been able to get the SM or even positive vacuum energy in string theory or other

would-be UV-complete framework. This is because we do have black holes and the original

argument [5, 10, 82] which relies on getting stable remnants by throwing baryons into black

holes seems to apply.

A similar story applies to the Weak Gravity Conjecture. In a very handwavy way,

the principle underlying WGC is that something bad happens if large extremal black holes

cannot decay into slightly smaller (sub-)extremal black holes.1 So the principle seems to

be something like demanding that black holes should decay while remaining sub-extremal;

this connection is made more precise in [83–85], which show that adding WGC particles

to a particular theory in AdS is enough to comply with another physical principle, Weak

Cosmic Censorship.

If we got the principle right, again we can hope to apply it in situations where we

cannot validate it independently. In this paper we take the first steps towards generalizing

WGC-like arguments to spacetimes with positive vacuum energy. Our arguments will take

place in de Sitter, since this is the simplest example, but we imagine (and have checked in

some cases) that they hold more generally, like in slow-roll quintessence models.

The first step is to understand black hole evaporation in de Sitter. This is more

complicated than in flat space since there is both a black hole and a cosmological horizon,

and they exchange charge and mass. The problem was worked out early on for neutral black

holes [86–89] and charged ones in the absence of charged particles [90, 91]. While there are

some works that discuss emission of charged particles by black holes in de Sitter [92–96],

we were unable to find a reference that described in detail how the mass and charge of the

black hole deplete. We do this in the present paper, following an approach similar to [97],

although the details are more complicated due to the lack of an asymptotically flat region.

What we will find is that, as long as the charged carrier is heavy enough in the

sense that,

m2 � qgMPH,

(but still satisfying the WGC inequality) black holes in dS always evaporate all the way to

empty de Sitter space. Here, m, q are the mass and charge of the elementary particle that

1In the supersymmetric case, this can happen only marginally, and whether the decay actually takes

place or not depends on the detailed dynamics (e.g. walls of marginal stability). What seems to matter is

that the decay is kinematically allowed (a large BPS object can fragment into smaller ones).
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is discharging the black hole, g is the U(1) gauge coupling, MP is Planck’s mass and H is

the Hubble scale. This does not come as a surprise [98], since unlike in flat space a charged

particle inside the black hole can always tunnel close to or behind the cosmological horizon,

therefore discharging the black hole. This result fits right in with another principle that

seems to hold in de Sitter, namely that physics in the static patch behaves very much like

a finite-dimensional thermal system at an equilibrium temperature of H/(2π) [99]. Any

state different from the vacuum in the static patch corresponds to taking the system out

of equilibrium, and the system responds by eventually re-equilibrating. This is the case

for small perturbations, small black holes, and even neutral and charged black holes in the

absence of charged particles2 [91]. We establish that this holds in the presence of heavy

enough charged particles as well. This bound does not become trivial in the MP → ∞
limit. We will comment further on this in the conclusions.

However, something funny happens in the opposite limit of a very light charged particle

(in the sense that m2 � qgMPH). In this case, we find that very large charged black

holes (so large that the black hole and cosmological horizons coincide; these are called

Nariai black holes [102, 103]) discharge essentially instantaneously and, due to the fact

that charged Nariai solutions are more massive than neutral Nariai solutions (see figure 1),

they collapse into a Big Crunch, rather than returning to empty de Sitter space. Due

to the quick discharge, the discharging charged Nariai solutions resemble “superextremal”

Nariai solutions.

Thus, if there is at least one light charged particle in the theory, the thermodynamic

picture of de Sitter in the static patch cannot hold, large charged black holes never re-

equilibrate, and one gets outside of the sub-extremal region of allowed black holes in fig-

ure 1. This might be a bad thing and so we entertain the possibility that m2 & qgMPH

might be an actual constraint on the EFT. We emphasize that due to the lack of stringy

examples this extrapolation is in shakier grounds than other constraints such as WGC

or absence of global symmetries, since we cannot check it; all we can say is that the

principles we extrapolate (thermality of the dS static patch, no superextremal black hole

solutions) seem a reasonable extrapolation of what quantum mechanics and gravity in de

Sitter might look like. Nonetheless the findings and computations carried out in this pa-

per are interesting from a GR and QFT viewpoint, regardless of whether these principles

survive eternally or not.

It turns out that avoiding fast discharge of Nariai solutions also leads to WGC. There

are two ways to trigger a quick black hole discharge, either by having a few light particles

in the above sense, or by having a huge number of heavy ones, so that the black hole

discharges via their combined effect. In a theory in which the usual WGC is not satisfied,

small black holes are very long-lived and play exactly this role in the limit of small weak

coupling. Thus, one recovers a form of the original WGC heuristics that works in dS space.

A constraint like m2 & qgMPH can be checked against the real world, since it looks like

de Sitter. Taking the U(1) to be electromagnetism, we find it is satisfied by every charged

2We note in passing the recent interest on the Schottky anomaly [100, 101], a feature typically seen in

the heat capacity of finite dimensional thermal systems which has an avatar in black holes in de Sitter space

as well. This provides further evidence for the consistency of the thermal picture in dS.

– 3 –
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particle in the Standard Model. One could take this as evidence for the thermal picture of

the dS static patch. Since in the SM the fermions get their masses from coupling to the

Higgs, the inequality alleviates (but does not solve) the cosmological hierarchy problem. It

leads to no new constraints on models of milli-charged dark matter. There is an interesting

interplay with inflation, where the constraint is satisfied by only some inflationary models.

Possibilities include small field inflation, direct gauge kinetic term-inflaton coupling, or

(tuned) models of Higgs inflation.

The paper is organized as follows:

• Section 2 reviews the charged black hole solutions of the Einstein-Maxwell-deSitter

theory and the relevant near-horizon limits.

• Section 3 is the core of the paper. We analyze black hole discharge via Schwinger

pair production of charged particles, both in the adiabatic and quasistatic regimes.

• Section 4 discusses the failure of thermality/detailed balance in the static patch in

the adiabatic discharge regime. We suggest that this is evidence that the adiabatic

regime could be pathological and should be avoided, discussing the phenomenological

implications. We also explain how this is connected with WGC and discuss how the

connection could be sharpened.

• Section 5 present our conclusions and afterthoughts.

Finally, some appendices contain details of the calculations and some elaborations on the

arguments we present.

2 Charged black holes in de Sitter space

In this section we review the black hole solutions we will be interested in. We consider a

(3 + 1)-dimensional Einstein-Maxwell-de Sitter system, with action (in −+ ++ signature)

S =

∫
d4x
√
−g
[

1

16πG

(
−R+

6

`2

)
+

1

4g2
FµνF

µν

]
. (2.1)

This theory admits charged black hole solutions, the RN-dS metric, (see e.g. [103]):

ds2 = −U(r)dt2 +
dr2

U(r)
+ r2dΩ, (2.2)

with

U(r) ≡ 1− 2GMr

r
+
G(gQr)

2

4πr2
− r2

`2
. (2.3)

This metric is supported by an electric field or magnetic field. In the electric case we have

A = Φ dt, Φ =
g2

4π

Qr
r
. (2.4)

The two parameters Mr and Qr can be interpreted as a “mass” (more about this in sec-

tion 3) and the charge. In de Sitter space the notion of mass is ambiguous but, language
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Figure 1. Phase diagram of Reissner-Nordstrom-de Sitter black holes, the “shark fin”. Outside

of the curve of extremal solutions, the metric becomes superextremal and has a naked singularity.

The boundary has two branches: extremal RN-dS black holes with an AdS2 × S2 horizon topology

and charged Nariai black holes for which the black hole and cosmological horizons coincide, with a

dS2×S2 near-horizon geometry. The orange dashed line is the “lukewarm line” Q = M , where the

temperatures of the black hole and cosmological horizons are identical.

wise we will refrain from these subtleties and will name Mr the mass from here onwards.

In this normalization, a particle of charge qr couples to the electrostatic potential via

qr

∫
A. (2.5)

If we choose g such that the particle of lowest charge in the spectrum has qr = 1, then

charges are integer-quantized.

From now on we will work in Hubble units, ` = 1. Then the metric above takes

the form

U(r) ≡ 1− 2M

r
+
Q2

r2
− r2, (2.6)

with the dimensionless parameters

M ≡ GMr

`
, Q2 ≡ Gg2Q2

r

4π`2
. (2.7)

The RN-dS metric (2.3) contains two horizons accessible to an observer outside the black

hole:3 one is the usual event horizon of the charged black hole, and the other is the

cosmological horizon. In general, the black hole and the cosmological horizons will have

different temperatures, and so they won’t be in thermal equilibrium. When the black hole

3In addition to these, the black hole has an inner horizon r− when subextremally charged.
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is large enough, the system will slowly drift towards equilibrium. This will always increase

the entropy, whose leading contribution comes from the two horizons,

S =
π

4G

(
r2

BH + r2
CH

)
, (2.8)

but how this happens exactly depends on the particular details of the dynamics of the

system. The solution (2.3) has two parameters M and Q, and the phase diagram as a

function of M and Q (which we will call the “shark fin”) is depicted in figure 1. There is a

boundary defined by the discriminant locus ∆ = 0 of the quartic equation U(r) = 0,where

∆ ≡M2 −Q2 − 27M4 + 36M2Q2 − 8Q4 − 16Q6. (2.9)

This boundary comprises extremal black hole solutions, which in turn split into two different

branches [103]:

• The upper branch of the blue curve in figure 1 is called the extremal branch, and

parametrizes extremal black hole at zero temperature with horizons smaller than the

cosmic horizon. The inner and outer black hole horizon coincide, r+ = r−. The

near-horizon geometry is AdS2 × S2.

• The lower branch of the curve in figure 1 is the charged Nariai branch, and it contains

subextremal charged black holes with the same area as the cosmological horizon. The

outer black hole horizon and cosmic horizon are in thermal equilibrium and appear

to coincide, r+ = rc, though a coordinate reparametrization will show this not to

be the case. The near-horizon geometry is dS2 × S2 and the temperature increases

as one moves down the branch. We will be especially interested in this branch and

discuss it in greater detail below.

These two branches meet at a point, dubbed the “ultracold” black hole [103] since semiclas-

sically it describes an equilibrium configuration at vanishingly small temperature. Here,

r− = r+ = rc. The near horizon geometry is M2 × S2, exactly interpolating between the

two branches. Outside of the extremal ∆ = 0 curve in the diagram one always has naked

singularities, except on the Q = 0 axis of neutral black holes, where one has a Big Crunch

singularity instead.

We want to study black holes for any values of M,Q in the shark fin. It would be

convenient to have some coordinate-independent description which works smoothly even

near the boundaries of the diagram. An interesting possibility is what we will call the

“geodesic observer”, sitting at a particular value of the radius rg. This is the radius

between the black hole and the cosmic horizon such that the pull of the black hole and

cosmic expansion cancel, U ′(rg) = 0. An observer at r = rg can follow an orbit of the

timelike Killing vector field which is at the same time a geodesic. Stuff closer to the black

hole than the geodesic observer will eventually fall in, while stuff further out will keep on

receding from the observer towards the cosmological horizon.

– 6 –
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2.1 The charged Nariai branch

As black hole mass increases and a black hole approaches the Nariai branch, r+ → rc.

This is a near horizon limit, in which U(r) develops a double zero, so as usual to properly

understand this Nariai limit, we need a change of coordinate. Let

ρ =
r − rg√
|U(rg)|

, τ =
√
|U(rg)|t. (2.10)

The RNdS metric in terms of these radial and time coordinates is given by

ds2 = − U(r)

|U(rg)|
dτ2 +

|U(rg)|
U(r)

dρ2 + r2dΩ2, (2.11)

The constant electric field has the same magnitude in these coordinates,

F = F0 dr ∧ dt = F0 dρ ∧ dτ, F0 =
g2

4π

Qr
r2
. (2.12)

On this coordinate chart, the transition from subextremal to extremal black is com-

pletely smooth, and the horizons never overlap. Even though in the coordinates (2.2) the

Nariai branch corresponds to the limit r+ = rc, we see that from the point of view of the

geodesic observer the two horizons do not actually collide, although they do get closer as

we approach the charged Nariai branch. Exactly on this branch, the metric components in

(2.11) simplify to
U(r)

U(rg)
→ 1− ρ2

`2dS2

, r2 → r2
c , (2.13)

which (as is well-known [99]) is exactly the dS2 × S2 metric with a dS2 radius

`2dS2
=

2

U ′′(rc)
=

1

6

(
1√

1− 12Q2
+ 1

)
=

(
−3 +

Q2

r4
c

)−1

. (2.14)

The radius of the S2 on the charged Nariai branch is given by

rc(Q) =

√
1

6

(
1 +

√
1− 12Q2

)
. (2.15)

Physically, as we approach extremality, the usual behavior of near-horizon limits sets up,

where the geometry is approximately dS2×S2. The geodesic observer happens to fall right

in the middle of this tube, and the coordinates (2.10) are just local coordinates adapted

to her.

3 Semiclassical evolution of black hole solutions

Classically, the black hole solutions we have just discussed are stable,4 but quantum me-

chanically, there is backreaction on both the metric and gauge field. This is because there

is Schwinger and Hawking radiation coming out of each horizon.

4Classical stability is controlled by the spectrum of quasi-normal modes on the classical solution. These

have been the subject of recent study [104] in connection with variants of Strong Cosmic Censorship. The

takeaway message for us is that for 4-dimensional black holes there are no instabilities, except for scalar

fields of very low mass and nonvanishing charge. In this case, the instabilities only appear in a region of

the (M,Q) plane far from the extremality curves, so it is not of direct relevance to us.

– 7 –
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Let us ignore for a moment Schwinger radiation and focus on the dynamics as dictated

solely by Hawking radiation. Since for generic values of M and Q the two horizons have

different temperature, we expect the system to slowly drift towards equilibrium; in other

words, the “mass” M will evolve towards its equilibrium value slowly [88]. Just like in flat

space, the backreaction of Hawking radiation is only significant for a Planckian black hole.

Unlike in flat space, however, there is Hawking radiation coming out of both horizons,

and generically, it is at different temperatures. The dashed orange line M = Q in figure 1

describes the line of “lukewarm” black holes [103], where the Hawking radiation coming

from the black hole and cosmological horizons are at the same temperature. If we neglect

charged particles, any point on this line is at thermodynamic equilibrium; we expect black

holes to slowly evolve along lines of constant charge towards the lukewarm solution.

When one includes the effects of charged particles, which feel the electric field stretching

between the two horizons, even this line becomes unstable. One can understand this

by describing the horizons as reservoirs in the grand canonical ensemble [105]; to reach

equilibrium, both the temperatures and electrostatic potentials of the two horizons must

be identical. On the lukewarm line, this only happens at the lower left corner, that is,

empty dS space.

The physical process by which a black hole loses charge is Schwinger radiation [97,

105, 106]. The black hole spacetime contains an electric field, and at any point, charged

carriers are pair produced from the vacuum at some rate dependent on the local strength

of the electric field. In flat space, this transition rate has an exponential suppression,

Γ ∼ e−
m2

qE , (3.1)

controlled by the mass of the charged particle and the electric field. Our task is to under-

stand how the black hole charge, Q, changes as a function of the Schwinger current. Unlike

Hawking radiation, whose energy flux represents a small fraction of the black hole mass for

any but the smallest black holes, the Schwinger current can be huge or tiny compared to

the background electric field, and this is controlled roughly speaking by (3.1). Thus, there

are two regimes, depending on whether m2 ≶ qE, which we will discuss separately.

3.1 Quasistatic discharge: m2 � qE

We will start with the regime in which the pair production (3.1) is very much suppressed.

In this regime, Schwinger radiation behaves just like Hawking — the outgoing charge flux

is small compared to the background charge. A similar analysis was carried out in [97]

for charged black holes in flat space. We will reproduce their equations of motion in the

appropriate limit.

A significant difference between the flat space and the dS cases is that in flat space

one has conserved charges at infinity (total charge and mass). The problem is therefore

just a matter of computing these fluxes at infinity. In de Sitter, on the other hand, there

is no spatial asymptotia, and we must instead work with Einstein’s equations directly. We

will show that, under quasistatic evolution, the metric is very well approximated by (2.2)

and (2.3) with slowly-varying (M,Q) as a function of time, just like in the flat space case.

– 8 –
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Let us describe the slow drift of the solutions on the (M,Q) plane in more detail. This

can be traced to the usual nonzero vevs 〈Tab〉 and 〈ja〉 for quantum field theory in curved

spacetimes. We want to understand the dynamics of this system in the quasi-static regime.

To do so, we will solve the equations of motion perturbatively,

δGab = 8πGδTab, d ? δF = ?〈δj〉, (3.2)

to first order in the perturbations

δTab = 〈Tab〉 − T classical
ab , δj = 〈j〉 − jclassical . (3.3)

For the RN-dS solutions, jclassical = 0, while T classical
ab is due to the background electromag-

netic field.To ease bookkeeping, we will introduce a small dimensionless parameter ε

ε ≡ G`2
√
δT baδT

a
b (3.4)

of the order of the largest matrix element in δTab (in the coordinate system (2.3)). So for

instance, for thermal radiation, ε ∼ T 4/(MPH)2. We will also assume that the current is

of order ε or smaller.

Then, we will solve (3.2) in a quasi-static approximation, using the method of separa-

tion of scales (see e.g. [107]); since there is a whole two-parameter family of solutions (2.3)

to the unperturbed equations of motion, the perturbation will lead to slow motion in this

parameter space, similarly to the computation of the perihilion precession in GR. More

technically, one could work in the ε expansion of (3.2). Since the metric is t-independent,

it is possible to separate variables,

δg ∼ eiωtg(r), (3.5)

and then solve the linearized problems order by order to any desired accuracy in ε. If the

spectrum of ω’s is gapped, then the perturbation becomes a Fourier transform and under

reasonable conditions it remains bounded (order by order in ε) at all times. However, if

there are zero modes (secular perturbations), then they will grow linearly (as εnt at order

n), spoiling agreement between the unperturbed and perturbed problems at a time ε−n.

The mass and charge parameters in (2.3) are examples of these zero modes.

The method of separation of scales removes the secular dependence of zero modes and

works as follows. We introduce a “slow scale”

t1 ≡ ε t (3.6)

on which the parameters of the background metric may depend,

M →M(t1),

Q→ Q(t1). (3.7)

We also introduce an order ε perturbation,5

ε−1δds2 = δA(r, t1)dr2 + δB(r, t1)dt2, (3.8)

5This is not the most general perturbation possible, but it will be enough to solve the equations of

motion.
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and a similar perturbation to the electric field,

F → F + εg`
√
GδF (r, t1)dr ∧ dt. (3.9)

A perturbation like (3.7) and (3.8) on the metric results in a first-order perturbation to

the Einstein tensor δGab which is covariantly conserved with respect to the background

metric, is time independent, and respects the symmetries of the background. The most

general such tensor is of the form

δGab − T
(0)
ab = δ1 ξaξb + δ2 vavb + δ3 ξ(avb) + δ4 gab, (3.10)

where ξ = ∂t is the future-directed time-like Killing vector field, T (0) is the background

stress-energy tensor of the RN-dS solution, and

v =
1

r2
∂r n =

√
Uv , (3.11)

is a harmonic vector field which satisfies ∇ava = 0 and which points in the outgoing radial

direction. na is the corresponding unit spacelike vector. The expansion of the left hand

side of (3.2) to first order in ε can be found in appendix A.

The quantum perturbation to the stress-energy tensor also has an expression in the

form (3.10),

δTab = η1 ξaξb + η2 vavb + η3 ξ(avb) + η4 gab, (3.12)

with

η1 =
1

2

(
TU + 3E

U2
− r4S

)
,

η2 =
1

2
r4
(
3r4SU2 − TU − E

)
,

η3 = −2r4T ,

η4 =
1

2

(
E
U

+ r4(−S)U + T

)
. (3.13)

where we have introduced the quantities

T ≡ δTabξavb, E ≡ δTabξaξb, S ≡ δTabvavb. (3.14)

Stress-energy conservation imposes constraints on these quantities. The linearized Einstein

equations amount to δi = 8πGηi. For i = 1, 2, 4, these are a system of three coupled

second-order ODE’s in the radial variable that determine δA, δB, δF to first order in the

perturbation. Crucially, these equations do not involve time-derivatives; see appendix A.

We are more interested in the equation for δ3,

4r(rṀ −QQ̇)

−2Mr +Q2 − r4 + r2
= −16πr4GT . (3.15)

Here, we have introduced the order ε parameters

Ṁ ≡ M(εt)

dt

∣∣∣∣
t=0

, Q̇ ≡ Q(εt)

dt

∣∣∣∣
t=0

. (3.16)
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Equation (3.15) is a first-order equation of motion for (Q̇, Ṁ). We need a second

equation to fully determine the dynamics. This is obtained by a similar perturbation of

the second equation in (3.2); we take the right hand side to be first-order in ε as well.

One obtains from the two components of (3.2) a first-order ODE relating δF (r) to the

time-component of the current which is satisfied automatically due to energy-momentum

conservation, and an equation of motion involving Q̇,

Q̇ = −4πJ , J = Ur4java. (3.17)

Here, J is independent of the radial variable, due to current conservation.6 We finally

have the first order equations of motion for M and Q,

Q̇ = −4πJ , Ṁ = −
4π
(
r5UGT +QJ

)
r

. (3.18)

Here, U(r) is evaluated on the background solution. The method of separation of scales

provides a solution to (3.2) which is valid to first order in ε and depends on the variable t1
only. There might be secular perturbations for this variable, so the approximation we just

carried out is only valid for εt1 � 1, or

t .
1

ε2
. (3.19)

Hamiltonian and momentum constraints are satisfied to first order in ε in our solution. In

fact, (3.18) is one of the momentum constraints; see appendix A for the other components.

One can also write (3.18) in terms of parameters measured on a local inertial reference

frame. Then, T and J are replaced by quantities that depend on the microphysics, M ,

and Q, the local charge and momentum fluxes J ,T . We will do this at the location of

the geodesic observer rg, but again, physics is independent of this choice:

J =
√
U(rg)r

2
gj
ana =

√
U(rg)r

2
gJ , T =

1

r2
g

Tabu
anb =

T

r2
g

, (3.20)

where ua is a unit future-directed vector field in the same direction as ξa.

Finally, it is convenient to change the time variable in (3.18) to use the local time

coordinate time coordinate tg of the geodesic observer at some particular value of the

radial coordinate, rg. This is related to the global time coordinate in [86] simply as

dtg
dt

=
√
U(rg). (3.21)

As a result, (3.18) become (from now on the dot now indicates time derivative with respect

to tg)

Q̇ = −4πr2
gJ , Ṁ = −4πr2

g

(
G
√
U(rg)T +

Q

rg
J

)
. (3.22)

Of course, physics should be independent of our choice of rg.

6One could imagine using a similar argument to conclude that η3 is constant. However, this does not

work because there is an extra term coming from the first-order covariant derivative of the background

stress-energy tensor, which is not present for the current since jclassical = 0 in the background.
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A quantity of interest which is independent of the time coordinate is the rate of change

of charge versus mass,
dM

dQ
=
Ṁ

Q̇
= G

√
U(rg)

T

J
+
Q

rg
. (3.23)

This quantity determines the direction the black hole evolves in the (M,Q) plane of figure 1.

The left-hand side is manifestly independent of rg, while the right hand side is not. The way

this works out is because stress-energy conservation relates J and T . We will illustrate

this for the particular case of a free scalar field Φ of mass m and charge q; the story

generalizes to free fields of any spin in a straightforward manner. For a free field, the

vector δTabξ
b is proportional to the current ja. A solution to the wave equation with

frequency ω (with respect to the global time coordinate t) satisfies,

Tabξ
b =

(
ω

q
+ Φ(r)

)
ja, (3.24)

where Φ(r) = −Q/r is the electrostatic potential (2.4). This can be checked explicitly via

the expression for the Klein-Gordon conserved current. The contribution to T is

∆T =
1

G
√
U(rg)

(
ω

q
+ Φ(rg)

)
∆J . (3.25)

The second term in (3.25) cancels the rg-dependence in (3.23), as it should.

We now turn to understanding the detailed expressions for J and T . We will start

with the former.

In de Sitter space the expansion of spacetime dilutes the particles produced by the

Schwinger effect. This allows the system to have a steady current regime. This unlike

Minkowski space, where current can build up ad infinitum. The current one-form

j =
Jr
Ur2

dr + ρ dt, (3.26)

is conserved,

d ∗ j = 0, (3.27)

and is nonvanishing in the charged black hole background since the black hole electric field

pair produces charged carriers via the Schwinger effect. In a semiclassical treatment, the

Schwinger effect implies the pair production of charged carriers in the vacuum,

dj = 2Γdr ∧ dt, (3.28)

where Γ is the “Schwinger pair production rate”, which can be computed via instantonic

methods [108, 109] and whose value depends on the background electric field and geometry.

The factor of two accounts for the fact that particles are produced in pairs. A mean field

description such as (3.28) is good as long as the electric field varies slowly along space

and time (by this we mean that the spatial gradients of the field are much smaller than

the length scale associated to the field itself); we will relax this assumption later on on

the Nariai branch. As long as the local electric field is much larger than the background
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curvature, the pair production process happens essentially in flat space; the electrons in

the pair are produced at a distance much smaller than the characteristic curvature, and

just accelerate from there on. As a result, we will use the flat space Γ originally computed

by Schwinger [106, 109, 110],

Γflat-space,2d(m) =
qE

2π
e
−π
χ , χ ≡ m2

qE
. (3.29)

Notice that, for m = 0, equations (3.29) and (3.28) lead to dj = q
πF , which is precisely the

chiral anomaly [111, 112].

Equation (3.29) is only the two-dimensional result. In the present situation we must

take into account the flux on the 2-sphere, by summing over the KK modes:

Γ ≈
∑
s

(2s+ 1)Γflat-space,2d

(√
m2 +

s(s+ 1)

r2

)
≈ 4πr2 · q

2E|E|
8π3

e
−π
χ , (3.30)

where we have replaced the sum by an integral; this will be a good approximation as long as

qEr2 � 1. The result (3.30) is the well-known four-dimensional Schwinger pair production

rate7 [109], multiplied by the area of the 2-sphere.

Following [97], we will also impose that the current is purely ingoing along the future

black hole horizon, and purely outgoing on the cosmological horizon. An outgoing compo-

nent of the current at the horizon would describe particles moving “against” the electric

field, i.e. emission of particles with opposite charge to the black hole overcoming the huge

potential barrier and escaping to the cosmological horizon, or same charge particles beat-

ing the electric field and managing to cross the black hole horizon. For a superextremal

particle, these rare processes will have an additional, huge tunneling barrier (we will come

back to this in section 4), but they are actually important in some circumstances; for in-

stance, any sub-extremal particle emitted by a flat-space black hole is bound to fall back.

In situations like this, there will be a significant ingoing component, and the actual current

will be smaller than our expressions below.

Mostly everywhere on the shark fin, our expressions actually constitute an upper bound

on the current, which will be close to saturation for superextremal particles. However, as

we will explain below, on the Nariai limit due to the additional symmetries of the problem,

there is no ingoing component even for very massive particles. We should also notice that,

even when there is an ingoing component, the current never vanishes, since that would

conflict with (3.27).8

Neglecting their contribution, it follows that the current j must be orthogonal to the

null generator of the horizon, nH = − dr
U(r) + dt, close to the future horizon. Current con-

7The factor of two discrepancy with the classical result of Schwinger is due to the spin of a Dirac fermion

as opposed to a scalar particle that we are considering here.
8In the flat space case, the statement is that anywhere around black hole even a sub-extremal particle has

a (highly suppressed) chance of popping out of the vacuum. Thus, at any finite separation, the expectation

value of the current is nonzero. The nucleation probability however decreases exponentially with the distance

from the black hole, and therefore so does the current. There is no current flux at infinity, in accordance

with the fact that a flat-space black hole cannot emit sub-extremal particles. In dS, however, this effect is

cut off at the cosmological horizon, so there is always some current flowing.
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servation (3.27) now implies Jr is independent of position. These two properties together

imply that

Jr = r2
+ρ(r+) = −r2

cρ(rc). (3.31)

Finally, (3.26) becomes a first-order equation for ρ

ρ′(r) = 2Γ, (3.32)

which we can integrate together with the boundary condition in (3.31) to obtain the ex-

pression for the current,9

J =

√
g2G

4π`2
r2
c r

2
+

r2
c + r2

+

2

∫ rc

r+

dr′ Γ(r′). (3.33)

Using equation (3.20), we can write down the expression for the local current measured by

an inertial observed Jr,

Jr =

√
g2G

4π`2
2√

U(r)r2

r2
c r

2
+

r2
c + r2

+

∫ rc

r+

dr′ Γ(r′). (3.34)

Equation (3.34), together with (3.30), gives a quasistatic current to use in (3.51) entirely

as a function of M and Q. It reduces to the expression in [97] for small black holes (again,

modulo a factor of two due to the electron spin degeneracy).

It is important to understand the regime of validity of (3.34). This is set by backreac-

tion on the geometry. The charge density ρ(r) screens the electric field of the black hole.

Its overall effect should be small. From Maxwell’s equation d ∗ F = g2 ∗ j, we obtain

Qr(r) = Qr(r+) + 4π

∫ r

r++Λ−1

dr′
(r′)2ρ(r′)

U(r′)
. (3.35)

The integral in (3.35) has a logarithmic divergence at the horizon, which we have regularized

by introducing a regularized horizon at r = r+ + Λ−1, where Λ−1 is some UV cutoff. For

the approximation to be trustworthy, we need

4π

∫ r

r++Λ−1

dr′
(r′)2ρ(r′)

U(r′)
�

√
4π`2

g2G
. (3.36)

This will be automatically true in the quasistatic regime due to (3.32) and the exponential

Schwinger suppression in (3.29).

Notice that in this approximation, the contribution of the Schwinger current to T

vanishes, since the same amount of left and right-moving charge carriers are produced.

Thus, we can take T to come entirely from Hawking radiation. At the location of the

geodesic observer, this is just the associated mass flux from the two horizons taking into

account the redshift factors [86, 88, 113],

T =
σ

(4π)3

[
r2
cU
′(rc)− r2

+U
′(r+)

]
, (3.37)

9The prefactor accounts for the definition of Q (2.7) in terms of the actual integer-valued current.
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where r+, rc are the black hole and cosmological horizons, and σ is the Stefan-Botlzmann

constant. Equations (3.34) and (3.37), when plugged back in (3.51), completely specify the

dynamics of the system as a function of the mass m and charge q of the charged particle.

In equation (3.34) we have assumed the electric field is large compared to the back-

ground curvature, and this is a good approximation everywhere on the shark fin, except

close to the neutral line, where the electric field becomes small. It turns one can work out

the exact dynamics on the Nariai branch, even taking into account the curvature effects

that were neglected when writing (3.34). The reason is the dS2 × S2 geometry, which al-

lows one to translate the problem to the Schwinger effect in dS2. This problem was solved

exactly in [114]; details can be found in appendix C. The end result is that one can write

an inequality for J ,

JNariai =

√
g2G

4π`2
Jr &

√
g2G

4π`2
q2r2

cE|E|
π2HdS2

tanh

(
2π

qE

H2
dS2

)
e
−π
χ (3.38)

which becomes tight in the large electric field limit qE � H2
dS2

. We can compare with

(3.34) in the Nariai limit, which is also easily computed since the two integration limits

coincide and the integral collapses. One obtains

JNariai, large E = 2

√
g2G

4π`2
Γ(rc) =

√
g2G

4π`2
1

HdS2

4πr2
c ·
q2E|E|

8π3
e
−π
χ , (3.39)

which is exactly the same expression as (3.38) in the limit qE � H2
dS2

. It is also important

to notice that, on the extremal curve, the expression (3.38) is valid for any value of M ,

and it smoothly interpolates between the Hawking result for neutral particles and the

Schwinger one.

An important question we should address is whether the flow (3.18) allows for an

initially sub-extremal black hole becoming superextremal. Let us derive a simple criterion

on the flow such that this is satisfied. In other words, we want to understand under which

conditions the flow (3.18) maps the region inside the blue curve in figure 1 to itself. Since

the allowed region is defined by ∆ > 0 in (2.9), we require that the (Ṁ, Q̇) vector along

the boundary ∆ = 0 points towards the gradient of ∆(M,Q), i.e.

Q̇(∂Q∆)∆=0 + Ṁ(∂M∆)∆=0 ≥ 0. (3.40)

Now, all over the subextremal region (M,Q) plane except on the Q = 0 axis, we expect

Q̇ < 0 in a theory with charged particles, since the black hole horizon always tends to

discharge and this only stops at Q = 0.

We separately discuss constraint (3.40) near the extremal branch and near the Nariai

branch. A useful relation, valid all over the edge of the sharkfin (∆ = 0) is(
∂Q∆

∂M∆

)
∆=0

= −Q
r

(3.41)

with r the horizon radius. On the Nariai branch one exactly saturates inequality (3.40).

For that we use the vanishing of the
√
Ug term in (3.23) together with the relation between
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Figure 2. Schematic representation of the quasistatic flow on the shark fin generated by the

combination of the Schwinger effect and Hawking radiation. Black hole solutions evolve towards

the lukewarm or charged Nariai lines, losing charge very slowly in the meantime. Eventually, they

evaporate completely. The flow stays completely within the shark fin, the black holes never turning

superextremal. The flow follows exactly the charged Nariai line, so ignoring quantum fluctuations

charged Nariai black holes remain Nariai while slowly discharging to the neutral solution. For

illustration purposes, we took J ∼ 1 and T ∼M −Q to draw the plot.

rg and Q as given in (2.15). For the extremal branch, figure 1 shows that (∂Q∆)∆=0 < 0

whereas (∂M∆)∆=0 > 0. Equation (3.40) is satisfied because T < 0 at the horizon. This

is because the black hole is colder than the cosmological horizon, resulting in a net mass

loss which dominates over Schwinger radiation in the quasi-static regime.

Figure 2 shows a schematic plot of the flow generated by the solutions in the shark

fin, where we have taken J and T to be constant.10 Our results are of course not exact;

the detailed expressions are obtained by performing the integral in (3.34), which can be

evaluated explicitly in terms of error functions [97]. Still, figure 2 gives a roughly correct

schematic picture of the flow of black hole solutions on the shark fin: solutions flow to either

the lukewarm line or the Nariai branch, and then the neutral line. All solutions evaporate

completely, eventually. Notice that this conclusion is insensitive to the precise values of

(m, q), as long as the Schwinger effect is exponentially suppressed. This has consequences

for the WGC in dS, which we discuss in section 4.

Finally, a couple comments. It is worth emphasizing that we have assumed steady-

state current. This is a physical assumption, which can be relaxed. One could for instance

start with a black hole with no current present at all initially. But then the current will

grow and, over the period of a Hubble time, such a state will develop into the steady

current state.

We are looking at a quantum effects in a black hole background; we should make sure

that there are no classical instabilities present. For instance, the Schwinger effect for near-

10Similar plots can be found for the Kerr case in [115].
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extremal black holes in AdS actually takes the form of a classical instability [84], and a

charged scalar field on the RN-dS is known to have classical instabilities for some values of

M,Q,m, q [104]. The instability discussed in these references only takes place for very light

fields, away from the quasistatic regime, and for small values of the charge. As illustrated

in figure 1 of [104], the instability seems not to be relevant near the charged Nariai branch.

We should also point out11 that the quasistatic computation we just described fixes

the black hole at the center of the static patch — in other words, it “follows” the black

hole along its worldline. This worldline is not a geodesic. The black hole receives radiation

from the cosmological horizon and emits some itself, exchanging energy and momentum,

so there will be some sort of Brownian motion [116, 117]. We can estimate the time that it

takes for the geodesic observer to be kicked out when the black hole is much smaller than

the Nariai limit.12 Consider a small black hole on the lukewarm line. Its center of mass

degrees of freedom will have thermalized and so it will have a mean kinetic energy of 3/2T .

In empty dS space, a free particle of mass M and energy E takes a time

tε =

√
E2

E2 −M2
arctan(1− ε) (3.42)

to reach r = 1 − ε the cosmological horizon. Taking T = H/2π to be the de Sitter

temperature, one gets a timescale suppressed as tε ∼
√
M/H. This is a long time since

black holes are heavier than a Planck mass, but not exponentially suppressed, and so deep

into the quasistatic regime a true geodesic observer will thus see the black hole kicked out

of her static patch by the radiation, and will never see the evaporation come to an end.

One could try to fix this by always sticking to the black hole center of mass, although

this will no longer be described by the usual static patch Hamiltonian. In any case, we

think these subtleties are not likely to affect our subsequent discussion, since most of our

arguments in section 4 will be about large black holes (close to the Nariai limit), for which

the simple picture above does not hold, and also in the adiabatic regime, where the black

hole discharges quickly.

We must also discuss Bousso’s beading process [89–91]. These references describe

a family of classical instabilities for the full four-dimensional charged Nariai geometry,

coming from inhomogeneous fluctuations of size of the S2 on the Nariai geometry. Where

the radius of the S2 becomes smaller than the Nariai value, the geometry collapses to

a black hole; where it is slightly larger, it behaves like the exterior of a dS4 geometry,

with the spheres becoming asymptotically large in the asymptotic future. In short, these

are fluctuations that drive the black hole towards sub-extremality. On the exact Nariai

geometry, a perturbation in the n-th spherical harmonic leads to the formation of “beads”,

spacetimes containing n near-extremal RN-dS black holes.

Interestingly, the dynamics of this process is very different below or above the inter-

section of the lukewarm line with the charged Nariai line; above, the positive heat capacity

of the black hole makes the Nariai geometry stable locally, so quantum fluctuations lead

to an endless beading process and a fractal structure in the asymptotic future. Below

11We thank T. Banks for bringing this up.
12To carry out a similar analysis for a very large black hole is beyond the scope of this paper.
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the lukewarm line, at most a finite number of beads can be produced (how many exactly

depends on the particular mode that dominates the perturbation), and the geometry in

any given static patch goes back to a slightly sub-extremal black hole picture.

These predictions were computed with a one-loop quantum effective action which so

far has always agreed with the thermodynamic results whenever available [89–91, 118].

For instance, while it seemed that neutral Nariai black holes could sometimes initially

anti-evaporate [88], in the long run their behavior was always dictated by the semiclas-

sical model. Effectively, what this means is that, below the lukewarm line, one should

expect quantum effects to push the solution slightly off the Nariai branch, towards sub-

extremality, where Hawking radiation drives evolution towards the lukewarm branch which

then discharges quasi-statically, as in figure 2. Above the lukewarm line one really stays

in the Nariai branch for a long time, slowly discharging (and beading along the way) until

crossing the lukewarm threshold.

3.2 Adiabatic discharge: m2 � qE

We are also interested in quantifying how quickly the relaxation of the system happens

when the mass of the charged carriers is below qE. Working again in the limit qE � H2,

the discharge effectively takes place in flat space, and on very short times compared to

the Hubble scale. The electric field is so strong that it is immediately screened out locally

by the pair-produced charge carriers, which subsequently annihilate each other, leading to

radiation. As a result, one can model this kind of evaporation by replacing the electric

field and charge matter at t = 0 by pure radiation with the same energy density.

We will only work out the detailed dynamics on the charged Nariai branch. Since the

geometry is dS2 × S2, one can work in the effective two-dimensional theory, which greatly

simplifies the problem. We will start with the 4d Einstein-Maxwell action

S =

∫
d4x
√
−g
[

1

16πG

[
−R+

6

`2

]
+ L

]
. (3.43)

and set ` = 1. L describes the matter (electromagnetic fields + charged matter) we must

add to the system. We will now work out the dynamics . To do this, we will work on a

S2 × R2 ansatz. We will also follow [114] and resort to a FRWL13 open slicing which is

smooth beyond the horizon, with coordinates x, τ such that the four-dimensional metric is

ds2 = e−φ(−dτ2 + a2(τ)dx2) + e2φdΩ2. (3.44)

Plugging this back into (3.43), the kinetic term for φ becomes a total derivative and drops

out, as usual in two-dimensional gravity models. The resulting effective action is

S =
1

8πG

∫
dΩ2dV2

{
eφ(L+ 3)− 1

2

[
2e−φ + e2φRg2

]}
. (3.45)

where g2 is the two-dimensional metric ds̃2 = −dτ2 + a(τ)2dx2. Using dV2 = a(τ)dτ ∧ dx,

and

Rg2 = 2
ä

a
, (3.46)

13The L stands for Lemâıtre. It must be included in any Leuven paper that discusses this metric.
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one gets, after integration by parts,

8πGS =

∫
dΩ2dτdx

{
˙(e2φ)ȧ− e−φa+ 3eφa

}
+ 8πG

∫
dV2dΩ2

√
−gL. (3.47)

The 4d stress-energy tensor is

Tµν ≡
2√
−g

δSM
δgµν

, (3.48)

and so, the variation of the matter part of the action (the last term in (3.47)) is

8πGδSmat. = 4πG

∫
dτdx aeφTµνδg

µν , (3.49)

in terms of the four-dimensional stress-energy tensor Tµν . Since

δgµν = −2
eφ

a3
δµ,xδν,xδa+ δφ

[
3eφgµν2 − 2gµν

]
, (3.50)

the equations of motion are

¨(r2) = 3r − 1

r
− 8πG

r2

a2
Txx, (3.51)

2r2 ä

a
=

1

r
+ 3r + 4πGr [3T2 − 2T ] , (3.52)

where we have introduced the two-dimensional trace T2 ≡ eφTµνgµν2 . Finally, in the problem

under consideration, the evolution is governed by electromagnetic stress-energy, which is

traceless. We will decompose the traceless stress energy tensor of radiation as

Tµν = ρuµuν + p1γµγν + p2g
Ω
µν , (3.53)

where uµ is a time-like future-pointing unit norm vector , γµ is the same thing on the

x direction, and gµν is just the angular part of the metric (3.44). Tracelessness implies

ρ = p1 + 2p2. In terms of these quantities, (3.51) and (3.52) become

¨(r2) = 3r − 1

r
− 8πGrp1, (3.54)

2r2 ä

a
=

1

r
+ 3r + 3r

[
8πG

p1 − ρ
2

]
. (3.55)

Different electromagnetic fields correspond to different ρ, p1, p2. For instance, in the

quasistatic regime discussed in the previous subsection, the electric field is constant, which

means ρ = −p1 = p2. Also, in this regime we can neglect the backreaction of the matter,

the time derivatives of φ are small, and those of a are basically constant, so that rä/a = H2.

Then, taking

L =
1

4g2
FµνF

µν (3.56)

as in section 2, together with the electric field

F =
g2

4π

Qr
r3
a dx ∧ dτ, (3.57)
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one obtains (after using (2.7)) that

− 8πGρ = 8πGp1 = 8πG
p1 − ρ

2
= −Q

2

r4
. (3.58)

Plugging back in (3.54) and (3.55), one obtains

¨(r2) = 3r − 1

r
+
Q2

r3
, (3.59)

2r
ä

a
=

1

r2
+ 3

(
1− Q2

r4

)
. (3.60)

Upon replacing rä/a by H2, and r̈ by 0, (3.59) and (3.60) become two algebraic equations,

3r4 − r2 +Q2 = 0, 2H2 =
1

r2
+ 3

(
1− Q2

r4

)
. (3.61)

These are the same evolution equations which one obtains from the quasistatic evolution

for the full 4d geometry, particularized to the Nariai branch. In particular, the solution

to the first equation is (2.15) and then substituting in the second one gets (2.14). Then,

the slow time evolution dictated by the slow Schwinger discharge as described by the first

equation in (3.22).

As mentioned above, we will model the adiabatic regime by replacing the electric field

and charge matter at t = 0 by pure radiation with the same energy. That is, one still

takes ρ as in (3.58), but p1 and p2 are no longer related as for a constant electric field. We

will parametrize

p1 = αρ, p2 = βρ, α+ 2β = 1. (3.62)

α and β are both positive, since we are now working with radiation, and not with electro-

static fields as before. The precise relation between these two is dictated by the physics

of the annihilation process and immediately after. The nucleated pairs are produced and

then accelerated for a mean free path, after which they annihilate. Since the charge car-

rier is massless, and the electric field is very string, it mediates very efficient interactions

and it is perhaps reasonable to assume that the system thermalizes locally. In that case,

it seems reasonable to take β = α = 1/3, corresponding to the stress-energy tensor of a

four-dimensional CFT in the thermal state.14 We will focus on this case from now on, al-

though the precise values of α, β won’t affect our conclusions. Conservation of stress-energy

then fixes

ρ̇+ ρ

(
2φ̇+

4

3

ȧ

a

)
= 0, (3.63)

which integrates to

ρ = ρ0e
−2φa−4/3. (3.64)

14In the opposite limit, where no thermalization occurs, one could compute α, β by integrating the angular

distribution of photons produced during the scattering fo charged carriers. The perturbative QED cross

section for e+e− → γγ is heavily peaked as usual in the forward direction, when the t-channel goes on-shell.

Hence it would seem reasonable to take the radiation to be forward-pointing, β ≈ 0, but we will keep the

analysis general. Both α, β are constants during time evolution if one neglects scattering of photons with

the background curvature or with each other.
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We also have (in Planck units already)

ρ0 =
Q2

0

r2
0

(3.65)

due to energy conservation, where Q, r0 are the initial charge and radius (related to Q0

as in (2.7)). Introducing the convenient variable s ≡ r2, the equations of motion (3.54),

(3.55) become, after using (3.64),

s̈ = 3
√
s− 1√

s

(
1 +

ρ0

a4/3

)
, (3.66)

ä

a
=

1

2s3/2

(
1− ρ0

a4/3
+ 3s

)
, (3.67)

with the initial condition a0 = 1.

Since ρ0 < 1 (this is equivalent, due to (3.65), to Q2
0/r

2
0 < 1, which is true everywhere

on the Nariai branch) the second equation of motion tells us that the expansion is always

accelerated. In fact, it is Friedmann’s equation in two dimensions. The first tells us that

ṡ < 0, so that the size of the two-sphere decreases. After a while, one can ignore the ρ0

term in (3.66) and (3.67), since the redshift has diluted the radiation away. Equation (3.66)

can then be integrated to yield an effective potential for s,

1

2
ṡ2 + 2

√
s(1− s) = E (3.68)

The potential is depicted in figure 3. The maximum happens at s = 1/3, which is the size

of the 2-sphere for a neutral Nariai black hole. The initial condition is therefore to the

left of this point, and moving to the left. As one approaches s ∼ 0, the scale factor blows

up; the horizon size becomes tiny, and the curvatures become Planckian. Thus, this is a

Big Crunch. In fact, it is a crunch of a very similar nature to the one encountered as one

approaches the spacelike singularity inside a Schwarzschild-dS black hole; the 2-spheres

go to zero size, and the resulting 2d cosmological constant obtained after dimensional

reduction from the 4d cosmological constant becomes huge as well.

What is happening is that, by having all the electric field discharge instantaneously,

we find ourselves in a situation with no charge, but a mass above that of a neutral Nariai

black hole. Effectively, we have made a transition to a “superextremal” Nariai solution,

as illustrated in figure 4. These solutions are cosmological, describing either a Big Bang

or a Big Crunch where the 2-spheres go to zero size. These correspond to the left or

right branches of the potential in figure 3. As we go from slightly sub-extremal to slightly

super-extremal mass, the conformal diagram of the spacetime first looks like dS2×S2, and

at super-extremality it disconnects into two pieces. The one describing what used to be

the original static patch has been devoured by the black hole and in a sense describes the

“black hole interior”, with a crunch singularity in the future. The other one describes what

used to be the region of global dS outside of the static patch of the black hole, and the

two-spheres grow asymptotically to empty dS.
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Figure 3. Plot of the effective potential V (s) ≡ 2
√
s(1−s). The maximum at s = 1/3 corresponds

to the neutral Nariai value. Since the value of s of the neutral Nariai black hole is higher than

that of any of its charged counterparts, we are left with an initial condition to the left of s = 1/3

after the electric field discharges instantaneously. The equation of motion (3.66) then implies one

is pushed even further to the left, towards s = 0.
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Figure 4. Nariai black hole evaporation in the adiabatic limit of a massless charge carrier. The

electric field is screened very quickly, getting replaced by radiation, and so the black hole loses its

charge without losing mass. As a result, we end in a “superextremal” neutral Nariai geometry (plus

radiation), which ends in a big crunch.

Starting with an extremal charged Nariai black hole whose electric field disappears

adiabatically, we find a configuration that asymptotes to the same crunch that the super-

extremal Nariai geometry. After the transition, we find ourselves in the crunching portion of

the superextremal Nariai spacetime, plus some radiation that quickly redshifts. Although

we have not proven this, one would expect the time for the beading process or other

quantum effects to be irrelevant in this context, as the dominant source of stress-energy is

the radiation, and the crunch happens quickly, within a Hubble time (see appendix B.2).

Since this crunch will be crucial for our argument below, we must make sure it is not

an artifact of the Nariai approximation.15 Is the crunch somehow avoided if there are small

15We thank Grant Remmen and J.L.F. Barbón for discussions on these points.
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inhomogeneities (that could collapse into black holes and then leave the static patch), or

if we start slightly off the Nariai branch, so that the size of the two-spheres is not exactly

constant? What about the choice of initial hypersurface? The choice of quantum state is

also important, see e.g. [119]. Following [114], we chose an open FRW slicing, in which the

dynamics is homogeneous in the Nariai limit. This is convenient for our calculations but it

is important to check that the crunch is actually independent of this choice. We could have

picked any other spacelike surface, like the t = 0 hypersurface in the static patch. This

would map to inhomogeneous radiation initial data for some later τ = const. hypersurface

in the FRW ansatz (3.44).

These concerns are averted by the fact that the crunch is somehow “local” — it happens

for each observer and it is not very much affected by energy inflows or outflows, as long as

these are small enough — The precise way to state this is that the crunch is guaranteed

by GR singularity theorems,16 as we explain in appendix D.

4 Black hole decay in dS and an EFT constraint

We have now finished presenting the technical results in this paper. The formalism devel-

oped in these previous sections provides a means to understand how black holes evaporate

in de Sitter space. This is a calculation within in General Relativity which, to our knowl-

edge, has not appeared in the literature before.

By contrast, in the present section we will indulge in hopefully interesting speculation.

We wish to emulate some of the logic that leads to WGC in flat space or AdS, to hopefully

learn something about the properties of effective field theories in (quasi-)de Sitter spaces.

4.1 Strong gravity in de Sitter space

In section 3, we have seen that all black holes evaporate and decay back to empty de Sitter

space, which is consistent with the interpretation of de Sitter as a thermal equilibration

process. There is just one exception: black holes close to the Nariai branch, whenever there

is at least one particle in the adiabatic regime m2 � qE. In this case, the geometry evolves

towards a crunch, and never returns to empty de Sitter space. The adiabatic evolution

forces a black hole outside of the shark fin; since the Nariai branch tilts to the right in the

(M,Q) plane, losing the charge without losing the mass leads to a neutral solution with a

mass higher than that of the neutral Nariai black hole.

This is also problematic because once we land in a point outside the shark fin, we

are free to deform the solution (say on a fixed Cauchy slice) away from this, towards

positive charge or arbitrarily large mass. The latter is hard to reconcile with the picture

of de Sitter space as having a finite-dimensional Hilbert space [120–123]. Furthermore,

charged superextremal solutions are continuously connected to neutral ones, since one can

go around the tip of the shark fin in figure 1.

16We thank Raphael Bousso for pointing us in the right direction here.
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These are the superextremal black holes with naked singularities that are usually for-

bidden by Cosmic Censorship,17 in its loose original meaning [126] that Einstein’s theory

should not develop arbitrarily large curvatures which are not shielded by a horizon. In

flat space, existence of a weak gravity particle ensures that large extremal black holes can

decay without becoming superextremal. As usual, this connection can be made far more

precise in AdS, where a series of papers [83–85] have established that certain violations of

Cosmic Censorship are avoided if a version of the WGC is satisfied.

There is also a lot of evidence that physics in the static patch of dS looks very much

like that of an ordinary thermal system [120, 121, 127]: there is a thermal bath coming from

the horizon at a temperature (2π`)−1, and whatever initial perturbation one considers, it

tends to be “smoothed out” by inflation, i.e. features fall behind the cosmological horizon

and disappear. In these processes the generalized second law of thermodynamics is always

satisfied [99]. So it is not unreasonable to regard dynamics in de Sitter in general as

describing thermal relaxation, where perturbations equilibrate and disappear after a certain

time. This picture is exactly what one gets in the quasistatic regime, where black holes

decay slowly back to empty dS; it fails spectacularly in the adiabatic regime.

So, a theory with charged extremal black holes and particles in the adiabatic regime

is hard to reconcile with a self-contained description of the physics in the static patch in

terms of a finite-dimensional Hilbert space. If one wants to make both compatible, we only

see three possibilities:

• The Big Crunch at the end of the black hole collapse transitions back to empty dS

space via some magical quantum gravity process.

• Charged black hole solutions are not allowed in a theory with particles in the adiabatic

regime.

• Particles in the adiabatic regime are not allowed, and this constitutes a Swampland-

type constraint.

We can say little about the first possibility. The second seems difficult at least in the

semiclassical regime, because again, we can smoothly deform empty de Sitter space into

any other solution in the charged Nariai branch.18 So we will entertain the third possibility.

If indeed the weird properties of the adiabatic regime — lack of thermalization, failure

of detailed balance, seemingly huge Hilbert space — are a problem, perhaps we should avoid

it altogether. That means m2 > qE for every particle and on every point on the charged

17Cosmic Censorship is no fundamental principle. Solutions with unbounded curvature but with a consis-

tent UV description are familiar in String Theory, e.g. orbifolds, KK monopoles, or all sorts of branes [124].

Gubser’s criterion [125] explains that admissible singular solutions with vanishing temperature must always

be cloaked behind a horizon when an arbitrarily small temperature is turned on. Superextremal RN black

holes would not satisfy this.
18In absence of charged particles, one can construct gravitational instantons that mediate transitions

between empty de Sitter space and the Nariai or lukewarm, and which furthermore enforce detailed bal-

ance [91, 128, 129]. However, it is unclear whether these tunneling transitions are destabilized by the

presence of light charged modes. In any case, the argument that the Nariai solutions are smoothly con-

nected to the vacuum in configuration space still stands.
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Nariai branch. The electric field is largest at the ultracold point, where E =
√

6MP gH

and we have used M2
P = (8πG)−1. Thus, avoiding the adiabatic regime is equivalent

to imposing19

m2 & q gMPH, for every particle in the spectrum. (4.1)

We consider (4.1) a potential candidate for a Swampland constraint in de Sitter. As we

tried to emphasize, it is derived via similar heuristics to the ones that lead WGC in flat

space. Unlike WGC, however, we lack any stringy examples to check against (4.1), so this

result is definitely on shakier ground. Equation (4.1) is just a consistency condition so that

the thermal picture of de Sitter can hold.

In fact, there are good reasons to at least entertain the possibility that there are no

metastable de Sitter vacua in string theory [71, 72, 81]. If supersymmetric string theory as

we know it today really describes the real world, the logical conclusion would be we are in

some sort of quintessence scenario, so it makes sense to ask what would happen to (4.1) in

such a case. This analysis is carried out in appendix B.2; one finds that quintessence does

not change the conclusion, and that violating (4.1) still leads to a crunching spacetime.

We now make a couple of comments before crudely discussing the phenomenological

implications. First, the constraint becomes trivial as H → 0, as it should since it is a

pure de Sitter phenomenon. On the other hand it is nontrivial and in particular forbids all

charged particles if we take MP → ∞ at constant H and g. This suggests that it might

not be possible to consistently decouple gravity in dS.20 In a more holographic language,

this means that Einstein21 dS holographic models, if they exist, should not fall in large

N families where the low-energy sector “stabilizes” and we can make gravity as weak as

we want by taking large N . Rather, they should be “sporadic” or isolated theories. This

point of view was also advocated in [123]. Second, we emphasize the statement holds for

every particle in the theory, since just one violating the bound would be enough to cause

an adiabatic discharge. This is unlike Weak Gravity, where just a single particle is enough.

This difference reflects that Weak Gravity is about ensuring that black holes decay, while

(4.1) is about ensuring they don’t do it in a particular way. Extremal black holes satisfy

(4.1) as well. Third, one should only apply this constraint in situations where a Nariai

black hole makes sense. In particular it does not apply to Higgsed or confined gauge fields.

There is also an interesting interplay between (4.1) and magnetic/sublattice versions

of the WGC which predict an upper bound on the cutoff scale of quantum gravity [55].

Given a mass for a charge carrier, (4.1) predicts an upper bound on the gauge coupling in

19We write & because we have only analyzed the two extreme regimes where m2 is very small or very

large compared to qE. Due to the exponential prefactor in (3.1) the quasi-static regime is reached after

m2/qE is of order 10. The precise threshold can be computed by demanding that the excess charge (3.35)

is small (say 10−5) compared to the background. We write this footnote thinking of all our friends that

dislike symbols like “&”.
20We do not claim that QFT makes no sense in a dS background; it does, at least perturbatively. We

just mean that, given a gravitational model with finite MP , there might be no way to “deform” it, either

continuously or by small discrete steps, to one where gravity is absent.
21In particular, higher-spin theories are not Einstein gravity and the discussion in this paper does not

apply to them. Higher-spin theories in de Sitter are conjectured to have holographic duals [130] which do

possess a large N limit.
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terms of the mass of the lightest charged carrier,

g .
m2

MPH
, (4.2)

which translates to an upper bound on the cutoff of the EFT.

Throughout this work, we focus on the case with a single species of charged particle. Of

course, if one has multiple species of charged particles, they will all contribute to the black

hole decay. This allows one to trigger the adiabatic regime, even if the individual particle

species of particles are massive. However, the annihilation of the produced particles into

neutral radiation may be slower than in the massless case. For instance, if one has order

exp(m2/qE) particle species of mass m and charge q, this compensates for the exponential

suppression of Schwinger pair production. Demanding the adiabatic regime does not occur

then bounds the number of charged particle species at certain mass in such cases. This has

in fact interesting implications, which we discuss in subsection 4.2.

4.1.1 Phenomenological implications

The nice thing about making Swamp-like statements in Sitter space is that one may com-

pare them to the real world. Taking the U(1) to be electromagnetism, the scale on the

right hand side of (4.1) is √
gMPH ∼ 10−3 eV, (4.3)

or around the vacuum energy density scale/neutrino mass scale. The Standard Model

satisfies our constraint (4.1), since the lightest electrically charged particle is the electron,

eight orders of magnitude above (4.3).

While at first sight it seems that (4.1) is satisfied with room to spare, one should

remember the immense hierarchy between Planck and Hubble scales, of sixty orders of

magnitude. (4.1) predicts a new scale which is the geometric mean of these two, and the

eight orders of magnitude in the electron should be compared with these sixty, as illustrated

in figure 5. By contrast, the electron saturates the WGC by 19 orders of magnitude.22

Since in the SM the fermions receive mass from their coupling to the Higgs, (4.1) also

has implications for the cosmological hierarchy problem [131–133] (see also [37, 134] for

some other proposed connections between the Swampland and the EW hierarchy prob-

lem). In particular, suppose one has a fermion with mass m = yv/
√

2, which in turn

satisfies (4.1). Then
y2

2
v2 & gMPH =

g√
3
ρ2, (4.4)

where ρ is the gravitating vacuum energy density and we have used 3M2
PH

2 = ρ4.

Rearranging,

ρ .
y
√
g
v, (4.5)

22While as remarked above it makes no sense to apply this constraint to massive gauge fields, we notice

that the lightest fermions we know of, the neutrinos, have a mass close to (4.3). This could perhaps be a sign

they are coupled to a hidden massless U(1) with not so small gauge coupling. Since the only anomaly-free

U(1) with generation-independent couplings in the SM with right-handed neutrinos is B − L, this would

suggest the presence of extra particles charged under this U(1) as well.
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Figure 5. Logarithmic scale of energies displaying the Hubble and Planck scales on both ends, the

masses of some SM electrically charged particles, the Higgs vev scale, and the new scale
√
gMPH

in (4.3). The constraint (4.1) implies that all charged particles should lie to the right of this scale,

which is satisfied.

that is, no matter what the Higgs vev v is, the gravitating vacuum energy (the one that

actually enters in Einstein’s equations) must be below the electroweak scale, by a factor

of at least the smallest Yukawa of any charged fermion. There is a nice interplay with

the arguments in [37], which introduced an additional gauge field to explain electroweak

hierarchy. In this language, the electroweak hierarchy problem gets mapped to the question

of why is the new gauge coupling small; (4.1) could be part of the reason for this.

Equation (4.1) does not lead to constraints on models of milli-charged dark matter,

since the window excluded by the constraint has long been excluded experimentally [135].

One could also apply (4.1) to (B − L). This is an anomaly-free global symmetry of

the SM Lagrangian, which is expected to be gauged or broken in quantum gravity. For

instance, in GUT models, (B − L) is often a spontaneously broken global symmetry, but

it is not excluded that it could be massless, as long as the gauge coupling is small enough

(around g . 10−24 [16, 37]). Our bound would mean that the lightest neutrino species

cannot be massless.

Another topic we must address is inflation. During the inflationary phase the universe

was approximately de Sitter, so it would be reasonable to apply (4.1) there. Furthermore,

as explained before, replacing the cosmological constant by a slowly-rolling scalar does not

change our conclusions. We do not know much about the spectrum of massless U(1)’s

and charged particles during inflation, but a naive expectation is that if inflation happens

before EWSB, we have an su(3)⊕su(2)⊕u(1)’s worth of massless gauge fields to analyze.23

The charged spectrum of the SM remains massless at tree level (getting a mass of order

Hubble scale via radiative corrections [138]), which violates (4.1). We now discuss some

possible ways out of this conundrum:24

• One can take inflation to only last Ne ∼ 60 e-folds [139]. Even if (4.1) is violated, we

could conceivably avoid the Big Crunch if the time that it takes for the black hole to

23The same analysis would apply to GUT’s, although inflation is usually taken to happen after GUT

breaking to avoid a monopole problem [136, 137].
24We thank Prateek Agrawal for illuminating discussions.
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discharge adiabatically is much higher than Ne/H. For a massless carrier, this time

is set by the electric field only, tdisch. ∼ (qE)−1/2. Rearranging, this becomes a bound

on the gauge coupling,

g ≤ H

N2
eMP

. (4.6)

Thus, we can avoid trouble, even with a large field inflation Hubble scale, by intro-

ducing a coupling between the inflaton and the gauge kinetic function of the gauge

fields, in such a way that they remain small during inflation. This ensures that the

gauge couplings become even more weakly coupled in the UV, while preserving gauge

coupling unification as long as the coupling is taken to be same for every gauge field in

the SM. This coupling would break any perturbative shift symmetry the inflaton field

would have, so it is again fine-tuned unless it can be generated by non-perturbative

effects. It would also lead to production of gauge fields during inflation and so, non-

gaussianity in the curvature or possibly curvature-magnetic field spectrum [140–142].

These effects would be suppressed by at least a factor of (4.6) squared, so they would

be small.

• Another alternative is models of Higgs inflation [143], where electroweak symmetry

is still broken even at a high scale, and the fermions are massive. In vanilla mod-

els of Higgs inflation, the Higgs vev is comparable to H2M2
P . This means that the

fermions are still massive due to their Higgs coupling, but their masses are several

orders of magnitude smaller due to the small Yukawa couplings, so (4.1) is not sat-

isfied. By contrast, in a more convoluted model with a complicated Higgs potential

allowing for a hierarchy between fermion masses and the vacuum energy, this tension

could disappear.

In this scenario, one still has to think about SU(3). The quarks are massive due to

their coupling to the Higgs and thus pose no problem, but the gluons not commuting

with the chosen U(1) are charged, and naively massless. However, as long as the

Hubble scale during inflation is below ΛQCD, equation (4.1) is satisfied in the same

way as it is today. This corresponds to a vacuum energy density of ∼ 109GeV .

Thus, a simple way out is a small field inflationary model. The price one pays for

this is an extremely fine-tuned scalar potential, violating any reasonable form of the

original no dS conjecture [71, 72]. It is worth noticing however that this is the same

inflationary scale predicted by the recent TCC conjecture of [78] (the terminology

“transplanckian censorship” was originally introduced in [144] to refer to a different

but possibly related phenomenon).

Before wrapping up, we note that the non-abelian interaction terms in the presence

of a background gauge field seem to give these gluons an extra contribution to the

effective mass proportional to
√
gMPH, when reduced to two dimensions to carry out

the Schwinger calculation (see [145]). Still, this is at best just marginally satisfying

(4.1), so without further analysis it is unclear whether the crunch is really avoided.

Having ΛQCD < H is a sure way to avoid the trouble caused by the gluons.
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4.2 Weak gravity in de Sitter space

We have a constraint on the EFT from black hole decay, but it would be nice if we could

recover WGC as well. There are immediate obstacles to this. The usual motivation for

the (mild form of the) WGC in flat space or AdS is that otherwise all extremal black holes

are exactly stable or marginally unstable (as is the case for BPS black holes in a theory

with BPS particles), and this is somehow undesirable. In flat space it is still unclear what

precisely goes wrong if this does not happen, but in AdS a violation of the mild form of

the WGC conflicts with properties of entanglement entropy in the dual CFT [79].

By contrast, we have seen in the previous section that, the moment there is any

charged particle in the spectrum, RN-dS black holes follow the fate of their uncharged flat

space counterparts — they eventually evaporate completely. This is easy to understand

intuitively. In flat space or AdS , a subextremal charged particle that tunnels out of a

black hole has no choice but to fall back in, because it just does not have enough energy to

escape to infinity.25 In dS however, even a very massive particle will sometimes tunnel so

far away from the black hole that it is pulled away by the cosmological expansion, being

eventually eaten up by the cosmological horizon.

In fact, black holes discharge even in the absence of charged particles. In that case,

they move towards the lukewarm line in figure 1, or towards the charged Nariai branch if

the initial charge happens to be higher than the intersection point of the charged Nariai

branch with the lukewarm line. Both on the lukewarm line and on the charged Nariai

branch there are gravitational instantons [91, 128] that mediate transitions from these

black holes to and from empty de Sitter space. But the point of our analysis is that, even

if one demands that extremal black holes must be unstable, this leads to no constraints

on the spectrum of Einstein quantum gravity in dS space (or situations close to it, like

slow-roll quintessence), since black holes decay automatically anyway. This was already

foreseen in [98].

Although we have just argued that no charged black holes are stable in dS, small black

holes have very large lifetimes if WGC is not satisfied. Charged particles must traverse an

incredibly wide potential barrier, from the black hole horizon to the cosmological one, if the

black hole is to discharge. The current associated to this effect is therefore exponentially

exponentially suppressed in `; one can see this in the exact expression for the Nariai

current (3.38).

To sum up, in a dS-like theory which contains no WGC particles, small black holes

do evaporate, but their lifetime is exponentially long in `. There are so long-lived that it

makes sense to include them in the computation of the Schwinger current for a large Nariai

black hole. As mentioned in subsection 4.1, there are two ways to trigger the adiabatic

regime. One way is to have one or a few particles violating (4.1). Another is to have so

many particles satisfying (4.1) that their combined current beats the Schwinger exponential

suppression, resulting in an unsuppressed current. The contribution from black holes to

25In the AdS case the analysis is more subtle, since even massive superextremal particles cannot escape

to infinity. Instead, they form a charged cloud which completely discharges the black hole in the extremal

case [146].
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the current is26

Jr ≈
∫ Qmax.

Λ√
2gMP

dQr e
S− M2

QrE ∼
(
H

MP

)
H2Λ2

g
e−4
√

2π Λ
H (4.7)

Here, Λ is some EFT cutoff, which cuts off the sum when black holes become so small than

the semiclassical description breaks down. S is the black hole entropy counting the number

of black hole states with the given charge and mass. The upper bound on the charge Qmax.

is there because here we just want to consider small black holes — the entropy contribution

is then subleading and the result is dominated by the lower integration limit. Equation

(4.7) grows without bound as g → 0 which means that, as long as this limit is allowed (and

it might very well not be; this is just a heuristic argument), we will enter the adiabatic

regime. Thus, we obtain an argument for ordinary WGC in de Sitter, that small black

holes should be allowed to decay, with a similar flavor to the original heuristics in [15].

One might also conclude that g → 0 is not allowed; this is in fact the conclusion when one

follows the same argument in AdS [147].

This argument is heuristic and it relies on a very unclear limit. We also tried to do

better, and in the remainder of the section we report what we got. Since WGC guarantees

that black holes evaporate quickly enough, it is reasonable to imagine it is related to (an

upper bound on) evaporation times of black holes. Interestingly, one can argue something

like this — an upper bound on the equilibration time of a black hole. The equilibration

time tεeq. of a particular quantum state is the time that it takes for the state to become

close to the thermal state to any desired accuracy ε.

In our context, and as mentioned above, we should regard black hole evaporation as

(part of) an equilibration process towards the thermal state, represented by empty dS.

Once a black hole evaporates, the decay products fly away and eventually fall behind the

cosmological horizon. When this happens, to any desired degree of accuracy, one can say

the state has finally equilibrated.

We refer the reader to the excellent review [148] for a precise definition and more

details. Interestingly, it is possible to derive a universal upper bound on the equilibration

time of a generic quantum state27 (see Theorem 1 of [148]), which grows exponentially with

the system size.28 Notice that this is still better than the quantum Poincaré recurrence

time ee
SdS . Thus, we might want to demand that the total evaporation time of a black

hole is bigger than eSdS`. The evaporation time for a charged black hole is controlled by

the exponential factor of the Schwinger current, e−m
2/(qE). So a very naive realization of

this bound could be to demand that m2/(qE) < SdS , which leads to a lower bound on the

26We have only included extremal black holes and replaced the sum over integer-quantized charges Qr
by an integral. We have neglected the S term and then taken the upper integration limit to be ∞ since

the integral is dominated by small black holes as we take Qmax. much smaller than a cosmological size

black hole. For the same reason, we have also used the flat-space extremality expression. We have taken

E = gMPH to be a typical electric field in the upper part of the Nariai branch.
27Assuming it thermalizes eventually.
28This kind of scaling is achieved by relaxation times in glassy systems.
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charge-to-mass ratio of the particle that mediates black hole decay,

gqMP

m
&
Hm

M2
P

. (4.8)

While this bound goes on the same direction as the WGC, it is parametrically weaker

and so uninteresting. It becomes trivial as H → 0, so it is clearly not capturing the actual

physics of WGC. We just want to illustrate that upper bounds on equlilibration times

lead to lower bounds on the charge-to-mass ratio; and while the universal result in [148]

does not lead to an interesting result, a stronger lower bound derived using the particular

properties of the system under study might be behind the rationale for WGC in quasi-de

Sitter spacetimes.

5 Conclusions

In flat space and AdS, the Weak Gravity Conjecture is intimately related to Cosmic Cen-

sorship and the stability of extremal black holes. In this note, we have tried to understand

to what extent this kind of reasoning works in de Sitter, and more generally to space-

times with positive vacuum energy, and to figure out if there are any new candidates for

Swampland constraints.

To do so, first one needs to understand how black holes evaporate in de Sitter space.

Unlike their flat space counterparts, whose mass for a given charge is bounded below by

the extremality curve but unbounded from above, de Sitter black holes have a largest mass

for a given value of Q — the so-called Nariai solution. This is a genuinely de Sitter effect,

and one can connect it to the idea that the Hilbert space in the static patch should be

finite-dimensional [120–123], from which it follows that there is a maximum value of any

reasonably well-defined observable like the mass or the charge.

Previous studies of black hole evaporation in de Sitter [86, 88, 90, 92–96, 118] have not

examined how the mass and charge of a black hole evolves in time in a theory with charged

particles. We have worked out how large de Sitter black holes evaporate, depending on

the spectrum of charged particles in the theory. For a single scalar particle of mass m and

charge q, we find two very different regimes, controlled by the parameter χ ≡ m2/(gqMPH):

• When χ� 1, the Schwinger pair production that allows black holes to lose charge is

exponentially suppressed. They therefore evaporate slowly, schematically following

the curves illustrated in figure 2. All black holes evaporate eventually, never leaving

the “shark fin” region of nice sub-extremal solutions. This is consistent with the

thermodynamic interpretation of de Sitter as a thermal system at finite tempera-

ture [99, 122]. According to this idea, perturbations in de Sitter should eventually

evolve back to empty de Sitter space, and this process corresponds to equilibration

with the thermal bath. Field theory modes and small black holes all agree with this

picture, and it was known that large neutral black holes do so as well [88]. We have

shown that this is the case for charged black holes as well, as long as χ� 1.

• If χ � 1 instead, a charged Nariai black hole sees its electric field immediately

screened out by the very light charged carriers produced via Schwinger; the electric
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field is replaced by radiation, which cannot support the solution and collapses to a

Big Crunch. This Big Crunch is of the same kind that the one which appears in the

future of a superextremal, neutral Schwarzschild-de Sitter solution with mass above

the Nariai value. Morally, the black hole loses all the charge instantaneously, while

keeping its mass constant, as illustrated in figure 4.

The first noteworthy (if unsurprising) consequence of these results is that, as advanced

in [98], there is no kinematic barrier to black hole decay. This is unlike in flat space,

where at least one particle must satisfy WGC if extremal black holes are to decay. In

flat space, a subextremal charged particle can tunnel out of an extremal black hole, but it

inevitably falls back because for it gravity is not the weakest force. By contrast, the same

particle in dS can always tunnel far away enough that the cosmological force overcomes

the gravitational attraction from the black hole. Gravity may not be the weakest force,

but in any case it is always weaker than the cosmological one.

This is however not the end of the story. In the second scenario, where the black

hole discharges quickly, there is a failure of the thermalization picture; there are black

holes that become superextremal, crunch, and never thermalize back to de Sitter space.

We lack a complete, UV description of Einstein quantum gravity in long-lived de Sitter

space (if it exists at all), so we do not know if this is really an inconsistency. However, we

cannot help to point out that the superextremal region in figure 1 is connected, so one can

continuously deform any superextremal solution into any other. A neutral superextremal

black hole can be connected to a small superextremal one, which we ordinarily like to avoid

based on cosmic censorship or more sophisticated ideas (like the fact that these solutions

do not have any known embedding in string theory and it would be difficult to give a

thermodynamic interpretation).

In any case, if one wants the thermal picture of the dS static patch to hold, then our

results suggest that one should impose χ & 1 as well. This becomes a constraint on the

effective field theory, that

m2 & qgMPH,

for every particle in the theory. This is a constraint on the effective field theory coming

from gravitational arguments, and since we do not know of any field theory arguments that

would lead to it, it has the flavor of a Swampland constraint. However, since we cannot

check against stringy examples and it relies on the thermal picture of the dS static patch

and its finite-dimensional Hilbert space, it is on shakier ground than actual Swampland

constraints. It is just a consistency condition we need to enforce so that the thermal picture

of dS can hold at all.

Interestingly, avoiding the adiabatic regime also leads to a new heuristic argument for

the WGC from black hole decay in dS, circumventing the aforementioned lack of kinematical

constraints. In a WGC-violating theory, small extremal black holes would be very long-

lived, and would contribute to the discharge of Nariai ones. In the limit of small gauge

coupling, there is so many of them that they can trigger the onset of the adiabatic regime

by themselves. A natural way to avoid this is then the WGC.
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This argument is very similar to the original WGC heuristic, and suffers from the same

weaknesses. For instance, it only works in the limit g → 0, and we have no idea whether

this limit makes any sense in any way. Trying to address this, we have speculated that

WGC might be related to an upper bound in evaporation times of black holes. In the

thermal picture of dS, this would correspond to an upper bound to equilibration times;

while there are universal results in this direction which lead to WGC-like bounds, they are

much weaker.

Since the real world looks like de Sitter at least for now, it is reasonable to compare this

constraint with it. Taking the U(1) to be electromagnetism, the constraint turns out to be

satisfied by every charged particle we know of. Again, this is a UV constraint, since there is

nothing obviously wrong from the EFT point of view with a world where the electron was

lighter than neutrinos or the cosmological constant was a few orders of magnitude higher.29

Since the constraint ties charged fermion masses to the Hubble scale, it alleviates to

some extent the cosmological hierarchy problem. It also constrains models of mili-charged

dark matter, but the window where the constraint is nontrivial has been long excluded by

experimental data.

The constraint has an interesting interplay with inflation. Since during inflation the

universe was basically de Sitter for 60 efolds, our arguments apply, not just to electromag-

netism but to whichever massless unconfined gauge fields are present during the inflationary

era. This puts constraints on inflationary models. We have sketched a couple ways to com-

ply with these constraints: direct inflaton-gauge kinetic term couplings (which would lead

to small nongaussianities), or models of Higgs inflation with a plateau potential and an

inflationary scale below ΛQCD.

A number of interesting research directions remain. Tracing out the boundary of

figure 1 by starting with an infinitesimally small extremal black hole, moving up along

the extremal branch up to the ultracold point and then moving back down along the

charged Nariai branch, one finds a remarkable situation. There is a continuous interpolation

between AdS2 × S2, Mink2 × S2, and dS2 × S2. It would interesting to understand this as

a continuum of two-dimensional theories, especially in the context of the recent surge of

interest in two-dimensional quantum gravity [149–154].

A natural extension of our work would be to higher dimensions. One could study both

higher dimensional de Sitter spaces and black branes rather than black holes. It would be

interesting to see if this produces bounds on brane tensions analogous to the bounds on

particle masses obtained here. Since in the Nariai branch we get a dS2 × S2 geometry for

black holes, it is natural to guess that by looking at black branes one could get higher-

dimensional de Sitter solutions supported by flux which discharge slowly, and it would

possible to study their decay in a UV-regulated way.
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A Details about the quasistatic equations of motion

Here we provide some details about the semiclassical equations of motion (3.18) quoted in

the main text. To first order in ε, the coefficients of the Einstein tensor expansion are

δ1 =
1

2

(
2δA

(
3M2r2 − 5MQ2r − 3Mr5 +Mr3 + 2Q4 +

(
2Q2 − 1

)
r4 + 2r6

)
r4 (2Mr −Q2 + r4 − r2)

+
2δB

(
M2r2 +MQ2r + 7Mr5 −Mr3 −Q4 − 4Q2r4 + r8 − 2r6

)
(2Mr −Q2 + r4 − r2)3

+
r2δB′′

−2Mr +Q2 − r4 + r2
+
r
(
−3Mr + 2Q2 + r2

)
δB′

(−2Mr +Q2 − r4 + r2)2 −
8QδF

−2Mr +Q2 − r4 + r2

+

(
−3Mr + 2Q2 + r2

)
δA′

r3

)
, (A.1)

δ2 =
1

2

(
−

2δA
(
r
(
−M2 −Mr3 + 3Mr + 2r6 − r2

)
+Q2

(
M + 2r3 − 2r

))
r3 (2Mr −Q2 + r4 − r2)−1

+
2δB

(
r2
(
−5M2 − 5Mr3 + 3Mr + r6

)
+Q2r

(
5M + 4r3 − 2r

)
−Q4

)
2Mr −Q2 + r4 − r2

+r2
(
2Mr −Q2 + r4 − r2

)
δB′′ + 8QδF

(
−2Mr +Q2 − r4 + r2

)
−
(
M + 2r3 − r

) (
−2Mr +Q2 − r4 + r2

)2
δA′

r2
+ r2

(
−M − 2r3 + r

)
δB′
)
, (A.2)

δ3 =
4r
(
rṀ −QQ̇

)
−2Mr +Q2 − r4 + r2

, (A.3)

δ4 =
1

2

(
−

2δA
(
r
(
−M2 + 5Mr3 +Mr + 5r6 − 4r4

)
−Q2

(
−M + r3 + r

))
r5

−
2δB

(
r
(
M2 + 7Mr3 −Mr + r6 − 2r4

)
+Q2

(
−M − 5r3 + r

))
r (−2Mr +Q2 − r4 + r2)2

−
(
−3Mr + 2Q2 + r2

)
δB′

r (2Mr −Q2 + r4 − r2)
−
(
M + 2r3 − r

) (
2Mr −Q2 + r4 − r2

)
δA′

r4

− 4QδF

r2
+ δB′′

)
. (A.4)
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To first order in ε, Einstein’s equations are simply δi = 8πGηi. The δ3 component gives

(3.18) in the main text; here we focus on the remaining components, that give the equations

of motion for δA, δB, δF . We have omitted the dependence on the slow time scale t1,

since there are no time-derivatives anywhere in these expressions. The perturbation δF

also shows up in Maxwell’s equations, but these are redundant, as Einstein’s equations

imply energy-momentum conservation ∇aT ab = 0 which is in turn equivalent to Maxwell’s

equations (this is the case because we only have one field; in the quintessence discussion

in appendix B, one needs to introduce an additional function and impose the equation of

motion for the radial perturbation by hand, as we do in the main text).

Since there are no time derivatives, the time dependence on the δi is fixed by the time

dependence of the ηi. For the cases under consideration, where ηi comes from Hawking

or Swchinger effects, these only depend on t1, since the stress-energy for these depend on

time only through M and Q.

To sum up, we have a system of three coupled second-order ODE’s for the perturba-

tions with non-singular coefficients outside the horizons. Working in first-order formalism,

δB′′(r) = C ′(r), the equations δi = 8πGηi together with C = δB′(r) can be written as a

matrix ODE

M1~y
′ + M2~y = ~η, (A.5)

where ~y = (δA, δB, δF,C), ~η = 8πG(η1, η2, η4, 0), and M1,M2 are coefficient matrices.

Crucially,

det(M1) =
Q
(
r
(
−2M − r3 + r

)
+Q2

)2
r3

6= 0, (A.6)

so M1 is invertible. Then, as long as there are no singularities in the ηi between the two

horizons, existence of the solution given boundary conditions is then guaranteed by the

general theory of ODE’s e.g. Caratheodory’s theorem [155].

Since we have solved all of Einstein’s equations, our solutions satisfy the Hamiltonian

and momentum constraints, to first order in ε. Again, we can generically expect violation

of the Hamiltonian constraints to take place at second order in ε.

B Generalization to quintessence

In this appendix, we describe the generalization of the quasistatic and adiabatic equations

of motion (3.18) when one introduces a very slowly rolling scalar field ϕ. This will be

relevant for us because the conjecture in [71, 72] suggests that exactly stable Einsteinian

de Sitter solutions do not exist; hence, we need to know to what extent are our results

robust against a small slow-roll.

B.1 Quasistatic

We will parametrize the rolling of ϕ by a time-dependent Hubble radius `(t), on top of M(t)

and Q(t). So in this appendix we will restore `. The scalar will couple via a Lagrangian

Lϕ =
1

2ε
(∂ϕ)2 − V (ϕ), (B.1)
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where ε is a small parameter. The method of separation of scales requires an unperturbed

problem and a parametric family of solutions for it. We will choose the unperturbed

problem to be the ε → 0 limit of (B.1). The family of solutions are the RN-dS solutions

with the three parameters (Q,M, `(ϕ)), where the Hubble radius is a function of the scalar

potential given by
3

`(ϕ)2
= V (ϕ0). (B.2)

To fully specify the family of solutions, we also need to specify the profile for the

quintessence field. Equation (B.2) implies that it is a constant. This is consistent with the

equations of motion of the system, which are

Gµν = 8πG(TEM
µν + V (ϕ)gµν), ∇µ∇µϕ = 0. (B.3)

Now, we work to first order in ε, and introduce a small time dependence,

M(εt), Q(εt), `(εt) =
3

V (ϕ0(εt))
. (B.4)

On top of this, we introduce order ε but time-independent perturbations to the metric,

gauge field and quintessence. The metric and gauge field components work out in the same

way as above, so in order not to clutter the equations we will not re-discuss them. For

quintessence, we have

ϕ(r, t) = ϕ0(εt) + ε u(r), (B.5)

with an equation of motion ∇µ∇µϕ = εV ′(ϕ). To first order in ε, we get

gttϕ̈+
1

r2
∂r
(
grrr2u′(r)

)
= V ′(ϕ0(0)), (B.6)

which fixes ϕ̈ = 0 (familiar from slow roll approximation) and ODE which uniquely de-

termines u(r), given boundary conditions. Einstein’s equations become as before give

equations of motion for the time-independent metric perturbations, and the off-diagonal

components as before give the equation of motion for M ,30

dM

dt
= −πG`2r4UT − 4πJ

Q
+ r2

˙̀

`3
r. (B.7)

The extra last term is the contribution from quintessence. The equation of motion for Q̇

remains the same. Out of the δ4 component of the Einsteins equations we also get

− 6l̇

`3
= V ′(ϕ0(0))ϕ̇0(0), (B.8)

which is consistent with (B.2).

So now that we have the modified equations of motion, we just need to check what

motion do they enforce on the (M,Q, `) space. To check whether we leave the Nariai

30Notice that the equations are written in terms of T , J instead of T , J .

– 36 –



J
H
E
P
0
1
(
2
0
2
0
)
0
3
9

branch, again, we just need to compute ∆̇, where ∆ is the discriminant of the quadratic

equation U(r) = 0. We cannot neglect the ` dependence in the discriminant now,

∆ = `4M2 − `4Q2 − 27`2M4 + 36`2M2Q2 − 8`2Q4 − 16Q6, (B.9)

and becoming superextremal is equivalent to ∆̇ > 0 on the Nariai branch. Using (B.7),

one gets

∆̇ = 0, (B.10)

so that again one moves along the charged Nariai branch, without changing the charge.

This is precisely what [86] found for the extremal case. Their analysis is in fact general for

classical effects on the charged Nariai branch, and suggests that other modifications such

as e.g. introducing a coupling of ϕ to the gauge field cannot change the picture; we have

checked explicitly that this is indeed the case.

B.2 Adiabatic

We will only analyze the Nariai branch, as in the main text. The 2d effective action is now

8πGS =

∫
dΩ2dτdx

{
˙(e2φ)ȧ− e−φa+

(
V (ϕ)− 1

2
ϕ̇2

)
eφa

}
+ 8πG

∫
dV2dΩ2

√
−gL,

(B.11)

where the quintessence potential and kinetic term replace the +3 cosmological constant

term in (B.11). We will assume no coupling to the electromagnetic field. Defining again

s ≡ e2φ and assuming isotropic radiation stress-energy, as in the main text, the equations

of motion are

ϕ̈ = −V
′(ϕ)√
s
−
[
ȧ

a
+
ṡ

s

]
ϕ̇, (B.12)

s̈ = V (ϕ)
√
s− sϕ̇2 − 1√

s

(
1 +

ρ0

a4/3

)
, (B.13)

ä

a
=

1

2s3/2

(
1− ρ0

a4/3
+ V (ϕ) s

)
− ϕ̇2, (B.14)

where ρ0 is again the energy density of the electromagnetic field just before decay, and we

have assumed that V (ϕ0) = 3, so that we can use expressions like (2.6).

The question is whether the addition of quintessence can alleviate or even make the

crunch disappear. We will limit ourselves to a numerical analysis illustrating these quali-

tative features in the particular case of an exponential potential V = 3e−αϕ. Results are

presented in figure 6. Quintessence causes a slight delay of the crunch for negative val-

ues of α, but this effect is small unless |α| � 1, in which case the model does not make

sense anyway.

C Exact Schwinger pair production on the charged Nariai branch

Here we compute the exact evolution equation on the Nariai branch, using the results

in [114]. The steady current for a particle of two dimensional mass m2d and charge q is

JdS2,r(m2d, q) =
qHdS2

π

σ

sinh(2πσ)
sinh(2πqE/H2

dS2
), (C.1)
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τ

0.05

0.10
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0.20
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Figure 6. Numerical solution for s(t) of the system of equations (B.12)–(B.14) for an initial charge

Q = 0.99 · 12−1/2 and different values of α from −1/3 to +1/3 in 1/6 increments. Central value

corresponds to α = 0. This illustrates that reasonable quintessence potentials are not enough to

avoid the Big Crunch on the charged Nariai branch.

where31

σ =

√
1

4
− m2

H2
− q2E2

H4
, qE =

√
1

4πG

gq

`

Q`2

r2
g

, (C.2)

and

r2
g =

`2

6

(
1 +

√
1− 12Q2

)
, H2

dS2
`‘2 = 6

(
1

1 +
√

1− 12Q2
− 1

)
. (C.3)

It is convenient to introduce parameters

χ ≡ qE

m̃2
=

qE

m2 −H2/4
(C.4)

and

y ≡ m̃2/H2. (C.5)

In terms of these, equation (C.1) becomes

JdS2,r(m2d, q) =
q

π
HdS2

√
y2χ2 + y

sinh(2π
√
y2χ2 + y)

sinh(2πχy). (C.6)

Notice that

χy =
qE

H2
dS2

> 0. (C.7)

If one takes y > 0, which amounts to having a field more massive than H2
dS2
/4, it is possible

to write down a simple lower bound on the current. For any a > 0, b > 0 we have

sinh(a)

sinh(
√
a2 + b)

≥ tanh(a)

ec
, (C.8)

31Under dimensional reduction we have that 1/g2
2d = 4πr2

g2
4d

and E4d =
g24dQr

4πr2
= g2

2dQrq = E2d, so both the

product qE and m can be computed in 4d and then one can use the 2d formula directly. The normalization

factor in the scalar accounts for integration over the sphere.
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where c ≡
√
a2 + b− a ≤ b

2a . Due to this, one can write

sinh(a)

sinh(
√
a2 + b)

≥ tanh(a)e−
b

2a . (C.9)

Now taking a = 2πχy, b = 4π2y, one can bound

JdS2(m2d, q) &
q

π
HdS2

√
y2χ2 + y

sinh(2π
√
y2χ2 + y)

sinh(2πχy) ≥ q2E

πHdS2

tanh

(
2π

qE

H2
dS2

)
e
−π
χ .

(C.10)

The bound becomes tighter and tighter the higher the hierarchy between m2 and qE.

The factor e
−π
χ is precisely the Schwinger space prefactor (3.1); the bound becomes tight

when y � 1, which means that the curvature effects become unimportant and the pair-

production happens essentially in flat space.

As in the main text, a 4d field of mass m and charge q decomposes into a tower of 2d

fields with masses

m2d(s)
2 = m2 +

s(s+ 1)

r2
g

. (C.11)

Here, s = 0, 1, 2, . . . and there is a multiplicity 2s+1 for the sth mass. Note that depending

on the spectrum of the four-dimensional theory, it may well be possible that m2
4d �

s(s+1)
r2
c

and the KK modes are densely packed compared to the lowest mass. It is then important

to sum over the KK modes when computing the Schwinger current. This is reflecting that

the physics of the problem is intrinsically four-dimensional, but simple enough that it can

be analyzed in 2d terms.

Then the current equation of motion in (3.51) becomes a sum over KK modes, which

we can evaluate explicitly using (C.10), since only the last factor depends on m. In this

way, (C.10) becomes

Jr &
q2r2

c

π2
|E|HdS2

√
y2χ2 + y

sinh(2π
√
y2χ2 + y)

sinh(2πχy) ≥ q2r2
cE|E|

π2HdS2

tanh

(
2π

qE

H2
dS2

)
e
−π
χ .

(C.12)

The electric field on the Nariai branch is given by (C.2). Using this, equation (3.51) then

becomes32

J =

√
g2G

4π`2
Jr &

√
g2G

4π`2
q2r2

cE|E|
π2HdS2

tanh

(
2π

qE

H2
dS2

)
e
−π
χ (C.13)

This is equation (3.38) of the main text.

D Big Crunch and singularity theorems

In this appendix we show that the Big Crunch in the adiabatic approximation discussed in

the main text is actually independent of the details of the model and is in fact guaranteed

32The prefactor accounts for the definition of Q (2.7) in terms of the actual integer-valued current. The

factor of 4πr2
g in (3.22) is already taken into account in the expression for JdS2 , since this is a two-

dimensional calculation.
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by a singularity theorem. The starting point of our discussion will be the dimension-

ally reduced Lagrangian to two dimensions of the Einstein-Maxwell system, (3.45) of the

main text. However, we will now have a general two-dimensional metric g2, and in the

two-dimensional Lagrangian L we will include a sum over all the KK modes of metric

components and any matter fields we include. By working high up the Nariai branch, we

can have a parametric hierarchy between the size of the two-spheres on which we reduce

the theory and the non-compact space, so we mostly are thinking of the regime where a

honest KK reduction is possible, but our discussion is general.

We will apply one of the original singularity theorems [156]. In the main text, we

picked a particular spacelike hypersurface in the Nariai geometry, declared that this was

the “starting point” of the evolution, and then let the electric field be screened out. We

want to prove a crunch exists too for an arbitrary initial data hypersurface C, even one that

crosses the cosmological or black hole horizons. We also want to work (slightly) outside

of the Nariai limit. Thus, we need to consider the maximal analytic extension of the

RN-dS black hole, a spacetime described in [89]. Removing singularities, it has topology

S2×S1×R. In particular, any global Cauchy slice C is compact. The singularity theorems

have a loophole precisely in this case [157]. One can lift this problem however by working

in the universal cover of the RN-dS black hole, which describes an infinite sequence of

“Bousso beads”. This is the spacetime we will work in.

For a particular Cauchy surface C, the singularity theorem guarantees that every

geodesic is not future-extendible provided that

1. The expansion of a congruence of null geodesics at any point on C is negative, and

2. Rabk
akb ≥ 0 for any null vector ka.

The second condition is equivalent, by Einstein’s equations, to the null energy condition,

which we take to hold (notice that unlike e.g. the strong energy condition, the null energy

condition is marginally satisfied by a positive cosmological constant).

The first point can be established by noting that locally in a small neighbourhood

of any point in C, the situation is the one described in the main text: the electric field

decays locally to radiation, and immediately afterwards we have a FRWL metric. Using the

ansatz (3.44) (allowing for angular dependence as well), a null radially affinely parametrized

congruence of ingoing/outgoing null geodesics is given by (see [158])

Ka
± =

r

a(τ)
(1,±a(τ), 0, 0) . (D.1)

The corresponding expansions θ± ≡ ∇aKa
± are

θ± =
1

ra

(
˙(r2)± ∂x(r2a)

)
. (D.2)

Exactly on the Nariai branch, the second term vanishes, and the first does as well if there

are no charged particles. In the adiabatic approximation, however, ˙(r2) becomes negative

at any time > 0, leading to contraction for both congruences as long as the gradients

∂x(r2a) are small enough (i.e. close enough to the Nariai branch).
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Since these arguments work for any point of the initial surface, every null geodesic

must be incomplete — no one is escaping to a hypothetical de Sitter region. The crunch

is unavoidable.

It is also interesting to consider why the singularity theorem does not lead to the same

conclusion in the quasistatic case. The null energy condition is famously not satisfied by

Hawking radiation [159], and perhaps this is the case for the Schwinger radiation as well

(we have not checked). It is also not straightforward to argue that any null congruence of

geodesics has negative expansion in the same way as above; up in the Nariai branch, the

stress-energy of the produced pairs is localized on the angular S2.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[62] E. Gonzalo, L.E. Ibáñez and A.M. Uranga, Modular symmetries and the swampland

conjectures, JHEP 05 (2019) 105 [arXiv:1812.06520] [INSPIRE].

[63] M. Scalisi and I. Valenzuela, Swampland distance conjecture, inflation and α-attractors,

JHEP 08 (2019) 160 [arXiv:1812.07558] [INSPIRE].

[64] F. Marchesano and M. Wiesner, Instantons and infinite distances, JHEP 08 (2019) 088

[arXiv:1904.04848] [INSPIRE].
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