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1 Introduction

In the past few years, a family of new non-supersymmetric dualities between Chern-Simons-

matter theories in 2 + 1-dimensions has been conjectured [1–4] involving fundamental or

antifundamental representations, i.e. rank-one matter. Schematically, these dualities are [1]

U(k)N with Nf Φ ↔ SU(N)−k+Nf/2 with Nf ψ (1.1a)

SU(k)N with Nf φ ↔ U(N)−k+Nf/2 with Nf Ψ (1.1b)

where φ,Φ are fundamental scalars; ψ,Ψ are fundamental fermions; and throughout this

work we use “↔” to denote a duality conjectured to hold in the IR limit. In the simplest

“flavor-bounded” regime the number of matter fields is constrained so that Nf ≤ k in the

above expressions.
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Figure 1. Web of bosonization dualities in 2 + 1-dimensions. The contributions of this work are

shaded in red. Specifically, we show that the rank-two adjoint matter dualities can be connected

to the rest of the web of dualities (red arrows). We also conjecture several new rank-two dualities

including a duality with both fundamental and adjoint representation matter.

More recently, various extensions of the dualities of (1.1) have been proposed. There

is evidence the duality continues to hold in the “flavor-violated” regime where k < Nf <

N∗(k,N), for some yet-unknown function N∗ [5]. Additionally, a form of the duality which

has both rank-one fermionic and bosonic matter on each side has also been proposed [3, 4].

Since the dualities of (1.1) are a special case of this more general duality, we will refer to it

as the “master duality”. Finally, there also exists conjectures for dualities very much anal-

ogous to (1.1), but instead involving adjoint, symmetric, or antisymmetric representations,

i.e. rank-two matter [6, 7].

Using the master duality, the single-species dualities of (1.1), and the Abelian limit

of (1.1), a large web of rank-one dualities has been constructed, see figure 1 [8–12]. Al-

though the rank-two dualities bear a strong resemblance to the rank-one 3d bosonization

dualities, they have so far remained disconnected from aforementioned web.

The usual duality web construction involving adding a background term/decoupled

theory and gauging global symmetries was explored within the context of rank-one dualities

in the work of [10–12] to construct bosonic quivers. That is, by gauging non-Abelian global

symmetries the rank-one dualities can be used to derive dualities between theories with

product gauge groups coupled to each other with bifundamental scalar matter. Such quiver

dualities were generalized to an arbitrary number of nodes. The two-node case was shown

to be a generalization of the bosonic particle-vortex duality [13, 14]. A special case of the

general quiver was shown to have application for dualities of interfaces in QCD4 [15].

In this paper, we follow a similar methodology but instead construct two-node quiver

dualities which have fermionic matter on both ends. We will start by constructing said

dualities using only the flavor-bounded 3d bosonization dualities. As one might expect from

previous work [11], such quivers provide a generalization of Son’s fermionic particle-vortex
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duality [16]. Nevertheless, such quivers are much more strongly constrained compared to

their bosonic counterparts as already noted in ref. [10].

This motivates us to consider the construction of such two-node dualities using the

flavor-violated 3d bosonization duality. This relaxes constraints on parameters at the cost

of a more complicated phase diagram. A special case of these flavor-violated two-node

quivers exhibits a Z2 symmetry under interchange of its two nodes.

Our main focus of this paper will be a novel procedure of deriving new and old fermionic

dualities using this Z2-symmetric quiver. In particular, we combine said quivers with an

orbifolding procedure, which allows us to connect the rank-one 3d bosonization duality to

dualities with rank-two matter, see figure 1. This links the rank-two dualities to the rank-

one bosonization dualities [8, 9], meaning the web of 3d bosonization dualities is larger

than previously thought.

After demonstrating we can recover the aforementioned rank-two dualities, we derive

new dualities involving rank-two matter. The first of these closely resembles the known

rank-two dualities with the U(1) factors shuffled around. We also explore the possibility of

adding fundamental matter on each of the nodes, which gives rise to a new duality involving

both adjoint and fundamental matter.

The paper is outlined as follows. In section 2 we briefly review the 3d bosonization

dualities with rank-one matter. Next, in section 3 we first construct the flavor-bounded

two-node quiver, and then the flavor-violated version. Section 4 introduces the orbifolding

procedure to derive new and old fermionic dualities. Finally, we discuss possible extensions

of our work and conclude in the section 5.

Appendix A contains the details of the two-node derivations. Appendix B discusses

how the flavor-bounded two-node is connected to the fermionic particle-vortex duality of

ref. [16]. In appendix C, we summarize the generalization of the flavor-violated fermionic

quiver dualities for orthogonal and symplectic gauge groups. Finally, we illustrate the

gravitational counterterm matching as a consistency check for the two-node quiver dualities

in appendix D.

2 Review of 3d bosonization dualities

The duality in (1.1a) conjectures an IR equivalence between the following two Lagrangians,1

LSU = iψ̄ /Db′−C+Ã1
ψ − i

[
Nf − k

4π
TrN

(
b′db′ − i2

3
b′3
)]

− i
[
N

4π
TrNf

(
CdC − i2

3
C3

)
+
N (Nf − k)

4π
Ã1dÃ1

]
, (2.2a)

LU = |Dc−CΦ|2 − i
[
N

4π
Trk

(
cdc− i2

3
c3

)
− N

2π
Trk (c) dÃ1

]
, (2.2b)

1Since the fermion suffers from the parity anomaly in 2+1-dimensions [17, 18], implicit in these dualities

are Pauli-Villars regulators. These take the form of η-invariants. It is convention in the literature to neglect

such terms in the Lagrangian, which amounts to the rewriting

iψ̄ /Dcψ − i
[
−1

2

Nf
4π

Trk

(
cdc− i2

3
c3
)]

→ iψ̄ /Dcψ. (2.1)

We will follow this convention when writing Lagrangians, but will explicitly denote such η-invariant factors

otherwise.
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Gauge Fields Background Fields

Symmetry SU(N) U(k) SU(Nf ) U(1)m,b

Field b′µ cµ Cµ Ã1µ

Table 1. Definitions of various gauge fields used in the duality of (2.2).

which is subject to the flavor bounds k ≥ Nf . The Lagrangians contain Chern-Simons

terms for both dynamical and background gauge fields. Table 1 shows our definitions of

fields. Uppercase letters are used for background fields and lowercase for dynamical fields.

We can simultaneously deform both sides of the above duality by adding mass terms

for the respective matter. For large enough mass, we can integrate out the matter leaving

behind a topological field theory (TFT). The mass mapping mψ ↔ −m2
Φ gives TFTs which

are level-rank dual to one another,

SU(N)±k ⇔ U(k)∓N . (2.3)

This duality has been rigorously proven to hold at all scales, and is part of a larger class

of level-rank dualities, which also includes [2]

U(N)k,k±N ⇔ U(k)−N,−N∓k. (2.4)

Here we are using the notation

U(N)P,Q =
SU(N)P ×U(1)NQ

ZN
(2.5)

to denote Chern-Simons terms where the Abelian and non-Abelian parts have different

levels. We use the shorthand U(k)N,N ≡ U(k)N when the levels are equal, up to rank

dependence.

In this work it will be important to be careful about the representation of matter fields

under various gauge groups, both dynamical and background. Our notation for covariant

derivatives is such that(
Db′−C+Ã1

)
µ
ψ =

[
∂µ − i

(
b′µ1Nf + Cµ1N + Ã1µ1NNf

)]
ψ, (2.6a)

(Dc−C)µ Φ =
[
∂µ − i

(
cµ1Nf + Cµ1k

)]
Φ, (2.6b)

where b′µ and cµ are fundamental representations and Cµ is in the anti-fundamental rep-

resentation of their respective gauge groups. 1N is the N × N identity matrix. That is,

antifundamental representations will be denoted by a minus sign in the subscript of the

covariant derivative.

As mentioned in the introduction, an extension of the 3d bosonization duality to

k < Nf < N∗ was proposed in ref. [5]. On the fermion end, the phase diagram as a

function of mass now has an intermediate “quantum region” bordered by two second-order
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phase transitions at mψ = ±m∗.2 At both transition points there is a bosonized dual

description in terms of Nf scalars in the fundamental representation,

SU(N)−k+Nf/2 with Nf ψ ↔

{
U(k)N with Nf Φ1 mψ = −m∗
U(Nf − k)−N with Nf Φ2 mψ = m∗.

(2.7)

We will sometimes label the bosonized duals by whether they are dual to the “mψ > 0”

or “mψ < 0” region of the fermionic phase diagram (with appropriate mass deformations).

The quantum phase cannot be described by the weakly coupled analysis from the UV

fermionic theory. The two mutually non-local scalar dual theories describe the same in-

termediate quantum phase for mψ ∈ (−m∗,m∗) in terms of non-linear σ-model with some

Wess-Zumino term. The structure of this phase diagram will be the starting point for con-

structing the phase diagram of flavor-violated two-node fermionic quivers in section 3.2.

3 Two-node fermionic quivers

It has been shown in refs. [11, 12] that we can use two-node quivers to create generalizations

of the bosonic particle-vortex duality. In this section we construct the fermionic equivalent.

Flavor constraints will imposes tighter bounds on the possible theories we can create, since

the intermediate quivers contain scalars. This will motivate us to also consider two-node

fermionic quivers which use the flavor-violated version of 3d bosonization. In this section

we will mostly stick to schematic notation for brevity. Details of this derivation at the

Lagrangian level can be found in appendix A.

3.1 Flavor-bounded

The general procedure for constructing two-node quiver dualities involves promoting the

SU(Nf ) and/or U(1) global symmetries after adding appropriate background Chern-Simons

terms [10, 19]. For example, promoting the background flavor symmetries to be dynamical,

the schematic form of the 3d bosonization dualities in (1.1) is given by

U(k)N × SU(Nf )0 + Φ ↔ SU(N)−k+Nf/2 × SU(Nf )N/2 + ψ, (3.1a)

SU(k)N ×U(Nf )0 + φ ↔ U(N)−k+Nf/2 ×U(Nf )N/2 + Ψ. (3.1b)

Each side either has a single bifundamentally charged fermion or boson, e.g. the right-hand

side of (3.1b) has fermion in the (N, N̄f ) representation. In the latter of these dualities we

have also promoted the U(1) global symmetry. When we do this we introduce a new U(1)

global symmetry whose corresponding background field couples to the promoted Ã1 via a

BF term.

Relabeling parameters and adding background terms (before promotion), the dual-

ity (3.1a) conjectures the following two theories are dual

Theory A: SU(N1)−k1+N2/2 × SU(N2)−k2+N1/2 + ψ, (3.2)

Theory B’: U(k1)N1 × SU(N2)−k2 + Φ, (3.3)

2In general, the phase transition points do not necessarily need to exist at the same mass magnitude

m∗. However, one can tune the bare mass parameter to make two transition points symmetrical, and we

will assume that has been done throughout this work.
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Figure 2. Generalized fermion quiver duality of (3.6) with flavor-bounded dualities. Theory B

represents both Theories B’ and B” since they are identical. Our quiver notation is such that we

use filled red (black) nodes to represent dynamical SU (U) gauge groups. The red (black) links

between said circles represent fermions (scalars) charged under the corresponding gauge groups.

This duality is subject to the flavor bound N2 = k1.

which is subject to the flavor bound k1 ≥ N2. Now also rewrite the second duality, (3.1b),

again with a special choice of added background terms and relabeling,

Theory B”: U(k1)N1 × SU(N2)−k2 + φ, (3.4)

Theory C: U(k1)N1−k2/2 ×U(k2)N2−k1/2 + Ψ, (3.5)

subject to the flavor bound N2 ≥ k1.

Theories B’ and B” are identical, so we will collectively call them Theory B. Since

Theory A and Theory C are both dual to Theory B, they must also be dual to one an-

other. That is, we have a fermion-fermion duality between (3.2) and (3.5). Each side

has a bifundamental fermion coupled to two gauge fields with Chern-Simons terms. Note

simultaneously satisfying both of the flavor bounds requires N2 = k1, but N1 and k2 are

unbounded. At the Lagrangian level, this is a duality between the theories

LA = iψ̄ /Db′−c′+Ã1
ψ − i

[
N2 − k1

4π
TrN1

(
b′db′ − i2

3
b′3
)]

− i
[
N1 − k2

4π
TrN2

(
c′dc′ − i2

3
c′3
)

+
N1N2

4π
Ã1dÃ1

]
, (3.6a)

LC = iΨ̄ /D−c+g+Ã1
Ψ− i

[
N1

4π
Trk1

(
gdg − i2

3
g3

)
+
N2

4π
Trk2

(
cdc− i2

3
c3

)]
, (3.6b)

where b′ ∈ su(N1), c′ ∈ su(N2), g ∈ u(k1), and c ∈ u(k2). The quiver construction is

summarized in figure 2.

In appendix B, we will discuss more details about this fermion-fermion duality con-

structed from the flavor-bounded bosonization duality. This includes showing Son’s

fermionic particle-vortex duality [16] is simply the N1 = N2 = k1 = k2 = 1 limit. For now,

we move onto deriving a two-node fermionic duality without such tight flavor constraints.

3.2 Flavor-violated

Above, we saw the derivation of the two-node fermions was constrained by the flavor-bound

of the 3d bosonization dualities. It is also possible to derive two-node quivers using the

– 6 –
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Figure 3. Generalized fermion quiver duality with flavor-violated bosonization duality. The first

step uses the flavor-violated 3d bosonization duality, while the second step uses the flavor-bounded

version. The diagram is valid for the k1 < N2 ≤ N∗(N2, k1), k2 < N1 ≤ N∗(N1, k2).

flavor-violated duality proposed by ref. [5]. This comes at the cost of the full phase diagram

of Theory B being described by two distinct dual theories. We then apply a flavor-bounded

bosonization duality to Theory B, which means Theory C’s phase diagram requires two

fermionic theories. This construction is summarized in figure 3.

In more detail, we start with the same Theory A as we did for the flavor-bounded

version above, (3.2). We now use the flavor-violated bosonization duality, which lifts the

earlier flavor-bound constraint, k1 ≥ N2, to k1 < N2 ≤ N∗(N2, k1) instead. Here, N∗ is

some unknown function of N and k as discussed in ref. [5]. This yields a Theory B which

must be described by two distinct scalar duals. One of these scalar duals, corresponding to

the mψ < 0 side, is identical to (3.3). The mψ > 0 side is in general distinct. Schematically,

the full phase diagram is described by the theories

Theory A: SU(N1)−k1+N2/2 × SU(N2)−k2+N1/2 + ψ, (3.7)

Theory B1: U(k1)N1 × SU(N2)−k2 + φ1, (3.8)

Theory B2: U(N2 − k1)−N1 × SU(N2)N1−k2 + φ2, (3.9)

where subscripts 1, 2 correspond to the mψ < 0 and mψ > 0 theories, respectively.

Next, we can use flavor-bounded 3d bosonization to find a fermionic theory which

matches the intermediate scalar theory. Since there are two scalar duals in the intermediate

theory, we will also need two fermion theories to describe the full phase diagram. Once

more, the mψ < 0 side is identical to what we found above in (3.5). A subtlety is that, due

to the flipping of the sign of the level, on the mψ > 0 side we must use the time-reversed

version of (3.1a). This yields the theories

Theory C1: U(k1)N1−k2/2 ×U(k2)N2−k1/2 + Ψ1, (3.10)

Theory C2: U(N1 − k2)−N2+(N2−k1)/2 ×U(N2 − k1)−N1+(N1−k2)/2 + Ψ2. (3.11)

Thus we again arrive at two-node fermionic quiver theories on either end. Once again

they are conjectured to be dual to one another, but the flavor bound of N2 = k1 has been

– 7 –
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replaced by k1 < N2 < N∗(N2, k1) and k2 < N1 < N∗(N1, k2), which allows us a little more

freedom in choosing parameters.3

The explicit form of the Lagrangians for Theories B2 and C2 are given in (A.5). Note

the presence of the mixed BF term between c and g, which arises from the fact that dual

fermion is charged under both U(1) groups. Since the mψ < 0 side is identical to the

flavor-bounded case, LC1 is given by (3.6b). The BF term between dynamical gauge fields

c and g is also present in (3.6b), but is hidden due to our convention of η-invariant terms

(see footnote 1).

Finally, it is slightly subtle to see how the quantum phases described by Theories C1

and C2 are dual to one another. We denote a level ±1 BF term between two unitary gauge

fields c and g, e.g. ± 1
2πTrk1(c)dTrk2(g), as “±BF”. The intermediate quantum phase is

then described by the exact duality,

U(k1)N1−k2 ×U(k2)N2−k2 − BF ⇔ U(N1 − k2)−k1 ×U(N2 − k1)−k2 + BF. (3.12)

This is obtained from gauging the diagonal U(1) symmetry of two copies of the level-rank

duality (2.3), which is described in more detail in appendix A.

4 Adjoint dualities via orbifolding

We now consider the two-node quiver we derived in section 3.2, with N1 = N2 = N and

k1 = k2 = k where N > k due to the flavor bound. These parameters are more constrained

for the flavor-bounded case where k1 = N2 was required, which would imply N = k. What

is special about these particular values is that the fermionic theories of this quiver have

an explicit Z2 symmetry, which can be thought of as interchanging the two nodes. In

this section we will argue this special class of quivers allows us to re-derive the rank-two

bosonization duality with real adjoint matter on each side [6]. First, let us briefly review

the adjoint matter dualities.

4.1 Adjoint 3d bosonization duality

Ref. [6] conjectured the phases of QCD3 adjoint.4 Schematically, the fermion side is

SU(N)−k+N/2 with adjoint ψ, (4.1)

with N > k. Mass deforming the adjoint fermion gives SU(N)−k and SU(N)−k+N . When

N ≤ k, these two TFTs are conjectured to have no quantum region in between them.

However, when N > k an intermediate Grassmannian phase is conjectured to exist between

the asymptotic semi-classical regions. The claim is that once again two different dual

theories describe the fixed points at the edge of the Grassmannian. These U side theories are

SU(N)−k+N/2 with ψadj ↔

U(k)N− k
2
,N with Ψadj

1 mψadj = −m∗
U(N − k)−N

2
− k

2
,−N with Ψadj

2 mψadj = m∗.
(4.2)

3An important point is that we need further condition k2 < N1 ≤ N∗(N1, k2) to have mutually non-local

dual descriptions as the ungauged version. The main reason for this additional constraint is that since we

have two dynamical gauge groups, we can equivalently view the first gauge group as the flavor symmetry

group and second as originally dynamical gauge group before constructing the quiver.
4Ref. [6] uses a slightly different notation than we use here. Their results can be recovered by k → k−N/2

with the overall time-reversal which flips the signs of the Chern-Simons levels.
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Figure 4. Phase diagram of the 3d bosonization duality with real adjoint matter [6]. Distinct the-

ories are shown in different colors. The region shaded in purple corresponds to the quantum phase.

This is qualitatively similar to the flavor-violated bosonization duality and is summarized in

figure 4. For the quantum phase, we find the TFTs U(k)N−k,N and U(N−k)−k,−N , which as

expected are level-rank dual by (2.4). Note the quantum phases on the SU side has no good

description in terms of the SU theory — it is best described by the U side of the theory. This

is also a feature of the flavor-violated duality (2.7) and we will see similar features below.

4.2 Adjoint duality via orbifolding

As mentioned in the introduction, what is special about the N1 = N2 = N and k1 = k2 = k

subclass of two-node quivers is that they present a possible means of constructing the rank-

two matter dualities. More explicitly, since both sides of the dualities exhibit “theory space”

Z2 symmetries, we can orbifold said symmetries on both sides of the duality to obtain a

new conjectured duality. In this section, we show the rank-two dualities involving adjoint

matter can be obtained by orbifolding5 different two-node quiver theories.

5Orbifolding is a technique to generate new field theories (the “daughters”) from old ones (“the mothers”)

employing a global symmetry projection. One projects out all fields not invariant under the symmetry. Note

that since we are acting on fields and not on states this is not the same as gauging the global symmetry.

The term orbifolding is perhaps most familiar in the string theory literature. Here we are referring to

orbifolding as a field theory technique as introduced in [20, 21] and employed in the context of planar

equivalence between mother and daughter theories [22, 23] or in the context of constructing manifestly

supersymmetric lattice gauge theories [24]. If two theories flow to one and the same IR fixed point and this

fixed point possesses a Z2 symmetry, then one would expect that after orbifolding we once again obtain a

unique IR theory and so we inherit a duality of the daughters from the duality of the mothers. The fact

that orbifolding is not equivalent to gauging makes this statement somewhat conjectural. While certainly

suggestive, it is not manifest that projecting out fields in two dual representations of one and the same

theory has to yield a correct dual. The fact that the method in the current context in fact yields correct

results encourages us to believe that the method may be applicable more generally.
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Figure 5. Phase diagram of the two-node quiver with explicit Z2 symmetry. Distinct theories are

shown in different colors. Note the splitting of the bottom two phase diagrams which results from

the use of the flavor-violated 3d bosonization duality.

Figure 5 summarizes the full phase diagram of the Z2 symmetric quiver, including the

intermediate scalar theories. The phases of Theory A are given by

(I) : SU(N)−k × SU(N)−k (4.3a)

(II) : SU(N)−k+N × SU(N)−k+N (4.3b)

(III) : Better described by U side. (4.3c)

Meanwhile, theories C1 and C2 describe the U side, given by

(I) : U(k)N ×U(k)N (4.4a)

(II) : U(N − k)−N ×U(N − k)−N (4.4b)

(III C1) : U(k)N−k ×U(k)N−k + BF (4.4c)

(III C2) : U(N − k)−k ×U(N − k)−k − BF. (4.4d)

Similar to what we saw in section 3.2, the BF terms in the phase III make the phases

(III C1) and (III C2) level/rank dual to one another, as shown in appendix A. Observe

that these phases already resemble “two copies” of the phases of the adjoint duality, up to

certain subtleties in the qunatum phase, see figure 4. Schematically, orbifolding causes the

bifundamental fermions to become Majorana adjoint fermions and takes the TFTs from

GP ×GP → GP , where GP is a gauge group G with Chern-Simons level P , up to subtleties

with Abelian levels. Orbifolding a Z2 symmetry to change a bifundamental to an adjoint

representation has been previously explored in refs. [25, 26].

More explicitly, the Z2 symmetric theory describing the mψ < 0 half of the phase

diagram is given by

LA = iψ̄ /Db1−b2+Ã1
ψ − i

[
N − k

4π
TrN

(
b1db1 − i

2

3
b31

)]
− i
[
N − k

4π
TrN

(
b2db2 − i

2

3
b32

)
+
N2

4π
Ã1dÃ1

]
, (4.5a)

LC1 = iΨ̄1 /Dc1−c2+Ã1
Ψ1 − i

[
N

4π
Trk

(
c1dc1 − i

2

3
c3

1

)
+
N

4π
Trk

(
c2dc2 − i

2

3
c3

2

)]
, (4.5b)
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where we have relabeled the gauge fields belonging to the first and second node of the SU

side as b1µ and b2µ, respectively. On the U side, c1
µ and c2

µ are the gauge fields of the first and

second nodes. Ã1 is the background gauge field associated with the U(1) global symmetry.

The bifundamental fermion is in the representation (N, N̄). The Z2 symmetry acts as

Z2 : ψ → −ψ†, b1µ → b2µ, b2µ → b1µ. (4.6)

Similarly, on the U side, the theory is invariant under the symmetry transformation

Z2 : Ψa → −Ψ†a, c1
µ → c2

µ, c2
µ → c1

µ (4.7)

for a = 1, 2 corresponding to Theories C1 and C2. If we orbifold with respect to these Z2

symmetries on either side of the duality, the resulting daughter theories should continue to

be dual.

We can arrive at the new Lagrangians describing the daughter theories by projecting

the terms in (4.5) to those invariant under (4.6) and (4.7). On the SU side, this effectively

ties the b1 and b2 fields together, meaning the bifundamental now transforms as an adjoint,

as desired. Note that this orbifold also breaks the U(1) global symmetry associated with

the phase of the matter to Z2, i.e. ψ → −ψ.

The behavior of the Chern-Simons terms under the orbifold is slightly subtle. Since the

action of orbifold projections on matter is well-known, it will be helpful to view the Chern-

Simons term as arising from integrating out heavy fermions. This is directly analogous to

the “fiducial fermion” presecription used to analyze the 3d bosonization dualities in the

presence of a boundary [27, 28]. For example, the U(k)N Chern-Simons term of a given

node can arise from N “fiducial” fermions with a large negative mass. In this case, the

Chern-Simons term in the Lagrangian is replaced with

−i
[
N

4π
Trk

(
cdc− i2

3
c3

)]
⇔ lim

|mχ|→∞
iχ̄M /DcχM +mχχ̄

MχM (4.8)

where χM are the fiducial fermions with M = 1, . . . , N .6

Adopting this prescription for the Lagrangians in (4.5), each of the two nodes on the

SU (U) side picks up an extra N −k (N) fundamental-represention fermions, which we will

collectively denote χi for i = 1, 2. The Z2 symmetry transformations of (4.6) and (4.7)

must then be supplemented with χ1 → χ2 and χ2 → χ1. The orbifold projection reduces

these additional matter fields to a single group of fundamental fermions under the invariant

6Here we have just considered the simplest case of fundamental representation matter. In general, one

can engineer said Chern-Simons terms in different ways using different combinations of various matter

representations. One may worry this can produce UV ambiguities that are not retained under the orbifold.

For example, if a UV construction breaks the 1-form symmetry, it can flow to a theory with different 0-form

symmetry actions [7, 29]. Fortunately, the ambiguity of how one can construct the Chern-Simons term in

the UV exists in both the original Z2-symmetric theory and the orbifolded theory. That is, the same UV

matter content of fiducial fermions will be present in both theories, there will just be two copies (coupling

to different gauge fields) in the Z2-symmetric theory. Furthermore, for brevity we have neglected the Pauli-

Villars regulators which also accompany fiducial fermions. See refs. [27, 28] for more details regarding this

construction.
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gauge group. If we then restore the Chern-Simons term one gets from integrating out the

fiducial fermions, we see that we simply lose one of the Chern-Simons terms under our

orbifold, i.e. U(k)N × U(k)N → U(k)N . Note this is fairly different than naively setting

c1 = c2 in (4.5b), in which case one would arrive at a U(k)2N Chern-Simons term.

Another important subtlety is one needs to orbifold the Pauli-Villars regulators as well.

Hence, what was effectively a bifundamental Pauli-Villars regulator under SU(N)×SU(N)

becomes a real adjoint PV regulator under SU(N). All this means is that the η-invariant

terms obey a similar relation to the Chern-Simons levels discussed above.

Thus the orbifolding reduces the “two copies” of the Chern-Simons terms to a Chern-

Simons matter theory with a single dynamical gauge field resembling the adjoint duality.

However, in the adjoint bosonization duality the TFTs found in the quantum region have

the non-Abelian levels shifted relative to the Abelian levels, see figure 4. For example, for

the mψadj < 0 side, as we mass deform Ψadj
1 we move from U(k)N to U(k)N−k,N . This

is contrast to the Z2 symmetric quiver, where we see no such effect because fundamental

representation fermions shift Abelian and non-Abelian levels on equal footing. To see how

such a change can arise from orbifolding, consider the bifundamental fermion on the U side.

One can clearly see that the bifundamental fermions remain invariant under the subgroup

where Tr (c1) = Tr (c2). Thus, since we a projecting to precisely this subgroup via our

orbifold, the remaining U(1) part should decouple.

To see this at the Lagrangian level, note the coupling of said fermion is giving by

iΨ̄ /D−c+g+Ã1
Ψ, and so for negative mass deformation we get the Chern-Simons term

iLshift =
−1

4π
Trk2

[(
c11k − 1kc2 + 1k2Ã1

)
d
(
c11k − 1kc2 + 1k2Ã1

)
+ . . .

]
= − k

2

4π
c1dc1 −

k2

4π
c2dc2 +

1

2π
Trk (c1) dTrk (c2) + . . . (4.9)

where “. . .” represents additional terms not relevant for the cancellation. Absolutely vital

to the story is the additional BF term we get from the cross term of the two dynamical

U(k) gauge fields. Under the orbifolding procedure, we have c1 = c2. Notice that when

this is enforced the BF term precisely cancels the Abelian Chern-Simons terms. The net

result is that the Abelian part of the Chern-Simons level gets no overall shift. The same

effect occurs in the PV regulator. This means the quantum phase description

U(k)N−k ×U(k)N−k
orbifold−−−−→ U(k)N−k,N (4.10)

This exactly matches the quantum phase of an adjoint fermion described in section 4.1.

Putting this altogether, we arrive at the orbifolded Lagrangian description

Lψ = iψ̄ /Dbψ − i
[
N − k

4π
TrN

(
bdb− i2

3
b31

)]
(4.11a)

LΨ = iΨ̄ /DcΨ− i
[
N

4π
Trk

(
cdc− i2

3
c3

)]
(4.11b)
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where we have defined the Z2 invariant subgroup as b1 = b2 ≡ b and c1 = c2 ≡ c. We have

dropped the Ã1 background field, because as mentioned above, the orbifolding breaks the

U(1) global symmetry down to Z2.7

4.3 Novel adjoint dualities

We saw above that we can recover the rank-two duality of ref. [6] by considering the two-

node fermionic quiver when one of the 3d bosonization dualities is in the flavor-violated

regime. In particular, in section 3.2 we considered the case where the Theory A to B

duality was flavor-violated, while the Theory B to C duality was flavor-bounded, which

brought us into the regime of k < N < N∗. A natural next step is to consider the opposite

case, where now the Theory B to C duality is flavor-violated and the Theory A to B

duality is flavor-bounded. This corresponds to the regime N < k < N∗ and gives a new Z2

symmetric quiver.

Working though the same construction we performed in section 3.2, but instead begin-

ning on the U-U side, we can construct a general flavor-violated two-node quiver and then

specialize to the Z2 symmetric case. The fact that we are starting with a U-U theory on

one end complicates things slightly because of the presence of mixed BF terms coming from

the η-invariants in the mass deformed phases. The A, C1, and C2 theory again exhibit a

manifest Z2 symmetry. If one again orbifolds with respect to said Z2 symmetry, we arrive

at a new adjoint duality, given by

U(k)N−k/2,N with ψadj ↔

{
SU(N)−k+N/2 with Ψadj

1 mψadj = m∗

U(k −N)k−(k−N)/2,N with Ψadj
2 mψadj = −m∗

(4.12)

where now we require k > N . The phase diagram for said duality is shown in figure 6.

Once more, the Z2 projection causes some of the BF terms to cancel U(1) Chern-Simons

terms, making the U(1) Chern-Simons theories decoupled from the adjoint matter.

What is unique about this adjoint duality is that one side of the phase diagram is

described by both an SU and U theory. One can see this is necessary from the start. Mass

deforming the original U theory gives the TFTs U(k)N,N and U(k)N−k,N . Via the level-

rank dualities, (2.3) and (2.4), the first of these is dual to an SU theory while the second is

dual to a U theory. Despite this difference, the two theories agree in the quantum region,

since the U theory yields a TFT which is level-rank dual to an SU TFT.

There is an alternative way to arrive at this duality which also lends insight into the

relationship between (4.2) and (4.12). The Z2-symmetric quiver of figure 5 has a U(1) global

symmetry at every step, which we call Ã1. If we gauge said symmetry, we would pick up a

7Here, we emphasize the distinction between Z2 orbifold projection used in this paper and the Z2 orbifold

of CFT which gauges the Z2 symmetry. The behavior of the background gauge field under the CFT orbifold

operation is universal by means of changing the flux condition of the background gauge field appropriately.

On the other hand, the mapping of the background gauge field under the orbifold projection depends on the

type of the projection. For example, if one use the (N,N) bifundamental representation in (4.5) and use

Z2 orbifold which acts on the bifundamental fermion as ψ → ±ψT , we get the symmetric/anti-symmetric

fermion in the daughter theory. Then the U(1) background gauge field of the parent theory still remains in

the daughter theory since the resulting matter representation is complex.
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Figure 6. Phase diagram for the novel real adjoint bosonization duality.

new U(1) global monopole symmetry which couples to Ã1 through a BF term, which we call

B̃1. If we also gauge this U(1) symmetry, we claim we arrive at the very same Z2-symmetric

quiver which produced figure 6, up to a time-reversal and label interchange N ↔ k.

How this occurs is straightforward to see qualitatively. On the SU(N)−k+N/2 ×
SU(N)−k+N/2 side of the duality, the two additional U(1) gauge symmetries allow us to

rewrite the theory as U(N)−k+N/2×U(N)−k+N/2. Similarly, for the U(k)N×U(k)N theory,

integrating out the two additional U(1) gauge symmetries cancels the existing U(1) ⊂ U(k)

gauge groups, giving an SU(k)N ×SU(k)N theory. Theory C2 follows in a similar manner.8

Having considered Z2-symmetric quivers in the N < k and k < N regimes, the very

last case we can consider consists of taking N = k. This corresponds to using two flavor-

bounded dualities to derive the two-node quiver, and thus brings us back into the regime

of the flavor-bounded duality of section 3.1. Again, we can Z2-orbifold, and we find

SU(N)−N/2 with ψadj ↔ U(N)N/2,N with Ψadj. (4.13)

Note that there is no quantum phase for these theories, which is expected because no

flavor-violated duality was needed in the construction of the relevant Z2 symmetric quiver.

Indeed, for the case of N = 2, one can show that above adjoint duality comes from the

standard bosonization duality with single transition point as follows.9 First we can recast

the left-hand side and right-hand side of (4.13) as SU(2)−1 + ψadj = Spin(3)−1/2 + ψvec

and U(2)1,2 + Ψadj = S̃pin(3) 1
2
,−2 + Ψvec, respectively, where S̃pin(N)K,L = (Spin(N)K ×

(Z2)L)/Z2. Using the level/rank duality S̃pin(N)K,L = O(K)0
−N,−N+L and the bosoniza-

tion duality O(N)0
K,K +Nf φ↔ Spin(K)−N+Nf/2 +Nf ψ described in [30], the left-hand

8Here, we remark that the adjoint duality with unitary gauge group (4.12) can also be achieved by

consistent S and T operations along the phase diagram of SU(N)k + adjoint theory in ref. [6]. Although

there is no U(1) global symmetry acting faithfully, we could still introduce the U(1) gauge field and couple

it only to the gauge fields. Consistency of the result supports that the mapping of the Z2 symmetries along

the orbifolding quiver is correct.
9We thanks anonymous referee for pointing this out to us.
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Figure 7. Phase diagram of the two-node quiver with extra flavors on each node and explicit

Z2 symmetry. Here the white nodes represent global flavor symmetries of the extra matter. Once

more, the splitting of the bottom two phase diagrams results from the use of the flavor-violated 3d

bosonization duality. We assume N > k and F < k.

side of (4.13) is dual to (Z2)3 +φ while the right-hand side is dual to (Z2)−5 +φ and these

are equivalent because of the Z8 SPT classification of unitary Z2 symmetry.

4.4 Dualities with extra flavors

We might try to use this procedure to see if we can derive qualitatively different dualities.

Because we required Z2 symmetry we have considered all relative values of N and k, we

need to look at new quiver configurations. Following ref. [12], a natural generalization is

to add flavors on each of the two nodes. We do this in such a way to maintain the Z2

symmetry, but this could of course be done more generally. Starting with fermion flavors

on each node, the quiver diagram for this procedure is summarized in figure 7.

On the SU side, we begin with the theory

SU(N)−k+(N+F )/2 × SU(N)−k+(N+F )/2 + bifund. ψ + F ψ1 + F ψ2, (4.14)

where we have denoted by the extra flavor degrees of freedom belonging to node i by ψi.

This can then be dualized using a flavor-violated version of Aharony’s duality. The appli-

cation of said duality changes one of the nodes to a U group and both the bifundamental

and corresponding flavor degree of freedom into scalars.

Since the second node has both fermionic and bosonic degrees of freedom, one can make

use of the master duality to dualize.10 Before doing so, a subtle point is that having both

scalars and fermions charged under the same node naturally gives rise to scalar-fermion

interactions. These are identical in form to the interaction of the master bosonization

duality [3, 4]. Specifically, these are interactions of the form

Lint ⊃
(
φ†Aα2

ψα1α2
2

)(
ψ̄2
α1β2φ

Aβ2
)
, (4.15)

10See refs. [11, 12] for more details on how to dualize quivers using the master duality.
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Figure 8. Phase diagram of the 3d bosonization duality with both adjoint and fundamental

representation matter. Here we assume N > k and F < k.

with α1, β1 indices of the SU(N) gauge symmetry associated with the first node, α2, β2

indices of the second node, and A,B flavor indices.

Dualizing the second node also turns it into a U group, and changes the scalars

(fermions) degrees of freedom to fermions (scalars). Hence, we ultimately end up with

a two-node quiver coupled via a bifundamental fermion with each of the nodes having

scalar flavor degrees of freedom. Once more, the scalar and fermion degrees of freedom of

each node have interactions of the form

Lint ⊃
(
ψ̄α1α2Φα1A

1

)(
Φ1†
β1A

ψβ1α2

)
+
(
ψ̄α1α2ΦAα2

2

)(
Φ2†
Aβ2

ψα1β2
)

(4.16)

with the same convention for coefficients used above. In order for the asymptotic phases to

match the interaction must come with a positive coefficient. The net effect of this term is

that when the scalars acquire a vacuum expectation value, a subgroup of the bifundamental

fermion acquires a positive mass. In particular, with the assumption of maximal Higgsing,

we have a breaking of U(k)→ U(k−F )×U(F ) (or U(N +F − k)→ U(N − k)×U(F ) on

the mψ > 0 side). The mass term is of the form

Lint ⊃

(
1F

0

)α1

β1

ψ̄α1α2ψ
β1α2 +

(
1F

0

)α2

β2

ψ̄α1α2ψ
α1β2 (4.17)

so that it is the U(F ) subgroup which acquires a mass. Note from the Higgsing pattern

above, these fermions are no longer charged under the dynamical symmetry and thus are

sometimes referred to as “singlets”. Such interactions are necessary to get a matching of

the phase diagrams across the duality, see figure 8.

We now orbifold with respect to the very same Z2 symmetry we used above of the

adjoint case, with the additional identifications ψ1 ⇔ ψ2 and Φ1 ⇔ Φ2. This is analogous

to the orbifolding of the fiducial fermions used earlier. We arrive at a duality which has
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both adjoint and fundamental representation matter on each side,

SU(N)−k+(N+F )/2 with ψadj and F ψ′ ↔{
U(k)N−k/2,N with Ψadj

1 and F φ1 mψadj = −m∗,
U(N + F − k)−N+(N+F−k)/2,−N with Ψadj

2 and F φ2 mψadj = m∗.
(4.18)

Note the interactions between the adjoint matter and the scalars is still present, e.g.(
Ψ̄α

1βφ
γA
1

)
×
(
φ†1αAΨβ

1γ

)
, with α, β, γ the U(k) gauge indices and A the U(F ) flavor index.

The phase diagram for this duality is shown in figure 8. The phases on the SU side

are given by

(I) : SU(N)−k+F (4.19a)

(II) : SU(N)−k+F+N (4.19b)

(III) : SU(N)−k+N (4.19c)

(IV) : SU(N)−k (4.19d)

(V), (VI) : Better described by U side. (4.19e)

Meanwhile, the theories on the U side are given by

(I) : U(k − F )N (4.20a)

(II) : U(N + F − k)−N (4.20b)

(III) : U(N − k)−N (4.20c)

(IV) : U(k)N (4.20d)

(V) : U(k − F )N−k+F,N ⇔ U(N + F − k)F−k,−N (4.20e)

(VI) : U(k)N−k,N ⇔ U(N − k)−k,−N . (4.20f)

5 Discussion and conclusion

In this work we showed that we can connect the rank-one matter bosonization duali-

ties to many dualities which contain adjoint matter for the unitary group case. It turns

out that generalization of the two-node quiver dualities to the orthogonal and symplec-

tic group is straightforward using both flavor-bounded and flavor-violated bosonization

duality in refs. [5, 31]. We describe these results in the appendix C. The dualities of ad-

joint fermions in the orthogonal/symplectic group cases are distinguished from the unitary

group case since the matter representation of the dual theory is not adjoint but symmetric-

traceless/antisymmetric-traceless, respectively. Thus the natural next question is whether

or not we can connect them to the rank-two matter dualities which contain symmetric and

antisymmetric matter.

Ref. [7] conjectured a similar duality between symmetric and antisymmetric mat-

ter for the unitary group case, the phase diagram of which is summarized in figure 9.

Note the difference in the levels on the SU is determined by (twice) the Dynkin index,
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Figure 9. Symmetric and antisymmetric representation phase diagram.

T (S/AS) = 1
2(N ± 2). In order for all the levels to match on the U side, one must intro-

duce the opposite type of matter, giving the dualities

SU(N)−k+ 1
2

(N±2) with ψS/AS ↔

U(k)N− 1
2

(k∓2),N−(k∓1) with Ψ
AS/S
1 mψ =−m∗

U(N±2−k)−N+ 1
2

(N±2+k∓2),±1−k with Ψ
AS/S
2 mψ =m∗

(5.1)

where the superscript S/AS denotes symmetric/antisymmetric representation under the

gauge group.

The analog of orbifold producing daugther theory with symmetric or antisymmetric

matter is called an “orientifold”. For the bifundamental fermion in the (N,N) representa-

tion, corresponding Z2 symmetries of the orientifold projection is given by11 [26]

ZS
2 : ψ → ψT , b1µ → b2µ, b2µ → b1µ, (5.3)

ZAS
2 : ψ → −ψT , b1µ → b2µ, b2µ → b1µ. (5.4)

Constructing two-node quiver dualities with (N,N) representation matter is straightfor-

ward. Much of the derivation of the (N, N̄) case is mirrored here, but now the matter will

simply be fundamentally charged under both gauge groups at every step of the way.

The naive application of the above procedure is not successful. The difficulty lies in

realizing O(1) shifts of the rank of the gauge groups which are required for the daughter

dualities. We have not yet been able to find where the required finite shifts in the gauge

group come from. Similar subtleties arise in the case of the SO/Sp gauge theory with rank-

two fermions. It would be interesting to analyze the orbifold/orientifold equivalence in the

11Note that even in the (N, N̄) case there exists another Z2 symmetry

Z′adj2 : ψ → ψ†, b1µ → b2µ, b2µ → b1µ. (5.2)

In this respect both cases are on an equal footing. The difference here is the fact that in the (N, N̄) case it

doesn’t matter which Z2 we orbifold with respect to on either side; both lead to an adjoint rank-two tensor.
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Chern-Simons matter theories up to the subleading O(1) order to resolve the issue. Another

interesting question is why the unitary group rank-two dualities map representations as

adjoint to adjoint and symmetric to antisymmetric.12 It would be nice to understand the

origin of this mapping carefully from the orbifolding point of view. We leave these puzzles

for future work.

Despite the difficulty in connecting such dualities to the two-node quivers, we can

follow a similar procedure as we did above for constructing new adjoint dualities to slightly

generalize the symmetric/antisymmetric dualities. For instance, we can conjecture the

new duality

U(k)N− 1
2

(k±2),N−k∓1 with ψS/AS

↔

SU(N)−k+ 1
2

(N∓2) with Ψ
AS/S
1 mψ = −m∗

U(k ± 2−N)k− 1
2

(k±2−N∓2),k±1 with Ψ
AS/S
2 mψ = m∗

(5.5)

which must obey k > N ± 2. This passes many of the same consistency checks as the

original symmetric/antisymmetric duality. Furthermore, limiting case k = T (R) gives the

new symmetric/antisymmetric duality with no quantum phase,

SU(N)−(N±2)/2 with ψS/A ↔ U(N ± 2)N/2,∓1 with ΨA/S, (5.6)

which is qualitatively similar to the new adjoint duality found in (4.13).
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A Deriving two-node fermionic dualities

In this appendix we give the details of the two-node quivers constructed in section 3.

We begin with the flavor-bounded case. In the main text, we showed a two-node

fermionic quiver can be found by matching the scalar sides of Aharony’s dualities (1.1),

with appropriate relabeling and background terms. To achieve this matching, it is useful to

work with the charge conjugated version of (1.1b), which at the Lagrangian level is given by

LSU =
∣∣∣D−b′+B+Ã1

φ
∣∣∣2 − i [− k

4π
TrN

(
b′db′ − i2

3
b′3
)
− Nk

4π
Ã1dÃ1

]
, (A.1a)

LU = iΨ̄ /D−c+BΨ− i
[
N

4π
Trk

(
cdc− i2

3
c3

)
+
N

2π
Trk (c) dÃ1

]
, (A.1b)

12The symplectic (orthogonal) dualities follow this latter pattern since in this case the adjoint is the

symmetric (antisymmetric) to begin with.
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where B ∈ su(Nf ) and the duality is subject to the flavor bound N ≥ Nf and mass

mapping mΨ ↔ m2
φ.

To perform the matching, we rearrange the U sides of (2.2) and (A.1) by shifting the

dynamical field to eliminate the BF terms and add appropriate background Chern-Simons

terms. For (2.2b) we take c̃→ c̃+ Ã1, giving

LU =
∣∣∣Dc−C+Ã1

Φ
∣∣∣2 − i [N

4π
Trk

(
cdc− i2

3
c3

)
− Nk

4π
Ã1dÃ1

]
. (A.2)

Additionally, we add −i
[
Nk
4π Ã1dÃ1

]
to both sides of (2.2) to cancel the Ã1 background

Chern-Simons term. For (A.1b), we take c̃ → c̃ − Ã1 and then add −i
[
Nk
4π Ã1dÃ1

]
to

both sides.

At this point one can promote the background flavor symmetries in both dualities so all

the matter is bifundmentally charged. If one compares the scalar sides of the two dualities,

an explicit matching can be achieved by identifying the fields

SU field: C ⇔ b′, (A.3a)

U field: c ⇔ G ≡ B + Ã11Ns , (A.3b)

U(1) background field: Ã1 ⇔ B̃1. (A.3c)

Thus we also arrive at a duality between the respective fermion dualities, which is our

desired flavor-bounded two-node quiver. The mass mapping is such that mψ is identified

with −mΨ.

A self-consistency check can be performed by making sure the two sides of the duality

still match under mass deformations. We find

(A) mψ < 0 : SU(N1)−k1 × SU(N2)−k2 (A.4a)

(C) mΨ > 0 : U(k1)N1 ×U(k2)N2 (A.4b)

(A) mψ > 0 : SU(N1)−k1+N2 × SU(N2)−k2+N1 = SU(N2)−k2+N1 (A.4c)

(C) mΨ < 0 : U(k1)N1−k2 ×U(k2)N2−k1 = SU(N2)−k2+N1 (A.4d)

where we have used the fact k1 = N2 is required by the flavor constraints. Clearly (A.4a)

and (A.4b) are level-rank dual to one another. Eqs. (A.4c) and (A.4d) take slightly more

work. Since k1 = N2, each of these theories has one of the gauge field’s Chern-Simons

terms vanish. In (A.4c), all degrees of freedom of the SU(N1)0 theory are gapped out in

the IR limit, and we can thus drop this factor. For (A.4d), one can integrate out the U(1)

subgroups of U(k1) and U(k2). When one does this, both U(1) factors get eliminated and

the theory reduces to SU(N2)N1−k2 × SU(k2)0, which matches (A.4c) after dropping the

second term.

If we want to work in the regime where k1 6= N2, we would need to use the flavor-

violated 3d bosonization duality in one of these steps. In the main text, we choose

to replace (2.2) with its flavor-violated equivalent. This extends the flavor bounds to

k1 < N2 < N∗ but means the full phase diagram of the U side of the duality is described
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by two separate scalar theories, corresponding to the mψ > 0 and mψ < 0 halves of the SU

phase diagram (this is analogous to the layout in figure 4).

Fortunately, the mψ < 0 theory is identical at the Lagrangian level to the flavor-

bounded duality, i.e. (2.2b). Thus the very same matching that was performed above for

the flavor-bounded case can be repeated for this end of the phase diagram. The mψ > 0

side requires one to perform the matching once more. The explicit form the Lagrangian

for Theories B2 and C2 are given by

LB2 =
∣∣∣Dc−C−Ã1

Φ2

∣∣∣2−i[−N1

4π
TrN2−k1

(
cdc−i2

3
c3

)]
−i
[
N1−k2

4π
TrN2

(
CdC−i2

3
C3

)
+
N1N2

4π
Ã1dÃ1

]
, (A.5a)

LC2 = iΨ̄ /D−c+g+Ã1
Ψ−i

[
− k1

4π
TrN1−k2

(
cdc−i2

3
c3

)
− k2

4π
TrN2−k1

(
gdg−i2

3
g3

)]
−i
[

1

2π
TrN1−k2 (c)dTrN2−k1 (g)+

N1N2

4π
Ã1dÃ1+

(N1−k2)(N2−k1)

4π
Ã1dÃ1

]
, (A.5b)

where we have defined the field g ∈ U(N2 − k1).

In order for the flavor-violated quiver to match in the intermediate phases, we detail

the generalized level/rank duality between the two node quiver with BF term pointed out

in (3.12). The main point as illustrated in section 3 is that the gauging of diagonal U(1)

symmetry of the two copies of level/rank duality SU(N1)k1 × SU(N2)k2 ↔ U(k1)−N1 ×
U(k2)−N2 .

The explicit Lagrangian with two U(1) background terms is given by [2],

−i
[
k1

4π
TrN1

(
ada−i2

3
a3

)
+

1

2π
edTrN1(a+B)+

k2

4π
TrN2

(
bdb−i2

3
b3
)

+
1

2π
fdTrN2(b+C)

]
⇔

−i
[
−N1

4π
Trk1

(
udu−i2

3
u3

)
+

1

2π
Trk1(u)dB−N2

4π
Trk2

(
vdv−i2

3
v3

)
+

1

2π
Trk2(v)dC

]
.

(A.6)

Now if we add mixed counter-term −i[− 1
2πBdC] along the duality and gauge the diagonal

U(1) as B = C → c, we get following duality after solving the equation of motion

−i
[
k1

4π
TrN1

(
ada−i2

3
a3

)
+
k2

4π
TrN2

(
bdb−i2

3
b3
)
− 1

2π
TrN1(a)dTrN2(b)

]
⇔−i

[
−N1

4π
Trk1

(
udu−i2

3
u3

)
−N2

4π
Trk2

(
vdv−i2

3
v3

)
+

1

2π
Trk1(u)dTrk2(v)

]
.

(A.7)

After change of variables, the above becomes equivalent to (3.12).

A.1 Consistency checks

Another non-trivial consistency check of the quantum phase diagram of the flavor-violated

two-node quiver can be established using similar approaches to the one in the literature,

e.g. refs. [2, 4, 7, 30]. A useful check is the consistency of the background counterterms

along the phase diagram, which we discuss in more detail in appendix D for the case of

gravitational counterterms.
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Here, we show the non-trivial matching of the quantum phase of SU(2)k × SU(2)k +

ψbifund and its isomorphic expression Spin(4)k + 2 ψvec analyzed in ref. [30]. We will use

explicit superscripts in this section to avoid confusion between vector and bifundamental

matter. Since both of these theories use different dual descriptions — the former with

bifundamental scalar or fermion and the latter a vector scalar — the matching of the

intermediate phase mutually supports the two-node construction we have laid out above.

First, note the quantum phase exists only when k = 0. From the viewpoint of the

orthogonal gauge group, Spin(4)k + 2 ψvec at small fermion mass flows to a non-linear

sigma model with target space S1 [30]. On the other hand, the two-node fermionic quiver

predicts SU(2)0 × SU(2)0 + ψbifund flows to

U(1)1 ×U(1)1 − BF ↔ U(1)−1 ×U(1)−1 + BF. (A.8)

In terms of a K-matrix description, the phase is described by the 2 by 2 matrix

SU(2)0 × SU(2)0 + ψbifund mψ'0
−−−−→ KCS =

(
1 −1

−1 1

)
. (A.9)

It turns out that

(
1 −1

−1 1

)
' U(1)1×U(1)0 under the SL(2,Z) transformation (see [32]

for a recent discussion) and, since U(1)1 is trivial, U(1)0 is isomorphic to a compact boson.

We see that the intermediate quantum phase is isomorphic to the one obtained in the

Spin(4) + 2 ψvec theory.

It is quite interesting to see the global symmetry matching between these two distinct

constructions. On the Spin(4) side, the SO(2) flavor symmetry rotating two vector fermions

lead to a nonlinear σ-model with S1. The scalar dual description of it preserves the

SO(2) flavor symmetry and the symmetry breaking is realized through the condensation

of the scalar. On the SU(2) × SU(2) side, the SO(2) flavor symmetry is translated to the

U(1) baryon symmetry, and either of the scalar or fermion dual descriptions have a U(1)

monopole symmetry which doesn’t act on the matter field. When we deform the mass

of the dual description to flow into the quantum phase, the monopole symmetry in the

ultraviolet flows to the U(1) shift symmetry of the compact boson, where the symmetry

breaking is triggered by the non-trivial monopole flux.

B Generalized fermion particle-vortex duality

In this appendix, we elaborate on how the flavor-bounded quiver we constructed in

section 3.1 is a generalization the fermionic particle-vortex duality proposed by Son [16]. As

a reminder, this duality also lives in 2 + 1-dimensions and conjectures a free Dirac fermion

is dual to a U(1)× U(1) Chern-Simons matter theory, which we refer to as “QED3”. The

generalization is a straightforward extension of previous work [11], where it was shown

that the bosonic two-node quiver duality can be viewed as a generalization of the bosonic

particle-vortex duality. We begin by emphasizing the special case which reduces to Son’s

duality, which corresponds to taking N1 = N2 = k1 = k2 = 1.
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B.1 Son’s particle-vortex duality

Let us begin by reviewing how Son’s duality is constructed from the Abelian limits of (1.1)

as it was done in ref. [9]. We will then show this is simply the Abelian limit of the two-

node quiver construction we performed above. The “scalar + flux = fermion” duality is

the N = k = Nf = 1 limit of (1.1a), which at the Lagrangian level is

LSU = iψ̄ /DÃ1
ψ (B.1a)

LU = |DcΦ|2 − i
[

1

4π
cdc− 1

2π
cdÃ1

]
(B.1b)

with mass mapping mψ ↔ −m2
Φ. The (time-reversed) “fermion + flux = scalar” is the

same limit of (1.1b), given by

LSU =
∣∣∣DÃ1

φ
∣∣∣2 − i [− 1

4π
Ã1dÃ1

]
(B.2a)

LU = iΨ̄ /DcΨ− i
[

1

4π
cdc− 1

2π
cdÃ1

]
(B.2b)

which has a mass mapping mΨ ↔ m2
φ.

In the above expressions, we have a free fermion in (B.1a), which automatically gives

one side of Son’s duality. Our goal should be to match the scalar side, (B.1b), using the

fermion + flux duality. We can take (B.2) and add −i
[

2
4π Ã1dÃ1 − 1

2π Ã1dB̃1

]
to both ends

and promote the background gauge field, Ã1 → ã1, which yields

LSU = |Dã1φ|
2 − i

[
1

4π
ã1dã1 −

1

2π
ã1dB̃1

]
(B.3a)

LU = iΨ̄ /DcΨ− i
[

1

4π
cdc− 1

2π
cdã1 +

2

4π
ã1dã1 −

1

2π
ã1dB̃1

]
. (B.3b)

The scalar end of these dualities are identical under the identification φ⇔ Φ, ã1 ⇔ c, and

Ã1 ⇔ B̃1. Thus we arrive at the duality

iψ̄ /DÃ1
ψ ↔ iΨ̄ /DcΨ− i

[
1

4π
cdc− 1

2π
cdã1 +

2

4π
ã1dã1 −

1

2π
ã1dÃ1

]
(B.4)

with the mass identification mψ ↔ −mΨ. Recall, we are using the notation where the

fermion comes with a default level −1/2, so it may look slightly different than what was

is sometimes in the literature. This is the properly quantized form of the duality also

found in ref. [9]. This construction is essentially the time-reversed version of the derivation

performed there. As discussed in ref. [9], integrating out the dynamical gauge field c brings

the right-hand side of (B.4) to its simpler and more familiar form, at the cost of violating

Dirac quantization.

To match the duality to two-node quivers we shift the gauge field on the right-hand-side

of (B.4) to c→ c+ ã1 + Ã1, which then gives

LU = iΨ̄ /Dc+ã1+Ã1
Ψ− i

[
1

4π
cdc+

1

4π
ã1dã1 +

1

4π
Ã1dÃ1

]
. (B.5)
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Figure 10. Fermion particle-vortex duality as a two-node quiver theory.

One can check that, after a relabeling of dynamical gauge fields and rearranging the back-

ground Chern-Simons terms, this is simply the N1 = N2 = k1 = k2 = 1 limit of the

Lagrangians in (3.6). The derivation is summarized in figure 10.

B.2 Theories dual to the free Dirac fermion

We have just shown the fermion particle-vortex duality admits generalizations in the form

of the flavor-bounded two-node quiver we constructed in section 3.1. Generalizations can

then be constructed by tuning the three independent parameters: N1, N2 (= k1), and k2.

For instance, there is an infinite class of dualities which continue to just have a fermion

on one end of the duality, so long as N1 = N2 = 1. We can vary k2 and get a theory which

would is still dual to the free Dirac fermion,

LSU = iψ̄ /DÃ1
ψ − i

[
1

4π
Ã1dÃ1

]
, (B.6a)

LU = iΨ̄ /Dc+g+Ã1
Ψ− i

[
1

4π
gdg +

1

4π
Trk2

(
cdc− i2

3
c3

)]
, (B.6b)

where now c ∈ U(k2). On the SU side changing k2 only effects the level of the non-

existent Chern-Simons term. This also opens up the possibility of taking k2 to be large

and possibility doing some sort of 1/k2 expansion [33].

B.3 Theories similar to “QED3”

Also interesting is the case of N2 = k1 = k2 = 1 with N1 kept arbitrary, where we still get

two Abelian fields on the U side of the duality so the theory is similar to QED3. However,

what will change is the relative levels of the Chern-Simons terms on this end of the duality.

This would be dual to a fermion coupled only to an SU field. Again, it would be interesting

to take N1 to be large and do some 1/N1 expansion. Explicitly,

LSU = iψ̄ /Db′+Ã1
ψ − i

[
N1

4π
Ã1dÃ1

]
, (B.7a)

LU = iΨ̄ /Dc+g+Ã1
Ψ− i

[
N1

4π
gdg +

1

4π
cdc

]
. (B.7b)
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First off, note that the presence of the level-1/2 b′ Chern-Simons term on the ψ side means

this cannot be particle-hole symmetric. That’s okay if we’re not attempting to describe

ν = 1/2.

We can make this look more similar to the properly-quantized version of Son’s duality

by shifting c→ c− g + Ã1, which makes the LΨ becomes

LU = iΨ̄ /DcΨ− i
[
N1 + 1

4π
gdg − 1

2π
gdc+

1

4π
cdc− N1

2π
gdÃ1 +

N1

4π
Ã1dÃ1

]
. (B.8)

This is the same as QED3 (with a relabeling of g → ã1), except now the g and Ã1 Chern-

Simons terms have an arbitrary integer level. This reduces to Son’s duality in the N1 = 1

limit.

C Two-node fermionic quivers for the SO/Sp gauge group

Here we generalize the two-node fermionic quiver dualities analyzed in section 3 to the case

of SO and Sp gauge groups. We only list the main results since the approach is largely

similar to the unitary case.

First, we write down the flavor bounded two-node quiver dualties for the SO/Sp gauge

group. The construction parallels that of section 3.1, but instead using the version of 3d

bosonization dualities for the SO/Sp gauge group appeared in ref. [31]. First, the boson-

fermion duality is obtained from 3d bosonization by gauging the full flavor symmetry

subject to the flavor-bound k1 ≥ N2,

SO(N1)−k1+
N2
2

× SO(N2)−k2+
N1
2

+ ψ ↔ SO(k1)N1 × SO(N2)−k2 + Φ, (C.1a)

Sp(N1)−k1+
N2
2

× Sp(N2)−k2+
N1
2

+ ψ ↔ Sp(k1)N1 × Sp(N2)−k2 + Φ. (C.1b)

From the above dualities, there exists fermion-fermion dualities similar to (3.6) for the

special case of k1 = N2,

SO(N1)−N2
2

× SO(N2)−k2+
N1
2

+ ψ ↔ SO(N2)
N1− k22

× SO(k2)N2
2

+ Ψ, (C.2a)

Sp(N1)−N2
2

× Sp(N2)−k2+
N1
2

+ ψ ↔ Sp(N2)
N1− k22

× Sp(k2)N2
2

+ Ψ. (C.2b)

The flavor-violated version of boson-fermion two-node quiver dualities for the SO/Sp

gauge group are built from the extension of bosonization dualities for the SO/Sp gauge

group beyond the flavor bound analyzed in ref. [5]. The results are similar to (3.7) and

valid for k1 < N2, k2 < N1,

SO(N1)−k1+N2/2×SO(N2)−k2+N1/2 + ψ

↔

{
SO(k1)N1 × SO(N2)−k2 + φ1 mψ = −m∗,
SO(N2 − k1)−N1 × SO(N2)N1−k2 + φ2 mψ = m∗

Sp(N1)−k1+N2/2×Sp(N2)−k2+N1/2 + ψ

↔

{
Sp(k1)N1 × Sp(N2)−k2 + φ1 mψ = −m∗
Sp(N2 − k1)−N1 × Sp(N2)N1−k2 + φ2 mψ = m∗.

(C.3)
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Finally, the new fermionic two-node quiver dual descriptions, which equivalently de-

scribe the above phase transitions, for the SO/Sp cases are

SO(N1)−k1+N2/2 × SO(N2)−k2+N1/2 + ψ

↔

{
SO(k1)N1−k2/2 × SO(k2)N2−k1/2 + Ψ1 mψ = −m∗
SO(N1 − k2)−N2/2−k1/2 × SO(N2 − k2)−N1/2−k2/2 + Ψ2 mψ = m∗,

Sp(N1)−k1+N2/2 × Sp(N2)−k2+N1/2 + ψ

↔

{
Sp(k1)N1−k2/2 × Sp(k2)N2−k1/2 + Ψ1 mψ = −m∗
Sp(N1 − k2)−N2/2−k1/2 × Sp(N2 − k2)−N1/2−k2/2 + Ψ2 mψ = m∗.

(C.4)

We comment that SO/Sp case is simpler than the unitary case since the corresponding

level/rank duality preserves the type of Lie group. Similar subtleties as the unitary case will

arise if one constructs the two-node quiver for the various modification of the orthogonal

or symplectic group with discrete gauging/extension (e.g. Spin,Pin±, . . .), as analyzed for

the orthogonal case in ref. [30].

D Gravitational counterterm matching

Here we show that the gravitational counterterms are consistent along the phase diagram

of the two-node quiver discussed in section 3. In our convention, we define the gravitational

counterterm as the coeffcient of twice the gravitational Chern-Simons term 2CSgrav, where∫
M=∂X CSgrav = 1

192π

∫
X trR∧R. Refs. [4, 28] contain many of the 3d bosonization dualities

used throughout this work with gravitational Chern-Simons terms made explicit.

First, let’s discuss the boson-fermion dualities between bifundamental matter in (3.7).

Consistency of the phase diagram requires that following a non-trivial closed path in phase

space should have net zero change of the gravitational counterterm

∆c [(A I)→ (B1 I)→ (B1 III)→ (B2 III)→ (B2 II)→ (A II)→ (A I)] = 0 (D.1)

where (A I) represents phase I of Theory A, etc. . It turns out that there are two kinds of

contributions to the gravitational counterterm along the path above. First, there is a con-

tribution coming from the difference of the one-loop determinant of the fermion coupled to

the background metric between negative or positive mass, which is equivalent to the com-

plex dimension of the representation. Second, there is one coming from the compensating

gravitational Chern-Simons term along the level-rank duality in the various phases, which

is explained in ref. [2]. Namely, ∆c = −Nk along the level-rank duality from SU(N)k to

U(k)−N . It is important to point out that scalar doesn’t contribute to the gravitational

counterterm and the middle phases described by the two scalar dual descriptions B1 and

B2 are equivalent without the need of any duality transformation. After tracking down

the non-trivial closed path in (D.1), one can show that the gravitational counterterm is

consistent, i.e. ∆c|closed path = 0.

Now the above test could also be done with the two-node fermionic dual description

described in (3.10). Using a similar procedure and formulas as above, consistency of the

gravitational counterterms can be established.
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