
J
H
E
P
0
1
(
2
0
1
9
)
2
1
0

Published for SISSA by Springer

Received: November 24, 2018

Accepted: January 10, 2019

Published: January 28, 2019

Symmetry breaking in quantum curves and super

Chern-Simons matrix models

Naotaka Kubo,a Sanefumi Moriyamab,c,d and Tomoki Nosakae

aCenter for Gravitational Physics, Yukawa Institute for Theoretical Physics,

Kyoto University,

Sakyo-ku, Kyoto 606-8502, Japan
bDepartment of Physics, Graduate School of Science, Osaka City University,

Sumiyoshi-ku, Osaka 558-8585, Japan
cNambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP),

Sumiyoshi-ku, Osaka 558-8585, Japan
dOsaka City University Advanced Mathematical Institute (OCAMI),

Sumiyoshi-ku, Osaka 558-8585, Japan
eSchool of Physics, Korea Institute for Advanced Study,

Dongdaemun-gu, Seoul 02455, Korea

E-mail: naotaka.kubo@yukawa.kyoto-u.ac.jp,

moriyama@sci.osaka-cu.ac.jp, nosaka@yukawa.kyoto-u.ac.jp

Abstract: It was known that quantum curves and super Chern-Simons matrix models

correspond to each other. From the viewpoint of symmetry, the algebraic curve of genus

one, called the del Pezzo curve, enjoys symmetry of the exceptional algebra, while the super

Chern-Simons matrix model is described by the free energy of topological strings on the

del Pezzo background with the symmetry broken. We study the symmetry breaking of the

quantum cousin of the algebraic curve and reproduce the results in the super Chern-Simons

matrix model.

Keywords: Chern-Simons Theories, M-Theory, Matrix Models, Topological Strings

ArXiv ePrint: 1811.06048

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP01(2019)210

mailto:naotaka.kubo@yukawa.kyoto-u.ac.jp
mailto:moriyama@sci.osaka-cu.ac.jp
mailto:nosaka@yukawa.kyoto-u.ac.jp
https://arxiv.org/abs/1811.06048
https://doi.org/10.1007/JHEP01(2019)210


J
H
E
P
0
1
(
2
0
1
9
)
2
1
0

Contents

1 Introduction 1

2 Superconformal Chern-Simons matrix models 2

3 Quantum curve 6

4 Symmetry breaking 12

5 Degenerate curve 16

6 Conclusion 21

A Weyl group 22

1 Introduction

In the semi-classical analysis of quantum physics, curves appear as the phase space orbit

leading to the semi-classical Bohr-Sommerfeld quantization condition. From the viewpoint

of full quantum physics, apparently these curves are technical tools and need to be quan-

tized eventually. Since in algebraic geometry curves are defined by zeros of polynomial

rings, in quantization by replacing the polynomial rings by quantum operators, the study

of zeros switches smoothly to spectral problems of the quantum operators.

Recently the study of quantization of curves attracts renewed attention due to the

important role it plays in understanding the integrability of gauge theories [1–4]. The

interplay between curves and gauge theories continues to the three-dimensional M2-brane

physics [5]. In [6] it was found that the grand canonical partition function of the M2-

branes on the background C4/Zk can be rewritten as a spectral determinant of a quantum-

mechanical operator associated with the geometry P1×P1, following preceding works [7–11].

After further studies of the spectral determinant in [12–17] finally it was conjectured [18]

that the grand potential of the M2-branes is expressed as the free energy of the topological

string theory on the local P1 × P1 geometry. The rank deformations with the inclusion of

fractional M2-branes [19, 20] were studied in [21–24] and found to match the conjectured

topological string free energy.

The computation was further generalized to many superconformal Chern-Simons ma-

trix models describing the worldvolume theory of the M2-branes on other orbifold [25–31]

or orientifold [32–36] backgrounds and to many spectral determinants associated with other

curves [37, 38]. On the matrix model side, we can compute the models with or without

rank deformations with similar techniques and find that the results fit in the conjecture

with different choices of Kähler parameters and BPS indices on the background geometry,

although it is difficult to explain these geometrical data. On the curve side, the general
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structure of the correspondence is much clearer, though, besides the difficulty in the inter-

pretation in terms of the M2-branes, it was also difficult to compute directly the kernels of

the spectral operators for general parameters of the curves until recently with the impor-

tant progress in [39, 40]. All of these difficulties on the both sides prevent us from studying

the correspondence clearly.

To overcome the difficulties, the viewpoint of symmetry is crucial. On the curve side,

among others, the special class of curves of ultimate interest and importance are those

of genus one called del Pezzo curves, which are known to enjoy the symmetries of the

exceptional algebra. On the matrix model side, by studying rank deformations of matrix

models corresponding to curves of genus one, in several cases, the Kähler parameters and

the BPS indices were identified [30] and these geometrical data were further interpreted

from the symmetry breaking in [31]. Although the symmetry breaking patterns were

identified, the explanation of them was missing.

In this paper, we promote the discussions for the classical del Pezzo curves to quantum

curves. We define the quantum curves for our setup and study how the symmetry is

realized and how the symmetry breaking happens. We find that the breaking patterns

are completely consistent with the previous results in [31] from the superconformal Chern-

Simons matrix models.

The organization of this paper is as follows. We first review the analysis of the su-

perconformal Chern-Simons matrix models in the next section to explain our motivation.

After that, in section 3, we define the quantum curve and study its quantum symmetry

using an example of the D5 curve. In section 4 we identify the superconformal Chern-

Simons matrix models in the quantum curve and study its symmetry breaking. We turn to

a different example of the E7 curve in section 5. Finally we conclude with some discussions

on future directions. Appendix A is devoted to technical details on the construction of the

Weyl group.

2 Superconformal Chern-Simons matrix models

In this section, we review the superconformal Chern-Simons matrix models. The main

purpose of this section is to explain our motivation of studying quantum curves.

It was proposed [5, 19, 20] that the N = 6 superconformal Chern-Simons the-

ory with gauge group U(N1)k×U(N2)−k (with the subscripts k,−k denoting the Chern-

Simons levels) and two pairs of bifundamental matters describes the worldvolume theory

of min(N1, N2) M2-branes and |N2 −N1| fractional M2-branes on the target space C4/Zk.
With the localization techniques [41], the partition function, as well as the one-point func-

tions (and hopefully the two-point functions [42]) of the half-BPS Wilson loop in the N = 6

superconformal Chern-Simons theory on S3, which is originally defined with the infinite-

dimensional path integral, reduces to a finite-dimensional matrix integration.

There are many generalizations for this matrix model. For example, by regarding the

quiver diagram of the ABJM theory as the Dynkin diagram of the affine Lie algebra Â1,

there are other generalized theories with quiver diagrams of affine simply-laced Lie algebras
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and it is known that they also preserve the N = 3 superconformal symmetries [43].1

Especially, it was found [46] that, for the Âr quiver diagram with the gauge group U(N)r+1,

as long as the levels ka for a = 1, 2, · · · , r + 1 are given by

ka =
k

2
(sa − sa−1), sa = ±1, (2.1)

(with the cyclic identification s0 = sr+1), the superconformal Chern-Simons theory enjoys

the supersymmetry enhancement to N = 4. Hence, theN = 4 theories can be characterized

by recording {sa}r+1
a=1 with the order. Following the same localization techniques, the

partition functions of these theories are given clearly by associating the vector multiplets

(or vertices in the quiver diagram) and the hypermultiplets (or edges in the quiver diagram)

respectively with

N∏
m<m′

(
2 sinh

λa,(m) − λa,(m′)
2

)2

,
N∏

m,n=1

(
2 cosh

λa,(m) − λa+1,(n)

2

)−2

, (2.2)

and integrating all of the variables λa,(m) with

Dλa,(m) =
dλa,(m)

2π
e
ika
4π

∑N
m=1 λ

2
a,(m) . (2.3)

In [26] the model specified by the ±1 alignment

{sa}r+1
a=1 =

 q1︷ ︸︸ ︷
+1, · · · ,+1,

p1︷ ︸︸ ︷
−1, · · · ,−1,

q2︷ ︸︸ ︷
+1, · · · ,+1,

p2︷ ︸︸ ︷
−1, · · · ,−1, · · ·

 , (2.4)

was named the (q1, p1, q2, p2, · · · ) model and the grand canonical partition function of

the model Ξk(z) = Ξ
(q1,p1,q2,p2,··· )
k (z) defined from the partition function Zk(N) =

Z
(q1,p1,q2,p2,··· )
k (N) by

Ξk(z) =

∞∑
N=0

zNZk(N), (2.5)

was found to be given by

Ξk(z) = det
(
1 + zĤ−1

)
, (2.6)

with Ĥ = Ĥ(q1,p1,q2,p2,··· ) of the model given by

Ĥ =

(
2 cosh

q̂

2

)q1(
2 cosh

p̂

2

)p1(
2 cosh

q̂

2

)q2(
2 cosh

q̂

2

)p2
· · · . (2.7)

Here q̂ and p̂ are canonical operators satisfying the commutation relation [q̂, p̂] = 2πik.

In a series of works [26–31] following the study of the ABJM matrix model [15–18] it

was further found that the reduced grand potential Jk(µ) = J
(q1,p1,q2,p2,··· )
k (µ) of a class of

the models (of genus one) defined by

∞∑
n=−∞

eJk(µ+2πin) = Ξk(e
µ), (2.8)

is split into the perturbative part, the worldsheet instanton part and membrane instanton

1See [44, 45] for progress in the study of the matrix models for the D̂r quiver diagram.
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part, Jk(µ) = Jpert
k (µ) +JWS

k (µ) +JMB
k (µ) and if we redefine the chemical potential µ into

µeff [17] and further into the Kähler parameters T , the instanton parts are described by

the free energy of topological strings

JWS
k (µ) =

∑
jL,jR

∑
d

Nd
jL,jR

∞∑
n=1

(−1)(sL+sR−1)nsR sin 2πgsnsL

n(2 sinπgsn)2 sin 2πgsn
e−nd·T ,

JMB
k (µ) =

∑
jL,jR

∑
d

Nd
jL,jR

∞∑
n=1

∂

∂gs

gs

− sin πn
gs
sL sin πn

gs
sR

4πn2
(

sin πn
gs

)3 e
−nd·T

gs

 , (2.9)

(with sL/R = 2jL/R + 1) on a target space which can be read off from (2.7).

Especially, it turns out that the target spaces for the (1, 1), (2, 2), (1, 1, 1, 1), (2, 1)

and (2, 1, 2, 1) models are the del Pezzo curves of genus one, known to be classified by the

exceptional Lie algebra En. From a careful analysis of the exact values of the partition

function in [26, 28, 30], it was found [31] that the (2, 2), (1, 1, 1, 1) and (2, 1) models

correspond to the E5 = D5 del Pezzo curve at the moduli where the Weyl symmetry of

the D5 algebra is broken respectively to those of the subalgebras2 D4, (A1)3 and A3, while

the (2, 1, 2, 1) model corresponds to the E7 del Pezzo curve at the modulus where the E7

algebra is broken to the subalgebra D5×A1. Namely, for example for the (2, 2) model and

the (1, 1, 1, 1) model, since the total BPS indices Nd
jL,jR

=
∑
|d|=dN

d
jL,jR

at each degree d

were computed in [47], our task reduces to identifying the Kähler parameters T and the

split of the total BPS indices at each degree d. This was performed in [30] and it was further

found in [31] that, by regarding the BPS indices as representations of the D5 algebra, the

introduction of the Kähler parameters amounts to identifying “the Higgs fields acquiring

expectation values” and the split of the total BPS indices corresponds to the decomposition

of the representations of the D5 algebra into those of the unbroken subalgebras.

More concretely, the rank deformations of the (2, 2) model and the (1, 1, 1, 1) model,

which are connected by the Hanany-Witten effect, were studied intensively in [30]. For the

(2, 2) model with the rank deformations U(N)k×U(N+MI)0×U(N+2MI)−k×U(N+MI)0,

the Kähler parameters and the string coupling constant gs in the instanton exponents e−d·T

and e−d·T /gs are

T± =
µeff

k
± πi

(
1− MI

k

)
, gs =

1

k
, (2.10)

and the BPS indices forming the representations of the D5 algebra are broken to repre-

sentations of D4 (see table 1 for the split of the BPS indices). Furthermore, for the (2, 2)

model with the rank deformations

U(N +MII)k ×U(N +MI)0 ×U(N + 2MI +MII)−k ×U(N +MI)0, (2.11)

2As we explain later, the remaining symmetry (A1)4 for the (1, 1, 1, 1) model identified in [31] should be

corrected by (A1)3.
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d (jL, jR) BPS (−1)d−1
∑

dI

(∑
dII
N

(d,dI,dII)
jL,jR

)
dI

1 (0, 0) 16 8+1 + 8−1

2 (0, 1
2) 10 1+2 + 80 + 1−2

3 (0, 1) 16 8+1 + 8−1

4 (0, 1
2) 1 10

(0, 3
2) 45 8+2 + 290 + 8−2

(1
2 , 2) 1 10

Table 1. The split of the BPS indices on the D5 del Pezzo curve for the (2, 2) model. The

split is interpreted as the decomposition of the D5 representations into the D4 subalgebra, as in

16→ (8s/c)+1 + (8s/c)−1, 10→ (1)+2 + (8v)0 + (1)−2 and 45→ (8v)+2 + (28)0 + (1)0 + (8v)−2.

which is connected to the (1, 1, 1, 1) model without rank deformations at (MI,MII) =

(k/2, k/2) through the Hanany-Witten effect, the Kähler parameters are

T±1 =
µeff

k
± πi

(
1− MI

k
− 2MII

k

)
,

T±2 =
µeff

k
± πi

(
1− MI

k

)
,

T±3 =
µeff

k
± πi

(
1− MI

k
+

2MII

k

)
, (2.12)

and the BPS indices in the representations of the D4 algebra are further split into repre-

sentations of the (A1)3 algebra (see table 2 for the further split of the BPS indices). Hence,

from table 1 it was found that the symmetry for the (2, 2) model without rank deformations

is broken to D4 while from table 2 the symmetry for the (1, 1, 1, 1) model is further broken

to (A1)3.

Even though the symmetry is broken to (A1)3 for general rank deformations of the

(2, 2) model and the (1, 1, 1, 1) model, we can see an accidental symmetry enhancement for

the (1, 1, 1, 1) model without rank deformations. Since the (1, 1, 1, 1) model without rank

deformations corresponds to (MI,MII) = (k/2, k/2), the instanton exponent is given by

d · T = d
µeff

k
+ πi

(
dI

(
1− MI

k

)
− dII

2MII

k

)
= d

µeff

k
+ d̃

πi

2
, (2.13)

where we have defined the total u(1) degree and the two Cartan u(1) charges which break

the symmetries as

d =
3∑
i=1

(d+
i + d−i ),

dI = (d+
1 + d+

2 + d+
3 )− (d−1 + d−2 + d−3 ),

dII = (d+
1 − d

−
1 )− (d+

3 − d
−
3 ),

(2.14)
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as well as the special combination of the u(1) charges d̃ characterizing the (1, 1, 1, 1) model

without rank deformations and the unbroken u(1) charge d as3

d̃ = dI − 2dII, d = dI + dII. (2.15)

Then, the accidental symmetry enhancement is observed as follows. The adjoint rep-

resentation of the D5 algebra decomposes as

45→ (8v)+2 + (28)0 + (1)0 + (8v)−2, (2.16)

in the breaking D5 → (D4)dI and further decompositions of various D4 representations into

(A1)4 are given by

28→ (3,1,1,1) + (1,3,1,1) + (1,1,3,1) + (1,1,1,3) + (2,2,2,2),

8v → (2,2,1,1) + (1,1,2,2). (2.17)

The last factor of A1 is broken and the u(1) charge is denoted by dII. After expressing

the two u(1) charges dI and dII in terms of the charges d and d̃, each representation of the

third factor of (A1)d in the unbroken symmetry (A1)3 combines into the representations of

A2 as

8→ 2+3 + 30 + 10 + 2−3, 3→ 1+2 + 2−1, 3→ 2+1 + 1−2, 1→ 10 (2.18)

in A2 → (A1)d. Finally the decomposition of the D5 adjoint representation into (A1×A1×
A2)

d̃
is given by

45→(1,1,3)+4 + (2,2,3)+2 + (3,1,1)0 + (1,3,1)0 + (1,1,8)0 + (1,1,1)0

+ (2,2,3)−2 + (1,1,3)−4, (2.19)

which implies that the symmetry (A1)3 is further enhanced to (A1)2 ×A2 = A1 ×A1 ×A2

in the (1, 1, 1, 1) model without rank deformations.

3 Quantum curve

In this section we define carefully what we mean by quantum curves and study the typical

example of the D5 del Pezzo curve.

We define a quantum algebraic curve to be the spectral problem of a polynomial quan-

tum operator Ĥ generated by Q̂ = eq̂ and P̂ = ep̂ where q̂ and p̂ are the canonical operators

of coordinates and momenta satisfying the canonical commutation relation [q̂, p̂] = i~. Since

the similarity transformation, the adjoint action by Ĝ,

Ĥ ∼ ĜĤĜ−1, (3.1)

typically does not affect the spectral problem, we define the quantum algebraic curve

with the identification of all the similarity transformations. As in the classical algebraic

3The combination of the u(1) charges d = 2(d+1 − d−1 ) + (d+2 − d−2 ) exchanges among the four Kähler

parameters T±1 = µeff
k

∓ πi
2

and T±2 = µeff
k

± πi
2

, while leaving the remaining two T±3 = µeff
k

± 3πi
2

fixed.
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d (jL, jR) dI BPS (−1)d−1
∑

dII

(
N

(d,dI,dII)
jL,jR

)
dII

1 (0, 0) ±1 8 2+1 + 40 + 2−1

2 (0, 1
2) 0 8 2+1 + 40 + 2−1

±2 1 10

3 (0, 1) ±1 8 2+1 + 40 + 2−1

4 (0, 1
2) 0 1 10

(0, 3
2) 0 29 1+2 + 8+1 + 110 + 8−1 + 1−2

±2 8 2+1 + 40 + 2−1

(1
2 , 2) 0 1 10

Table 2. The split of the BPS indices on the D5 del Pezzo curve for the (1, 1, 1, 1) model. The

split is interpreted as the decomposition of the D4 representations into the (A1)4 subalgebra, as

in 8v → (2,2,1,1) + (1,1,2,2), 8s → (2,1,2,1) + (1,2,1,2), 8c → (2,1,1,2) + (1,2,2,1)

and 28 → (3,1,1,1) + (1,3,1,1) + (1,1,3,1) + (1,1,1,3) + (2,2,2,2), where the last A1 factor

contributes as the u(1) charge in the subscript (and hence is broken).

curve, the curve is studied within a linear combination of a certain class of the independent

operators Q̂mP̂n with (m,n) ∈ Z2. Note that in the quantization, the order of the operators

is important and we adopt the normal ordering such that Q̂ is in the left and P̂ is in

the right. The set of (m,n) with non-vanishing coefficients is often referred to as the

Newton polygon.

The classical algebraic curve of genus one is called the del Pezzo curve and is known

to be classified by the exceptional algebra En. As one of simple and abundant cases, here

we mainly consider the quantization of the E5 = D5 curve, where the quantum curve or

the quantum Hamiltonian is a linear combination of the independent operators

Q̂mP̂n, m = −1, 0, 1, n = −1, 0, 1, (3.2)

(see figure 1 for the Newton polygon of the D5 del Pezzo curve). Instead of fixing the

coefficients, as in the classical case [48] (see sections 8.2.5 and 8.4.4), it is often convenient

to fix the asymptotic values of the curve

(∞, e−1
1 ), (∞, e−1

2 ), (e3,∞), (e4,∞), (0, h−1
2 e5), (0, h−1

2 e6), (h1e
−1
7 , 0), (h1e

−1
8 , 0), (3.3)

(see figure 2 for the asymptotic values). Each two points out of the eight points are the

solutions to the quadratic equations obtained by setting Q̂ → ∞, P̂ → ∞, Q̂ → 0 and

P̂ → 0 respectively. In other words, the eight values are the asymptotic values of the dual

graph of the Newton polygon. Due to the Vieta’s formulas on products of roots, the eight

points are not independent and should be subject to the constraint

8∏
i=1

ei = h2
1h

2
2. (3.4)
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Figure 1. The Newton polygon of the D5 del Pezzo curve.

Figure 2. The asymptotic values of the D5 del Pezzo curve, (∞, e−1
1 ), (∞, e−1

2 ), (e3,∞), (e4,∞),

(0, h−1
2 e5), (0, h−1

2 e6), (h1e
−1
7 , 0), (h1e

−1
8 , 0). The four lines denote “lines at infinity” Q̂ = ∞,

P̂ =∞, Q̂ = 0 and P̂ = 0 respectively.

Then, our quantum curve is given by

Ĥ/α =

Q̂P̂ −(e3 + e4)P̂ +e3e4Q̂
−1P̂

−(e−1
1 + e−1

2 )Q̂ +E/α −h−1
2 e3e4(e5 + e6)Q̂−1

+(e1e2)−1Q̂P̂−1 −h1(e1e2)−1(e−1
7 + e−1

8 )P̂−1 +h2
1(e1e2e7e8)−1Q̂−1P̂−1,

(3.5)

where the coefficient of the last term Q̂−1P̂−1 can be alternatively expressed as

h2
1(e1e2e7e8)−1 = h−2

2 e3e4e5e6 due to (3.4). Note that the classical algebraic curve is

defined from the zeros of the curve and characterized by their asymptotic zeros. For the

quantum case, the asymptotic zeros are obtained only after the normal ordering.

This curve enjoys a lot of symmetries. Especially our labelling of the curve is redundant

and the same curve can be realized by different choices of the parameters. For example,

we use ten parameters h1, h2 and e1, · · · , e8 to describe the eight asymptotic values and

apparently two degrees of freedom can be fixed arbitrarily. Also, by the similarity trans-

formation (3.1) generated by Ĝ = e
ia
~ p̂ or Ĝ = e−

ib
~ q̂, it is clear that a curve and the same

curve with Q̂, P̂ rescaled as

(Q̂, P̂ )→ (AQ̂, P̂ ), (Q̂, P̂ )→ (Q̂, BP̂ ), (3.6)

– 8 –
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(with A = ea and B = eb) should be identified. Using these two rescalings we can further

fix two degrees of freedom. After the identification, aside from the parameters α and E,

we have ten parameters subject to four continuous symmetries and one constraint (3.4),

which leaves only five parameters.

After identifying these continuous gauge symmetries, there also remain discrete gauge

symmetries, which should be clarified. The analysis for the classical algebraic curve is

well-known and explained carefully for example in [48]. Here we study the same problem

for the quantum curve.

Classically the D5 del Pezzo curve enjoys the Weyl symmetry of D5, which is basically

generated by s1, s2, s3, s4, s5 exchanging the asymptotical points [48]

s1 : h1e
−1
7 ↔ h1e

−1
8 ,

s2 : e3 ↔ e4,

s3 : e3 ↔ h1e
−1
7 ,

s4 : e−1
1 ↔ h−1

2 e5,

s5 : e−1
1 ↔ e−1

2 ,

(3.7)

and has 24 × 5! = 1920 elements in total (see figure 3 for the Dynkin diagram of D5 and

the numbering of the roots). Though in our setup the affine root does not appear, we can

introduce the lowest root

s0 : h−1
2 e5 ↔ h−1

2 e6, (3.8)

to complete the affine Dynkin diagram. Of course, this is not necessary because the lowest

root is generated by the simple roots as s0 = s4s3s2s5s4s3s1s3s4s5s2s3s4.

To provide the Weyl symmetry explicitly, in the following we adopt the gauge fix-

ing condition

e2 = e4 = e6 = e8 = 1, (3.9)

using the two degrees of freedom in the redundant description of the eight points with ten

parameters and the other two degrees of freedom in the continuous rescaling as explained

in (3.6). Then, the constraint (3.4) becomes

h2
1h

2
2 = e1e3e5e7. (3.10)

We often drop e7 with

e7 = h2
1h

2
2(e1e3e5)−1, (3.11)

to display the transformations unambiguously.

After the gauge fixing, it is not difficult to realize that the exchanges of s1, s2, s5 and

s0 are given as

s1 : (h1, h2, e1, e3, e5, e7;α) 7→ (h1e
−1
7 , h2, e1, e3, e5, e

−1
7 ;α),

s2 : (h1, h2, e1, e3, e5, e7;α) 7→ (h1e
−1
3 , h2, e1, e

−1
3 , e5, e7; e3α),

s5 : (h1, h2, e1, e3, e5, e7;α) 7→ (h1, h2e
−1
1 , e−1

1 , e3, e5, e7; e−1
1 α),

s0 : (h1, h2, e1, e3, e5, e7;α) 7→ (h1, h2e
−1
5 , e1, e3, e

−1
5 , e7;α), (3.12)
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Figure 3. The Dynkin diagram of the D5 algebra.

as in the classical case. For s3 and s4 the situation is more complicated. For s3 we apply

the canonical transformation,

Q̂′ = Q̂, P̂ ′ = (Q̂− e3)P̂ (Q̂− h1e
−1
7 )−1, (3.13)

which can be obtained by applying the similarity transformation (3.1) generated by

Ĝ = eF3(q̂)−F7(q̂), (3.14)

with F3(q) and F7(q) defined by

eF3(q)−F3(q−i~) = eq − e3, eF7(q+i~)−F7(q) = eq − h1e
−1
7 . (3.15)

Indeed, by using the formula e∓p̂f(q̂)e±p̂ = f(q̂ ± i~) repeatedly one can show

ĜP̂ Ĝ−1 = eF3(q̂)−F7(q̂)ep̂e−F3(q̂)+F7(q̂)

= eF3(q̂)−F3(q̂−i~)ep̂eF7(q̂)−F7(q̂+i~) = (Q̂− e3)P̂ (Q̂− h1e
−1
7 )−1. (3.16)

Then, after the normal ordering, we find that the terms in Ĥ/α proportional to P̂ and

those proportional to P̂−1 are respectively given by (q = ei~)

Q̂−1(Q̂− e3)(Q̂− 1)P̂ = Q̂′−1(Q̂′ − qh1e
−1
7 )(Q̂′ − 1)(q−1P̂ ′),

e−1
1 Q̂−1(Q̂− h1e

−1
7 )(Q̂− h1)P̂−1 = e−1

1 Q̂′−1(Q̂′ − q−1e3)(Q̂′ − h1)(q−1P̂ ′)−1. (3.17)

Similarly for s4 we apply the similarity transformation

Q̂′ = (P̂ − h−1
2 e5)−1Q̂(P̂ − e−1

1 ), P̂ ′ = P̂ , (3.18)

and perform a similar normal ordering. These transformations imply that

s3 : (h1, h2, e1, e3, e5, e7;α) 7→ (h1, qh1h2(e3e7)−1, e1, qh1e
−1
7 , e5, qh1e

−1
3 ;α),

s4 : (h1, h2, e1, e3, e5, e7;α) 7→ (h1h2(qe1e5)−1, h2, h2(qe5)−1, e3, h2(qe1)−1, e7;α). (3.19)

Using the constraint (3.11), we find

s1 : (h1, h2, e1, e3, e5;α) 7→
(
e1e3e5

h1h2
2

, h2, e1, e3, e5;α

)
,

s2 : (h1, h2, e1, e3, e5;α) 7→
(
h1

e3
, h2, e1,

1

e3
, e5; e3α

)
,
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s3 : (h1, h2, e1, e3, e5;α) 7→
(
h1,

qe1e5

h1h2
, e1,

qe1e3e5

h1h2
2

, e5;α

)
,

s4 : (h1, h2, e1, e3, e5;α) 7→
(
h1h2

qe1e5
, h2,

h2

qe5
, e3,

h2

qe1
;α

)
,

s5 : (h1, h2, e1, e3, e5;α) 7→
(
h1,

h2

e1
,

1

e1
, e3, e5;

α

e1

)
,

s0 : (h1, h2, e1, e3, e5;α) 7→
(
h1,

h2

e5
, e1, e3,

1

e5
;α

)
. (3.20)

It is not difficult to see the algebraic relations

s2
1 = s2

2 = s2
3 = s2

4 = s2
5 = 1,

(s1s2)2 = (s1s4)2 = (s1s5)2 = (s2s4)2 = (s2s5)2 = (s3s5)2 = 1,

(s1s3)3 = (s2s3)3 = (s3s4)3 = (s4s5)3 = 1. (3.21)

By comparing with the general relations of the Weyl group (sisj)
r+2 = 1 for two different

simple roots connected by r edges, the relations (3.21) indicate that the transformations

generate the Weyl group of D5 in figure 3.

Apparently, in the transformations (3.20) only s3 and s4 contain the quantum defor-

mation parameter q explicitly and, by setting q = 1, the transformations reproduce those

for the classical curves. It is, then, natural to ask whether the transformations for the

quantum curves essentially change from the classical ones. To answer this question, let us

redefine h1 and h2 by

h1 = qh1, h2 = q−1h2. (3.22)

After the redefinition, the transformations s3 and s4 become

s3 : (h1, h2, e1, e3, e5;α) 7→
(
h1,

e1e5

h1h2

, e1,
e1e3e5

h1h
2
2

, e5;α

)
,

s4 : (h1, h2, e1, e3, e5;α) 7→
(
h1h2

e1e5
, h2,

h2

e5
, e3,

h2

e1
;α

)
, (3.23)

and the other transformations are unaffected by the change of variables. Hence we conclude

that the only change from the transformations for the classical curves is the shift of the

parameters (3.22).

This fact implies that we can regard the parameter space of the curve as the root or

weight space and identify these transformations as the standard Weyl actions, reflections

by the simple root vectors α,

sα(v) = v − α2(α, v)

(α, α)
, (3.24)

where v is an element of a five-dimensional space and (·, ·) is a bilinear form in the space.

To identify the simple root vectors in the parameter space of the curve, we also prepare

the fundamental weight vectors ωi (1 ≤ i ≤ 5), which are defined as the dual basis of
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the coroot vectors, (ωi, α
∨
j ) = δij , with the coroot vectors being α∨i = 2αi/(αi, αi). Then,

we find that the root vectors are expanded by the fundamental weight vectors with the

coefficients given by the Cartan matrix Aij = (αi, α
∨
j ),

αi = Aijωj , (3.25)

and that transformation sαi acts on ωj as

sαi(ωj) = ωj − δijαi, (3.26)

with no sum over i. Now, it turns out that our task for finding simple roots and fundamental

weights is to solve (3.25) and (3.26) simultaneously under the identification sαi(v) = si(v)

along with the explicit form of the Cartan matrix of D5

A =


2 0 −1 0 0

0 2 −1 0 0

−1 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 2

 . (3.27)

Then, we find that the final results of the identification are given as

α1 = (1, 0, 0, 0, 0), ω1 = (1,−1, 0, 0,−1),

α2 = (1, 0, 0, 2, 0), ω2 = (1,−1, 0, 1,−1),

α3 = (0,−1, 0,−1, 0), ω3 = (1,−2, 0, 0,−2),

α4 = (−1, 0,−1, 0,−1), ω4 = (0,−1, 0, 0,−2),

α5 = (0, 1, 2, 0, 0), ω5 = (0, 0, 1, 0,−1), (3.28)

where we have represented the parameters of curves by (log h1, log h2, log e1, log e3, log e5).

Note that in this expression, our symmetries of the algebraic curve si (3.20), (3.23) reduce

to the standard Weyl action sαi (3.24).

4 Symmetry breaking

After establishing the Weyl symmetries of the quantum D5 del Pezzo curve, we start our

study of the symmetry breaking. For the (2, 2) model and the (1, 1, 1, 1) model with the

expressions of the quantum operator

Ĥ(2,2) = (Q̂
1
2 + Q̂−

1
2 )2(P̂

1
2 + P̂−

1
2 )2,

Ĥ(1,1,1,1) = (Q̂
1
2 + Q̂−

1
2 )(P̂

1
2 + P̂−

1
2 )(Q̂

1
2 + Q̂−

1
2 )(P̂

1
2 + P̂−

1
2 ), (4.1)

after the shift q̂ → q̂+πi and p̂→ p̂−πi, generated by the similarity transformations (3.6),

we can easily identify the parameters

(h1, h2, e1, e3, e5, e7;α)(2,2) = (1, 1, 1, 1, 1, 1; 1),

(h1, h2, e1, e3, e5, e7;α)(1,1,1,1) = (1, 1, q−
1
2 , q

1
2 , q−

1
2 , q

1
2 ; q−

1
4 ). (4.2)
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Figure 4. The Dynkin diagram of the D4 subalgebra within the original D5 algebra which preserves

the (2, 2) model without rank deformations (Left) and that of the (A1)2 × A2 subalgebra which

preserves the (1, 1, 1, 1) model without rank deformations (Right).

For the study of the (2, 1) model we need to rescale p̂ by 2,

Ĥ(2,1) = (Q̂
1
2 + Q̂−

1
2 )2(P̂ + P̂−1). (4.3)

Then, the parameters are

(h1, h2, e1, e3, e5, e7;α)(2,1) = (1, 1,−1, 1,−1, 1; 1). (4.4)

Hence, the main question is, out of the 1920 elements of the D5 Weyl group, which ele-

ments leave these parameters including α invariant and what group these elements form.

We can easily generate the 1920 elements with a computer by subsequently acting the

transformations s1, s2, s3, s4, s5 and choosing only the transformations which do not ap-

pear previously. We can then act these 1920 transformations on the parameters of the

various models (4.2), (4.4) and pick up the invariant transformations.

Let us search for the transformations leaving the parameters for these models invariant.

For the (2, 2) model, out of the 1920 elements, we find that there are 192 elements leaving

the parameter invariant. If we look closely, we further find that, among them, the four

transformations

s1, s2, s3s4s3, s5, (4.5)

satisfy the relations

(s1s3s4s3)3 = (s2s3s4s3)3 = (s5s3s4s3)3 = 1, (4.6)

and generate 23 × 4! = 192 different elements. Hence we conclude that the invariant sub-

group leaving the (2, 2) model is the D4 Weyl group (see figure 4 for the Dynkin diagram).

The result matches with the studies of the superconformal Chern-Simons matrix models

as in table 1.

We can further ask which subspace in the parameter space (h1, h2, e1, e3, e5) enjoys the

same D4 symmetry as the (2, 2) model without rank deformations for arbitrary values of

α. Due to the expression of the transformation s3s4s3

s3s4s3 : (h1, h2, e1, e3, e5;α) 7→
(

1

h2
,

1

h1
,
e1

h1h2
,
e3

h1h2
,
e5

h1h2
;α

)
, (4.7)
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cosets (h1, h2, e1, e3, e5, e7) D4 symmetry invariant subspace

1, s3s1s2s3 (q±1, q∓1, 1, 1, 1, 1) 〈s3s4s3; s1, s2, s5〉 (h−1, h, 1, 1, 1, 1)

s3, s1s2s3 (q±1, 1, 1, q±1, 1, q±1) 〈s4; s1s3s1, s2s3s2, s5〉 (h−1, 1, 1, h−1, 1, h−1)

s4, s4s3s1s2s3 (1, q∓1, q∓1, 1, q∓1, 1) 〈s3; s1, s2, s4s5s4〉 (1, h, h, 1, h, 1)

s1s3, s2s3 (1, 1, 1, q±1, 1, q∓1) 〈s4; s3, s1s2s3s2s1, s5〉 (1, 1, 1, h−1, 1, h)

s5s4, s5s4s3s1s2s3 (1, 1, q±1, 1, q∓1, 1) 〈s3; s1, s2, s4〉 (1, 1, h−1, 1, h, 1)

Table 3. Different representative choices of the parameters for the (2, 2) model without rank

deformations. The parameters (h1, h2, e1, e3, e5, e7) are obtained by acting the 10 cosets of the D5

Weyl group by the invariant D4 Weyl group (where the upper/lower double-sign corresponds to the

first/second coset respectively). For the D4 symmetry we first denote the root corresponding to the

adjoint representation and then the other three corresponding to the three 8 representations.

the condition h1h2 = 1 is required. Along with the actions of s1, s2 and s5 in (3.20), we

further find the conditions e1 = e3 = e5 = 1. Namely, the subspace in the parameter

space (h1, h2, e1, e3, e5, e7) enjoying the same D4 symmetry as the (2, 2) model without

rank deformations is parametrized by

{(h1, h2, e1, e3, e5, e7) = (h−1, h, 1, 1, 1, 1)}. (4.8)

We find that, instead of the original parameter of (h1, h2, e1, e3, e5, e7), in discussing the

subspace with the symmetry enhancement, it is convenient to use the redefined parameter

(h1, h2, e1, e3, e5, e7) introduced in (3.22).

Note that the symmetry breaking does not mean that the D5 Weyl symmetry dis-

appears completely. Even though the broken symmetries do not leave the parameters

invariant, since the transformations come from the similarity transformations, the new pa-

rameters share the same spectrum. In the analogy of the spontaneous symmetry breaking,

the broken symmetry is realized “non-linearly”. More concretely, with the broken sym-

metries, the vacuum expectation value is mapped to other equivalent values which share

the same symmetry breaking. In fact since the order of the D5 Weyl group is 1920 and

the order of the invariant D4 Weyl group is 192, we find 1920/192 = 10 cosets. Using

these cosets we can map the original parameter (h1, h2, e1, e3, e5, e7)(2,2) (4.2) into other

equivalent parameters. In table 3 we display the 10 parameters mapped by the cosets, the

generators of the invariant D4 Weyl groups and the one-dimensional subspaces invariant

under these generators.

Similarly, we work for the (1, 1, 1, 1) model. This time we find that, out of the 1920

elements, there are 24 elements that leave the parameter invariant. We find that the whole

24 elements are generated from the following four transformations

s3, s4, s1s3s4s5s4s3s1, s2s3s4s5s4s3s2. (4.9)

Since the latter two commute with the others it is clear that the invariant subgroup leaving

the (1, 1, 1, 1) model is A2 × (A1)2 (see figure 4 for the Dynkin diagram). Compared with

the analysis from the superconformal Chern-Simons matrix models where the invariant
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subgroup was originally found to be (A1)3 as reviewed in table 2, the results do not coincide.

The reason is that in the study of the matrix models the invariant subgroup was found

as the further deformation from the (2, 2) model and the subgroup was considered within

the invariant subgroup of the (2, 2) model. In fact, if we investigate the intersection of the

192 elements of the invariant subgroup D4 for the (2, 2) model and the 24 elements of the

invariant subgroup A2× (A1)2, we find only 8 elements containing the commuting elements

s3s4s3, s1s3s4s5s4s3s1, s2s3s4s5s4s3s2. (4.10)

Hence, the invariant subgroup is reduced to (A1)3. Alternatively, in (2.19) we have seen

that the invariant subgroup of the (1, 1, 1, 1) model without rank deformations is enhanced

to A2 × (A1)2 accidentally.

Besides the A1 symmetry s3s4s3 requiring h1h2 = 1, since the actions of the extra two

generators s1s3s4s5s4s3s1 and s2s3s4s5s4s3s2 are given by

s1s3s4s5s4s3s1 : (h1, h2, e1, e3, e5;α) 7→
(
h1, h2,

e1e3e5

h1h2
,
h1h2

e5
,
h1h2

e3
;
e3e5

h1h2
α

)
,

s2s3s4s5s4s3s2 : (h1, h2, e1, e3, e5;α) 7→
(
h1, h2,

h1h2

e3
,
h1h2

e1
,
e1e3e5

h1h2
;α

)
(4.11)

the conditions e1 = e−1
3 = e5 are further required. Hence, the subspace enjoying the (A1)3

symmetry is

{(h1, h2, e1, e3, e5, e7) = (h−1e, he−1, e−1, e, e−1, e)}. (4.12)

As previously, we can use representatives of the cosets to map the parameter for the

(1, 1, 1, 1) model without rank deformations into other parameters. Since the order of the

A2× (A1)2 invariant subgroup is 24, we have 1920/24 = 80 cosets and hence 80 equivalent

parameters for the same model.

Since it was known that the (2, 2) model and the (1, 1, 1, 1) model are connected

through rank deformations as studied carefully in [30], it is natural to expect that they

are also connected in the parameter space. Intending to understand better “the moduli

space of the M2-branes”, we concentrate on the subspace (4.12) and study the invariant

subgroup at each point. We find that the symmetry enhances at certain linear subspaces

as depicted in figure 5.

We can identify the one-dimensional subspace (4.8) spanned by h as the MI deforma-

tion space of the (2, 2) model and the two-dimensional subspace (4.12) as the (MI,MII)

deformation space because of the correspondence of the symmetries. Furthermore, if we

take the fact into account that the (2, 2) model with (MI,MII) = (k/2, k/2) is equal to the

(1, 1, 1, 1) model without rank deformations as explained above (2.13), we can tentatively

identify the correspondence between parameters of the curve and parameters of the (2, 2)

model as

h = e2πi(MI−k), e = e2πiMII . (4.13)
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Figure 5. The patterns of the symmetry breaking in the (log h, log e) plane (4.12).

The result of the rank deformations in [30] seems consistent with our current analysis.

To really understand the rank deformations, however, we need some further clarifications

which is beyond the scope of the present work [49].

Finally let us turn to the (2, 1) model. There are 24 elements containing

s1, s2, s3s4s3, (4.14)

which leave (4.4) invariant. These three elements are part of (4.5), so the invariant subgroup

for the (2, 1) model is A3, which again accords with the analysis on the matrix model side.

5 Degenerate curve

Let us turn to the E7 del Pezzo curve. Classically, the E7 del Pezzo curve is realized as a

linear combination of

QmPn, m = −2,−1, 0, 1, 2, n = −1, 0, 1. (5.1)

See figure 6 for the Newton polygon. This realization of the E7 del Pezzo curve appeared

in [50] following the proposal of utilizing the degenerate genus in [51]. Note that the

coefficients of these operators are not all independent, otherwise the number of inner points

in the Newton polygon indicating that the genus is three. To reduce the genus to one,

classically we require the curve to be singular at (Q,P ) = (0, h1) and (Q,P ) = (∞, h2).

Since the singular point of an algebraic curve H(Q,P ) = 0 at (Q0, P0) is defined by

H(Q0, P0) = 0,
∂H

∂Q
(Q0, P0) = 0,

∂H

∂P
(Q0, P0) = 0, (5.2)

the requirements we have imposed become the conditions that the quadratic polynomials

of P at Q2 and Q1 respectively have a double root and a single root at h2 and those at Q−2
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Figure 6. The Newton polygon of the E7 del Pezzo curve.

Figure 7. The asymptotic values of the E7 del Pezzo curve.

and Q−1 respectively have a double root and a single root at h1. For other asymptotical

values, we set

(e1,∞), (e2,∞), (e3,∞), (e4,∞), (h1e
−1
5 , 0), (h1e

−1
6 , 0), (h1e

−1
7 , 0), (h1e

−1
8 , 0). (5.3)

See figure 7 for the asymptotical values. Again from the Vieta’s formulas on products of

roots, the parameters satisfy

8∏
i=1

ei = h2
1h

2
2. (5.4)

Then we find that if we define s1 to be the exchange of the two singular asymptotical

points

s1 : h1 ↔ h2, (5.5)

generated by the canonical transformation

Q′ = (P − h1)−1Q(P − h2), P ′ = P, (5.6)

along with

s2 : e4 ↔ e3, s3 : e3 ↔ e2, s4 : e2 ↔ e1, s5 : e1 ↔ h1e
−1
5 ,

s6 : h1e
−1
5 ↔ h1e

−1
6 , s7 : h1e

−1
6 ↔ h1e

−1
7 , (5.7)

these actions generate the whole E7 Weyl group whose Dynkin diagram is given in figure 8.

– 17 –



J
H
E
P
0
1
(
2
0
1
9
)
2
1
0

Figure 8. The Dynkin diagram of the E7 algebra.

Now let us turn to quantum curves. Our working hypothesis for the condition of the

degeneracy (5.2) for the quantum curves is that the relative coefficients are determined so

that the quantum deformation of the transformation (5.6) is again the symmetry of the

curve. Then, for the transformation in the positive or negative quadratic terms to work

we need to split the asymptotic double roots h1 and h2 respectively into q±
1
2h1 and q±

1
2h2

and consider the curve specified by

Ĥ/α= Q̂2(P̂−q−
1
2h2)(P̂−q

1
2h2)P̂−1

−Q̂(P̂−q−
1
2h2)

(
(e1+e2+e3+e4)P̂−q

1
2h1h2(e−1

5 +e−1
6 +e−1

7 +e−1
8 )
)
P̂−1

+
{

(e1e2+e1e3+e1e4+e2e3+e2e4+e3e4)P̂+E/α

+h2
1h

2
2(e−1

5 e−1
6 +e−1

5 e−1
7 +e−1

5 e−1
8 +e−1

6 e−1
7 +e−1

6 e−1
8 +e−1

7 e−1
8 )P̂−1

}
−e1e2e3e4Q

−1(P−q
1
2h1)

(
(e−1

1 +e−1
2 +e−1

3 +e−1
4 )P̂−q−

1
2 (e5+e6+e7+e8)

)
P̂−1

+e1e2e3e4Q̂
−2(P̂−q

1
2h1)(P̂−q−

1
2h1)P̂−1. (5.8)

Instead we can display the same curve by listing each order of P̂ , as

Ĥ/α= (Q̂−e1)(Q̂−e2)(Q̂−e3)(Q̂−e4)Q̂−2P̂

+
{
−(q

1
2 +q−

1
2 )h2Q̂

2+h2

[
q−

1
2 (e1+e2+e3+e4)+q

1
2h1(e−1

5 +e−1
6 +e−1

7 +e−1
8 )
]
Q̂

+E/α+e1e2e3e4

[
q−

1
2 (e5+e6+e7+e8)+q

1
2h1(e−1

1 +e−1
2 +e−1

3 +e−1
4 )
]
Q̂−1

−(q
1
2 +q−

1
2 )h1e1e2e3e4Q̂

−2
}

+h2
2(Q̂−h1e

−1
5 )(Q̂−h1e

−1
6 )(Q̂−h1e

−1
7 )(Q̂−h1e

−1
8 )Q̂−2P̂−1. (5.9)

Let us turn to the Weyl symmetry of the curve. For s1, we consider the similarity

transformation

Q̂′ = (P̂ − q
1
2h1)−1Q̂(P̂ − q−

1
2h2), P̂ ′ = P̂ , (5.10)

which also implies

Q̂′2 = (qP̂ − q
1
2h1)−1(P̂ − q

1
2h1)−1Q̂2(P̂ − q−

1
2h2)(q−1P̂ − q−

1
2h2). (5.11)

After combining with the rescaling

Q̂′′ = q−1Q̂′, P̂ ′′ = P̂ ′ (5.12)
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we find that s1 transforms the parameters as

s1 : (h1, h2, e1, e2, e3, e4, e5, e6, e7, e8;α) 7→ (q−2h2, q
2h1, e1, e2, e3, e4, e5, e6, e7, e8;α)

(5.13)

The other transformations are parallel to the previous studies in the D5 case.

As in the D5 case, if we use the degrees of freedom of the rescaling of Q̂ and P̂ (3.6)

to fix the gauge

e4 = e8 = 1, (5.14)

and drop e7 by using the constraint

e7 =
h2

1h
2
2

e1e2e3e5e6
, (5.15)

we find that the transformations are given by

s1 : (h1, h2, e1, e2, e3, e5, e6;α) 7→
(
h2

q2
, q2h1, e1, e2, e3, e5, e6;α

)
s2 : (h1, h2, e1, e2, e3, e5, e6;α) 7→

(
h1

e3
,
h2

e3
,
e1

e3
,
e2

e3
,

1

e3
, e5, e6; e3

3α

)
,

s3 : (h1, h2, e1, e2, e3, e5, e6;α) 7→ (h1, h2, e1, e3, e2, e5, e6;α),

s4 : (h1, h2, e1, e2, e3, e5, e6;α) 7→ (h1, h2, e2, e1, e3, e5, e6;α),

s5 : (h1, h2, e1, e2, e3, e5, e6;α) 7→
(
h1,

qh1h2

e1e5
,
qh1

e5
, e2, e3,

qh1

e1
, e6;

e1e5

qh1
α

)
,

s6 : (h1, h2, e1, e2, e3, e5, e6;α) 7→ (h1, h2, e1, e2, e3, e6, e5;α)

s7 : (h1, h2, e1, e2, e3, e5, e6;α) 7→
(
h1, h2, e1, e2, e3, e5,

h2
1h

2
2

e1e2e3e5e6
;α

)
. (5.16)

Note again that, if we introduce h1 and h2 as in (3.22),

h1 = qh1, h2 = q−1h2, (5.17)

we can absorb the quantum deformation parameter q completely in (5.16).

As in the D5 case, we find that the Weyl symmetries are realized as standard Weyl

actions. In this case, root vectors and fundamental weight vectors are

α1 = (1,−1, 0, 0, 0, 0, 0), ω1 = (2, 1, 0, 0, 0, 2, 2),

α2 = (−1,−1,−1,−1,−2, 0, 0), ω2 = (0, 0,−1,−1,−1, 1, 1),

α3 = (0, 0, 0,−1, 1, 0, 0), ω3 = (1, 1,−1,−1, 0, 2, 2),

α4 = (0, 0,−1, 1, 0, 0, 0), ω4 = (2, 2,−1, 0, 0, 3, 3),

α5 = (0, 1, 1, 0, 0, 1, 0), ω5 = (3, 3, 0, 0, 0, 4, 4),

α6 = (0, 0, 0, 0, 0,−1, 1), ω6 = (2, 2, 0, 0, 0, 2, 3),

α7 = (0, 0, 0, 0, 0, 0,−1), ω7 = (1, 1, 0, 0, 0, 1, 1), (5.18)
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Figure 9. The Dynkin diagram of the D5 × A1 subalgebra within the original E7 algebra, which

preserves the (2, 1, 2, 1) model without rank deformations.

where we have represented the parameters by (logh1, logh2, loge1, loge2, loge3, loge5, loge6)

as in the D5 case.

In the study of the (2, 1, 2, 1) model without rank deformations, it was found that the

model falls into the class of the E7 del Pezzo curve with the symmetry broken to D5×A1.

As in the previous case we can identify the parameters of the (2, 1, 2, 1) model

Ĥ = (Q̂
1
2 + Q̂−

1
2 )2(P̂

1
2 + P̂−

1
2 )(Q̂

1
2 + Q̂−

1
2 )2(P̂

1
2 + P̂−

1
2 )

= q−
1
2 Q̂2P̂ + 2(1 + q−

1
2 )Q̂P̂ + (q

1
2 + 4 + q−

1
2 )P̂ + 2(q

1
2 + 1)Q̂−1P̂ + q

1
2 Q̂−2P̂

+ (q
1
2 + q−

1
2 )Q̂2 + 2(q

1
2 + 2 + q−

1
2 )Q̂+ 2(q

1
2 + 4 + q−

1
2 )

+ 2(q
1
2 + 2 + q−

1
2 )Q̂−1 + (q

1
2 + q−

1
2 )Q̂−2

+ q
1
2 Q̂2P̂−1 + 2(q

1
2 + 1)Q̂P̂−1 + (q

1
2 + 4 + q−

1
2 )P̂−1

+ 2(1 + q−
1
2 )Q̂−1P̂−1 + q−

1
2 Q̂−2P̂−1, (5.19)

as

(h1, h2, e1, e2, e3, e5, e6, e7)(2,1,2,1) = (1, q, q
1
2 , q

1
2 , 1, q

1
2 , q

1
2 , 1). (5.20)

Then we can ask again which elements of the E7 Weyl group generated by

s1, s2, s3, · · · , s7 preserve this parameter and what group those elements form. We again

generate all elements of the E7 Weyl group by using a computer, then we find that the

answer is 3840 elements generated by

s4, s5, s6, s1s7s6s5s4s3s4s5s6s7s1, s2, (5.21)

along with the commuting element s3s4s5s1s6s5s4s3s2s3s4s5s6s1s5s4s3. See figure 9 for the

Dynkin diagram for these elements. The former five elements generate the Weyl group of

D5 while the latter is A1. The result matches again with the study from the superconformal

Chern-Simons matrix model.

Since the E7 Weyl group has 2903040 elements in total, it is not easy to generate the

elements without strategies. We shall explain how we have generated them in appendix A.
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6 Conclusion

In this paper we have studied the symmetry breaking of the quantum curves. We first

find that the symmetry for the classical algebraic curve given in the Weyl group of the

exceptional algebra is promoted to that for the quantum curve in our definition. We then

fix the values of the parameters to those of the superconformal Chern-Simons matrix models

and study the symmetry breaking patterns for these values.

The main motivation of our work is to reproduce the symmetry breaking patterns we

found previously for the superconformal Chern-Simons matrix models. We find that we

can reproduce the results perfectly and at the same time detect an unexpected symmetry

enhancement. After the reproduction, we continue to study the breaking patterns of other

values, partially expecting that this gives “the moduli space of the M2-branes”. We find

that the moduli space does not change from the classical limit q → 1 and conjecture that

this is the case as well for other curves. It is interesting to find that the whole moduli space

of the M2-branes enjoys a generalization of the Weyl group of the exceptional algebra.

Previously the correspondence between the superconformal Chern-Simons matrix mod-

els and the algebraic curves was mainly studied from the analytical viewpoint. We believe

that, along with [31], our computation in terms of the symmetry breaking of the Weyl

group has opened up a new avenue to understand better the correspondence. We shall list

several further directions.

First, our method is applicable to many generalizations and the study in these direc-

tions may lead to many clarifications of the correspondence. As well as the grand canonical

ensembles of the matrix models constructed from other N = 4 U(N)r+1 superconformal

Chern-Simons theories for the Âr quiver diagram with (2.1), those constructed from the

N = 3 theories with the same field contents ((2.1) with {sa}r+1
a=1 being arbitrary integers)

also take the form of the Fredholm determinant (2.6). In these cases Ĥ is given as a product

of 2 cosh(q̂ − sap̂)/2, and hence is expanded by finite terms of Q̂mP̂n with (m,n) ∈ Z2. In

general, the curve is a higher-genus generalization of the del Pezzo curves we have consid-

ered in this paper. It is interesting to study the higher-genus generalizations and compare

with the results in [52].

Secondly, so far in this paper we have mainly restricted our studies to the case without

rank deformations. To fully understand the moduli space of the M2-branes we need to

proceed to the rank deformations. For the rank deformations, however, we encounter

several interesting new points to be clarified which we would like to study more carefully

and report in our future work [49].

Thirdly, the rank deformations of the (2, 1, 2, 1) model have another interesting aspect.

If we consider the (2, 1, 2, 1) model with general choice of six ranks, the whole moduli

space would also include the (4, 2) model, whose curve is not degenerate according to the

definition of degenerate quantum curve in section 5. It would be interesting to study the

rank deformations of the (2, 1, 2, 1) model and identify the special class which keeps the

degeneracy of the E7 curve.

Fourthly, it would be nice to establish the quantum notion of degenerate curves for

general type of singularities. In the case of the classical E7 curve, there is a pair of
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singularities at Q = 0 and Q = ∞, which are exchanged by the symmetry s1 (5.6).

Hence we can define the degeneracy condition for the quantum curve by requiring that

s1, now the similarity transformation of the quantum operators (5.10), remains to be

the symmetry of the quantum curves. This strategy does not work for general un-paired

singularities. Nevertheless, we notice that, if we introduce the q-derivative as dqxf(x) =

(f(qx) − f(x))/(qx − x), the E7 curve (5.8) satisfies H(0, q−1/2h2) = dqQH(0, q−1/2h2) =

dqPH(0, q−1/2h2) = 0 at the singularity on Q = 0 (and the same condition for Q = ∞).

This is analogous to the degeneracy condition for the classical curves (5.2), hence might

be a good starting point. Once we know the definition of quantum degeneracy, it would

be possible to study the models corresponding to the E6 curve or the E8 curve as well,

which can be obtained by starting from the higher genus rectangular curve and tuning the

parameters so that the curve is singular and all but a single genus are degenerate, similar

to the case of the E7 curve [50].

Fifthly, the relation to the q-deformed Painlevé equation is another interesting direc-

tion. It was shown in [53] that the grand canonical ensemble of the ABJM matrix model

satisfies the q-deformed Painlevé equation. On the other hand, the Weyl symmetries we

have studied in this paper are also known to be the symmetries of the q-deformed Painlevé

equations [48]. Hence, our studies of the relation between the superconformal Chern-Simons

matrix models and the Weyl symmetries should be connected via the q-deformed Painlevé

equations. The integrable structure of the superconformal Chern-Simons matrix models

would be made clearer from the studies. Recent developments between matrix models and

Painlevé equations [54, 55] may be helpful in studying the generalizations.

Finally, it is also interesting to study the connection to five-dimensional gauge theories.

Historically the Newton polygons and the dual asymptotic values played an important role

in studying five-dimensional gauge theories constructed from the (p, q)5-brane webs [56].

The superconformal Chern-Simons matrix models studied in this paper can also be realized

by the type IIB brane setups consisting of D3-branes spanning between NS5-branes and

(1, k)5-branes, where the rank of the gauge group is given by the number of D3-branes on

each segment. We hope to clarify the relation between the five-dimensional gauge theories

and the three-dimensional gauge theories.

A Weyl group

In this appendix we comment on the computation of the Weyl group of the exceptional

algebra, when the order, the number of the elements, is large such as E6, E7, E8. See table 4

for the order of the Weyl group for the exceptional algebra W (En) where we denote the

Weyl group of the Lie algebra G by W (G).

A first trial would be to collect all of different elements of the Weyl group from the

simple roots by multiplying them one by one to see whether the transformation is new

or not. Namely, we prepare a set of elements obtained so far and try to generate a new

element of the Weyl group by multiplying the simple roots to those in the original set. If

the transformation is new, we add the new element to the original set. Otherwise we forget

it and proceed to the next multiplication. This is valid for the D5 Weyl group with only
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E3 = A2 ×A1 E4 = A4 E5 = D5 E6 E7 E8

12 192 1920 51840 2903040 696729600

Table 4. The order of the Weyl group for each exceptional algebra #W (En).

A4/(A2 ×A1) D5/A4 E6/D5 E7/E6 E8/E7

16 10 27 56 240

Table 5. The number of cosets of two Weyl groups #
(
W (En)/W (En−1)

)
.

1920 elements in total, though for the E7 Weyl group with 2903040 elements this method

is very time-consuming. The article [57] is helpful for us to improve this situation.

The main time-consuming process would be to judge whether the generated element is

new or not. In fact, for the final step of the E7 Weyl group, we need to multiply 7 elements

to the existing 2903040−1 elements in the set to find out only one, the longest element, by

comparing the generated (2903040−1)×7 elements with each of the 2903040−1 elements.

To improve the situation, it is nice to consider cosets. Namely, if we need to study the

Weyl group of G, we can start from the Weyl group of a subalgebra H(⊂ G) and consider

only the cosets in W (G)/W (H). When we generate the E6 Weyl group from the D5 Weyl

group the number of the cosets W (E6)/W (D5) is 27, while when we generate the E7 Weyl

group from the E6 Weyl group the number of the cosets W (E7)/W (E6) is 56. See table 5

for the number of the cosets of two Weyl groups for the subsequent exceptional algebras.

Then, each time we find out a new coset in W (G)/W (H), as a bonus, we obtain #W (H)

new elements in the Weyl group W (G). We have followed this process to find out the E7

Weyl group. Namely, starting from the D5 Weyl group generated by s1, s4, s5, s6, s7, to

find out the E6 Weyl group generated by s1, s3, s4, s5, s6, s7 all we have to do is to find

out the 27 cosets. (The numbering of the simple roots is the same as in figure 8.) Each

time we find out one element in the coset, we can generate 1920 elements in the original

E6 Weyl group. See table 6 for the representatives of the cosets W (E6)/W (D5). After

generating the E6 Weyl group, to find out the E7 Weyl group, we only need to find out

the 56 cosets, which can be done similarly. See table 7 for the representatives of the cosets

W (E7)/W (E6). This process saves a lot of time, though the computation still takes several

hours on a decent laptop computer.

We can further improve the computation. Namely, although we have reduced the

computation by considering the coset, in the final step for E7 we still need to generate

(56− 1)× 7 elements and compare them with the existing 2903040− 51840 elements. It is

nice if we can compare the generated elements only with those in the cosets W (G)/W (H).

The main idea in [57] is to restrict the consideration to a Weyl chamber of W (H).

Namely, by changing our transformations into the standard Weyl actions, we can choose

the representatives of the cosets in the Weyl chamber. Since we only consider those rep-

resentatives, if the generated element is not located in the Weyl chamber we can simply

discard it without comparing with the existing representatives and proceed to the next

element. In this sense we do not need to compare with the whole set of the Weyl group
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step representatives

0 1

1 s3

2 s3s4

3 s3s4s5

4 s3s4s5s1, s3s4s5s6

5 s3s4s5s1s6, s3s4s5s6s7

6 s3s4s5s1s6s5, s3s4s5s1s6s7

7 s3s4s5s1s6s5s4, s3s4s5s1s6s5s7

8 s3s4s5s1s6s5s4s3, s3s4s5s1s6s5s4s7, s3s4s5s1s6s5s7s6

9 s3s4s5s1s6s5s4s3s7, s3s4s5s1s6s5s4s7s6

10 s3s4s5s1s6s5s4s3s7s6, s3s4s5s1s6s5s4s7s6s5

11 s3s4s5s1s6s5s4s3s7s6s5, s3s4s5s1s6s5s4s7s6s5s1

12 s3s4s5s1s6s5s4s3s7s6s5s1, s3s4s5s1s6s5s4s3s7s6s5s4

13 s3s4s5s1s6s5s4s3s7s6s5s1s4

14 s3s4s5s1s6s5s4s3s7s6s5s1s4s5

15 s3s4s5s1s6s5s4s3s7s6s5s1s4s5s6

16 s3s4s5s1s6s5s4s3s7s6s5s1s4s5s6s7

Table 6. The 27 cosets of the D5 Weyl group (generated by s1, s4, s5, s6, s7) in the E6 Weyl group

(generated by s1, s3, s4, s5, s6, s7).

but instead only with the representatives. After the simplifications are taken into account,

finally we can generate the E7 Weyl group within a few minutes.
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step representatives

1 2

2 23

3 234

4 2345

5 23451, 23456

6 234516, 234567

7 2345165, 2345167

8 23451654, 23451657

9 234516543, 234516547, 234516576

10 2345165432, 2345165437, 2345165476

11 23451654327, 23451654376, 23451654765

12 234516543276, 234516543765, 234516547651

13 2345165432765, 2345165437651, 2345165437654

14 23451654327651, 23451654327654, 23451654376514

15 234516543276514, 234516543276543, 234516543765145

16 2345165432765143, 2345165432765145, 2345165437651456

17 23451654327651435, 23451654327651456, 23451654376514567

18 234516543276514354, 234516543276514356, 234516543276514567

19 2345165432765143546, 2345165432765143567

20 23451654327651435465, 23451654327651435467

21 234516543276514354651, 234516543276514354657

22 2345165432765143546517, 2345165432765143546576

23 23451654327651435465176

24 234516543276514354651765

25 2345165432765143546517654

26 23451654327651435465176543

27 234516543276514354651765432

Table 7. The 56 cosets of the E6 Weyl group (generated by s1, s3, s4, s5, s6, s7) in the E7 Weyl

group (generated by s1, s2, s3, s4, s5, s6, s7). We abbreviate s1, s2, s3, s4, s5, s6, s7 as 1, 2, 3, 4, 5, 6, 7

for simplicity.
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