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1 Introduction and summary of results

Supersymmetry is an efficient tool for understanding the microscopic structure of black

holes, as exemplified by the wealth of developments and precision tests achieved in the last

two decades, building on the original constructions of [1, 2] for counting the entropy for

asymptotically flat BPS black holes. Supersymmetric black holes in asymptotically anti-de

Sitter (AdS) spacetimes with a known field theory dual provide a solid testing ground for

extending these results beyond the near-horizon region and into more general examples,

e.g. by allowing more general horizon topologies and including rotation.

The construction of the relevant black hole solutions in four dimensions has a long

history (see e.g. [3, 4]), leading to the first examples of static supersymmetric black holes

in AdS4 with a spherical horizon of finite area in gauged supergravity coupled to vector

multiplets [5–7]. These examples were later extended to allow for a full set of electromag-

netic charges [8–10]. Most recently, the microstate counting for these static solutions in the

gauged STU model (admitting an uplift to M-theory) was performed successfully in the

large N limit of the dual ABJM theory via supersymmetric localization [11–14]. The match

was also extended to various other examples and in different directions, see e.g. [15–21] and

references therein. The presence of a magnetic flux (in the electrically gauged symplectic

frame) is crucial for preserving supersymmetry by the so called supersymmetric twist: the

contribution of the spin connection cancels against the gauged R-symmetry in the BPS

equations. The associated ground states of the dual field theory with magnetic flux are

counted by the topologically twisted index [22].

The twist characterizing the static BPS solutions in AdS4 leads to an additional spe-

cial feature: the fermionic symmetries commute with spatial rotations [23]. It is therefore

immediate to see that adding nonzero angular momentum does not break any further sym-

metries, unlike the case of supersymmetric asymptotically flat black holes. Constructing

explicitly such black holes is however a nontrivial task and it is the purpose of the present

work to find such solutions in N = 2 gauged supergravity models with embedding in string

or M-theory.

The supersymmetric rotating black hole solutions that have appeared in the literature

so far include electrically charged 1/4-BPS solutions [24] without a regular static limit,

as well as 1/4-BPS black holes with magnetic charges [25, 26], which must necessarily

have a non-compact horizon. The known non-extremal rotating black hole configurations

supported by scalars and gauge fields [27–31], also display similar features and are not

continuously connected to static magnetic black holes with spherical horizons, for which

the counting is known.

In this paper, we construct 1/4-BPS black hole solutions that have either compact

or non-compact horizons and realize the same topological twist via magnetic flux1 as the

static black holes of [5–7], to which they reduce in a static limit. We find that the rota-

tion manifests itself as a slicing of spacetime in terms of a squashed sphere (or a squashed

1Here we again refer to a frame where the gauging is purely electric. More generally, this requirement

implies that the vector of FI gaugings must be mutually nonlocal with the vector of charges, i.e. their inner

product must not vanish.

– 2 –



J
H
E
P
0
1
(
2
0
1
9
)
1
9
9

hyperbolic space in the non-compact case), rather than a constant curvature one as in

the static case. We therefore expect the microstate counting for these rotating AdS black

holes to be based on the refined topologically twisted index on a similarly squashed back-

ground as described in [22]. Such a microstate counting can provide precious insight on

the microscopic structure of more realistic spinning black holes, belonging to the class of

extremal Kerr with or without cosmological constant, since the relevant degrees of freedom

are expected to be universal and reside in the near horizon geometry.

In this work we make an extensive use of the real formulation of supergravity [32,

33] in terms of the rank-four symplectic covariant tensor I4 [34–36]. Although this way

of repackaging 4d N = 2 supergravity is less popular in the literature, we find it very

convenient for solving the BPS equations. We therefore give an extensive introduction to

the real formulation and the properties of the quartic invariant. The manifest symplectic

covariance of the real formulation makes it possible to solve for a very general near-horizon

ansatz, which allows for a full set of electromagnetic charges (qI , p
I), subject to the twisting

condition,2 and angular momentum J bounded from above, for arbitrary symmetric models

and gaugings. The real, or I4, formalism then also allows us to write down full analytic

flows to the asymptotic AdS4 region in the models we consider.

We finish this work with a proposal for the BPS entropy function for our rotating solu-

tions, such that we can formulate the black hole entropy and attractor equations through

an extremization principle. The existence of a BPS entropy function has proven crucial in

the successful holographic matches so far. Adding rotation, we find a more intricate form

of the entropy function that simplifies drastically only for a special class of models that

does not exhibit AdS4 asymptotics. Our results therefore provide a nontrivial check for

the large N evaluation of the refined twisted index of the holographically dual theories.

As an appetizer, we can already present the general formula for the Bekenstein-

Hawking entropy of the spherical rotating black holes in AdS4,

SBH =
πl2AdS√

2GN

√√√√1

4
I4(Γ,Γ, G,G) +

√
1

16
I4(Γ,Γ, G,G)2 − 4

(I4(Γ) + J 2)

l4AdS

, (1.1)

given in terms of the AdS length scale lAdS, the conserved angular momentum J , and the

symplectic vectors of electromagnetic charges Γ and gauging parameters G.3 The rank-four

symplectic tensor I4 then encodes the properties of the scalar manifold, and we discuss it

more explicitly in the main text emphasizing its properties for the STU model (which has

a higher-dimensional origin for several choices of gauging vectors G).

Some other interesting questions are left for future investigations. For instance, in

this paper we have constructed black hole solutions which do not admit an ergosphere

associated to the Killing vector ∂t: it would be interesting to construct the additional

Kerr-like orbit, and ultimately connect these solutions as limits of a rotating black hole

2The vanishing of the NUT charge, imposed to ensure causality, provides an additional constraint among

the set of conserved charges.
3Notice that these black holes, just like those considered for the microstate counting in the static case [5],

do not have a well defined flat space limit.
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with temperature (non-extremal generalization), along the lines of [30, 31]. It would be

moreover interesting to compute the renormalized on-shell action of these solutions, and

elucidate the holographic mapping of the fugacities. Another interesting direction would

be to use the general form of the four-dimensional solution presented here to generate

rotating five-dimensional black string solutions [37], via the uplift procedure along the

lines of [38–40]. We hope to come back to these points in the near future.

The rest of this paper is organized as follows. Section 2 provides some necessary

background, in particular the real formulation of the supergravity degrees of freedom and

the relevant BPS equations for models with symmetric scalar manifold. In section 3 we

summarize some results on the static solutions and their possible asymptotics that are

useful in later sections and allow to build intuition on the construction of solutions in

the real formulation. We then proceed to analyze the rotating near horizon geometry

in section 4, adopting an ansatz that incorporates the topological twist for a squashed

internal space. This results in a family of rotating BPS attractors satisfying the same

number of constraints as the corresponding static one, to which it reduces when the rotation

parameter is turned off. We provide several examples for such near-horizon geometries in

section 4.3, including (the Kaluza-Klein reduction of) the near-horizon geometry of the five

dimensional solutions in [41, 42], as well as new examples in the STU model with gaugings

that admit an AdS4 vacuum. In section 5 we study the complete BPS black hole flow

interpolating between the near-horizon geometry and asymptotically locally AdS4 space,

once again providing an analytic example solution. We further comment on the asymptotic

properties of our solutions and identify the conserved quantities. Finally, section 6 focuses

on the entropy function for our family of solutions, providing an appropriate extremization

principle similar to the one used in the static case to match to the twisted index in the

dual field theory. The two appendices provide more details on our conventions on N = 2

supergravity coupled to vector multiplets with a symmetric scalar manifold and on the

reduction of the solutions of [41–43], respectively.

2 Supergravity formalism and BPS equations

2.1 FI gauged supergravity

Our starting point is the bosonic action for abelian gauged supergravity [44, 45],

S4D =
1

16π

∫
M4

(
R ?4 1− 2 gī dt

i ∧ ?4dt̄
̄ − 1

2
F I ∧GI + 2Vg ?4 1

)
, (2.1)

which describes neutral complex scalars ti (belonging to the nv vector multiplets) and

abelian gauge fields Fµν
I , I = {0, i} = 0, . . . nv (from both the gravity multiplet and the

vector multiplets), all coupled to gravity. We refer to appendix A for more details on our

conventions for N =2 supergravity. The dual gauge fields, GµνI , are given in terms of the

field strengths and the scalar dependent period matrix NIJ , by

G−µνI = NIJF−µνJ , (2.2)
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where the explicit expression for the period matrix is not necessary in the following. The

metric on the special Kähler target space gī and the period matrix NIJ are completely

specified by a holomorphic homogeneous function of degree two F (X), of the projective

coordinates XI on the scalar manifold, as in [44, 45]. One may recover the physical scalars

as ti = Xi/X0. One can repackage the scalars in terms of a symplectic covariant section, as

V = eK/2

(
XI

FI

)
, FI =

∂F

∂XI
, (2.3)

where K is the Kähler potential and FI stands for the derivatives of F (X). Note that V is

uniquely specified by the physical scalars up to a local U(1) transformation.

Finally, the scalar potential Vg takes the form

Vg = gīZi(G) Z̄̄(G)− 3 |Z(G)|2 , (2.4)

where we used the definitions of the central charge

Z(G) = 〈G,V〉 ≡ eK/2
(
gIX

I − gI FI
)
, (2.5)

and its Kähler covariant derivative, Zi(G). The constant symplectic vector G = {gI , gI}
defines the so-called Fayet-Iliopoulos (FI) terms, which specialize the precise combination

of U(1) gauge fields gauging the R-symmetry. Note that in (2.5) we defined in passing the

inner product between two symplectic vectors, which will be often used in the following.

In the abelian class of gaugings we consider in this paper, the FI terms specify the

coupling of the gravitini,4 as their kinetic term contains the minimal coupling

εµνρσψ̄µiγν Dρψσ
i ≡ εµνρσψ̄µiγν

(
∂ρ +

i

2
〈G,Aρ〉

)
ψσ

i , (2.6)

〈G,Aµ〉 ≡ gIAµI − gIAµI .

This coupling is in general non-local, due to the presence of the dual gauge fields AµI .

However, as for any vector, G can always be rotated to a frame such that it is purely

electric, i.e. gI = 0, leading to a local coupling of the gauge fields. More generally, one can

consider couplings of magnetic vectors as well, using the embedding tensor formalism [46,

47], which requires the introduction of extra auxiliary fields. For the theories discussed in

this paper however, the bosonic action is only affected through the nontrivial potential (2.4),

which can be straightforwardly written in an electric/magnetic covariant way, as above,

reproducing the result obtained using the embedding tensor formalism. Based on this

observation, we use covariant versions of all quantities, since all results for the bosonic

backgrounds must necessarily be covariant under electric/magnetic duality. We therefore

need not choose a frame for the FI terms explicitly from the outset, only specifying a frame

when discussing examples.

The symplectic section V, along with the vector of FI terms, G, and the natural

symplectic vectors of field strengths and charges in (A.1), may be used to describe all the

4We have omitted the fermionic completion of the Lagrangian, which can be found in [44, 45].
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supergravity degrees of freedom in terms of symplectic covariant objects. The action (2.1)

can be recast as

S4D =
1

16π

∫
M4

(
R ?4 1− i〈DµV̄, DµV〉 −

1

2
F I ∧GI + 2Vg ?4 1

)
, (2.7)

where Dµ stands for the Kähler connection. Note that the kinetic terms for the vector fields

cannot be written in a manifestly duality covariant form, while keeping Lorentz invariance.

As in this paper we concentrate on stationary black hole solutions, we can in fact

describe the degrees of freedom of the vector fields in a duality covariant form. The

requirement of a timelike isometry is enough to cast the spacetime in the form

ds2
4 = −e2U (dt+ ω)2 + e−2U ds2

3 , (2.8)

where ds2
3 is the metric of a three-dimensional base space, on which the function U , the

one-form ω and all other fields discussed above are defined. Similarly, the gauge field

strengths in (A.1) can be decomposed as

F = d
(
ζ (dt+ ω)

)
+ F = d

(
ζ (dt+ ω)

)
+ dA , (2.9)

where ζ, F , A denote the symplectic vectors of timelike components and spatial field

strengths and potentials, for both electric and magnetic gauge fields. The complex self-

duality condition (A.8) can be used to relate the time- and spacelike components as

dζ = e2U J ? (F + ζ dω) , (2.10)

where ? will denote the three-dimensional Hodge operator for the remainder of this paper.

Finally, the degrees of freedom of the scalars are again described by the section, in a

combination encoding both the physical scalars and the scale factor eU , as

R = 2eU Re
(
e−iαV

)
, (2.11)

where α is an arbitrary function, parametrizing the unphysical overall phase of the sym-

plectic section. Using the timelike isometry one may reduce the original four-dimensional

action down to three dimensions, which leads to the so-called real formulation of special

geometry. Sparing the reduction details, here we directly give the resulting Lagrangian as

derived in [32, 33]

e−1L =
1

2
R3 − H̃MN (∂RM ∂RN − ∂ζM ∂ζN ) +

1

H
V3d

− 1

16H2
〈R, ∂R〉2 +

1

8H2
〈R, ∂ζ〉2 − 1

4H2

(
∂φ̃+

1

2
〈ζ, ∂ζ〉

)2

, (2.12)

where the field strengths F were dualised into the ζ’s using (2.10) and the scalar φ̃ is

defined through

dφ̃+
1

2
〈ζ, dζ〉 = 4H2 ? dω . (2.13)
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The function H(R) is the so-called Hesse potential, which plays a role analogous to the pre-

potential in four dimensions, and in fact the two objects are related through the reduction.

When evaluated with R as in (2.11), the Hesse potential evaluates to

H = −1

2
e2U , (2.14)

while the remaining objects in (2.12) are given as

H̃ = −1

2
log(−2H) , H̃M =

∂H̃

∂RM

, H̃MN =
∂2H̃

∂RM∂RN

. (2.15)

The scalar potential V in (2.4) leads to the following expression for the potential in three

dimensions
1

H
V3d = GMGN

(
−H̃MN + 4H̃MH̃N

)
+

1

8H2
〈G,R〉2 . (2.16)

Before closing, we point out the existence of the dual coordinates, defined as

IM = −2ΩMNH̃
N = 2e−U Im

(
e−iαV

)
M
, (2.17)

where ΩMN is the (inverse) anti-symmetric symplectic structure matrix that serves for

raising and lowering indices and in the second equality we re-expressed this object in terms

of the section. This equation expresses the fact that only half of the components in the

symplectic section (2.3) are independent, so that its imaginary part is given in terms of

the real part. Note that the variables I are useful in obtaining explicit solutions, as will be

seen in the following, so that an explicit algebraic way of computing the Hesse potential H

is very useful. This is true for the symmetric models considered in the rest of this paper.

2.2 Symmetric models and the real formulation

We henceforth fully restrict our considerations to models whose special Kähler target man-

ifold parametrized by the scalars is a symmetric space, classified in [48]. For the cubic

models, i.e. whose prepotential is of the form

F = −1

6
cijk

XiXjXk

X0
, (2.18)

this requirement translates into the following identity for the constant tensor cijk

4

3
δi(l cmpq) = cijk cj′(lm cpq)k′ δ

jj′ δkk
′
. (2.19)

In terms of duality covariant objects, the property (2.19) is expressed by the existence of

a rank-4 symplectic tensor satisfying a number of identities, discussed in appendix A.2.

When contracted e.g. with a charge vector Γ = {pI , qI}, this defines the quartic form

I4(Γ) = −(p0q0 + piqi)
2 +

2

3
q0 cijkp

ipjpk − 2

3
p0 cijkqiqjqk + cijkp

jpk cilmqlqm , (2.20)

which is invariant under symplectic transformations. This is particularly useful in view of

the fact that symplectic transformations do not necessarily leave the form of the prepo-

tential (2.18) invariant, while a prepotential might not exist at all in certain frame. The

– 7 –
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duality covariant formulation, based on the quartic invariant (2.20), allows to treat all

frames on the same footing.

The quartic invariant provides an explicit solution for the Hesse potential H of symmet-

ric models, which encodes the three-dimensional real formulation of the theory (2.12), as

H = −1

2
e2U = −1

2

√
I4(R) . (2.21)

This identification allows for a completely algebraic rewriting of the various objects in the

previous section in terms of contractions of I4 with the various symplectic vectors. In

particular, (2.17) becomes

I =
1

2I4(R)
I ′4(R) =

1

2
e−4U I ′4(R) , (2.22)

while its inverse is similarly given by

R = − 1

2I4(I)
I ′4(I) = −1

2
e4U I ′4(I) . (2.23)

We refer again to appendix A.2 for the definition of I ′4 and higher derivatives of I4 as

symplectic tensors, as well as various identities among them. In what follows we will make

extensive use of the quartic invariant I4 contracted with the various symplectic vectors

describing the scalars, vectors, charges, FI terms and so on in the theory. In fact one can

completely write the Lagrangian using I4 contractions. For future reference, we provide

the expressions for the derivatives of H̃, from which the Lagrangian (2.12) is built

H̃M = −1

4

∂MI4(R)

I4(R)
, (2.24)

H̃MN =
1

4I4(R)

(
−∂M∂NI4(R) +

1

I4(R)
∂MI4(R)∂NI4(R)

)
. (2.25)

A benchmark model in this class is provided by the STU model (sometimes also called

electric STU model to distinguish it from its symplectically rotated version we discuss

below), with prepotential

F STU = −X
1X2X3

X0
, (2.26)

so that it describes three vector multiplets coupled to supergravity. In this case the only

non-vanishing coefficients are c123 = 1 and permutations lead to c123 = 1 and permutations.

The quartic invariant of a charge vector is therefore

I4(Γ)STU = − (p0q0 + piqi)
2 + 4 q0p

1p2p3 − 4 p0q1q2q3

+ 4(p1p2q1q2 + p1p3q1q3 + p2p3q2q3) . (2.27)

From this expression, it is clear that any purely electric or magnetic Γ leads to I4(Γ)STU = 0.

This in turn implies that an AdS4 vacuum in this model requires a mixed electric/magnetic

vector of FI terms, G, since the cosmological constant is controlled by I4(G) in any sym-

metric model (which we show carefully in section 3).
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If we apply the symplectic transformation defined by
p0

pi

qi
q0

→

−p0

−qi
pi

−q0

 , (2.28)

on all symplectic vectors, one transforms the prepotential (2.26) into the magnetic STU

model

FmSTU = −2 i
√
X0X1X2X3 , (2.29)

while (2.27) becomes

I4(Γ)mSTU = − (p0q0 − piqi)2 + 4 q0q1q2q3 + 4 p0p1p2p3

+ 4(p1p2q1q2 + p1p3q1q3 + p2p3q2q3) . (2.30)

This frame, despite its non-cubic prepotential, is equivalent to the one in (2.26), but allows

for an AdS4 vacuum with a purely electric gauging. In fact, this model arises by consistent

truncation of M-theory [49, 50], so that the corresponding solutions may be oxidized to

eleven-dimensional supergravity.

We finish this subsection by briefly mentioning two simple models that can be obtained

by truncations of (2.26) and (2.29). In particular, the T3 model is found by setting all

three scalars in the STU model to be equal, with the result

F T3
= − (X1)3

X0
,

I4(Γ)T
3

= − (q0p
0)2 − 6q0p

0q1p
1 + 3(q1p

1)2 + 4q0(p1)3 − 4p0(q1)3 . (2.31)

Similarly, one may obtain the minimally coupled X0X1 model

FX
0X1

= −iX0X1 , I4(Γ)X
0X1

= (q0q1 + p0p1)2 , (2.32)

by identifying X2 = X0 and X3 = X1 in the prepotential (2.29) and appropriately rescaling

the scalars and charges.

2.3 BPS equations

The BPS equations for solutions of abelian gauged N = 2 supergravity with a timelike

Killing vector were given in [51–53]. We start from the BPS equations as summarized

conveniently given in the latter paper for the timelike class, for which the metric takes the

form (2.8), as appropriate for black hole solutions.

The BPS equations fix the gauge field strengths F in (2.9) in terms of the scalars, so

that the Maxwell equations and Bianchi identities take the form of a Poisson equation on

the base metric, as

dF = −d
[
?dI − 2 e−4U 〈?Ĝ,R〉R+ e−2UJ ? Ĝ

]
+ dω ∧ Ĝ = 0 , (2.33)

– 9 –
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where J is the scalar dependent complex structure in (A.7), Ĝ is the direct product of the

vector of gaugings with a one-form.5 Introducing the vielbeine ex, with x, y . . . = 1, 2, 3,

for the three-dimensional base metric ds2
3, Ĝ must satisfy the equation

dex − 〈Ĝ, I〉 ∧ ex + εxyz〈A, Ĝy〉 ∧ ez = 0 , (2.34)

where A denotes the spatial gauge potentials in (2.9). The final BPS equation imposes

that the rotation one-form ω must satisfy

?dω = 〈dI, I〉 − 2e−4U 〈Ĝ,R〉 (2.35)

= e−4U 〈R, dR+ 2Ĝ〉 , (2.36)

where in the second line we re-expressed the first term through the variable R. The

conditions (2.33), (2.34) and (2.35) are sufficient to preserve supersymmetry.

The Poisson equation (2.33) guarantees the local existence of the spatial gauge field

strengths, F , which can be obtained by writing this equation as a total derivative. However,

this is subtle in general due to the last term on the r.h.s. , as it can be written as a total

derivative in more than one way. In particular, invariance of F following from (2.33) under

time reparametrizations, ω → ω + dσ, for any function σ on the base, requires that Ĝ be

exact on a simply connected manifold. We write

Ĝ = Gdρ , (2.37)

for some function ρ, to be determined by (2.34) once a particular base is chosen. One may

then recast (2.33) as the flow equation

?dI − 2 e−4U 〈?Ĝ,R〉R+ e−2UJ ? Ĝ− ρdωG+ F = 0 . (2.38)

Here, we note that our choice of total derivative is consistent with the complex anti-

selfduality condition (A.8), where the time components of the gauge fields are given

by (2.10) as

dζ = dR− Ĝ . (2.39)

The flow equation (2.38) can be simplified using the identity (A.17), repeated here in

terms of the variables R and I
1

2
I ′4(I, I,Γ) = 2 〈Γ, I〉 I + 4 e−4U 〈Γ,R〉R− 2 e−2UJ Γ , (2.40)

leading to

?dI + 〈?Ĝ, I〉 I − 1

4
I ′4(I, I, ?Ĝ) − ρdωG+ F = 0 . (2.41)

In this form, the flow equation is algebraic in terms of the combination I, allowing for

simpler manipulation using techniques similar to [9, 10], as will be seen below.

5This is necessarily so for theories without hypermultiplets, while in the more general case Ĝ is replaced

by the hypermultiplet moment maps.
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In all the cases we consider we are interested in black holes corresponding to a radial

flow from the asymptotic region to the near-horizon geometry. We can therefore already

specify an ansatz for the three-dimensional base space as a product of the radial direction

with a 2d surface Σ, as

ds2
3 = dr2 + e2ψ(r) ds2

Σ . (2.42)

We can then decompose the vielbein in terms of the veilbein êa on the surface Σ

e1 = dr , ea = eψ êa , (2.43)

where the indices a, b . . . = 2, 3. For this basis it turns out the function ρ associated with

the one-form Ĝ becomes the radial coordinate, such that

Ĝ = G dr . (2.44)

With this ansatz we find further simplifications in (2.34) and (2.41) so that we can finally

present the full set of BPS equations in the compact form

ψ′ = 〈G, I〉 , (2.45a)

ω̂ab = εab 〈G,A〉 , (2.45b)

?dω = 〈dI, I〉+ 〈G, I ′4(I)〉 dr , (2.45c)

e−ψ d(eψI) =
1

4
I ′4(I, I, G) dr +G r ? dω − ?F , (2.45d)

where εab = ε1ab and ω̂ab denote the antisymmetric symbol and the spin connection on

the Riemann surface Σ, respectively. In order to obtain black hole solutions, one must

solve (2.45) for a given electromagnetic charge vector Γ = {pI , qI}, defined as

Γ ≡ 1

VolΣ

∫
Σ
F , (2.46)

along with boundary conditions for the scalars that will be spelled out in the following

section. Note that the requirement (2.46) fixes the spatial field strengths F completely in

the static case in general, as well as in a class of rotating asymptotically flat black holes [54],

but not for rotating black holes in gauged supergravity, as will be seen in due course.

3 Warm-up: asymptotics and static black holes

Before proceeding with the analysis of the BPS equations for rotating black holes, we

pause to present some known properties of the solutions to (2.45), in order to gain some

extra intuition and understanding of the real formulation of supergravity. We focus on

the possible asymptotic structure of the solutions depending on the gauging, listing known

examples for each case, and then give a short review of the static asymptotically AdS4

black hole solutions.
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3.1 Asymptotic structure and string theory embeddings

We first consider the asymptotic behaviour of solutions, depending on the model and

on the choice of gauging. As it turns out, for scalar manifolds specified by the cubic

prepotential and in particular for the STU model, one can asymptotically realize various

possibilities, including AdS4, Minkowski space, as well as hyperscaling violating Lifshitz

(hvLif) spacetimes,6 depending on the choice of an explicit gauging vector, G. For each of

these vacua and types of gauging vectors we then give examples of models with a string/M-

theory origin.

We consider the following expansion in the asymptotic region, around r → ∞,

parametrized by a constant λ and a constant symplectic vector A2, as

e2ψ I = λ I ′4(G) r3 +A2 r
2 +O(r) , (3.1)

from which the function eψ is determined from (2.45a) as

e2ψ = 2λ I4(G) r4 +
2

3
〈G,A2〉 r3 +O(r2) . (3.2)

One can easily verify that (3.1)–(3.2) solve the flow equation (2.45d) up to a first order

expansion asymptotically, for any λ and any A2 that satisfies

〈A2, I
′
4(G)〉 = 0 . (3.3)

The asymptotic expansion for the combination in (3.1) specifies the relevant boundary

conditions for all solutions considered in this paper, depending on the choice for the gauging

and the properties of A2. We distinguish four cases depending on the properties of the

vector G:

• AdS4 vacuum: I4(G) 6= 0, G is generic (rank-4),

• hvLif (class I): I4(G) = 0, I ′4(G) 6= 0, G is restricted (rank-3),

• hvLif (class II): I4(G) = I ′4(G) = 0, I ′′4 (G) 6= 0, G is small (rank-2),

• R1,3 vacuum: 1
4 I4(G,G,Γ1,Γ2) = −〈G,Γ1〉 〈G,Γ2〉, G is very small (rank-1).

To make things explicit, let us consider the case of the STU model, for which a gauging

vector with components

G = {g0, g1, g2, g3, g0, g1, g2, g3}T , (3.4)

leads to the following I4(G) (cf. (2.27))

I4(G)STU = −
(∑

I

gIg
I

)2

+ 4 g0g
1g2g3 − 4 g0g1g2g3

+ 4(g1g2g1g2 + g1g3g1g3 + g2g3g2g3) . (3.5)

6For these latter hyperscaling violating geometries the potential is not stabilized at infinity: the scalar

fields do not reach asymptotically a constant value. With a slight abuse of terminology we will refer to

them as “runaway vacua”.
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Depending on the choice of nonvanishing components of G we can have all of the options

mentioned above. We proceed to discuss the properties of the asymptotic geometries of

each class that are important in later sections, providing string theory embeddings from

reductions of higher dimensional supergravity.

AdS4: we start with the generic case, where the gauging vector G is rank-4, so that the

constant λ is fixed in terms of the AdS4 radius as λ = 1
2 I4(G)−1/2, and (3.1)–(3.2) become

e2ψ I =
1

2
√
I4(G)

I ′4(G) r3 +A2 r
2 +O(r) ,

e2ψ =
√
I4(G) r4 +

2

3
〈G,A2〉 r3 +O(r2) , (3.6)

It follows that the four dimensional metric (2.8) for the base (2.42) becomes asymptotically

ds2
AdS4

= −
√
I4(G) r2 dt2 +

1√
I4(G)

(
dr2

r2
+ 2 I4(G)r2 ds2

Σ

)
, (3.7)

which is the standard metric on AdS4 up to rescaling of the time and radial coordinates.

An example generic vector is given by

G = {g0, 0, 0, 0, 0, g1, g2, g3}T ⇒ I4(G) = −4 g0g1g2g3 , (3.8)

for the well known case of the gauged STU model in 4d. The choice −g0 = g1 = g2 =

g3 = 1, after symplectically rotating as in (2.28), corresponds to the STU model in the

frame (2.29), which arises from maximal 4d gauged supergravity and thus from a direct

reduction of 11d supergravity on S7 [50].

hvLif: a less restricted class of asymptotics is given by the hyperscaling violating Lifshitz

(hvLif) runaway vacua, a two-parameter family of asymptotic geometries that includes AdS

space as a special case. For the general definition and main properties of hvLif solutions we

refer to [55]. Here, we use the parametrization of the hvLif runaway vacua in terms of two

constants, the dynamical exponent z and the hyperscaling violation exponent θ, given by

ds2
hvLif = r−θ

(
−r2z dt2 +

dr2

r2
+ r2 ds2

Σ

)
, (3.9)

which reduces to AdS4 for z = 1, θ = 0. We divided the hvLif solutions in class I and II

depending on the rank of the gauging vector G, but in fact there are various possibilities for

the values of z and θ in each case, arising by imposing constraints on the subleading terms

specified by the vector A2. Instead of giving a general discussion, we restrict ourselves here

to the explicit examples of interest for us.

Within the rank-3 class for G (class I), the metric functions turn out to scale as

eU ∼ r1/2, eψ ∼ r3/2 in the general case, leading to the exponents z = 0 and θ = −2.

However, in this paper we are interested in solutions that can be lifted to asymptotically

AdS5 geometries. This is achieved by imposing the constraint

I4(I ′4(G), I ′4(G),A2,A2) = 0 , (3.10)
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on the subleading vector A2. In this special case, the expansion in (3.1)–(3.2) describes

a behaviour where e2U ∼ eψ ∼ r3/2. The asymptotic four dimensional metric then takes

the form

ds2
hvLifI

= −r3/2 dt2 +
dr2

r3/2
+ r3/2 ds2

Σ , (3.11)

which, after redefining the radial variable as r = ρ2 and rescaling the other coordinates by

a constant factor, takes the form

ds2
hvLifI

= ρ

(
−ρ2 dt2 +

dρ2

ρ2
+ ρ2 ds2

Σ

)
. (3.12)

The metric (3.12) is of the hvLif type with exponents θ = −1 and z = 1, in the nota-

tion of [55].

A relevant example within the STU model that we use in the following is given by

G = {0, 0, 0, 0, g0, g1, g2, g3} ⇒ I4(G) = 0, (I ′4)0(G) =
∂I4(G)

∂g0
= −4 g1g2g3 , (3.13)

This possibility, with g1 = g2 = g3 = 1
2 arises from a dimensional reduction of five-

dimensional STU gauged supergravity which is a further truncation of maximal 5d super-

gravity. Solutions of this theory have interpretation as asymptotically AdS5×S5 solutions

in type IIB supergravity. The four-dimensional hvLifI runaway vacuum indeed corresponds

to the dimensional reduction of AdS5 as discussed in [38, 39]. We will not be further con-

cerned here with hvLif solutions of class II, coming from rank-2 gaugings.

Minkowski: for the case of G being very small, the potential (2.16) vanishes upon us-

ing (2.25), so that the bosonic Lagrangian is identical to that of ungauged supergravity,

even though G still appears in the gravitino coupling (2.6). Since Minkowski space is not a

supersymmetric vacuum in abelian gauged supergravity, asymptotically flat solutions are

necessarily non-BPS. Nevertheless, one may still construct such black hole solutions start-

ing from supersymmetric attractors of the type described in [56], so we briefly record this

case as well.

An example very small vector is given by

G = {0, 0, 0, 0, g0, 0, 0, 0}T ⇒ I4(G) = 0, I ′4(G) = 0 , (3.14)

for any cubic symmetric model. This possibility arises explicitly from a Sherk-Schwarz

reduction of five-dimensional ungauged supergravity with a symmetric scalar manifold, as

explained in [57]. In turn this means one can view solutions of this theory as solutions to

11-dimensional supergravity on appropriate CY3×S1 compactifications with a twist along

the circle.

3.2 Review of static AdS4 black holes

As an illustration of the real formulation for the BPS equations, we present here a short

summary of the known static BPS black hole solutions in gauged supergravity.
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It is instructive to first consider (2.45a). We already used the ansatz in (2.42) where

the function ψ only depends on the radial coordinate, therefore we can choose an ansatz

for the symplectic variable I in (2.17) in the following way

I = e−ψ H(r) + f(r,Σ) G . (3.15)

Here, H(r) is a radially dependent symplectic vector and f(r,Σ) is an arbitrary function

on the base (2.42), i.e. that can depend also on the coordinates on the Riemann surface

Σg. Note that we have chosen the second term in (3.15) proportional to G, so that it drops

out of (2.45a), due to the antisymmetry of the symplectic inner product, 〈G,G〉 = 0, but

in principle any vector that is mutually local with G could be used to the same effect, so

that we arrive at the equation

(eψ)′ = 〈G,H〉 . (3.16)

In the static case it can further be shown that f(r,Σ) = 0 but we make use of this freedom

in the equation in the construction of the rotating solutions in the following sections.

We now restrict to the static case, for which the general black hole solution is

known [10]. However, for illustrational purposes, we further restrict to the simpler class of

solutions appearing in [5–7, 9] for which H is linear in the radial variable7

H(r) = H0 +H∞ r , (3.17)

for some constant symplectic vectors H0 andH∞ that are to be fixed by the BPS equations.

The names are appropriately chosen as H0 gives the near-horizon (r → 0) value of the

scalars, while H∞ fixes the scalars asymptotically (r → ∞). From the discussion of the

asymptotics in the previous subsection, we can already see from (3.1) that

H∞ = λI ′4(G) , (3.18)

for a constant λ that is usually chosen by convention depending on the type of asymptotics.

The explicit form will help us simplify substantially the remaining equations using the

various identities in appendix A.2. Notice that we can already give the general solution for

the metric function ψ(r),

eψ = 〈G,H0〉 r + 2λ I4(G) r2 , (3.19)

where λ = 1
2 I4(G)−3/4 to match the AdS4 asymptotics in (3.6) and we did not allow for

an integration constant that can always be shifted away by a coordinate redefinition.

We then turn to eq. (2.45c), whose left hand side vanishes for static solutions, since

the rotation one-form ω vanishes in this case. After a bit of rewriting on the right hand

side, one is left with the following constraint:

2 eψ 〈H0,H∞〉 = 〈G, I ′4(H0 +H∞ r)〉 , (3.20)

which we can further expand in powers of r. The left hand side only has a linear and

quadratic piece in r by virtue of (3.19), while the right hand side also has a constant and

7We remark on the most general case later in this subsection, around (3.26).
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a cubic piece in r since I ′4 is homogeneous of degree 3. This in principle amounts to four

equations, but upon the explicit use of (3.18) together with the identities (A.14)–(A.15),

it turns out three of these equations are already satisfied. One constraint for the vector

H0 remains,

I4(H0,H0,H0, G) = 0 ⇒ Re (e−iαZ(G))
∣∣
hor

= 0 , (3.21)

where in the second equation we rewrote the constraint in the complex basis, recognized

as one of the BPS equations at the attractor.

Proceeding with (2.45d), we note that due to the symmetries we can set the gauge

field strengths proportional to the volume form of the Riemann surface, F = Γ volΣ. We

therefore find

eψ H∞ =
1

4
I ′4(H0 +H∞ r,H0 +H∞ r,G)− Γ , (3.22)

leading to three vector equations once expanded in powers of the radial variable. In partic-

ular, the quadratic terms in r cancel upon inserting the solution for H∞ in (3.18). Using

the identity (A.15), we then remain with the condition

〈H0,H∞〉 = 0 , (3.23)

from the terms linear in r and with

Γ =
1

4
I ′4(H0,H0, G) , (3.24)

at the horizon at r = 0. The latter is an equation for a full symplectic vector and is therefore

enough to completely solve for the near-horizon symplectic vector H0 in terms of the gaug-

ing vector G and the charge vector Γ. Eventually the constraint (3.23) can be transformed

into a restriction on the allowed electromagnetic charges allowed by the gauging,

I4(Γ,Γ,Γ, G) = I4(G,G,G,Γ) = 0 . (3.25)

We have therefore written down the solution for a static black hole subject to a particular

constraint on the charges. In order to find the most general solution we should have started

with a slightly more general ansatz for the section

I = e−2ψ
(
A1 r +A2 r

2 +A3 r
3
)
, (3.26)

for three constant symplectic vectors A1,2,3 determined by the equations. In particular the

AdS4 asymptotics fix A3 = 1
2 I4(G)−1/2 I ′4(G). The complete solution can be found in a

similar fashion, as can be seen explicitly in [10], but is slightly more complicated due to

the more general ansatz. In this case the constraint (3.25) is relaxed, thus allowing for one

extra free parameter in the charge vector [10].

Finally let us remark on the last equation still to be solved, (2.45b). Upon taking an

exterior derivative we can then relate the gauge field strengths to the Ricci curvature of

the 2d surface,

〈G,F〉 = εabR̂ab , (3.27)

where R̂ab is the Ricci form on Σ. In the static case all isometries of the 2d surface Σ

are preserved and one can further show that near the horizon the 2d metric must be the
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constant curvature metric, which we can also take as a solution along the full black hole flow

(see [58] for a more careful analysis). This leaves three possibilities, namely the constant

curvature metrics on S2 or H2 and the flat metric on R2. In order to have a compact

horizon we can further quotient the non-compact spaces R2 and H2 to arrive at a Riemann

surface Σg of arbitrary genus. Explicitly, one can use any of the following metrics

ds2
Σg

= dθ2 + f2
κ(θ) dφ2 , fκ(θ) =


sin θ κ = 1

1 κ = 0

sinh θ κ = −1 ,

(3.28)

where κ = 1 for S2, κ = 0 for T 2, and κ = −1 for Σg with g > 1. The scalar curvature in

each case is 2κ and the volume is

Vol(Σg) = 2πη , η =

{
2 |g− 1| for g 6= 1

1 for g = 1 .
(3.29)

The gauge field strengths are then given by

F = Γ fκ(θ) dθ ∧ dφ , (3.30)

and we finally arrive (using (2.46) and integrating (3.27)) at one final constraint on

the charges,

〈G,Γ〉 = −κ . (3.31)

Summarizing, in order to obtain a static BPS solution in the class described by (3.17), one

has to solve (3.24), subject to the constraints (3.25) and (3.31). In the next sections, we

will extend these solutions to the rotating case by finding solutions of the form (3.15).

4 Rotating near-horizon geometry

4.1 Solving the BPS conditions

Restricting to an attractor solution, which we expect to be topologically AdS2 × Σ, we

impose the appropriate scaling with respect to the radial coordinate for all the relevant

fields. In particular, we take the function ψ(r) in (2.42) as

eψ = v r , (4.1)

with v a constant that physically gives the ratio between the scales of Σ and AdS2 on the

horizon, so that the three-dimensional base metric becomes

ds2
3 = dr2 + v2 r2 ds2

Σ . (4.2)

The conical structure of this ansatz implies the scaling behaviour

e−2U =
1

r2
e−2u , ω =

1

r
ω0 , (4.3)
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for the remaining objects in the 4d metric, where u and ω0 are a function and a one-

form that depend only on the coordinates on Σ. The total metric (2.8) thus takes the

expected form

ds2
4 = −e2u (rdt+ ω0)2 + e−2u

(
1

r2
dr2 + v2 ds2

Σ

)
. (4.4)

The requirement (4.3) implies that the variables ζ, R and I behave as

ζ = r ζ0 , R = rR0 , I =
1

r
I0 , (4.5)

where ζ0, R0 and I0 are symplectic vectors that depend only on the coordinates on Σ and

are such that

e4u = I4(R0) = I4(I0)−1 . (4.6)

Finally, we note that with the choice (4.1), the condition (2.45a) becomes

〈G, I0〉 = 1 . (4.7)

Turning to the flow equation in (2.45d), the scaling behaviour (4.1)–(4.5) leads to

1

r
? dI0 −

1

4r2
e−2uI ′4(I0, I0, G) ? dr − rd

(
1

r
ω0

)
G+ F = 0 . (4.8)

By the assumption that the scalar fields and eu do not depend on the radial coordinate

near the horizon, this flow equation breaks up in components as

?dI0 = ω0 ∧ dr G , (4.9)

F =
1

4r2
e−2uI ′4(I0, I0, G) ? dr + dω0G . (4.10)

Here, the first equation determines the dependence of the scalars along Σ, while the second

fixes their constant parts in terms of the charges, directly generalizing the corresponding

static attractor equation. The final condition to reduce on Σ is (2.45c). To this end, note

that taking the inner product of (4.9) with I0 and using (4.7), one finds

〈dI0, I0〉 = ? (ω0 ∧ dr) , (4.11)

so that (2.45c) becomes

?dω0 =
1

r2
〈G, I ′4(I0)〉dr . (4.12)

Acting with a derivative on (4.12) and using (4.9), we find

d ? dω0 =
1

2r2
I4 (I0, I0, G,G) ? (ω0 ∧ dr) ∧ dr . (4.13)

The expression in the r.h.s. is recognized as the contraction of (4.10) with G, which is in

turn fixed by (2.45b), leading to

d ?(2) dω0 = R(2) ?(2) ω0 , (4.14)
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where ?(2) and R(2) are the Hodge star and Ricci scalar on Σ. We therefore conclude that

ω0 must be the one-form dual to a Killing vector field ω̃0 on Σ. Unlike the static case

we discussed above, this in turn means that rotating black holes can only have spherical

topology if we insist on compactness. Rotating black holes with non-spherical topology

have non-compact horizons, i.e. cylindrical or hyperbolic ones, see [25]

With this knowledge we can now be more specific and write down the general form of

the metric on the 2d space Σ. As it turns out, this cannot be of the constant curvature type,

as it will become clear by the following analysis that such a choice would be inconsistent

for a gauging allowing for an AdS4 vacuum. We therefore parametrize the metric on Σ in

terms of a single function ∆(θ), as

ds2
Σ =

dθ2

∆(θ)
+ ∆(θ)f2

κ(θ) dφ2 , fκ(θ) =


sin θ κ = 1

1 κ = 0

sinh θ κ = −1

(4.15)

where κ = 1 for the spherical case, κ = 0 for the cylindrical, and κ = −1 for the hyperbolic.

Here, θ, φ are coordinates along the surface Σ, and ∆(θ) is a function of θ. The direction

φ corresponds to a compact isometry in all three cases. We also record the Ricci scalar

corresponding to the metric (4.15), given by

R(2) = − 1

fκ
∂θ

(
1

fκ
∂θ
(
∆(θ)f2

κ(θ)
))

. (4.16)

One can now insert (4.16) into (4.14), which can be readily solved for ω0 as

ω0 = − j

v
∆(θ)f2

κ(θ) dφ , (4.17)

where j is a constant and the factor of v was added for later convenience. Note that the

dual vector to (4.17) with respect to the metric (4.15) is simply ω̃0 = − j
v

∂
∂φ , which is

manifestly Killing and corresponds to a compact U(1) isometry. With this expression for

ω0, we can explicitly compute

? (ω0 ∧ dr) =
j

v
d(Fκ) , (4.18)

where ∂θFκ ≡ −fκ, so that (4.9) can be solved as

vI0 = eψI = H0 + jFκG , (4.19)

for a constant symplectic vector, H0. Consistency with (4.7) requires that

v = 〈G,H0〉 . (4.20)

Having worked out the BPS conditions for the different choices of Σ, from here on we

specialize to the spherical case in order to be explicit. We come back to present the general

formulas for other cases at the end of this section. Using the functions fκ = sin θ, Fκ = cos θ

in (4.10), we obtain the explicit form of the gauge field strengths for a spherical horizon, as

F = B sin θ dθ ∧ dφ+ dω0G , (4.21)
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where the B are given by

B =
1

4
I ′4 (H0 + j cos θ G,H0 + j cos θ G,G) , (4.22)

and we write the term along the gauging separately, as it does not contribute to the

charge and ultimately to the attractor equation. The charge vector is obtained through its

standard definition (2.46), as

Γ =
1

VolΣ

∫
Σ
F =

1

VolΣ

∫
Σ
B sin θ dθ ∧ dφ . (4.23)

Using (4.22) explicitly, we find

Γ =
1

4
I ′4 (H0,H0, G) +

1

2
j2 I ′4 (G) , (4.24)

which is the final attractor equation to be solved for H0, the constant part of the scalars.

It generalizes the static attractor equation (3.24) and can be explicitly solved in a given

model defined by a prepotential (which in turn defines the quartic invariant I4) and a

gauging vector G.

The final object is the function ∆(θ), which appears in the attractor metric (4.4)

both in the base space metric and in ω. This is obtained from (4.12) upon using the

expression (4.19) for the scalar section, leading to

ω0 =− j

v

(
1− 〈H0, I

′
4(G)〉 j cos θ + I4(G) j2 sin2 θ

)
sin2 θ dφ

− 1

v

(
〈G, I ′4(H0)〉+ 〈H0, I

′
4(G)〉 j2

)
cos θ dφ , (4.25)

where we used the inner product of (4.24) with G to rearrange terms, together with the

final constraint from (2.45b)

〈G,Γ〉 = −1 . (4.26)

The second line in (4.25) corresponds to a NUT charge, which must vanish for a regular

solution.8 We thus arrive at

∆(θ) = 1− 〈H0, I
′
4(G)〉 j cos θ + I4(G) j2 sin2 θ , (4.27)

along with

N =
1

2v

(
〈G, I ′4(H0)〉+ j2 〈H0, I

′
4(G)〉

)
, (4.28)

which we set to zero here for a regular rotating black hole.9

If we choose the internal space to be non-compact, i.e. the cylindrical and hyperbolic

rotating black holes, most of the above formulas generalize easily by inserting κ where

appropriate. In particular we have 〈G,Γ〉 = −κ and we again need to solve the same main

equation (4.24) in order to find the full black hole metric and the scalars. In the explicit

examples below we concentrate on the spherical solutions, but also give one example with

non-compact horizon in order to also relate with previous literature.

8The presence of nonzero NUT charge requires a compact time to avoid Misner strings. Therefore the

solution would have closed timelike curves.
9See [59] for solutions with NUT charge in gauged supergravity.
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4.2 Summary of BPS attractors

Given the above results, we now summarize the structure of rotating BPS attractors. The

metric is as in (4.4), with the metric along the Riemann surface as in (4.15), where the

function ∆ is given by (4.27). The rotation one-form ω0 is given by (4.17), while the NUT

charge is given by (4.28). The remaining fields are given in terms of the constant vector

H0, which is determined as the solution to (4.24). In particular, the constants eu and v,

along with the scalar fields are given by (4.19) and (4.20). More explicitly, the combination

ve−u is computed through

v4 e−4u = I4(H0 + j cos θ G) =W + j2 ∆(θ) sin2 θ , (4.29)

where

W = I4(H0)−
(
1 + I4(G) j2

)
j2 . (4.30)

The physical scalars follow by constructing the symplectic section from (4.19) in the stan-

dard way as

2e−u e−iαV = − 1

2
√
I4(I0)

I ′4(I0) + i I0 , (4.31)

and forming the ratios ti = Xi/X0. Finally, the gauge field strengths are given by (2.9)

and (2.39) as

F = d

[(
−1

2
e4u I ′4(I0)−G

)
(rdt+ ω0)

]
+ F , (4.32)

where F is given explicitly by (4.21)–(4.22).

The physical quantities of interest include the conserved charges, electromagnetic and

rotational, as well as the entropy associated to the black hole horizon. The electromagnetic

charges have been computed in (4.24), while for the computation of the entropy through

the area law, it is useful to recast (4.4) the following form, by completing the square with

respect to φ and using (4.29)

ds2
4 = e−2u

(
−r2 dτ2 +

dr2

r2
+

v2

∆(θ)
dθ2

)
+e2uW

v2
∆(θ) sin2 θ

(
dφ+

j

v
√
W
rdτ

)2

. (4.33)

Here, we rescaled the time variable as τ = v2 W−1/2dt and W is as in (4.30). In the

form (4.33), it is easy to compute the black hole entropy S through the horizon area A,

via the Bekenstein-Hawking formula

S =
A

4
= π

√
I4(H0)− (1 + I4(G) j2) j2 ≡ π

√
W , (4.34)

where we have set GN = 1 for simplicity. The final conserved quantity is the angular

momentum J , which can be computed in terms of the appropriate Noether integral at the

horizon. However, we will defer this discussion until section 5.2, where both the Noether

integral as well as the simpler Komar integral it reduces to in the asymptotic region are

presented. Here, we simply cite the result (cf. (5.33))

J = − j

2

(
〈I ′4(G), I ′4(H0)〉 − I4(H0,H0, G,G)〈G,H0〉

)
, (4.35)
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which should be solved together with (4.24) for j and H0 in terms of J and Γ, in order to

obtain the entropy in terms of conserved charges through (4.34), as discussed in section 5.2.

4.3 Examples

In this section, we present four examples of rotating BPS near-horizon geometries, each

corresponding to one of the three interesting asymptotics listed in section 3.1. The attractor

solution corresponding to an asymptotically AdS4 flow within the T3 model is new, and

the full flow will be presented in the next section. The examples corresponding to flows

with hvLif and Minkowski asymptotics are known in the literature, as the near-horizon

regions of the KLR black hole [42] and of the non-BPS black hole of [60] respectively.10

4.3.1 Models with AdS4 vacuum

The T3 model. We now turn to the example of a rotating attractor in the simplest

symmetric model in the cubic series, the T3 model, with prepotential as in (2.31). We

focus on this model for brevity, noting that the extension to the STU model (2.26) and

indeed to any cubic model is straightforward.

For the T3 model, an AdS4 vacuum exists in presence of mixed electric and magnetic

gauging vector G, as

G = {g0, 0, 0, g1}T , (4.36)

so that the components g1 = g0 = 0 while g0, g1 are arbitrary. For this gauging, we list

the relevant objects

I4(G) = −4g0g3
1 , I ′4(G) = {0,−4g0g2

1, 4g
3
1, 0}T . (4.37)

This gauging leads to the cosmological constant Λ = −3
√
I4(G) = −3

√
−4g0g3

1, so that

we choose to focus on the case g0 < 0, g1 > 0 which gives I4(G) > 0 and a real and negative

cosmological constant.

Similarly, we choose the charges carried by the black hole as

Γ = {0, p1, q0, 0}T , (4.38)

for simplicity. The constraint (2.45b) can be then implemented by trading one of the

charges for κ, and we take

Γ = {0, p1,
κ+ 3g1 p

1

g0
, 0}T . (4.39)

The complete attractor solution is based on the vector H0 obtained as the solution

to (4.24), for the gauging and charge vectors given above, and for an arbitrary constant j.

The resulting vector also has only two nonzero components, as

H0 = {0, h1, h0, 0}T . (4.40)

10Both of these solutions were constructed within 5d supergravity, here we consider their reduction to 4d

along an angular isometry.
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The nontrivial components of (4.24) are

p1 = h1 (g1h
1 − h0g

0)− 2g0g2 j2 ,
κ+ 3g1 p

1

g0
= h0 (h0g

0 + 3g1h
1) + 2g3

1 j2 , (4.41)

and their solution reads

h1 =
1

4g1

(√
κ+ 12g1 p1 + 16g3

1g
0 j2 −

√
κ+ 4g1 p1

)
, (4.42)

h0 = − 1

4g0

(√
κ+ 12g1 p1 + 16g3

1g
0 j2 + 3

√
κ+ 4g1 p1

)
. (4.43)

Below, we will not use these explicit expressions in displaying results for simplicity, and

continue to use the parameters h1, h0 instead of the charges, unless stated otherwise.

After setting up the above objects, we are now ready to display the various physical

fields. The metric is of the form (4.4), with the metric along the sphere as in (4.15). Here,

we focus on the physically more interesting case of a spherical horizon, so that we set κ = 1

henceforth, noting that the cases with κ = 0,−1 can be treated similarly. The function

∆(θ) is given by (4.27) using (4.37), as

∆(θ) = 1− 4g3
1g

0 j2 sin2 θ , (4.44)

while the constant v is fixed through (4.20) as

v = 3g1h
1 − h0g

0 . (4.45)

The scale factor of the metric is given by

e−4u =
1

v4

(
4(h1)3h0 − j2

(
1− 4g0g3

1j2
)

+ j2 ∆(θ) sin2 θ
)
, (4.46)

consistent with (4.29).

The remaining physical fields may now be constructed using the formulae given in the

previous section. The scalar follows from solving (4.19), with the result

t =
1

2

iv2 e2u + j cos θ(h0g
0 + h1g1)

(h1)2 − g1g0 j2 cos2 θ
, (4.47)

while the gauge fields follow from (4.32) as

A0 = − 2(h1)3 − g0 j2 (h0 g
0 + 3h1g1) cos2 θ

v3 e−4u
(rdt+ ω0)− g0 rdt

− jg0 (h0 g
0 + 3h1g1) sin2 θ dφ , (4.48)

and

A1 =j cos θ
h1 (h0g

0 − h1g1) + 2g0g2
1 j2 cos2 θ

v3 e−4u
(rdt+ ω0)

−
(
p1 + 2g0g2

1 j2 sin2 θ
)

cos θ dφ , (4.49)
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where in the last expression we used the charge p1 in (4.41) for simplicity. We stress once

again that one should use (4.42) to obtain the expressions of all the fields in terms of the

conserved charges only. We have checked explicitly that this solution satisfies the equations

of motion for the T 3 model, as expected.

From the explicit form of the near horizon geometry we can read off the black hole

entropy, which assumes a particularly simple expression in terms of the components of

H, as

SBH,H =
√

4(h1)3h0 + j2 (4g0 g3
1 j2 − 1) , (4.50)

or alternatively, in terms of the electromagnetic charges:

SBH =

√
(1 + 4g1 p1)3/2

√
16g3

1g
0 j2 + 12g1 p1 + 1−

(
24g2

1 (p1)2 + 12g1 p1 + 1
)

−8g3
1g

0
. (4.51)

The latter expression reduces to the known entropy formula for the static black hole of [6, 7]

for j = 0, the parameter j being related to the angular momentum. The precise relation

of this parameter to the conserved angular momentum J will be given in section 5.2, by

means of the Komar integral in the the asymptotic region. We refer to that section for the

expression for the entropy in terms of the conserved charges.

The X0X1 model. Let us also briefly discuss another model with an AdS4 vacuum, the

X0X1 model where supersymmetric rotating hyperbolic black holes with an ergosphere

were previously found [26].

For the X0X1 model in the form (2.32), an AdS4 vacuum exists in presence of purely

electric gauging vector G, as

G = {0, 0, g0, g1}T , (4.52)

so that the components g0 = g1 = 0 while g0, g1 are assumed to be positive without loss

of generality. The AdS4 asymptotics are fixed by

I4(G) = (g0g1)2 , I ′4(G) = 2g0g1 {g1, g0, 0, 0}T , (4.53)

so that the asymptotic scalar is a positive constant fixed by the ratio of g0 and g1.

We then choose a purely magnetic charge vector,

Γ = {p0, p1, 0, 0}T , (4.54)

and it then easily follows that the attractor solution given by the vector H0 also needs to

have purely magnetic components,

H0 = {h0, h1, 0, 0}T . (4.55)

The nontrivial components of (4.24) then read

p0 = g1

(
h0h1 + g0g1j2

)
, p1 = g0

(
h0h1 + g0g1j2

)
, (4.56)

which, together with the constraint for arbitrary internal space 〈G,Γ〉 = −κ, imply that

g0p
0 = g1p

1 = −κ
2
. (4.57)
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One can easily see that in this special case the attractor mechanism cannot fully fix the

scalars in terms of the charges, due to the fact that only the combination h0h1 appears in

the above equations. We can nevertheless show that a smooth horizon in this class must

necessarily be of the hyperbolic type, by evaluating the entropy from (4.34),

S = − π κ

2g0g1
, (4.58)

which is only positive in the hyperbolic case κ = −1.

We have therefore constructed a rotating hyperbolic black hole near-horizon geometry

that is a smooth continuation of the static case. This appears to be in another BPS branch

of rotating solutions compared to the one discovered in [26] in the same X0X1 model.

4.3.2 Models from 5d reduction

We now turn to an example attractor in a model that does not admit an AdS4 vacuum, but

exhibits runaway behaviour. Nevertheless, this model is physically relevant, since it arises

from Kaluza-Klein reduction of the gauged STU model in five dimensions, which admits an

AdS5 vacuum. Indeed, reduction of an asymptotically AdS5 spacetime along an isometry

leads to a metric with hvLif asymptotics of the type (3.13). It follows that one can - in

principle - construct physically interesting solutions in five dimensions by lifting solutions

of models with gaugings vectors G of rank-3, as in (3.12). Here, we do not pursue such

a goal, restricting ourselves to matching an attractor constructed in a model with rank-3

gauging to the reduction of the known solutions of [41–43].

Our starting point is the rank-3 vector of FI terms

G =
√

2{0, 0, 0, 0, g0, g, g, g}T , (4.59)

and we consider a set of charges of the type

Γ = {p0, 0, q0, qi}T . (4.60)

In order to connect to the four parameters of the solution in [42], which can be thought

of as three electric charges and one angular momentum, we fix the five charges in (4.60)

in terms of four parameters, δ and µ1, µ2, µ3 as in (B.30), so that there is one constraint

among them, whose explicit form is not important for the following. The condition (2.45b)

now leads to the identification

g0 = cosh δ , (4.61)

and one can verify that the attractor equation (4.24) is solved by the vector

H0 =

√
2v

8g0 g3
{0, 2g, 2g, 2g, g0 −

1

2
, g0 g, g0 g, g0 g}T

− 1√
2g0 v

{−1, m1, m2, m3, m1m2m3, m2m3, m1m3, m1m2}T , (4.62)

where we defined the shorthand parameters

mi =
1 + g2µi

2g
, (4.63)
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and the remaining parameters of the solution are given as

v2 = 2
g

g0
(m1 +m2 +m3)− 2 . j = −sinh δ

8g3
v . (4.64)

Note that (4.64) fixes j in terms of of the other parameters, since the four free parameters

of [42] have been interpreted as charges in the 4d solution above. The situation is reversed

in [42], as there are three electric charges in the 5d solution and the fourth parameter

corresponds to the angular momentum parameter j above, while p0 is interpreted as a geo-

metrical parameter in five dimensions and is therefore fixed in terms of the other quantities.

We refer to appendix B for a review of the solution of [42], its recasting in terms

of the parameters above and the reduction to four dimensions. Comparison with (B.28)

and (B.29) shows that the attractor described by (4.62)–(4.64) indeed matches with the

result of this reduction near the horizon. The expression in (B.27) allows to construct the

complete four dimensional solution, which can be seen to asymptote exactly to the hvLif

geometry (3.12) for δ = 0, while for δ 6= 0 one finds a more general rotating asymptotic

geometry with the same hvLif exponents.

4.3.3 Asymptotically flat black hole

Finally, we present an example of an attractor corresponding to an asymptotically flat

black hole. Since the asymptotic Minkowski vacuum is not supersymmetric in an abelian

gauged theory, such black holes can be viewed both as flows between this vacuum and a

supersymmetric AdS2 [56] and as non-BPS black holes in ungauged supergravity [54].11

A concrete example is given by the STU model with FI parameters as in (3.14),

explicitly

g0 = gi = gi = 0 g0 6= 0 , (4.65)

which leads to a Minkowski vacuum. Choosing the charges as

Γ = {p0, 0, 0, qi}T , (4.66)

this model admits an asymptotically flat under-rotating black hole solution whose near

horizon geometry solves the BPS equation we presented. The constraint (2.45b) together

with the attractor equation (4.24) can be solved as

g0 = − 1

p0
, v = 1 , H0 = −

{
p0, 0, 0,

√
p0q1q2q3

qi

}T

, (4.67)

while (4.27) collapses to ∆(θ) = 1. The metric then assumes the standard form for under-

rotating attractors in ungauged supergravity:

ds2 = −e2u (rdt+ ω0)2 + e−2u

(
dr2

r2
+ dθ2 + sin2 θdφ2

)
(4.68)

with

e−4u = −4p0q1q2q3 − j2 cos2 θ ω0 = j sin2 θdφ . (4.69)

The remaining fields take the form summarized in section 4.2 and are given explicitly in [56,

appendix C].

11Since the potential vanishes identically in this case, the bosonic sector reduces to that of ungauged

supergravity.
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5 Full rotating flow in AdS4

5.1 The rotating black hole solution

Here we consider the full BPS flow for rotating black holes, interpolating between the

attractor solution in the previous section and asymptotically locally AdS4. Inspired by

the known solutions in the static case [5, 6], in the form given in [9, 10] and reviewed

in section 3.2, we take the three-dimensional base metric as in (2.42) and concentrate

for simplicity on the case where Σ is of spherical topology, as in (4.15), so that the base

metric becomes

ds2
3 = dr2 + e2ψ(r)

(
dθ2

∆(θ)
+ ∆(θ) sin2θdφ2

)
. (5.1)

The total metric (2.8) then takes the explicit form12

ds2
4 = −e2U (dt+ ω)2 + e−2U

(
dr2 +

e2ψ

∆(θ)
dθ2 + e2ψ∆(θ) sin2θdφ2

)
. (5.2)

We now proceed to solve the BPS conditions (2.45) for the full flow, following similar steps

as in section 4.1. To this end, we introduce the combination

eψ I = H(r) + j cos θ G , (5.3)

which allows to write the flow equation (2.45d) as

e−ψ ? d(H+ j cos θ G)− 1

4
e−2ψ I ′4(H+ j cos θ G,H+ j cos θ G, ?Ĝ)− rdωG+ F = 0 ,

(5.4)

while the remaining BPS equations in (2.45) become

〈G,H〉 = (eψ)′ , (5.5)

〈A, G〉 =

(
∆(θ) sin2 θ

)′
2 sin θ

dφ , (5.6)

e2ψ ? dω = 〈d(H+ j cos θ G),H+ j cos θ G〉

+
1

6
e−ψI4(H+ j cos θ G,H+ j cos θ G,H+ j cos θ G,G)dr . (5.7)

This set of equations is a direct generalization of the corresponding static one, so that we

may be guided by the known solutions to it.

Here, we restrict for brevity on generalizing the simpler class of [9] to the rotating case,

expecting that the most general solution of the static equations in [10] can be also treated

along the same lines. We therefore adopt the simple ansatz

H(r) = H0 +H∞ r , ω =

(
ω∞(θ)− j

∆(θ)

eψ

)
sin2θdφ , (5.8)

12In section 5 of [31] an ansatz for rotating AdS4 black holes with arbitrary prepotentials was put forward.

The analysis presented here suggests a possible generalization of the form of the function v, which in (5.2)

of [31] reads v = Q− P , to v = ξ1Q− ξ2P , with ξ1, ξ2 constant. In particular, for the specific case treated

in this section we choose ξ2 = 0, and this enables us to find the novel analytic solutions for the full flow for

arbitrary models with vector multiplets.
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where the two constant symplectic vectors H0,H∞ and the function ω∞(θ) are to be de-

termined. In this form, it is manifest that this ansatz reduces to the attractor solution

of the previous section for r → 0, while H∞ and ω∞ parametrize the asymptotic region.

Inserting (5.8) in (5.5) leads to the following expression for the function eψ, as

eψ =
1

2
〈G,H∞〉r2 + 〈G,H0〉r = I4(G)1/4 r2 + 〈G,H0〉r , (5.9)

where we disregarded an additive integration constant and in the second equality we im-

posed that the O(r2) term is such that (5.2) allows for AdS4 asymptotics. Similarly, the

BPS flow equation (5.4) reduces to

eψH∞ sin θdθ ∧ dφ− 1

4
I ′4(H0 + j cos θG,H0 + j cos θG,G) sin θdθ ∧ dφ

− rd(ω∞ sin2θ) ∧ dφG+ d

(
jr

∆(θ)

eψ
sin2θdφ

)
G+ F = 0 , (5.10)

with eψ as in (5.9).

Note that since ω∞ depends only on θ, only the last two terms in (5.10) can have a leg

along dr. It then follows that we can solve this flow equation order by order in r for the

dθ ∧ dφ terms, similar to the static case. Starting with the O(r2) terms of (5.9)–(5.10) we

find that they are solved by fixing the vector H∞ as

H∞ =
1

2
I4(G)−3/4 I4(G)′ , (5.11)

in exactly the same way as in the static case. The sub-leading term in r instead reduces to

〈G,H0〉H∞ =
1

2
I ′4(H∞,H0 + j cos θG,G) +

∂θ(ω∞ sin2θ)

sin θ
G , (5.12)

which can be further simplified using (A.15), leading to the conditions

〈H0,H∞〉 = 0 ⇒ I4(H0, G,G,G) = 0 , (5.13)

ω∞ = jI4(G)1/4 . (5.14)

With these results, the flow equation (5.10) reduces to the following expression for the

gauge field strengths

F =
1

4
I ′4(H0 + j cos θG,H0 + j cos θG,G) sin θdθ ∧ dφ− d

(
jr

∆(θ)

eψ
sin2θdφ

)
G , (5.15)

which is manifestly closed and generalizes the attractor fluxes (4.22)–(4.21) to the full

flow. With these results, it is straightforward to verify that (5.6) and (5.7) reduce to their

attractor counterparts, leading to

〈G,Γ〉 = −1 , (5.16)

due to our choice of spherical topology, as well as (4.27) and (4.28), which determine the

function ∆(θ) in (5.8) and ensure regularity, respectively.
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Integrating the field strengths F in (5.15) along the sphere leads to the attractor

equation

Γ =
1

4
I ′4 (H0,H0, G) +

1

2
j2 I ′4 (G) , (5.17)

which, as expected, is identical to the attractor condition in (4.24), upon identifying the

vector H0 with the attractor solution. Finally we also find the constraints

I4(Γ,Γ,Γ, G) = I4(G,G,G,Γ) = 0 , (5.18)

upon contracting (5.17) with I ′4(G) and using (5.13). One can write the solution to (5.17)–

(5.18) by using the explicit solution of [10, section 3.2] in the static case, for a shifted

charge Γ̂ = Γ− 1
2 j2 I ′4(G), as

H0 =
1√
C1

(
C2 I

′
4(G) + I ′4(Γ̂, Γ̂, G)

)
, (5.19)

where the two constants C1, C2 are given by

C1(Γ̂, G) =C1(Γ, G) = 〈G,Γ〉I4(Γ,Γ, G,G)− 2〈I ′4(G), I ′4(Γ)〉 , (5.20)

C2(Γ̂, G) = − 1

2I4(G)

(
1

4
I4(Γ̂, Γ̂, G,G) +

√
1

16
I4(Γ̂, Γ̂, G,G)2 − 4I4(G)I4(Γ̂)

)
, (5.21)

and we stress that the shift in Γ cancels out in the expression for C1, a property that will

be important below.

This concludes the construction of the BPS black hole flows connecting the family of

attractors in the previous section to asymptotic AdS4. Summarizing, one starts from a

charge vector satisfying the constraints (5.16) and (5.18) for a given given gauging G, and

solves (5.17) for the vector H0. The metric for the solution is then given by (5.2) with

the scale factor eψ in (5.9) and the one-form ω in (5.8), while the function ∆(θ) is given

by (4.27). The second scale factor eU is given by the expression

e−4U =e−4ψ

(
I4(H) +

1

4
I4(H,H, G,G) j2 + I4(G) j4

+
(

∆(θ)− 2I4(G)1/4eψ
)

j2 sin2 θ

)
, (5.22)

obtained from (5.3), with H as in (5.8). The scalar fields are also given by (5.3), as

explained around (4.31), upon replacing I0 by I in (5.3). Finally, the gauge field strengths

are given by

F = d

[(
−1

2
e4U I ′4(I)−Gr

)
(dt+ ω)

]
+ F , (5.23)

where the spatial components F are given in (5.15).
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5.2 Conserved charges

We now turn to a discussion on the physical properties of the full black hole solutions

constructed in section 5.1. As mentioned above, the electromagnetic charge vector is com-

puted through its standard definition (2.46) with the result (5.17), which also constitutes

the attractor equation for the scalars.

Turning to the conserved charges in the gravitational sector, it is useful to note that the

superalgebra underlying the BPS black hole solutions we have described is U(1|1) [23, 61].

The latter is characterized by the anticommutation relation between two supercharges

{QI , QJ} = HδIJ , where H is the generator of time translations, so that the angular

momentum does not enter into the BPS bound. We therefore conclude that the mass of

these solutions is M = 0 since they saturate the BPS bound, while the angular momentum

charge is free and has to be computed independently.

The computation of the conserved angular momentum proceeds through the Noether

integral associated to diffeomorphisms along the angular isometry. The central object in

this approach is the Noether potential, which for a two-derivative Lagrangian L contain-

ing the Einstein-Hilbert term as well as Maxwell and scalar fields minimally coupled to

gravity, reads

Qµν(ξ) = ∇µξν + (ξ ·AI) ∂L
∂F Iµν

= ∇µξν + (ξ ·AI)GIµν , (5.24)

where ξµ is a Killing vector and in the second equality we used the definition of the dual

gauge field strengths. The supergravity action (2.1) clearly falls in this class, so that we can

construct the corresponding Noether integral for the angular momentum13 based on (5.24)

for the rotational Killing vector ξφ = ∂φ.

In particular, one can exploit the compactness of the orbits of the rotational Killing

vector ξφ to write the angular momentum J as

J =
1

16π

∫
S
dSµνQµν(ξφ) =

1

16π

∫
S
dSµν

(
∇µξφν + (AIφ)GIµν

)
, (5.25)

where S is any surface enclosing the black hole horizon and dSµν is its surface element.

The conservation of the Noether potential (5.24) ensures that (5.25) is independent of

the surface S, so that one may compute this integral either at the attractor described in

section 4.1 or in the asymptotic region of the full black hole solutions in section 5.1. We have

performed both computations, obtaining the same result as expected, but in this section

we present in some detail only the computation in the asymptotic region, for brevity.

When S in (5.25) is identified with the asymptotic S2
∞, the asymptotic constants of

the gauge fields AIφ can be set to zero by a judicious gauge transformation,14 so that the

13Note that one can in principle also compute the mass using the Noether potential for the timelike

isometry, but for asymptotically AdS spacetimes this integral diverges naively, and an appropriate renor-

malization is required.
14This seems as an inherently asymptotic operation, but it can be enforced at the horizon by choosing the

vector potentials A corresponding to the horizon field strengths (4.21) such that A(θ = 0) = −A(θ = π),

as in the standard prescription of [62, section 3].
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integral collapses to the standard Komar integral

J =
1

16π

∫
S2
∞

dSµν∇µξφν . (5.26)

In order to compute this integral explicitly, it is useful to put the metric in the canonical

ADM form, which reads:

ds2 = −N2dt2 + σ(dφ− Ωdt)2 +
dr2

Q
+
dθ2

T
, (5.27)

where the warp functions N , σ and Ω are identified as

Q = e2U , T = e2Ue−2ψ∆(θ) ,

σ = e−2Ue2ψ∆(θ) sin2 θ − e2Uω2 , (5.28)

Ω =
e2Uω

σ
=

e2Uω

e−2Ue2ψ∆(θ) sin2 θ − e2Uω2
,

N2 = e2U + σΩ2 =
e2ψ∆(θ) sin2 θ

e−2Ue2ψ∆(θ) sin2 θ − e2Uω2
.

From this we can read off the angular velocity at infinity:

Ω∞ = lim
r→∞

Ω = I4(G)3/4 j =
j

l3AdS

. (5.29)

where l2AdS = I4(G)−1/2. We note in passing that the angular velocity at the horizon,

computed as Ωh = Ω(r = rh) vanishes:

Ωh = 0 , (5.30)

as one may also verify by (4.33).

In terms of the objects in (5.28), the angular momentum Komar integral (5.26) is

computed by using

ξφ =
∂

∂φ
, dSµν = (vµuν − vνuµ)

√
σ

T
dθdφ , (5.31)

where the ratio σ/T denotes the induced metric on a two-sphere of constant r and t, and

the two vectors uµ, vµ are given by

u =
1

N

(
∂

∂t
+ Ω

∂

∂φ

)
, v =

√
Q

∂

∂r
, (5.32)

i.e. they the normal vector of a t-constant hypersurface and the normal outward-pointing

vector to the boundary, respectively. Evaluation of (5.26) proceeds straightforwardly, upon

using the expressions in (5.9), (5.8) and (5.22) for eψ, ω and eU respectively in (5.28). The

result reads

J = − j

2

(
〈I ′4(G), I ′4(H0)〉 − 1

2
I4(H0,H0, G,G)〈G,H0〉

)
, (5.33)

where we also used the conditions (5.13) in the derivation.
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The expression (5.33) for the angular momentum must be solved along with (5.17)

for H0 and j in order to obtain all physical quantities in terms of the conserved charges.

Using the explicit solution (5.19) for the H0 along with the constraints (5.18), one can

show that (5.33) takes the form

J =
j

2

√
〈G,Γ〉I4(Γ,Γ, G,G)− 2〈I ′4(G), I ′4(Γ)〉 , (5.34)

which is independent of j, as mentioned below (5.21). It follows that one may use (5.34)

to write j in (5.17) in terms of the charges, as

1

4
I ′4 (H0,H0, G) = Γ− 2J 2

〈G,Γ〉I4(Γ,Γ, G,G)− 2〈I ′4(G), I ′4(Γ)〉
I ′4 (G) , (5.35)

and then obtain the solution to this equation for the H0 by replacing the shifted charge Γ̂

in (5.19) for the shifted charge in the right hand side of (5.35). The entropy formula (4.34)

then takes the following form in terms of conserved charges only

SBH = π

√√√√ l4AdS

2

(
1

4
I4(Γ,Γ, G,G)±

√
1

16
I4(Γ,Γ, G,G)2 − 4

(I4(Γ) + J 2)

l4AdS

)
, (5.36)

where l2AdS = I4(G)−1/2 and we have again set GN = 1. In the spherical case one needs to

strictly choose the positive sign in the above formula in order to possibly find a positive

real answer, i.e. a regular black hole. One can see that the angular momentum is bounded

from above due to the term in the inner square root and that (5.36) reduces to the entropy

formula of [8] for static black holes upon setting J = 0.

Before concluding this section, we would like to make a few comments on the confor-

mal boundary of our solutions, which pertain to the class of asymptotically locally AdS4

spacetimes (see for example [63]). Taking the limit r →∞ of the metric (5.27), we see that

the boundary metric approaches the form

ds2 = r2∆(θ)

[
− dt2

l2AdS

+
dθ2

∆(θ)2
+

sin2 θ

∆(θ)

(
dφ+

j

l3AdS

dt

)2
]
. (5.37)

This is not the standard metric on R×S2, due to the fact that there is a non-zero angular

velocity at infinity Ω∞, as in (5.29). The metric in square bracket is that of the Einstein

space R× S2 seen by a rotating frame of reference. The coordinate change

t′ =
t
√

Ξ

lAdS
, φ′ = φ

√
Ξ +

j

l2AdS

t′ , Ξ = 1 +
j2

l4AdS

, (5.38)

brings the metric to the form

ds2 =
r2∆(θ)

Ξ

[
−dt′2 +

Ξdθ2

∆(θ)2
+

sin2 θ

∆(θ)
dφ′2

]
, (5.39)

while the further reparametrization Ξ tan2 θ′ = tan2 θ yields

ds2 = r2 cos2 θ

cos2 θ′
[
−dt′2 + dθ′2 + sin2 θ′dφ2

]
, (5.40)
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which is the standard form R × S2 up to the conformal factor cos2 θ/ cos2 θ′. Hence the

boundary metric in (5.37) is conformal to the standard boundary of four-dimensional AdS

space. More details can be found for instance in [63–67]. Note that the boundary data

falls into the general class discussed in [68]. After a Wick rotation to Euclidean signature,

this case was studied in [22] and [69] corresponding to the refinement of the topologically

twisted index by angular momentum.

5.3 An example solution

We now turn to an example rotating black hole solution in AdS4 in the T3 model, which

is the full flow corresponding to the attractor in section 4.3.1. The solution is naturally

described by replacing the constants H0 parameterizing the attractor in (4.40) by the linear

functions H in (5.8), as

H = {0, H1, H0, 0}T ,

H1 = h1 +
1√
2

(
−g

0

g1

)1/4

r , H0 = h0 +
1√
2

(
−g1

g0

)3/4

r . (5.41)

The scale factor eψ resulting from (5.9) reads

eψ = (−4g0g3
1)1/4r2 + (−h0g

0 + 3g1h
1)r , (5.42)

while the scale factor eU is given concisely as

e−4U =e−4ψ
(

4H0 (H1)3 −
(
(H0g

0)2 + 6g0g1H0H1 − 3(g1H1)2
)

j2 − 4g0g3
1 j4

+
(

∆(θ)− 2(−4g0g3
1)1/4eψ

)
j2 sin2 θ

)
, (5.43)

where ∆(θ) is as in (4.44). The rotation one-form ω is given by

ω = j
(

(−4g0g3
1)1/4 − e−ψ ∆(θ)

)
sin2θdφ . (5.44)

With these definitions, the complex scalar assumes the form

z =
1

2

j cos θ (g1h
1 + g0h0) + i

√
4H0 (H1)3

(H1)2 − g0 g1 j2 cos2 θ
, (5.45)

while the vectors are given by

A0 = − 2(H1)3 − g0 j2 (H0 g
0 + 3H1g1) cos2 θ

e3ψ e−4U
(dt+ ω)

− g0 r
(
dt+ j(−4g0g3

1)1/4 sin2 θ dφ
)
− jg0 (h0 g

0 + 3h1g1) sin2 θ dφ , (5.46)

and

A1 = j cos θ
H1 (H0g

0 −H1g1) + 2g0g2
1 j2 cos2 θ

e3ψ e−4U
(dt+ ω)

−
(
p1 + 2g0g2

1 j2 sin2 θ
)

cos θ dφ , (5.47)
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where we have chosen the integration constants for the spatial components of the gauge

fields such that they vanish asymptotically and we have used (4.41).

We now can compute the conserved charges applying the procedure described in the

previous section. Using the formulas for the angular momentum (5.33) we find

J = j(g0h0 + g1h
1)3 , (5.48)

which upon using the solution to the attractor equations for the h’s in terms of the charges

in (4.42), leads to

J = j
(
1 + 4g1p

1
)3/2

, (5.49)

which is indeed linear in the parameter j. Using this result in the entropy formula (4.51),

one finds the following expression for the entropy in terms of conserved quantities only

SBH = π

√√√√√(1 + 12g1 p1)(1 + 4g1 p1)3 − 4J 2l−4
AdS − (24(g1 p1)2 + 12g1 p1 + 1)

2 l−4
AdS

.(5.50)

Finally, we record the following expression for the product of the areas of the four horizons

of this solution:15

4∏
α=1

Aα = (4π)4l4AdS

(
4q0(p1)3 + J 2

)
, (5.51)

which turns out to depend only on the cosmological constant, quantized charges and angular

momentum, as for other known classes of AdS black holes [33, 70–72].

6 The BPS entropy function

In this section, we turn to the definition of a BPS entropy function associated to our black

hole solutions. Such objects have a long history, originating in the context of static BPS

black holes in the ungauged theory, wherein it was observed that the attractor equations

can be obtained by extremization of the central charge with respect to the scalars, while

the entropy is given by its value at the extremum [73, 74]. Subsequently, it was shown that

an extremization principle exists for any extremal black hole attractor, static or stationary,

due to the scaling symmetry of the near horizon region [62, 75], reducing to the BPS entropy

function when supersymmetric constraints are imposed. More recently, the corresponding

BPS entropy functions for static black holes in gauged supergravity [5, 6, 10] have been

matched with the topologically twisted index of the dual field theory, once it is extremized

with respect to the fugacities [11].

In this paper, we have constructed rotating BPS black holes in abelian gauged su-

pergravity, generalizing the static ones described in [5, 6], for which a corresponding BPS

entropy function is expected to exist. To this end, one may attempt to apply the two tech-

niques used to derive a BPS entropy function in the static case, namely to either “integrate”

15There are in principle four (complex) roots for the warp factor of an AdS black hole solution. Our

configuration is extremal, and given the form of the warp factor the roots are pairwise equal r1,2 = 0 and

r3,4 = −−g0h0+3g1h
1

√
2f

1/4
0 g3/4

. The four areas correspond to these four roots.
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the BPS equations to obtain a corresponding action, or to impose BPS constraints on the

general entropy function obtained by reducing the Lagrangian at the attractor region [62].

In practice, a naive attempt to obtain an action principle for the BPS attractor equa-

tions (4.9)–(4.12) would lead to to an entropy functional rather than an entropy function,

since the dependence of the various fields on the horizon coordinate must be incorporated.

However, the analysis of [62] shows that for the case of a compact horizon, such a functional

should always be possible to reduce to a boundary term evaluated at the two poles.

Based on these considerations, we propose a BPS entropy function for the black hole

solutions of section 5.1, given by the following expression

S = −π
4

〈Γ, I ′4(H0 + j G cos θ)〉 − 4γ j2 cos2 θ

〈G,H0〉
√
I4(H0 + j G cos θ)

cos θ

∣∣∣∣∣
θ=π

θ=0

, (6.1)

which is equivalent to

S =
π

4〈G,H0〉
√
W(j)

(
1

3
I4(Γ,H0,H0,H0) + j2(I4(Γ,H0, G,G)− 8γ)

)
, (6.2)

where we used the definition (4.34) to shorten the notation. Here we used that the gauging

G and the vector of parameters H0 are such that the NUT charge (4.28) vanishes, while j

is viewed as function of the H0 as j(J ,H0), whose explicit form is given by the expression

for the angular momentum (5.33), as

j(J ,H0) = −2

(
〈I ′4(G), I ′4(H0)〉 − 1

2
I4(H0,H0, G,G)〈G,H0〉

)−1

J ≡ −J
γ
. (6.3)

Note that the expressions (6.1) and (6.2) are formally equivalent. We have shown them

separately as they serve two slightly different purposes. We propose (6.1) as the expression

for Sen’s entropy function in the rotating cases we consider, where one expects a covariant

angular dependent expression evaluated on the poles. On the other hand, we propose (6.2)

as the extremization principle for the black holes that naturally generalizes16 the static

result of [5, 6].

It is straightforward, if cumbersome, to verify that the variation of (6.2) with respect to

H0 and imposing the constraint (5.13) leads to a set of equations that are solved upon using

the attractor equation (5.17), while the constraint on H0 imply (5.18). Evaluating (6.2) for

this extremum leads to the entropy (4.34), as expected. While one must still solve (5.17) to

obtain the H0 explicitly in terms of the charges, such a solution exists and can be written

down explicitly as explained around (5.33)–(5.35).

The extremization based on (6.2), where the angular momentum J appears explicitly,

can be transformed to a more traditional entropy function that depends on a corresponding

16In the I4-formulation we use here, the relevant extremization principle in the static case can be de-

rived directly from (3.24) by contracting the left-hand side with I ′4(H0) and dividing by 〈G,H0〉
√
W,

which produces the entropy on the right hand side. If we repeat the exact same steps with the attrac-

tor equation (4.24), we produce the entropy together with the two other terms in (6.2). This derivation

bypasses (6.1).
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fugacity w by an inverse Legendre transform. Computing the derivative of (6.2) with

respect to J , one finds

w ≡ 1

π

∂S
∂J

=
j

〈G,H0〉
√
I4(H0 + jG)

, (6.4)

i.e. it reproduces the off-diagonal φ-τ term in the metric (4.33). This is the object dual

to the angular momentum J in the entropy function analysis of [62]. One may therefore

define a new BPS entropy function

L(H0, w) ≡ S − πwJ
J=J (w)

, (6.5)

where J is understood as a function of w by inverting (6.4). Explicitly, we find

L =
π

4〈G,H0〉
√
W (̃j)

(
1

3
I4(Γ,H0,H0,H0) + j̃2(I4(Γ,H0, G,G)− 4γ)

)
, (6.6)

where

j̃(w,H0) = j(J (w),H0)

=
1

2
√
I4(G)w

(√
π2

〈G,H0〉2
− w2

2
I4(H0,H0, G,G) + 2

√
I4(H0)I4(G)w2

−

√
π2

〈G,H0〉2
− w2

2
I4(H0,H0, G,G)− 2

√
I4(H0)I4(G)w2

)
,

(6.7)

and we note that (6.4) implies that

W (̃j) =
j̃2

〈G,H0〉2w2
. (6.8)

The entropy function

E = L + πwJ , (6.9)

is then of the standard type, where one must extremize with respect to the scalars H0 and

w to obtain the attractor equations and the expression for the angular momentum.

6.1 The asymptotically AdS4 example

We now turn to an explicit example, namely that of the STU model in the frame (2.29)–

(2.30), with a purely electric gauging given by

G = {0, 0, 0, 0, g0, g1, g2, g3}T , (6.10)

leading to the quantities

I4(G) = 4g0g1g2g3 , I ′4(G) = 4{g1g2g3, g0g2g3, g0g1g3, g0g1g2, 0, 0, 0, 0}T . (6.11)
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and the cosmological constant Λ = −3
√
I4(G) = −3

√
4g0g1g2g3, which is real and negative

when all gI > 0 in (6.10). In addition, we are interested in a purely magnetic charge vector

Γ, and therefore we can choose the vector of constants H0 as purely magnetic, so that

Γ ={p0, p1, p2, p3, 0, 0, 0, 0}T , (6.12)

H0 ={h0, h1, h2, h3, 0, 0, 0, 0}T , (6.13)

and the constraint (5.16) reads

〈G,Γ〉 =
∑
I

gI p
I = −1 . (6.14)

Note that the solution based on the above choices is related to the example discussed in

section 4.3.1 and section 5.3, by the inverse of (2.28). However, in this section we prefer

to move to this frame, as it allows for a lift to M-theory on S7 [50] and a direct connection

to the dual field theory. The objects appearing in (6.2) in this frame are then given by

〈G,H0〉 =
∑
I

gI h
I , (6.15)

I4(H0 ±
J
γ
G) = 4h0h1h2h3 − (h0g0 − higi)2 J 2

γ2
+ 4 g0g1g2g3

J 4

γ4

+ 4(h1h2g1g2 + h1h3g1g3 + h2h3g2g3)
J 2

γ2
, (6.16)

〈Γ, I ′4(H0 ±
J
γ
G)〉 = 4h0h1h2h3

∑
I

pI

hI
+ 2

(
〈G,Γ〉〈G,H0〉 − 2

∑
I

g2
Ip
IhI
)
J 2

γ2
. (6.17)

and γ is expressed as a product of three constants γi, for i = 1, 2, 3, which will be useful

below,

γi =
(
g0h

0 − g1h
1 − g2h

2 − g3h
3 + 2gih

i
)
, (6.18)

γ =γ1 γ2 γ3 , (6.19)

where γ is in agreement with the definition (6.3). This entropy function looks somewhat

complicated, but simplifies in an expansion around the static limit, J , w → 0, for which

it collapses to

L =π

√
h0h1h2h3

〈G,H0〉
∑
I

pI

hI
(6.20)

− π γ

4

√
h0h1h2h3 〈G,H0〉

(
4 +

3∑
i=1

1

γi

(
p0

h0
− p1

h1
− p2

h2
− p3

h3
+ 2

pi

hi

))
w2

π2
+O(w4) .

Here, the term for w = 0 is of the form given in [11], upon imposing the constraint

〈G,H0〉 = 1. The latter can be imposed without loss of generality17 in the static case,

in view of the homogeneity of (6.20), simply amounting to an overall rescaling of the hI .

However, such a is symmetry is not clear by inspection of (6.2) in the general case.

17The quantity 〈G,H0〉 must be nonzero by regularity, and is conventionally taken to be positive.
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6.2 The I4(G) = 0 case

There is a particular simplification in the case where the gauging vector is not generic, i.e.

when it does not allow for an AdS4 asymptotics. In this case we find that

W = I4(H0)− j2 , (6.21)

and upon gauge fixing the linear combination

〈G,H0〉 = 1 , (6.22)

we can easily invert the relation for w(j) to find

j̃ =
w
√
I4(H0)√

1 + w2
, ⇒ W =

I4(H0)

(1 + w2)
. (6.23)

The entropy function in this case takes a particularly simple form,

L = π
√

1 + w2
I4(Γ,H0,H0,H0)

12
√
I4(H0)

+ π
√
I4(H0)

w2

4
√

1 + w2
(I4(Γ,H0, G,G)− 4γ) . (6.24)

In the extra special case of asymptotically flat solutions, I ′4(G) = 0 and we find that

I4(Γ,H0, G,G) = 4γ = 4, leading us to

LMink = π
√

1 + w2
I4(Γ,H0,H0,H0)

12
√
I4(H0)

. (6.25)

Note that in the static limit, w = 0, the function (6.25) is simply equal to the central

charge, thus reproducing the extremization for the static black holes in [5, 6]. It is now

easy to verify explicitly that upon extremization of LMink +πwJ with respect to w and H0

one finds back the explicit asymptotically flat solution of subsection 4.3. To show we can

change of variables by

φi ≡ 1

hi

√
1 + w2

√
h0h1h2h3 . (6.26)

If we further use that the gauge fixing choice 〈G,H0〉 = 1 leads to h0 = −p0, we finally find

EMink = −2π
φ1φ2φ3

1 + w2
+ πqiφ

i + πwJ , (6.27)

in agreement with the answer in [76].18
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A Notation and conventions

In this paper we follow the notation and conventions of [9, 54], and in this appendix we

summarize the basic definitions that are useful in the main text, referring to those papers

for more details.

A.1 Field strengths and the symplectic section

The gauge field strengths are naturally arranged in a symplectic vector with both electric

and magnetic components, whose integral over a sphere defines the associated electromag-

netic charges as

Fµν =

(
F Iµν
GI µν

)
⇒ Γ =

(
pI

qI

)
=

1

2π

∫
S2

F . (A.1)

Here, F Iµν and GI µν are the field strengths and the dual field strengths of the gauge fields

respectively, where the latter are defined by taking a derivative of the Lagrangian (2.1) or,

equivalently, through (2.2).

The physical scalar fields, ti, which parametrize an nv-dimensional special Kähler

space, appear through the so called symplectic section V in (2.3). The latter is subject to

the constraints

〈V̄,V〉 = i 〈D̄ī V̄, DjV〉 = −i g īj , (A.2)

with all other inner products vanishing, and is determined by the physical scalar fields

ti = Xi

X0 up to a local U(1) transformation. Here, gı̄j is the Kähler metric and the covariant

derivative DiV contains the Kähler connection Qµ, defined through the Kähler potential as

Q = Im [∂iK dti] , K = −ln

(
i

6
cijk(t− t̄)i(t− t̄)j(t− t̄)k

)
. (A.3)

We introduce the following notation for any symplectic vector Γ

Z(Γ) = 〈Γ,V〉 , Zi(Γ) = 〈Γ, DiV〉 . (A.4)

When an argument does not appear explicitly in Z or Zi, the vector of charges in (A.1) is

understood, as is standard in literature. In addition, the operation is applied component

wise when the argument has additional indices, e.g. when it is form valued. With these

definitions one can introduce a scalar dependent complex basis for symplectic vectors, given

by (V, DiV), so that any vector Γ can be expanded as

Γ = 2Im [−Z̄(Γ)V + gı̄jZ̄ı̄(Γ)DjV] , (A.5)
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so that the symplectic inner product is computed from (A.2) as

〈Γ1,Γ2〉 = 2Im [−Z(Γ1) Z̄(Γ2) + gīZi(Γ1) Z̄̄(Γ2)] . (A.6)

Furthermore, we introduce the scalar dependent complex structure J, defined as

JV = −iV , JDiV = iDiV , (A.7)

which can be solved to determine J in terms of the period matrix NIJ in (2.2), see e.g. [77]

for more details. With this definition, the complex self-duality condition on the gauge field

strengths is given by

JF = − ∗ F , (A.8)

which is the duality covariant form of the relation between electric and magnetic compo-

nents. In addition, we mention the important relation

1

2
〈Γ, J Γ〉 = |Z(Γ)|2 + gīZi(Γ) Z̄̄(Γ) ≡ VBH(Γ) , (A.9)

where we defined the black hole potential VBH(Γ).

A.2 Identities involving the quartic invariant

We now summarize a number of useful relations involving the quartic invariant, defined for

all symmetric models. The starting point is the definition of this invariant, I4(Γ), for any

symplectic vector, Γ, as [34, 35]

I4(Γ) =
1

4!
tMNPQΓMΓNΓPΓQ

= −(p0q0 + piqi)
2 +

2

3
q0 cijkp

ipjpk − 2

3
p0 cijkqiqjqk + cijkp

jpk cilmqlqm , (A.10)

where M , N . . . are indices encompassing both electric and magnetic components and we

also defined the completely symmetric tensor tMNPQ for later use. It is also convenient to

define a symplectic vector out the first derivative of the quartic invariant, I ′4(Γ), as

I ′4(Γ)M ≡ ΩMN

∂I4(Γ)

∂ΓN

=
1

3!
ΩMNt

NPQRΓPΓQΓR , (A.11)

where ΩMN is the inverse of the symplectic form ΩMN , so that the following relations hold

〈Γ, I ′4(Γ)〉 = 4 I4(Γ) , I ′4(Γ,Γ,Γ) = 6I ′4(Γ) . (A.12)

Throughout this paper, all instances of I4(Γ1,Γ2,Γ3,Γ4) will denote the contraction of the

tensor tMNPQ in (A.10) with the four displayed charges, without any symmetry factors,

except for the case with a single argument, as in I4(Γ) and I ′4(Γ). For more details on this

tensor, see [36] in the real basis and [78] in the complex basis, to be defined shortly.

We now record some identities that are used repeatedly in the main text, starting with

the fundamental property

I ′4(I ′4(Γ)) = −16 I4(Γ)2Γ . (A.13)
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Further properties include the quintic and heptic identities

I ′4(I ′4(Γ),Γ,Γ) = −8 I4(Γ)Γ , I ′4(I ′4(Γ), I ′4(Γ),Γ) = 8 I4(Γ) I ′4(Γ) . (A.14)

Finally, the projection operator

I ′4(I ′4(Γ1),Γ1,Γ2) = 2 〈Γ1,Γ2〉 I ′4(Γ1) + 2 〈I ′4(Γ1),Γ2〉Γ1 , (A.15)

for any Γ1, Γ2, is useful in the analysis of sections 4.1 and 5.1.

One can rewrite the quartic invariant in the complex basis [79], leading to the following

alternative definition

I4(Γ) =
(
Z Z̄ − Zi Z̄i

)2 − cmijZ̄iZ̄j cmklZkZl +
2

3
Z̄ cijkZiZjZk +

2

3
Z cijkZ̄

iZ̄jZ̄k .

(A.16)

Despite the appearance of the central charges, this expression is by construction indepen-

dent of the scalars, which only appear due to the change of basis in (A.5). We will not

make use of this basis, but we do note the following identity,

1

2
I4(Γ, 2ImV, 2ImV) = 8 Im (Z(Γ)) ImV + 16 Re (Z(Γ)) ReV − 2 J Γ , (A.17)

central to the analysis of section 2.3. We refer to [9] for its derivation. A more extensive

list of useful I4 identities can be also found in the appendix of [10].

B The Kunduri-Lucietti-Reall solution

In this section, we present the doubly spinning black hole solution of Kunduri, Lucietti

and Reall [42] in new variables, which bring the form of the solution closer to that of

asymptotically flat BPS solutions and are adapted for Kaluza-Klein reduction.

We start with the BPS equations in five-dimensional gauged supergravity coupled to

nv vector multiplets, labelled by indices i, j, k . . . = 1, . . . , nv + 1. The scalars Xi satisfy

the constraint:

XiX
i = 1 , Xi ≡

1

6
cijkX

jXk , (B.1)

so that only nv of them are independent, while the field strengths F iµν are unrestricted and

include the graviphoton. The tensor cijk is assumed to satisfy (2.19), so that we restrict

to symmetric models. A general BPS solution in the so called timelike class is constructed

as follows. Given a Kähler 4-manifold with a metric, ds2
b, we choose the associated Kähler

form, J. Given these data, the metric and gauge fields of a supersymmetric solution can

be written locally as:

ds2 = −f2(dt+ ω)2 + f−1ds2
b

F i = d(Xie0) + Θi − 9g f−1cijkVjXk J . (B.2)

Here, e0 = f(dt+ω), the Vi are the FI gauging parameters, the Θi are arbitrary closed self-

dual forms on the base, and f > 0, is assumed to be a globally defined function. A positive
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orientation is chosen using e0 ∧ η as the volume form, where η is a positive orientation on

the base. The fluxes Θi are constrained in terms of the Ricci form on the base, R, as

3gViΘ
i − 27g2f−1cijkViVjXk J = R . (B.3)

Contraction with the Kähler form leads to the scalar condition

f Rs + 108g2cijkViVjXk = 0 , (B.4)

where Rs is the Ricci scalar on the base. The last equation implies that the overall scale of

the function, f , can be absorbed by a conformal rescaling of the base metric, ds2
b, consistent

with (B.2) upon appropriate rescaling of the time coordinate and ω. The one-form, ω, is

determined by solving:

fdω = G+ +G−, XiΘ
i = −2

3
G+ , (B.5)

while the scalars are obtained by solving the Maxwell equations, as given in [41], for the

field strengths in (B.2).

B.1 The KLR solution in 5d

We now turn to the solution of [42], whose base space is given by

ds2
b =

dr2

r (∆0 + 4g2r)
+

r

∆θ
dθ2 + r∆θ sin2θdφ2 + r (∆0 + 4g2r) (dψ + cos θdφ)2 , (B.6)

where

∆0 =
(
1 + g2 γ + 2 (1− cosh δ)

)
,

∆θ = cosh δ + sinh δ cos θ , (B.7)

and γ, δ are constants parametrizing a deformation away from the Bergmann manifold, to

which (B.6) reduces for γ = δ = 0. The particular parameterization of the coefficient ∆0 as

in (B.7) is chosen for convenience in comparing with the base space of the KLR solution.

The latter can be put in the form (B.6) by the coordinate transformation

{ψ , φ , r , θ }
∣∣
KLR

=

{
1

2

√
Ξb√
Ξa

(ψ + φ) ,
1

2

√
Ξa√
Ξb

(ψ − φ) , 2
(√

ΞaΞb r
)1/2

,
θ

2

}
, (B.8)

where |KLR denotes the variables of the same name in [42] and Ξa = 1− g2a2, Ξb = 1− g2b2

depend only on the two rotation parameters, a, b used in that reference. The latter are

related to the parameters γ, δ as

cosh δ =
1

2

(√
Ξa√
Ξb

+

√
Ξb√
Ξa

)
,

γ =
1√

ΞaΞb

(
2

(
a+ b

g
+ ab

)
+

3

g2

(
1−

√
ΞaΞb

))
. (B.9)
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In the rest of this appendix we present the doubly spinning black hole solution constructed

over the base (B.6), noting that (B.8)–(B.9) can be used to transform the various fields of

this solution to the ones in [42].

The Kähler form associated to the metric (B.6) is

J = dr ∧ (dψ + cos θdφ)− r sin θdθ ∧ dφ , (B.10)

which is manifestly anti-selfdual, while the resulting Ricci form and Ricci scalar read

R = − 6g2 J +
(
g2γ + 3(1−∆θ)

)
sin θdθ ∧ dφ , (B.11)

Rs = − 24g2 − 2

r

(
g2γ + 3(1−∆θ)

)
. (B.12)

Note that the Ricci form differs from the Kähler form only by components along the S2 part

of the metric (B.6) and that (B.11) reduces to a Kähler-Einstein condition asymptotically.

With this decomposition, the conditions (B.3)–(B.4) reduce to

3gViΘ
i =

1

2r

(
g2γ + 3(1−∆θ)

)
Θ0 , (B.13)

108g2 f−1cijkViVjXk = 24g2 +
2

r

(
g2γ + 3(1−∆θ)

)
, (B.14)

where

Θ0 = dr ∧ (dψ + cos θdφ) + r sin θdθ ∧ dφ . (B.15)

Given that the gauging vector Vi is assumed to have maximal rank and a single two-

form is expected to arise for a single centre solution (in this case Θ0), these equations can

be solved by an ansatz linear in 1/r for both the Θi and f−1Xi, leading to

f−1Xi =
Vi

[V ]3

(
1− ∆θ − 1

4g2 r

)
+

µi
12r

, (B.16)

Θi =
9

2
cijkVj

(
g
µk
3r
− Vk

[V ]3
∆θ − 1

g r

)
Θ0 , (B.17)

Here, we use the shorthand

[V ]3 =
9

2
cijkViVjVk . (B.18)

and µi is a vector of arbitrary constants19 subject to the constraint

γ =
9

2
cijkViVjµk , (B.19)

which we will use to eliminate γ in what follows, in favor of unconstrained µi. The final

equation to solve is (B.5), i.e.

dω+ = −3

2
f−1XiΘ

i , (B.20)

19In principle, one can consider two different vectors µi in (B.16) and (B.17), both subject to (B.19), but

the remaining BPS equations imply that they must be equal.
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which can be solved for ω using (B.16)–(B.17), by

ω =

(
−2g r +

3g

32r
cijkViµjµk

)
(dψ + cos θdφ)

+
1

2g [V ]3

[(
∆0

(
1− ∆θ − 1

4g2 r

)
−∆θ +

cosh δ − 1

2g2 r

)
(dψ + cos θdφ)

+

(
1− ∆θ − 1

4g2 r

)
sinh δ sin2 θ dφ

]
, (B.21)

where the asymptotic O(r) term was chosen for asymptotic regularity, following [42]. This

completes the doubly spinning black hole solution, as one can show that the Maxwell

equations are automatically satisfied.

B.2 The KLR solution in 4d

The five-dimensional solution described above can be straightforwardly reduced along ψ

to obtain a solution to four dimensional abelian gauged supergravity. The resulting ge-

ometry is not asymptotically AdS4, since the five dimensional theory is electrically gauged

and dimensional reduction of the theory described above leads to a prepotential of the

type (2.18), which only has AdS4 vacua for a mixed gauging. The relevant gauging vector

G in the four dimensional theory is rank-3, i.e. of the type (3.13), so that the solution

asymptotes to the hvLif geometry (3.12). In the special case of equal rotation, δ = 0, the

reduction to four dimensions was performed in [39], and here we extend this result to the

more general case of arbitrary δ.

Before presenting the result in four dimensions, we point out a subtlety related to

the periodicity of the coordinate ψ in (B.6), along which the reduction is performed. As

explained in [41], the Kähler base of a BPS solution must admit an SU(2) structure Jα,

α = 1, 2, 3, such that

dJ(1) = 0 , dJ(2) = P ∧ J(3) , dJ(3) = −P ∧ J(2) , (B.22)

where J(1) = J is the Kähler form and P is the potential for the Ricci form, R = dP .

One can explicitly check that for (B.6) with the Kähler form in (B.10), the remaining two

forms are

J(2) =
dr√

∆0 + 4g2r
∧
(

sin (cosh δψ)
dθ√
∆θ
− cos (cosh δψ)

√
∆θ sinθdφ

)
,

J(3) =
dr√

∆0 + 4g2r
∧
(

sin (cosh δψ)
dθ√
∆θ

+ cos (cosh δψ)
√

∆θ sinθdφ

)
, (B.23)

so that the Hopf fiber does not have unit charge. This can be easily remedied by performing

the rescaling

ψ → ψ

cosh δ
, φ→ φ

cosh δ
, (B.24)
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so that the U(1) fiber dψ + cos θ dφ is uniformly rescaled. This is crucial for reproducing

the four dimensional Dirac quantization condition (3.31) and the asymptotic value of the

metric function ∆ in (4.27).20

The dimensional reduction is otherwise completely straightforward and we simply

present some of the results here. The metric is as in (2.8), with base space as in (2.42)

where eψ is given as

e2ψ =
1

cosh δ
(∆0 + 4g2r)r2 , (B.25)

with ∆0 as defined in (B.7) and (B.19). This is consistent with (3.12), as anticipated above.

The metric along the sphere is as in (4.15) with

∆(θ) = 1 + tanh δ cos θ . (B.26)

The symplectic section is determined by its imaginary part, as

e2ψ I = e2ψ cosh δ − sinh δ cos θ

32g4
I ′4(G)

+
r2

4g

(
1

2
I ′4(G,G,Γ)− cosh δ

8g3

(
1

4
I ′4(G,G,Γ,Γ) + tanh2 δ

)
I ′4(G)

)
+

√
∆0

cosh δ
H0 r −

tanh δ

8g3
r (∆0 + 4g2r) cos θG , (B.27)

where H0 is a vector satisfying the condition (4.24), i.e.

Γ =
1

4
I ′4 (H0,H0, G) +

1

2
j2 I ′4 (G) ,

j = − sinh δ

8g3

√
∆0

cosh δ
, (B.28)

and we defined the parameter j for this solution. Restricting to the STU model for sim-

plicity, the gauging vector in the four dimensional theory is purely electric and given by

G =
√

2{0, 0, 0, 0, cosh δ, g, g, g}T , (B.29)

which is a vector of rank-3, as mentioned above. Finally, the components of the charge

vector Γ = {pI , qI} are given by

pI =
1√

2 cosh δ
{1, 0, 0, 0} ,

q0 =
1

8
√

2g3

(
2

cosh δ

∏
i

(1 + g2µi)−
∑
i

(1 + g2µi)(1 + g2µi+1) + 1

)
,

qi =
1

8
√

2 cosh δ

(
2g2µi+1µi+2 − g2

∑
i

µiµi+1 − 2µi

)
, (B.30)

where we use the cyclic convention mod 3 for the indices i, j, k. Given this charge vector,

the explicit expression for H0 in the STU model is given in (4.62).

20Note that this rescaling can be applied already at the level of the base space (B.6), before building the

5d solution on top of it, but we prefer to give the explicit connection with the form the solution was given

in [42].
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