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1 Introduction

The most peculiar feature of the quantum string theory spectrum is the presence of ex-

tended objects of non-perturbative nature, which are referred to as branes. Therefore,

branes as such are the key to the non-perturbative aspects of string theory. Even if a lot of

progress has been made in this respect, all main insights in this direction are still coming

from the low-energy description of brane systems. For this reason, the search for new su-

persymmetric solutions within supergravity theories, as well as engineering novel examples

of SCFTs emerging from branes should be considered as the most practical, concrete and

predictive playgrounds for producing quantitative results concerning the physics of strings

propagating within ten dimensional spacetime.
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The aim of this paper is to take some further steps in this direction by considering

the holographic realization of defect conformal field theories arising from brane systems.

Generally speaking, these are CFTs defined on a defect hypersurface within the background

of a higher-dimensional bulk CFT [1–6]. From the point of view of this “mother” theory, the

presence of the defect is realized through a deformation associated to a position-dependent

coupling. This deformation turns out to partially break conformal invariance in the bulk,

while only preserving the conformal transformations leaving the defect CFT intact. As

an immediate consequence, the one-point correlation functions are no longer vanishing,

and a non-trivial displacement operator appears. This a sign of the fact that the energy-

momentum tensor needs not be conserved in the presence of the defect.

The first realizations of defect CFTs in string theory were constructed in [7]. Then

many other examples and applications followed (for a non-exhaustive list of references on

conformal defects in string theory and holography see [8–36]). The key idea is to let defect

CFTs emerge from some particular supersymmetric brane configurations in which some

“defect branes” end on a given brane system, which is known to give rise to an AdS vacuum

in the near-horizon limit. The main effect of these intersections is to break partially the

isometry group of the AdS vacuum of the original brane system and to produce a lower-

dimensional warped AdS solution. The defect CFT describes the boundary conditions

defining the intersection with the defect branes and the warping of the corresponding

background describes the backreaction of the defect onto the bulk geometry. This may be

viewed as the supergravity picture associated to the position-dependent deformation of the

“mother” SCFT, dual to the original higher-dimensional AdS vacuum.

More concretely, let us consider a SUSY AdSd closed string vacuum associated with the

near-horizon of some brane system, where we furthermore assume the existence of a con-

sistent truncation linking the 10d (or 11d) picture to a solution in a d-dimensional gauged

supergravity describing the excitations around the AdSd vacuum. If some defect branes

end on this system, then we have a bound state with a (p + 1)-dimensional worldvolume

whose physics is captured by a d-dimensional Janus-type background

ds2
d = e2U(r) ds2

AdSp+2
+ e2V (r) dr2 + e2W (r) ds2

d−p−3 . (1.1)

The d-dimensional background is thus characterized by a AdSp+2 slicing and an asymp-

totic region locally described by the AdSd vacuum.1 The solutions like (1.1) can be then

consistently uplifted producing warped geometries of the type AdSp+2 ×Md−p−2 ×ΣD−d,

whereMd−p−2 is realized as a fibration of the (d− p− 3)-dimensional transverse manifold

over the interval Ir and ΣD−d is the internal manifold of the truncation with D = 10 or 11.

1We point out that the main difference between this case and the one of RG flows across dimensions

can be observed by considering the “radial” coordinates giving rise to the AdS vacua respectively in the

UV and IR. In a conformal defect, the radii of the AdSp+2 and AdSd are different, while in a supergravity

solution describing an RG flow across dimensions, the AdS backrounds arising in the UV and in the IR are

described by the same radial coordinate. Conformal defects and RG flows across dimensions are somehow

two complementary descriptions. For example one may guess the existence of more general flows involving

r as well as the radial coordinate of AdSp+2 describing a geometry where the metric (1.1) is replaced by an

R1,p slicing of the d-dimensional background.
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From the point of view of the dual field theories, this is exactly the supergravity realization

of a defect SCFTp+1 within the “mother” SCFTd−1.

In this paper we consider D4-D8 systems in massive IIA string theory and its intersec-

tion with D2-NS5-D6 defect branes. It is well-known that stacks of coincident D4 branes

localized on D8 branes and in the presence of O8 planes are described at the horizon by a

warped vacuum AdS6 × S4 [37]. The dual picture of this vacuum is realized by a matter-

coupled N = 2 SCFT5 arising as a fixed point of the 5d quantum field theory living on

the worldvolume of the D4s [37–40]. For a non-exhaustive list of references on AdS6 vacua

in string theory and AdS6/CFT5 correspondence we will refer to [41–59], while in [60, 61]

some holographic RG flows across dimensions are studied which arise from spontaneous

wrapping of D4 branes.

Massive IIA string theory can be consistently truncated around the AdS6 × S4 vac-

uum [62] and the theory produced by this truncation is d = 6, N = (1, 1) gauged super-

gravity, also known as F (4) gauged supergravity [63]. The minimal incarnation of this

theory will be the main tool of this paper and, within this context, we will be able to de-

rive a new class of analytic BPS solutions characterized by a running profile for the 2-form

gauge potential included into the supergravity multiplet. This new class of flows will be

presented by starting from the simplest 6d background compatible with the presence of

the 2-form, to subsequently move to more complicated 6d geometries. The main results

are thus represented by three backgrounds of the type (1.1), namely, warped solutions of

the type AdS3×M3 admitting a locally AdS6 asymptotic geometry with a 2-form charge.

In particular one of these backgrounds is non-singular in the IR and, in this limit, the

geometry is locally given by AdS3 × T 3.

Among these warped AdS3 ×M3 solutions, we then consider the simplest one, given

by a “charged” domain wall with a running profile for the 2-form and we interpret the

singular behavior appearing in the IR regime as a brane singularity associated to D2-NS5-

D6 defect branes ending on the D4-D8 system. The key point of this interpretation is

based on the presence of the 2-form that turns out to be related to the F(4), F(2) and H(3)

fluxes in the 10d picture. Thanks to the uplift formula, we then obtain the corresponding

10d backround written as AdS3 × S2 × S3 fibered over two intervals Ir × Iξ, where M3 is

realized by an S2 fibration over Ir and the 4d squashed sphere defining the truncation is

written as an S3 fibration over Iξ. Then we discuss the relations of the 10d background

AdS3 × S2 × S3 × Ir × Iξ with the near-horizon geometry of the brane intersection D2-

D4-NS5-D6-D8 found in [34] and we formulate the holographic interpretation of the 6d

charged domain wall as a defect N = (0, 4) SCFT2 within the N = 2 SCFT5. Finally

we test this interpretation by deriving the one-point functions of the defect both from

holographic arguments and conformal perturbation expansion, and we find agreement in

the position-dependence for the coupling driving the deformation produced by the defect.

2 The D4-D8 system and AdS6/CFT5

Let us consider the brane system discussed in [37, 39, 40]. The construction starts from a

probe five-brane brane in type I string theory on R9 × S1 whose worldvolume is wrapping

– 3 –



J
H
E
P
0
1
(
2
0
1
9
)
1
9
3

branes t y1 y2 y3 y4 z ρ θ1 θ2 θ3

D8 × × × × × − × × × ×
D4 × × × × × − − − − −

Table 1. The brane picture underlying the 5d N = 2 SCFT defined by the D4-D8 system. The

system is BPS/4 and the AdS6 × S4 vacuum is realized by a combination of ρ and z.

the circle. Performing a T-duality along the circle we obtain a four-brane in type I’ on

the interval S1/Z2 with two O8 planes in the fixed points. Then the four-brane can be

interpreted as a D4 brane in massive IIA string theory located at a point of the interval. In

order to cancel the −16 charge units carried by the O8 planes, one has to include at least

16 D8 branes whose position is described by the moduli appeared after dualizing. Then a

slightly more general construction involving two D8 stacks can be considered, one of each

consisting of Nf and 16−Nf D8 branes, respectively.

Let us now move to discussing the worldvolume theory of this construction. Within

the interval S1/Z2, the gauge group of the theory on the D4 brane is broken to U(1), but at

the two endpoints a larger gauge symmetry is restored. In particular, if the D4 and Nf D8

branes are located at one orientifold and the other 16−Nf at the other O8, then we have a

d = 5 N = 2 Yang-Mills theory with gauge group SU(2). The 5d vector multiplet includes a

gauge field and a real scalar describing the locus of the D4 along S1/Z2. The matter content

is given by Nf hypermultiplets in the fundamental, arising from open strings streched be-

tween the D4 and the D8 branes, and by an antisymmetric massless hypermultiplet coming

from the D4 brane. The supercharges and the scalars coming from the antisymmetric hy-

permultiplet transform as a doublet under the R-symmetry group, that is given by SU(2)R.

The global symmetry of the theory is SU(2)× SO(2Nf )×U(1)I , where the SU(2) factor is

associated to the antisymmetric hyper, the SO(2Nf ) is related to the Nf hypers in the fun-

damental and finally the extra U(1)I corresponds to the instanton number conservation.2

The above construction can be extended to a stack of N coinciding D4 branes entirely

localized on the Nf D8 branes at a 9-dimensional orientifold and other 16−Nf D8 branes

at the other O8 plane. In this case we have a N = 2 SYM theory with gauge group USp(N)

coupled to Nf “quark” hypers and to an antisymmetric hyper.

If the number of flavors is such that Nf < 8, the theory introduced above has a

non-trivial fixed point at the origin of the Coulomb branch, given by R+ and the global

symmetry associated to the Higgs branch is then enhanced to SU(2) × ENf+1 [39]. This

fixed point is described by a N = 2 SCFT5 with USp(N) gauge group and couplings to

matter given by Nf fundamental and one antysimmetric hypermultiplets.

The low-energy description of the above brane system is naturally realized in massive

IIA supergravity.3 It turns out that this construction includes an AdS6 vacuum in its near-

horizon limit and this corresponds to a fixed point in the RG flow of the 5d worldvolume

theory of the D4 branes [37, 40]. Let us now consider the supergravity solution describing

2It is related to the 5d conserved current ? 5(F ∧ F ) [39, 40].
3See appendix A for a brief review on massive IIA supergravity.
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the simplest realization of such D4-D8 system. Given a D4 probing a D8 background with

worldvolume along the coordinates (t, x1, x2, x3, x4) and located at points (z, ρ, θ1, θ2, θ3),

the massive IIA field configuration has the following form [37, 64, 65]

ds2
10 = H

−1/2
D8 H

−1/2
D4 ds2

R1,4 +H
1/2
D8 H

1/2
D4 dz

2 +H
−1/2
D8 H

1/2
D4

(
dρ2 + ρ2 ds2

S3

)
,

eΦ = gsH
−5/4
D8 H

−1/4
D4 , C(5) =

1

gsHD4
,

(2.1)

where HD8 = HD8(z) and HD4 = HD4(z, ρ) are suitable functions given by

HD4(z, ρ) = 1 +
QD4

(ρ2 + 9
4 gsmz3)5/3

and HD8(z) = gsmz , (2.2)

while ds2
S3 is the metric on the round S3 parametrized by the coordinates θi. This solution

depends on two parameters, respectively given by the D4 charge QD4, and the D8 charge

QD8 = gsm, m being the Romans’ mass. The background (2.7) satifies the 10d equations

of motion (A.3), while the Bianchi identities (A.5) are trivially satified. This last feature

may be viewed as a consequence of the fact that the Hanany-Witten effect does not occur

in D4-D8 constructions.

The AdS geometry arising in the near-horizon limit can be understood by introducing

the following change of coordinates

ρ = ζ cosα and z =

(
3

2

)2/3

g−1/3
s m−1/3 ζ2/3 sin2/3 α , (2.3)

the functions (2.2) take the following form

HD8 =

(
3

2

)2/3

g2/3
s m2/3s2/3ζ2/3 and HD4 = 1 +

QD4

ζ10/3
, (2.4)

with s = sinα and c = cosα.

In this new coordinate system, the near-horizon limit is given by ζ → 0 and it corre-

sponds to the regime in which the “1” in HD4(ζ) can be dropped. In this case the metric

in (2.7) can be cast in the following form [37]

ds2
10 =

(
3

2
gsms

)−1/3 [
Q
−1/2
D4 ds2

AdS6
+Q

1/2
D4 ds

2
S4

]
,

ds2
AdS6

=
9QD4

4

du2

u2
+ u2ds2

R1,4 ,

ds2
S4 = dα2 + c2 dΩ2

3 ,

(2.5)

where u = ζ2/3. From (2.5) we conclude that the near-horizon limit of (2.7) is described

by a warped vacuum of the type AdS6 × S4 where S4 is only the upper hemisphere of

a (round) 4-sphere [37]. The boundary of S4 is located at z = 0 (or at α → 0) and it

describes the location of the O8 plane. The isometry group of this vacuum is given by

SO(2, 5)× SU(2)× SU(2).
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branes t y1 y2 y3 y4 z ρ θ1 θ2 θ3

D8 × × × × × − × × × ×
D4 × × × × × − − − − −

KK5 × × × × × × − − − ISO

Table 2. The brane picture underlying 5d N = 2 SCFT’s defined by the D4-D8-KK5 system. The

system is BPS/4 and in the AdS6 × S4/Zk vacuum the AdS radial coordinate is represented by a

combination of ρ and z, while the Zk orbifold is realized by the KK5 charge.

If we now consider the more general case of a stack of N = QD4 coinciding D4 branes

entirely localized on the Nf D8 branes at a 9-dimensional orientifold and other 16−Nf D8

branes at the other O8 plane, we may conclude, following the usual holographic dictionary,

that the low-energy limit of the above D4-D8 construction enjoys two dual descriptions

appearing at the near-horizon of the corresponding brane solution. In particular it turns

out that massive IIA string theory on the AdS6 × S4 vacuum (2.5) is dual to the N = 2

SCFT5 emerging at the horizon as a fixed point of the worldvolume theory of the underly-

ing D4-D8 system [37, 40]. In particular the two SU(2) isometry groups of the supergravity

vacuum respectively correspond to the R-symmetry group of the SCFT5 and to the global

symmetry of the antysimmetric hypermultiplet. Moreover this theory realizes the excep-

tional superconformal algebra F (4), whose R-symmetry only includes a single SU(2)R. As

far as the number of flavors is concerned, it must satisfy Nf < 8, and it is associated to

the Romans’ mass through m = 8 − Nf > 0. The further enhancement to ENf+1 which

is expected at the fixed point from a field-theoretical viewpoint, may be obtained in this

context by observing that the dilaton blows up as α→ 0, thus rendering the corresponding

type I’ string theory description strongly coupled. The aforementioned enhancement can

then be explained in terms of D0 brane instanton effects. These appear at the boundary

and take the new gauge degrees of freedoms into account [37, 39, 40].

2.1 Including a NUT charge

In the previous subsection we reviewed the simple original construction of D4-D8 systems

and the associated 5d fixed points. As already explained, these theories realize the ex-

ceptional superconformal algebra F (4), whose R-symmetry only includes a single SU(2)

factor. Note that the SU(2)2 isometries of the background in (2.5) can be broken to SU(2)

by writing the round S3 metric as a Hopf fibration of S2 over S1, i.e.

ds2
S3 =

1

4
ds2
S2 +

1

4

(
dθ3 + ω

)2
, (2.6)

where the round S2 is parametrized by (θ1, θ2), and dω = volS2 . The above metric can

be viewed as a (trivial) lens space bearing a unit NUT charge [66]. Hence it becomes

very natural to deform the range of the fiber coordinate θ3 by turning on a non-trivial

NUT charge. This procedure yields the brane system depicted in table 2, which turns out

preserve the same amount of supersymmetry as the one in table 1.

– 6 –
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The massive type IIA supergravity background describing a semilocalized D4-D8-KK5

system reads

ds2
10 = H

−1/2
D8 H

−1/2
D4 ds2

R1,4 +H
1/2
D8 H

1/2
D4 dz

2 +H
−1/2
D8 H

1/2
D4 HKK5

(
dρ2 + ρ2 ds2

S2

)
+

+ H
−1/2
D8 H

1/2
D4 H

−1
KK5

(
dθ3 +QKK5 ω

)2
,

eΦ = gsH
−5/4
D8 H

−1/4
D4 , C(5) =

1

gsHD4
,

(2.7)

where HD8 = HD8(z), HD4 = HD4(z, ρ) and HKK5 = HKK5(ρ) are suitable functions given

by

HD4(z, ρ) = 1 +
QD4

(ρ+ gsm
9QKK5

z3)5/3
, HD8(z) = gsmz and HKK5(ρ) =

QKK5

ρ
. (2.8)

If we now introduce

ρ =
gsm

9
ζ3 cos2 α and z = Q

1/3
KK5 ζ sin2/3 α , (2.9)

the metric (2.8) takes the form

`2 ds2
10 = s−1/3

(
ds2

AdS6
+

4

35/3
QKK5 ds

2
S4/Zk

)
, (2.10)

with `2 = 35/3 (gsm)1/3Q
1/6
KK5Q

−1/2
D4 and

ds2
S4/Zk = dα2 +

c2

4

(
ds2
S2 +

(
Q−1

KK5 dθ
3 + ω

)2)
, (2.11)

where s = sinα and c = cosα.

3 The supergravity setup

The bosonic isometries of the AdS6 × S4 vacuum (2.5) introduced in section 2 are natu-

rally embedded into the F (4) superalgebra and this hints at a strong link with minimal4

N = (1, 1) gauged supergravity in d = 6. This theory is also known as F (4) or Romans

supergravity and it was firstly studied in [63]. In this section we will introduce the main

properties of this supergravity theory, we will present the unique supersymmetric AdS6

vacuum admitted by the scalar potential and we will revisit some domain wall solutions as

simplest examples of backgrounds involving non-trivial field profiles.

Subsequently we will present the consistent truncation of massive IIA supergravity

around the AdS6 × S4 [62]. This will turn out to reproduce exactly the equations of

motion of F (4) gauged supergravity. For this reason this 6d supergravity will constitute a

powerful tool to capture the low-energy physics of those brane systems in massive IIA that

are related to the D4-D8 constructions presented in section 2.

4By “minimal” we mean the truncation to the pure supergravity multiplet of the theory.
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3.1 Minimal N = (1, 1) gauged supergravity in d = 6

Half-maximal N = (1, 1) supergravities in d = 6 [63, 67] admit the coupling of the super-

gravity multiplet to an arbitrary number n of matter multiplets. Each of these includes four

real scalar fields and the entire set of moduli parametrizes the (4n+ 1)-dimensional coset

R+ × SO(4, n)

SO(4)× SO(n)
. (3.1)

In this paper we consider the minimal realization of N = (1, 1) supergravity in d = 6, then

retaining in our analysis only the pure supergravity multiplet. We refer to appendix C for

the details of the truncation yielding the theory in its minimal incarnation as originally

introduced in [63]. In this case the global isometry group breaks down to [48, 54, 67]

G0 = R+ × SO(4) . (3.2)

The R-symmetry group is the diagonal SU(2)R ⊂ SO(4) ' SU(2) × SU(2) corresponding

to 16 preserved supercharges, which are in turn organized in their irreducible chiral com-

ponents. The fermionic field content of the supergravity multiplet is given by two gravitini

and two gaugini. Both the gravitini and the gaugini can be packed into pairs of Weyl

spinors with opposite chiralities. Moreover, in d = 1 + 5 spacetimes it is possible to intro-

duce symplectic-Majorana-Weyl spinors5 (SMW). This formulation turns out to be very

convenient in that it arranges the fermionic degrees of freedom of the theory into SU(2)R
doublets, respectively denoted by ψaµ and χa with a = 1, 2. Note that such objects must

also respect the pseudo-reality condtion (B.5) in order for them to describe the correct

number of propagating degrees of freedom.

The bosonic content of the supergravity multiplet consists of the graviton emµ with

m = 0, . . . , 5, a real scalar X, a 2-form gauge potential B(2), a non-Abelian SU(2) valued

vector Ai and an Abelian vector A0.

The consistent deformations of the minimal theory are determined by the gauging of

the R-symmetry SU(2)R ⊂ SO(4), through the vectors Ai, and by a Stückelberg coupling

giving mass to the 2-form B(2). The first deformation is described by a coupling constant

g and the second by a mass parameter m.

The bosonic Lagrangian has the form [62, 63, 68]

L = R ? 6 1− 4X−2 ? 6 dX ∧ dX −
1

2
X4 ? 6 F (3) ∧ F (3) − V (X)

− 1

2
X−2

(
? 6F i(2) ∧ F

i
(2) + ? 6H(2) ∧H(2)

)
− 1

2
B(2) ∧ F0

(2) ∧ F
0
(2)

− 1√
2
mB(2) ∧ B(2) ∧ F0

(2) −
1

3
m2 B(2) ∧ B(2) ∧ B(2) −

1

2
B(2) ∧ F i(2) ∧ F

i
(2) ,

(3.3)

5For more details on Clifford algebras for d = 1 + 5 spacetime dimensions see appendix B.
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where the field strengths are defined as

F(3) = dB(2) ,

F0
(2) = dA0 ,

H(2) = dA0 +
√

2mB(2) ,

F i(2) = dAi +
g

2
εijk Aj ∧Ak .

(3.4)

The scalar potential V (X) induced by the gauging is given by

V (X) = m2X−6 − 4
√

2 gmX−2 − 2 g2X2 , (3.5)

and it can be expressed in terms of a real function f(X), the BPS superpotential, as it

follows

V (X) = 16X2 (DXf)2 − 80 f(X)2 , (3.6)

where f(X) is given by

f(X) =
1

8

(
mX−3 +

√
2 g X

)
. (3.7)

The SUSY variations of the fermions are expressed in terms of a 6d Killing spinor ζa in

the following way [63, 68]

δζψ
a
µ = ∇µ ζa + 4g (Aµ)ab ζ

b +
X2

48
Γ∗Γ

mnpF (3)mnp Γµζ
a

+ i
X−1

16
√

2

(
Γ mn
µ − 6 emµ Γn

)
(Ĥmn)ab ζ

b − if(X) ΓµΓ∗ζ
a ,

δζχ
a = X−1Γm∂mX ζa +

X2

24
Γ∗Γ

mnpF (3)mnp ζ
a

− i X
−1

8
√

2
Γmn(Ĥmn)ab ζ

b + 2iXDX f(X) Γ∗ ζ
a ,

(3.8)

with ∇µ ζa = ∂µζ
a + 1

4 ω
mn
µ Γmn ζ

a and (Ĥmn)ab defined as

(Ĥµν)ab = H(2)µν δ
a
b − 4 Γ∗ (F (2)µν)ab , (3.9)

where we introduced the notation Aab = 1
2 A

i(σi)ab with σi Pauli matrices given in (B.8).

Varying (3.3) with respect to all the bosonic fields we obtain the equations of motion

Rµν − 4X−2 ∂µX ∂ν X −
1

4
V (X) gµν −

1

4
X4

(
F αβ

(3)µ F (3) ναβ −
1

6
F2

(3) gµν

)
− 1

2
X−2

(
H α

(2)µ H(2) να −
1

8
H2

(2)gµν

)
− 1

2
X−2

(
F i α

(2)µ F
i
(2) να −

1

8
F i 2

(2) gµν

)
= 0 ,

d
(
X4 ? 6 F (3)

)
= −1

2
H(2) ∧ H(2) −

1

2
F i(2) ∧ F

i
(2) −

√
2mX−2 ? 6 H(2) ,

d
(
X−2 ? 6 H(2)

)
= −H(2) ∧ F (3) , (3.10)

D
(
X−2 ? 6 F i(2)

)
= −F i(2) ∧ F (3) ,

d
(
X−1 ? 6 dX

)
+

1

8
X−2

(
? 6H(2) ∧ H(2) + ? 6F i(2) ∧ F

i
(2)

)
− 1

4
X4 ? 6 F (3) ∧ F (3) −

1

8
XDX V (X) ? 6 1 = 0 ,

– 9 –
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where D is the gauge covariant derivative defined as Dωi = dωi + g εijk A
j ∧ ωk with ωi

any SU(2) covariant quantity.

3.2 AdS6 vacuum and domain walls

The scalar potential (3.5) admits a critical point giving rise to an AdS6 vacuum preserving

16 real supercharges. This vacuum is realized by the following value of X

X =
31/4m1/4

21/8 g1/4
, (3.11)

and by setting all the gauge potentials to zero. The simplest excited background in 6d

N = (1, 1) gauged supergravity is a field configuration involving only the scalar X. Such

a system is described by a domain wall flow of the type

ds2
6 = e2V (r) dr2 + e2U(r) ds2

R1,4 ,

X = X(r) ,
(3.12)

where ds2
R1,4 is the metric of the 5d Minkowski spacetime. In order to derive the explicit

radial dependence of the warp factors and of the scalars, we can set to zero the SUSY

variations of fermions (3.8) and choose as Killing spinor a Dirac spinor6 ζ of the form

ζ(r) = Y (r) ζ0 , (3.13)

where ζ0 is a constant Dirac spinor satisying the projection condition

− iΓ3 Γ∗ ζ0 = ζ0 . (3.14)

Imposing the background (3.12) with the Killing spinor (3.13), the SUSY variations (3.8)

reduce to a set of flow equations given by

U ′ = −2 eV f(X) , Y ′ = −Y eV f(X) , X ′ = 2 eV X2DXf . (3.15)

The warp factor V is pure gauge and it can be defined as

eV =
X−2

2DXf
, (3.16)

so that the flow equations (3.15) can be easily intergrated to give

e2U =

(
r

3m−
√

2 g r4

)2/3

, e2V =

(
4 r2

3m−
√

2 g r4

)2

, X = r , (3.17)

with a radial dependence of the Killing spinor specified by Y = eU/2.

6The fermionic parameter ζa appears inside the SUSY variations (3.8) as a SMW spinor since vector

fields have a natural SU(2) action on spinor doublets. As we explain in appendix B, the pseudo-reality

condition (B.5) guarantees that the number of independent components of a SM (SMW) doublet are the

same as those of a Dirac (Weyl) spinor. This means that, whenever vectors are vanishing, it will be more

suitable to reorganize them into Dirac or Weyl spinors.

– 10 –
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3.3 The massive IIA origin of F (4) supergravity

In this subsection we present the consistent truncation of massive IIA supergravity around

the AdS6 × S4 vacuum introduced in section 2. The 6d vacuum (3.11) will then gain a

natural interpretation in massive IIA string theory as the near-horizon of a D4-D8 system

and F (4) gauged supergravity will turn out to be the effective theory capturing the physics

associated to the background’s excitations around this vacuum. The stringy interpretation

of (3.11) is realized thanks to the reduction Ansatz constructed in [62], in which a consistent

truncation to the theory (3.3) is constructed. In particular, after fixing the 6d gauge

parameter as

m =

√
2 g

3
, (3.18)

the 6d equations of motion (3.10) can be obtained from the following truncation Ansatz of

the 10d background7 [62]

ds2
10 = s−1/3X−1/2 ∆1/2

[
ds2

6 + 2g−2X2 ds2
S̃4

]
, (3.19)

where ∆ = Xc2 + X−3s2 and ds2
S̃4 is the metric of a squashed 4-sphere S̃4 describing a

fibration of a 3-sphere over a circle

ds2
S̃4 = dξ2 +

1

4
∆−1X−3 c2

3∑
i=1

(
θi − gAi

)2
, (3.20)

with c = cos ξ and s = sin ξ. By observing the internal structure of (3.20), one may

immediately conclude that also the internal 3-sphere is deformed and, in particular, it

identifies an SU(2) bundle for which the 6d vectors Ai are the connections and θi the

left-invariant 1-forms.8 The rest of the 10d fields are given by [62]

F(4) = −
√

2

6
g−3 s1/3 c3 ∆−2 U dξ ∧ ε(3) −

√
2 g−3 s4/3 c4 ∆−2X−3 dX ∧ ε(3)

−
√

2 g−1 s1/3 cX4 ? 6 F (3) ∧ dξ −
1√
2
s4/3X−2 ? 6 H(2)

+
g−2

√
2
s1/3 cF i(2) h

i ∧ dξ − g−2

4
√

2
s4/3 c2 ∆−1X−3 εijk F i(2) ∧ h

j ∧ hk ,

F(2) =
s2/3

√
2
H(2) , H(3) = s2/3F (3) + g−1 s−1/3 cH(2) ∧ dξ ,

eΦ = s−5/6 ∆1/4X−5/4 , F(0) = m.

(3.21)

where U = X−6 s2−3X2 c2 +4X−2 c2−6X−2 and ε(3) = h1 ∧ h2 ∧ h3 with hi = θi−gAi.
Expressing (3.11) in terms of (3.18), one obtains the AdS6×S4 vacuum (2.5). In particular,

for X = 1 and vanishing gauge potentials, the manifold (3.20) becomes a round 4-sphere.9

7For our later convenience, we formulate the Ansatz in the string frame, while in [62] it is given in the

Einstein frame. See appendix A.
8They satisfy the identity dθi = − 1

2
εijk dθ

j ∧ dθk.
9As pointed out in [37] and in the discussion above on (2.5), this is only the upper hemisphere of a

4-sphere with a bounday appearing for ξ → 0.
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Fluxes Θ Minimal R+
X weights

F0ijk ζ0 εijk m +3

F(0)
1
3!ε

ijk fijk g +1

ω k
ij fijk g +1

Table 3. The embedding tensor/fluxes dictionary specifying the massive IIA origin of Romans’

theory in 6d. The Θ notation refers to the theory coupled to four vector multiplets in appendix C.

ωij
k refers to the spin connection of S3.

From (3.21) it follows that F(4) is the only non-zero flux, in addition to the Romans’ mass,

supporting the AdS6 × S4 vacuum. Together with the dilaton, it has the following form

F(4) =
5
√

2

6
g−3 s1/3 c3 dξ ∧ ε(3) , eΦ = s−5/6 , (3.22)

which are exactly the flux and dilaton configurations corresponding to the near-horizon of

the semilocalized D4-D8 system introduced in section 2 [37, 62].

In terms of an embedding tensor/fluxes dictionary, the massive type IIA origin of the

minimal theory is summarized in table 3. Note that this massive IIA realization of Romans’

theory supports spacetime-filling KK monopoles. As already mentioned in appendix C,

the presence of such a tadpole is inferred by a violation of the extra constraints in (C.5).

The fact that the source is of a KK5-brane type is due to the fact that its WZ action

is constructed through the coupling to a mixed symmetry potential of (7, 1) type. The

corresponding tadpole will then be a (3, 1)-form. Such an object can be constructed in

our case as θae Fbcde, where a, b, c and d are SO(4) indices and θij is constructed from

the above ω k
ij by contracting it with εijk. Such KK5 branes as spacetime-filling sources

exactly correspond to the objects appearing in the brane system introduced in table 2.

In the following section we are going to present new classes of solutions to 6d F (4)

supergravity involving non-trivial profiles for the two-form field. Thanks to the uplift

formulae revisited in this section, these will gain a natural massive type IIA origin that

will allow us to speculate on their possible holographic interpretation.

4 BPS flows with the 2-form gauge potential

In this section we derive a new class of supersymmetric solutions for the theory (3.3) by

solving the BPS equations associated to the SUSY variations (3.8). These flows are charac-

terized by a non-trivial profile for the 2-form gauge potential B(2) and some of them enjoy a

UV regime reproducing locally the AdS6 vacuum (3.11). The spacetime backgrounds defin-

ing these solutions may be divided into two classes: one featured by a three-dimensional

Minkowski R1,2 slicing and the other by a AdS3 foliation.

We will firstly formulate the general Ansatz on the bosonic fields and on the Killing

spinor giving rise to the first-order flow associated to this class of backgrounds. Then we

will explicitly solve the first-order equations obtaining a class of novel solutions preserving

8 real supercharges.
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4.1 The general ansatz

The 6d metrics considered are of the general form

ds2
6 = e2U(r) ds2

M3
+ e2V (r) dr2 + e2W (r) ds2

Σ2
, (4.1)

where the “worldvolume” part M3 is given by the 3-dimensional Minkowski spacetime R1,2

or by AdS3, and the “transverse” space Σ2 can be either R2 or S2. As in the case of the

domain wall solution (3.17), we introduce the non-dynamical warp factor V that will turn

out to be crucial to analytically solve the flow equations.

For simplicity we will consider vanishing vectors, i.e. Ai = 0 and A0 = 0 and, as far as

the 2-form gauge potential B(2) is concerned, it will be considered wrapping the manifold

Σ2 as follows

B(2) = b(r) volΣ2 . (4.2)

We furthermore also assume a purely radial dependence for the scalar

X = X(r) . (4.3)

Since we are looking for SUSY backgrounds, we need to specify a suitable Killing spinor re-

alizing a set of non-trivial first-order equations corresponding to the spacetime background

given in (4.1) and (4.2). As in the case of the domain wall (3.13), the action of the SUSY

variations on the SU(2)R indices of the Killing spinor ζa is trivial, so it is more natural to

reorganize the components of a Killing spinor into a (1 + 5)-dimensional Dirac spinor ζ.

Following the splitting of the Clifford algebra given in (B.9), the Killing spinors considered

are of the form

ζ(r) = ζ+ + i B Γ∗ ζ
− ,

ζ± = Y (r) ηM3 ⊗
(

cos θ(r)χ±Σ2
⊗ ε0 + i sin θ(r) γ∗ χ

±
Σ2
⊗ σ3ε0

)
,

(4.4)

where the explicit representations of the chiral operator Γ∗ is defined in (B.11) and the

complex-conjugation matrix B in (B.10) in terms of the Dirac matrices (B.7) on Σ2. The

spinor ηAdS3 on M3 = AdS3 is a Majorana Killing spinor enjoying 2 real independent

components and satisfying the following Killing equation

∇xα ηM3 =
L

2
ρxα ηM3 , (4.5)

where ρxα are the Dirac matrices introduced in (B.6) and L−1 the radius of AdS3. The flat

case M3 = R1,2 is recovered by taking a solution of (4.5) with L = 0.

Let us now consider the Euclidean spinor χS2 on Σ2 = S2 with radius R−1. This is

a complex spinor carrying 4 real independent degrees of freedom that can split into 2+2

components χ±
S2 solving the following Killing conditions on S2,

∇θi χ+
Σ2

=
R

2
γ∗ γθi χ

−
Σ2
,

∇θi χ−Σ2
=
R

2
γ∗ γθi χ

+
Σ2
.

(4.6)
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In the R = 0 limit we obtain the Killing spinor equations for the flat case Σ2 = R2 in which

χ+
R2 = χ−R2 ≡ χR2 .

Finally ε0 is a 2-dimensional real constant spinor encoding the two different chiral

parts of ζ as

Γ∗ ζ = ± ζ ⇐⇒ σ3 ε0 = ± ε0 , (4.7)

where we used the identity (B.10). Summarizing, we have that our ζ depends on 16 real

independent components in total. As we shall see later, these will be reduced by half by

an algebraic projection condition associated with the particular background considered.

4.2 Background with M3 = R1,2 and Σ2 = R2

Let’s start with the simplest configuration in which the metric (4.1) is featured by M3 =

R1,2 and Σ2 = R2. The 6d background takes the following form

ds2
6 = e2U(r) ds2

R1,2 + e2V (r) dr2 + e2W (r) ds2
R2 ,

B(2) = b(r) volR2 ,

X = X(r) .

(4.8)

The Killing spinor realizing the background (4.8) is included into the general expression

given in (4.4). In the case in which both M3 and Σ2 are flat, the spinors ηR1,2 , χ±R2

respectively satisfy the Killing spinor equations (4.5) and (4.6) in the limits where both

L = 0 and R = 0. This implies that the Killing spinor of the background (4.8) may be

written as

ζ = Y (r) ηR1,2 ⊗
(
cos θ(r)χR2 ⊗ ε0 + i sin θ(r) γ∗ χR2 ⊗ σ3 ε0

)
. (4.9)

The projection condition (3.14) expressed in terms of (B.9) takes the form

(γ∗ ⊗ σ1) (χR2 ⊗ ε0) = χR2 ⊗ ε0 , (4.10)

where we omitted the spinor’s R1,2 part since the action of (3.14) on ηR1,2 is given by the

identity. We can recast (4.9) in the more compact form given by

ζ = Y (r)
(
cos θ(r) I8 − sin θ(r) Γ4 Γ5 Γ∗

)
ζ0 , (4.11)

where ζ0 is a constant Dirac spinor satisfying the condition −iΓ3 Γ∗ ζ0 = ζ0 .

– 14 –
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Evaluating the SUSY variations (3.8) onto the background (4.8) and the Killing

spinor (4.9) satisfying (4.10), we obtain the following set of first-order equations

U ′ = −2 eV
cos(4θ)

cos(2θ)
f ,

W ′ = 2 eV
cos(4θ)− 2

cos(2θ)
f ,

b′ =
16

X2
eV+2W sin(2θ) f ,

X ′ =
2 eV X

cos(2θ)
(cos(2θ)XDX f + 2 sin(θ) cos(3θ) tan(θ) f) ,

Y ′ = −Y eV cos(4θ)

cos(2θ)
f ,

θ′ = 4 eV sin(2θ) f .

(4.12)

For consistency the above equations have to be supplemented by the two constraints

b
!

=
8

m
e2W X tan(2θ) f ,

X DX f + 3 f
!

= 0 .

(4.13)

The second relation of (4.13) implies that the flow (4.12) must be driven by the run-away

superpotential given by

f =
m

8
X−3 . (4.14)

If (4.14) holds, than the expression of b in (4.13) is automatically compatible with (4.12).

In order to intergrate the equations (4.12) we make the following gauge choice

eV = (4 f)−1 . (4.15)

Starting from the equation for θ′ we can solve the whole system obtaining

e2U = sinh(4r)1/4 coth(2r)3/4 ,

e2W = sinh(4r)1/4 tanh(2r)5/4 ,

e2V =
4

m2
coth(2r)3/4 sinh(4r)9/4 ,

b = − 1√
2

cosh(2r)−2 ,

X = sinh(4r)3/8 coth(2r)1/8 ,

Y = sinh(4r)1/16 coth(2r)3/16 ,

θ = arctan
(
e2r
)
.

(4.16)

The solution (4.16) satisfies the equations of motion (3.10) with a run-away scalar potential

given by

V (X) = m2X−6 . (4.17)

The potential (4.17) does not admit critical points so (4.16) cannot be asymptotically AdS6

for r → +∞, while in the IR regime r → 0 the background becomes singular.
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4.3 Background with M3 = AdS3 and Σ2 = R2

Let’s now consider a curved worldvolume part M3 = AdS3, the 6d spacetime background

takes the following form

ds2
6 = e2U(r) ds2

AdS3
+ e2V (r) dr2 + e2W (r) ds2

R2 ,

B(2) = b(r) volR2 ,

X = X(r) .

(4.18)

As opposed to the previous case, a Killing spinor for (4.18) has to produce the new contri-

butions to the SUSY variations coming from the non-zero curvature of AdS3. Considering

the general form (4.4), these contributions are encoded in ηAdS3 satisfying (4.5) with L 6= 0.

In order to simplify the derivation of BPS equations one may notice that the first-order

formulation of the theory defined by (3.8) is gauge-dependent, i.e. it depends explicitly on

the spin connections of the background. This means that we can look for a parametriza-

tion of AdS3 producing contributions in the SUSY variations10 that do not depend on the

internal coordinates of AdS3. This would allow us to keep the same Killing spinor of the

flat case [33]. The parametrization of AdS3 giving rise to constant components of the spin

connections in the flat basis is the Hopf fibration,

ds2
AdS3

=
1

4L2

[
(dx1)2 + cosh2 x1(dx2)2 −

(
dt− sinhx1dx2

)2]
, (4.19)

where the corresponding non-symmetric dreibein has the following form

e0 =
1

2L

(
dt− sinhx1dx2

)
,

e1 =
1

2L

(
cos t dx1 − sin t coshx1 dx2

)
,

e2 =
1

2L

(
cos t coshx1dx2 + sin t dx1

)
.

(4.20)

The dreibein (4.20) defines a constant spin connection in the flat basis. As a consequence,

in this non-symmetric parametrization of AdS3, we can keep the same form of the Killing

spinor given in (4.9) with the projection condition (4.10).

10Such a parallelized basis does not clearly exist for every manifold. For example, in the next section we

will consider Σ2 = S2 and we will be forced to include a dependence on the coordinates of the S2 into the

Killing spinor.
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Evaluating the Ansatz (4.18) into the SUSY variations (3.8) with the Killing

spinor (4.9) satisfying (4.10), we obtain the following set of first-order equations

U ′ = −1

4
eV cos(2θ)−1

(
(3 + 5 cos(4θ)) f + 2 sin (2θ)2XDXf

)
,

W ′ = −1

4
eV cos(2θ)−1

(
(7 + cos(4θ)) f − 6 sin (2θ)2XDXf

)
,

b′ = − 2

X2
eV+2W sin(2θ) (f + 3XDXf) ,

X ′ =
1

4
eV cos(2θ)−1X ((−1 + cos(4θ)) f + (5 + 3 cos(4θ))XDXf) ,

Y ′ = −Y
8
eV cos(2θ)−1

(
(3 + 5 cos(4θ)) f + 2 sin (2θ)2XDXf

)
,

θ′ = eV sin(2θ) (f −XDXf) .

(4.21)

where one has to impose the two additional constraints

b
!

=
2

m
e2W tan(2θ)X (f −XDXf) ,

L
!

= − eU sin(2θ) (3 f +XDXf) .

(4.22)

The relations in (4.22) are automatically satisfied if f coincides with the superpotential of

the theory (3.7). If we perform the gauge choice

eV = (f −XDXf)−1 , (4.23)

we can analytically intergrate the system in (4.21), obtaining the following solution

e2U = 2 sinh(4r) ,

e2W = 2 sinh(2r)2 tanh(2r) ,

e2V =
25/4 33/2

m1/2 g3/2
tanh(2r)−3 ,

b = − 25/4 g1/2

31/2m1/2
sinh(2r) tanh(2r)2 ,

X =
31/4m1/4

21/8 g1/4
tanh(2r)−1/2 ,

Y = 21/4 sinh(4r)1/4 ,

θ = arctan
(
e2r
)
.

(4.24)

The equations of motion (3.10) are satified by the flow (4.24) if the radius of AdS3 takes

the following form

L = 23/8 31/4 (g3m)1/4 , (4.25)

with g > 0 and m > 0. In the asymptotic limit r → +∞ the background (4.24) defines

locally the AdS6 vacuum introduced in (3.11). As for the r → 0 limit, the solution is

singular.
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4.4 Background with M3 = R1,2 and Σ2 = S2

Let’s consider the specular case of transverse space with non-zero curvature, i.e. Σ = S2.

In this case the 6d background takes the following form

ds2
6 = e2U(r) ds2

R1,2 + e2V (r) dr2 + e2W (r) ds2
S2 ,

B(2) = b(r) volS2 ,

X = X(r) ,

(4.26)

and the corresponding Killing spinor is given by

ζ(r) = ζ+ + i B Γ∗ ζ
− ,

ζ± = Y (r) ηR1,2 ⊗
(
cos θ(r)χ±

S2 ⊗ ε0 + i sin θ(r) γ∗ χ
±
S2 ⊗ σ3ε0

)
,

(4.27)

where χ±
S2 satify the equations (4.6). By further imposing the algebraic condition

(γ∗ ⊗ σ1) (χ±
S2 ⊗ ε0) = ±χ±

S2 ⊗ ε0 , (4.28)

the BPS equations for the background (4.26) take the form

U ′ = −1

2
eV cos(2θ)−1

(
(3 + cos(4θ)) f + 2 sin (2θ)2XDXf

)
,

W ′ =
1

2
eV cos(2θ)−1

(
(−5 + cos(4θ)) f + 2 sin (2θ)2XDXf

)
,

b′ =
4

X2
eV+2W sin(2θ) (f − XDXf) ,

X ′ =
1

2
eV cos(2θ)−1X

(
2 sin(2θ)2 f + (3 + cos(4θ))XDXf

)
,

Y ′ = −Y
4
eV cos(2θ)−1

(
(3 + cos(4θ)) f + 2 sin (2θ)2XDXf

)
,

θ′ = eV sin(2θ) (f −XDXf) .

(4.29)

Just as in the previous examples we have two additional constraints

b
!

= − 4

m
e2W tan(2θ)X (f +XDXf) ,

R
!

= 2 eW tan(2θ) (3 f +XDXf) ,

(4.30)

which are automatically satified if f has the form of the prepotential (3.7). The gauge

choice

eV = (sin (2θ) (f −XDXf))−1 (4.31)
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restricts the range of the r coordinate to (0, π4 ). Thanks to the choice in (4.31), we can

integrate (4.29) to obtain the following solution

e2U = (2− cos(4r))1/2 sin(2r)−2 ,

e2W = (2− cos(4r))1/2 tan(2r)−2 ,

e2V =
25/4 33/2

m1/2 g3/2
(2− cos(4r))−3/2 sin(2r)−2 ,

b = − 25/4 g1/2

31/2m1/2
cos(2r)2 tan(2r)−2 ,

X =
31/4m1/4

21/8 g1/4
(2− cos(4r))−1/4 ,

Y = (2− cos(4r))1/8 sin(2r)−1/2 ,

θ = r .

(4.32)

From the constraints (4.30) we obtain the expression for the inverse of the radius of the

2-sphere

R = 23/8 31/4 (g3m)1/4 , (4.33)

for g > 0 and m > 0. Imposing (4.33) the equations of motion (3.10) are satified by

the flow (4.32). In the limit r → 0 the background (4.24) reproduces locally the AdS6

vacuum (3.11), while in the limit r → π
4 the solution is singular.

4.5 Background with M3 = AdS3 and Σ2 = S2

Let’s now move to the most involved case where M3 = AdS3 and Σ2 = S2. In this case the

6d background takes the following form

ds2
6 = e2U(r) ds2

AdS3
+ e2V (r) dr2 + e2W (r) ds2

S2 ,

B(2) = b(r) volS2 ,

X = X(r) .

(4.34)

We take a Killing spinor of the following form

ζ(r) = ζ+ + i B Γ∗ ζ
− ,

ζ± = Y (r) ηAdS3 ⊗
(
cos θ(r)χ±

S2 ⊗ ε0 + i sin θ(r) γ∗ χ
±
S2 ⊗ σ3ε0

)
,

(4.35)

where ηAdS3 and χ±
S2 respectively satisfy the Killing spinor equations (4.5) and (4.6). As

in section 4.3, in order to simplify the derivation of the first-order flow equations, we

parametrize the AdS3 foliation with the Hopf coordinates (4.19) since this is equivalent to

replacing ηAdS3 by ηR1,2 inside (4.35).

An explicit realization of (4.34) is defined by a specific relation between R and L

characterizing the geometry of the 6d background. In this section we derive two solutions

corresponding to two different relations between R and L.

Let’s start with the simplest case with two equal warp factors in (4.34), i.e. U(r) =

W (r). If one imposes the algebraic conditions (4.28) on (4.35), the SUSY variations (3.8)
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imply a non-trivial set of BPS equations if and only if

R = 2L and θ(r) = 0 . (4.36)

We obtain the following set of first-order equations

U ′ = −2 eV f , Y ′ = −Y eV f ,

b′ =
2 eU+V L

X2
, X ′ = 2 eV X2DXf ,

(4.37)

with the constraint

b
!

= −2 eU X L

m
. (4.38)

The above expression is compatible with the BPS flow equations in (4.37) if f is given

by (3.7). If we further choose

eV =
(
2X2DXf

)−1
, (4.39)

we can integrate the system in (4.37) to obtain

e2U =

(
r

3m−
√

2 g r4

)2/3

,

e2V =

(
4 r2

3m−
√

2 g r4

)2

,

Y =

(
r

3m−
√

2 g r4

)1/6

,

b = − 2 r4/3 L

m (3m−
√

2 g r4)1/3
,

X = r ,

(4.40)

with r running between 0 and 1 if we choose m and g such that (3.18) holds. We point

out that the AdS3 slicing is responsible for the non-trivial profile of the 2-form. In a sense,

the flow (4.40) is the “charged” generalization of the domain wall solution (3.17). In the

r → 1− limit, the solution (4.40) locally reproduces the AdS6 vacuum (3.11) with m =
√

2 g
3 ,

while in r → 0+ it manifests a singular behavior.

Let us now consider the most general case of backgrounds of the form (4.34) with

two independent warp factors. Given the Killing spinor (4.35) satisfying the algebraic

conditions (4.28), we obtain a set of BPS equations of the form

U ′ = −1

2
eV cos(2θ)−1

(
(3 + cos(4θ)) f + 2 sin (2θ)2XDXf + Le−U sin(2θ)

)
,

W ′ =
1

2
eV cos(2θ)−1

(
(−5 + cos(4θ)) f + 2 sin (2θ)2XDXf − Le−U sin(2θ)

)
,

b′ =
2 eV+2W

X2

(
Le−U + 2 sin(2θ) (f − XDXf)

)
,

θ′ = eV sin(2θ) (f −XDXf) ,

Y ′ = −Y
4
eV cos(2θ)−1

(
(3 + cos(4θ)) f + 2 sin (2θ)2XDXf + Le−U sin(2θ)

)
,

X ′ =
1

2
eV X

(
Le−U tan(2θ) + cos(2θ)−1

(
2 sin(2θ)2 f + (3 + cos(4θ))XDXf

))
.

(4.41)
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The equations (4.41) have to be supplemented with the constraints

b
!

= − 2 e2W

m
X cos(2θ)−1

(
Le−U + 2 sin(2θ) (f + XDXf)

)
,

R
!

= 2 e−U+W L cos(2θ)−1 + 2 eW tan(2θ) (3 f +XDXf) ,

(4.42)

which are automatically satified if f has the form of the prepotential (3.7). If we choose

eV = (sin (2θ) (f −XDXf))−1 , (4.43)

the solution of (4.41) is given by

e2U =
21/4 g1/2

31/2m1/2
sin (2r)−1 (sin(2r)−2 + 6

)1/2
,

e2W = 2−5/4 (−g)1/2 tan(2r)−2 (4− 3 cos(4r))1/2 ,

e2V =
25/4 33/2

m1/2 g3/2

(
sin(2r)−2 + 6

)1/2
sin(2r)−1

(4− 3 cos(4r))2 ,

b = − 31/2 4 g

(−m)1/2
cos(2r)2 tan(2r)−2 ,

X =
31/4m1/4

21/8 g1/4
(4− 3 cos(4r))−1/4 ,

Y =
21/16 g1/8

31/8m1/8
sin (2r)−1/4 (sin(2r)−2 + 6

)1/8
,

θ = r ,

(4.44)

with r varying between 0 and π
4 . The above solution solves the equations of motion (3.10)

provided that

L =
2
√

2 g

3
and R =

23/4 7

33/4
g (−m)−1/4 , (4.45)

with m < 0 and g < 0. The values (4.45) satisfies (4.42) that, if evaluated on the solution,

takes the following form

R = (−6m)1/4
(

2L+
√

2 g
)
. (4.46)

In the r → 0+ limit the flow (4.44) reproduces locally the AdS6 vacuum (3.11). The IR

regime, i.e. r →
(
π
4

)−
is particularly interesting since the scalar potential is finite and the

flows turns out to be locally described by AdS3 × T 3 with

X =
31/4m1/4

21/8 71/4 g1/4
and F (3) 345 = 213/8 33/4 71/4 g5/4m−1/4 , (4.47)

where we point out that the particular relation (4.46) between R and L turns out to be

crucial to reproduce the AdS3 × T 3 geometry.
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5 Surface defects within the N = 2 SCFT5

In section 2 we briefly reviewed the main features of AdS6/CFT5 in massive IIA string

theory. Our present goal is now that of providing a 10d interpretation for the AdS3 slicing

characterizing the 6d backgrounds obtained in section 4.5. For the sake of simplicity we will

consider the charged domain wall (4.40). This flow is a 6d warped product AdS3×M3 where

M3 is given by a 2-sphere fibered over an interval. Asymptotically (r → 1−), the solution

locally reproduces AdS6, while in the IR (r → 0+) it possesses a singularity. We claim that

this divergent behavior is related to the intersection of the D4-D8 system, originating the

AdS6 vacuum, with a bound state of D2-NS5-D6 defect branes. The AdS3 slicing captures

exactly the low-energy regime of this intersection. In particular, the presence of the 2-form

gauge potential, whose field strength F (3) fills the transverse space M3, realizes a partial

symmetry breaking within the AdS6 vacuum. In this way the divergent behavior appearing

in the IR limit describes the regime in which we get infinitely close to the defect branes,

namely the D2-NS5-D6.

From the point of view of the dual field theory, this phenomenon is well encoded by a

N = (0, 4) SCFT2 living on a surface conformal defect [7] within the N = 2 SCFT5 dual to

AdS6. This defect field theory can be seen as a “position dependent” deformation [14] of

the SCFT5 partially breaking the SO(2, 5) conformal invariance in the 5d bulk, while still

keeping intact only those conformal isometries allowing non-trivial boundary conditions

between the D4-D8 system and the defect branes.

In this section we will firstly consider in more detail the 6d solution (4.40) and its

uplift to massive IIA using the formulas (3.19) and (3.21). We will then consider the

10d background corresponding to the bound state D2-D4-NS5-D6-D8 realizing the AdS3

slicing and we will propose a holographic interpretation of our AdS3 ×M3 background as

a conformal defect within the N = 2 SCFT5.

5.1 Charged domain wall and massive IIA uplift

Let us go back to the explicit form of the background (4.37). The line element is given by

ds2
6 = e2U(r)

(
ds2

AdS3
+ ds2

S2

)
+ e2V (r) dr2 ,

B(2) = b(r) volS2 ,

X = X(r) ,

(5.1)

where

e2U =
2−1/3

g2/3

(
r

1− r4

)2/3

, e2V =
8

g2

r4

(1− r4)2 ,

b = −21/3 3

g4/3

Lr4/3

(1− r4)1/3
, X = r ,

(5.2)

where we made the choice (3.18) on m and with r running between 0 and 1. Let’s consider

more in detail the UV and IR regimes. As r → 1− one obtains

R6 = −20

3
g2 +O(1− r)2/3 ,

X = 1 +O(1− r) ,
(5.3)
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where R6 is the scalar curvature. The asymptotic background (5.3) reproduces only locally

AdS6 and this is mainly due to the presence of the running 2-form. The AdS6 vacuum

emerges in the asymptotics only as a leading local effect, but globally a 2-form charge is

still present. As for the r → 0+ limit, one finds that

e2U =
g−2/3

21/3
r2/3 +O(r7/3) , e2V =

8 r4

g2
+O(r5) ,

b =
21/3 3L

g4/3
r4/3 +O(r7/3) , X = r +O(r5) .

(5.4)

In this regime the background (5.4) is manifestly singular, so then we want to study the

uplift to massive IIA supergravity to shed some light on the origin of this divergent behavior.

If we plug the 6d background (5.1) into the uplift formulas [62] (3.19) and (3.21), the 10d

metric has the form

ds2
10 = s−1/3X(r)−1/2 ∆1/2

[
e2U(r)

(
ds2

AdS3
+ ds2

S2

)
+ e2V (r) dr2 + 2g−2X(r)2 ds2

S̃4

]
,

(5.5)

where ∆ = X(r) c2 +X(r)−3 s2 and ds2
S̃4 is the metric of a squashed 4-sphere

ds2
S̃4 = dξ2 +

1

4
∆−1X(r)−3 c2 ds2

S3 , (5.6)

with c = cos ξ and s = sin ξ and ds2
S3 is the metric of a round11 S3. The 10d fluxes have

the form

F(4) =−
√

2

6
g−3 ∆−2 c3 s1/3

[
U dξ+6scX(r)−3X ′(r)dr

]
∧ volS3

+e−2U(r)−V (r) s1/3 c
[√

2g−1X(r)4 b′(r)dξ−msc−1X(r)−2 e2V (r)b(r)dr
]
∧volAdS3 ,

F(2) =ms2/3 b(r)volS2 , H(3) = s2/3
[
b′(r)dr+

√
2mg−1 scb(r)dξ

]
∧volS2 , (5.7)

eΦ = s−5/6 ∆1/4X(r)−5/4 , F(0) =m.

where U = X(r)−6 s2 − 3X(r)2 c2 + 4X(r)−2 c2 − 6X(r)−2, while volS3 and volS2 are

respectively the volume form of the internal S3 included in (5.6) and the volume form of

the 2-sphere appearing into the 6d background.

The background (5.5) with fluxes (5.7) is a solution of massive IIA supergravity de-

scribing a warped geometry of the type AdS3 × S2 × S3 fibered over two intervals Ir × Iξ.
In the same way as this solution, also the other flows of section 4 admit similar uplifts to

10d. In particular, the 10d background corresponding to the solution (4.44), in the r → 0

limit, is locally described by the warped geometry AdS3 × T 3 × S̃4 where S̃4 is a fibration

of a 3-sphere over the interval Iξ.

5.2 Defect SCFT2 and the AdS3 × S2 × S3 × I2 solution

Let us now address the interpretation of the charged domain wall (4.37) in terms of physics

of branes in massive type IIA string theory. In section 2 we reviewed the main properties

11The 3-sphere is round because the vectors Ai vanish for the charged domain wall.
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branes t y ρ ϕ1 ϕ2 ϕ3 z r θ1 θ2

D8 × × × × × × − × × ×
D4 × × − − − − − × × ×
D2 × × − − − − × − − −
NS5 × × × × × × − − − −
D6 × × × × × × × − − −

Table 4. The brane picture underlying the N = (0, 4) SCFT2 defect theory described by D2-NS5-

D6 branes ending on an D4-D8 intersection. The system is BPS/8.

of the 10d solution (2.7) describing the low-energy regime of a D4-D8 system. We saw that

the near-horizon limit is described by the vacuum geometry AdS6 × S4 from which a clear

holographic interpretation in terms of a d = 5 N = 2 SCFT5 comes out.

We can now look at this SCFT5 as a “mother” CFT whose conformal invariance is

partially broken by a deformation associated with a position dependent coupling produced

by D2-NS5-D6 branes ending on the bound state D4-D8. The low-energy description of

this intersection is realized by the emergence of the warped background AdS3 ×M3 that

partially breaks the isometries of the AdS6 vacuum.

The 10d solution describing a D2-D4-NS5-D6-D8 system has been obtained in [34] gen-

eralizing the corresponding massless background originally found in [69]. The solution is an

example of “non-standard” intersection since the are no common transverse directions and

the only solution that could be obtained by applying the standard harmonic superposition

principle would be 10d flat space, i.e. all H functions equal to 1. The explicit form of this

non-standard solution is given by [34]

ds2
10 = S−1/2H

−1/2
D2 H

−1/2
D4 ds2

R1,1 + S−1/2H
1/2
D2 H

1/2
D4

(
dρ2 + ρ2 ds2

S3

)
+K S−1/2H

−1/2
D2 H

1/2
D4 dz

2 + K S1/2H
1/2
D2 H

−1/2
D4

(
dr2 + r2 ds2

S2

)
,

eΦ = gsK
1/2 S−3/4H

1/4
D2 H

−1/4
D4 ,

H(3) =
∂

∂z
(KS) volS3 − dz ∧ ?3 dK ,

F(0) = m,

F(2) = −g−1
s ?3 dS ,

F(4) = g−1
s volR1,1 ∧ dz ∧ dH−1

D2 + ?10

(
volR1,1 ∧ volS3 ∧ H−1

D4

)
.

(5.8)

The two functions K(z, r) and S(z, r) satsify the equations [65]

mgsK −
∂S

∂z
= 0 ,

∆(3)S +
1

2

∂2

∂z2
S2 = 0 .

(5.9)

These relations must hold in order to satify equations of motion (A.3) and Bianchi iden-

tities (A.5) and their explicit solutions turn out to describe a rich plethora of different
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physical sytems. The background (2.2) and the corresponding AdS6 × S4 vacuum in the

near-horizon can be found by choosing

S = (2mgs z)1/2 , K = (2mgs z)−1/2 ,

HD2 = 1 , HD4 = 1 +
QD4(

ρ2 + 4
9

(2z)3/2

(gsm)1/2

)5/3
, (5.10)

and by subsequently performing the change of coordinates z → mgs
2 z2. As we can notice

from (5.10) physics described by the solution (5.8) depends explicitly on the choice of

particular solutions for S and K. As we showed in [34], from (5.8) it is also possible to

find the massive IIA AdS7 × S̃3 vacuum [70] that, in turn, can be obtained as a vacuum

of the N = 1 minimal gauged supergravity in d = 7 thanks to the consistent truncation

from massive IIA over a squashed 3-sphere [71]. Within (5.8) a warped solution AdS3 ×
S3× S2× I2, with I2 describing two intervals on which the S2 and the S3 are respectively

fibered, has been derived in the near-horizon of (5.8) by choosing

HD2(ρ, r) =

(
1 +

QD4

ρ2

)(
1 +

QD6

r

)
,

HD4(ρ) =

(
1 +

QD4

ρ2

)
,

(5.11)

and for suitable expressions of S and K. This AdS3×S3×S2×I2 near-horizon is captured

by a warped background AdS3×S3×Ir′ describing12 a charged domain wall in 7d minimal

N = 1 gauged supergravity with a running 3-form gauge potential and the dilaton [34].

The very interesting fact we point out is that the above AdS3 near-horizon has the

same structure of fluxes and 10d metric of our 6d background uplifted to massiva IIA (5.5)

and it also preserves the same amount of SUSY. The unique difference between (5.5) and

(3.13) of [34] is in the parametrization of the 10d background. In our case the S2 is related

to the 6d background and the S3 is associated to the internal squashed 4-sphere Iξ×S3, i.e.

we have AdS3×S2×S3×I2, while the 7d case is exactly specular, i.e. the squashed 3-sphere

Iξ′×S2 defines the truncation and the near horizon can be written as AdS3×S3×S2× I2.

In other words, we could say that the coordinates (r, ξ) of the uplift (5.5) exchange their

role when we look at the 10d background split as a 7+3 rather than a 6+4 manifold.

The 10d solution (5.8), (5.11) realizes the brane picture of (5.1) and then, we may

holographically interpret our 6d warped background (5.2) as a conformal defect within the

N = 2 SCFT5. The defect is realized by a N = (0, 4) SCFT2 dual to the AdS3 foliation

and it breaks the SO(5, 2) conformal group of the 5d mother SCFT through a relavant

deformation driven by a position-dependent coupling.

The above arguments provide compelling evidence to infer that the defect SCFT2 is

actually the same as the one obtained in [34]. We remind that, in the latter case, a warped

AdS3× S3× Ir′ solution within 7d minimal N = 1 supergravity was capturing the physics

of D2-D4 branes intersecting the bound state NS5-D6-D8 and giving rise to a surface defect

12For sake of clarity, the coordinates associated with the 7d flow will be called as r′, ξ′, . . . .
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within the N = (1, 0) SCFT6. In our actual case we have a AdS3 × S2 × Ir warped flow

associated to D2-NS5-D6 ending on the D4-D8 system. In both cases we have a p-form

gauge potential which makes the existence of such an AdS3 slicing possible. Zooming in on

the defect, we obtain the same AdS3 solution, up to a change of parametrization exchanging

the roles of the coordinates within the intervals in I2 and thus swapping S3 and S2.

Finally we point out that these arguments hint at the existence of a deeper relation

between the two lower-dimensional supergravities giving rise to these AdS3 warped back-

grounds. The existence of a possible link between them was already adressed in [72] within

the slightly different context of non-Abelian T-duality and the possibility of uplifting the

Romans’ theory to type IIB. Our conjecture here is about the existence of a 3d N = 4

gauged supergravity realizing a consistent truncation respectively of F (4) gauged super-

gravity over a squashed 3-sphere or, alternatively, of 7d minimal N = 1 gauged supergravity

over a squashed 4-sphere. As a consequence, this 3d gauged supergravity should include

an AdS3 vacuum capturing the IR physics of surface defects of both brane systems, i.e.

D4-D8 and NS5-D6-D8.

5.3 One-point correlation functions

In conclusion, we want to provide a holographic test in support of the presence of a N =

(0, 4) SCFT2 defect theory. As we already mentioned, the coupling of the bulk theory to

the defect induces the breaking of the 5d conformal group SO(2, 5). This automatically

implies that, in this case, the 1-point functions of the 5d “mother” field theory are no

longer vanishing. Such a fact stems at leading order from non-vanishing defect to bulk

correlators. By making use of the standard holographic dictionary [14], we can sketch the

derivation in two different ways and see explicitly that the resulting position-dependence

of the coupling in the 5d theory realizing the defect matches.

Let’s consider the extrapolation from the bulk side. The boundary of our 6d back-

ground (5.1) is located at r = 1. The metric can be rewritten as

ds2
6 = F−2

(
ds2

R1,4 + ρ2 dR2
)
,

ds2
R1,4 = ds2

R1,1 + dρ2 + ρ2 ds2
S2 ,

(5.12)

with F = ρ e−U and dR = eV−U dr. The coordinate ρ is the AdS3 radial coordinate and it

fixes the location of the defect at ρ = 0.

The idea is to view the scalar X as the bulk field associated with the deformation

induced by the defect. Its normalized mass at the boundary is given by [67]

m2
X = −6 = ∆X(∆X − 5) , (5.13)

whence ∆X = 3. If we consider the asymptotic behavior of X given in (5.3), we can cast

it as a function of R as

X(R) = 1− g2

33 2
R3 . (5.14)

As usual in holography, the vev of X is associated to the 1-point function of the dual

operator OX as it follows

X = 1− b 〈OX〉F∆X + . . . . (5.15)
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Finally by comparing the last two relations we obtain

〈OX〉 =
1√
2 g b

ρ−3 . (5.16)

From the SCFT5 side, we can proceed through conformal perturbation techniques. We

interpret the defect as a running vev written in terms of a position-dependent coupling

φ(ρ) and producing a deformation of the type γ φ(ρ)OX , where γ is a dimensionsless

coupling associated with the anomalous dimension of OX . We can treat this deformation

as a perturbation produced by an operator insertion inside the n-point functions as it

follows [14, 34]

〈O1(x1) · · ·On(xn)〉def. = 〈O1(x1) · · · On(xn)〉0

+ γ

∫
d5z φ(z) 〈O1(x1) · · · On(xn)OX(z)〉0

+
γ2

2!

∫
d5z

∫
d5wφ(z)φ(w) 〈O1(x1) · · · On(xn)OX(z)OX(w)〉0 + . . .

(5.17)

If we now choose O1 = OX , we obtain

〈OX(ρ)〉def. = 〈OX(ρ)〉0︸ ︷︷ ︸
0

+ γ

∫
d5z φ(z) 〈OX(ρ)OX(z)〉0︸ ︷︷ ︸

a
|ρ−z|6

+ . . . (5.18)

Performing the integral in (5.18), it follows that, if φ(ρ) ∼ ρ−2, whence the 1-point function

associated to OX is given by13

〈OX〉 =
2π2a γ

3 ρ3
. (5.19)

We conclude that the ρ−3 dependence of (5.19) matches non-trivially with the holographic

result (5.19). As far as a more complete matching is concerned (i.e. including the parame-

ters a, c and γ), it would require a more rigourous derivation considering the explicit form

of the parameters inside correlators and the Lagrangian of the N = 2 SCFT5.
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A Massive IIA supergravity

In this appendix we review the main features of massive IIA supergravity [73]. The theory

is characterized by the bosonic fields gMN , Φ, B(2), C(1) and C(3). The action has the

following form

SmIIA =
1

2κ2
10

[∫
d10x

√
−g e−2Φ

(
R+ 4 ∂µ Φ ∂µ Φ− 1

2
|H(3)|2

)
− 1

2

∑
p=0,2,4

|F(p)|2
]

+ Stop ,

(A.1)

where Stop is a topological term given by

Stop = −1

2

∫
(B(2) ∧ F(4) ∧ F(4) −

1

3
F(0) ∧B(2) ∧B(2) ∧B(2) ∧ F(4)

+
1

20
F(0) ∧ F(0) ∧B(2) ∧B(2) ∧B(2) ∧B(2) ∧B(2)) ,

(A.2)

where H(3) = dB(2), F(2) = dC(1), F(3) = dC(3) and the 0-form field strength F(0) is

associated to the Romans’ mass as F(0) = m.

All the equations of motion can be derived14 consistently from (A.1). They have the

following form

RMN −
1

2
TMN = 0 ,

�Φ− |∂Φ|2 +
1

4
R− 1

8
|H(3)|2 = 0 ,

d
(
e−2Φ ?10 H(3)

)
= 0 ,(

d+H(3)∧
)

(?10F(p)) = 0 , with p = 2, 4 ,

(A.3)

where M,N, · · · = 0, . . . , 9 and R and � are respectively the 10d scalar curvature and the

Laplacian. The stress-energy tensor is given by

TMN = e2Φ
∑
p

(
p

p!
F(p)MM1...Mp−1

F
M1...Mp−1

(p)N − p−1

8
gMN |F(p)|2

)
(A.4)

+

(
1

2
H(3)MPQH

PQ
(3)N − 1

4
gMN |H(3)|2

)
−
(

4∇M∇NΦ+
1

2
gMN (�Φ−2|∂Φ|2)

)
,

with ∇M being associated with the Levi-Civita connection of the 10d background. The

Bianchi identities take the form

dF(2) = F(0) ∧H(3) ,

dF(4) = −F(2) ∧H(3) ,

dH(3) = 0 ,

dF(0) = 0 .

(A.5)

As a consequence of (A.5), the following fluxes

m, H(3) F(2) −mB(2) , F(4) −B(2) ∧ F(2) +
1

2
mB(2) ∧B(2) , (A.6)

turn out to satisfy a Dirac quantization condition.

14We set κ10 = 8πG10 = 1.
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It may be worth mentioning that the truncation Ansatz of section 3.3 is obtained by

casting massive IIA supergravity into the Einstein frame [62]. To convert the action (A.1),

the equations of motions (A.3) and Bianchi identities (A.5) into the Einstein frame, one

has to redefine the metric as gMN = eΦ/2 g
(E)
MN .

B Symplectic-Majorana-Weyl spinors in d = 1 + 5

In this appendix we collect the conventions and the fundamental relations involving irre-

ducible spinors in d = 1+5. Subsequently, we construct an explicit representation of Dirac

matrices. In d = 1+5 Dirac spinors enjoy 16 independent real components and they can be

decomposed into irreducible Weyl spinors with opposite chirality and having 8 independent

real components each. The 6d Clifford algebra is defined by the relation

{Γm, Γn} = 2 ηmn I8 , (B.1)

where {Γm}m= 0, ··· 5 are the 8 × 8 Dirac matrices and η = diag(−1,+1,+1,+1,+1). The

chirality operator Γ∗ can be defined in the following way in terms of the above Dirac

matrices

Γ∗ = Γ0 Γ1 Γ2 Γ3 Γ4 Γ5 with Γ∗ Γ∗ = I8 . (B.2)

For (1+5)-dimensional backgrounds, we can choose the matrices A,B,C, respectively real-

izing Dirac, complex and charge conjugation, satisfying the following defining relations [74]

(Γm)† = −AΓmA−1 , (Γm)∗ = B ΓmB−1 , (Γm)T = −C ΓmC−1 , (B.3)

with

BT = C A−1 , B∗B = −I8 , CT = −C−1 = −C† = C . (B.4)

The second identity in (B.4) implies that it is actually inconsistent to define a proper

reality condition on Dirac (or Weyl) spinors. However, it is always possible to introduce

SU(2)R doublets ζa of Dirac spinors, called symplectic-Majorana (SM) spinors respecting

a pseudo-reality condition [74] given by

ζa ≡ (ζa)∗
!

= εabB ζ
b , (B.5)

where εab is the SU(2) invariant Levi-Civita symbol. The condition (B.5) ensures us that

the number of independent components of a SM spinor be the same of those of a Dirac

spinor. Moreover, the above condition also turns out to be compatible with the projections

onto the chiral components of a Dirac spinor. Hence it is possible to construct SM doublets

of irreducible Weyl spinors that are called symplectic-Majorana-Weyl (SMW) spinors.

Let us now construct an explicit representation for the Dirac matrices satisfying (B.1).

We firstly introduce the Dirac matrices {ρα}α= 0, 1 ,2 for a (1 + 2)-dimensional background

in the Majorana representation as it follows

ρ0 = iσ2 , ρ1 = σ1 , ρ2 = σ3 , (B.6)
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and the Dirac matrices for a Euclidean 2-dimensional background
{
γi
}
i=1 ,2

as

γ1 = σ1 , γ2 = σ3 , γ∗ = iγ1γ2 = σ2 , (B.7)

where

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (B.8)

are the Pauli matrices. An explicit representation of the (1+5)-dimensional Dirac matriced

satisying (B.1) can be defined in the following way

Γα = ρα ⊗ I2 ⊗ σ1 , with α = 0, 1, 2 ,

Γ3 = I2 ⊗ γ∗ ⊗ σ2 ,

Γi = I2 ⊗ γi ⊗ σ2 , with i = 1, 2 .

(B.9)

In this representation the chirality operator (B.2) takes the form

Γ∗ = I2 ⊗ I2 ⊗ σ3 , (B.10)

while the matrices A,B,C may be written as

A = Γ0 = i σ2 ⊗ I2 ⊗ σ1 ,

B = −iΓ4 Γ5 = −I2 ⊗ γ∗ ⊗ I2 ,
C = iΓ0 Γ4 Γ5 = i σ2 ⊗ γ∗ ⊗ σ1 .

(B.11)

C Gauged N = (1, 1) supergravities in six dimensions

Half-maximal supergravities in (1+5) spacetime dimensions enjoy sixteen real supercharges.

As we have seen in the previous appendix, these can be organized into two chiral spinors.

As a consequence, just as in (1 + 9) dimensions, we have the choice of picking both spinors

with the same (iib), or opposite (iia) chiralities. In this paper we are only interested in the

latter case, i.e. N = (1, 1) supergravities. The goal of this appendix is that of giving an

overview of consistent embedding tensor deformations of these theories and understanding

what particular choice gives rise to the Romans’ theory.

If we start from a maximal theory with N = (2, 2) supersymmetry and SO(5, 5) global

symmetry, its fields can be rearranged as shown in table 5.

The embedding tensor deformations were exhaustively studied in [75] and can be ar-

ranged into a unique SO(5, 5) irrep, i.e. Θ ∈ 144c. Following now the philosophy of [76],

we identify a Z2 that partially breaks supersymmetry down to N = (1, 1), while retaining

the correct field content. This is realized by

SO(5, 5)
Z2⊃ R+ × SO(4, 4) ,

10 −→ 1(+2) ⊕ 1(−2)︸ ︷︷ ︸
even

⊕ 8(0)
v︸︷︷︸

odd

. (C.1)
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Field Type Field Name SO(5, 5) irrep’s

Scalars V αα̇
A 45 (25 phys.)

Vectors A A
µ 16c

Two-forms B M
µν 10 (5 phys.)

Table 5. The (bosonic) field content of maximal supergravity in six dimensions. µ denotes a

spacetime index, A is a MW spinor of SO(5, 5), M is an SO(5, 5) fundamental index, while α & α̇

denote spinors of the time(space)like SO(5) subgroups of SO(5, 5).

Field Type Field Name R+ × SO(4, 4) irrep’s

Scalars X & MMN 1(0) ⊕ 28(0) (17 phys.)

Vectors A M
µ 8(+1)

Two-forms B ±
µν 1(+2) ⊕ 1(−2) (1 phys.)

Table 6. The (bosonic) field content of half-maximal supergravity in six dimensions. µ denotes a

spacetime index, M is a MW spinor of SO(4, 4). Note that the degrees of freedom of the two-form

are halved by means of a self-duality condition.

The above Z2 is completely specified by assigning even parity to the 8c of SO(4, 4), while

keeping the 8s & 8v parity-odd. Correspondingly, the SO(5)2 R-symmetry group of the

maximal theory is broken to SO(4)2, its diagonal SO(4)diag = SU(2)L × SU(2)R subgroup

being the R-symmetry group of the half-maximal theory. The supercharges branch as

SO(5)× SO(5)
Z2⊃ SU(2)L × SU(2)R ,

(4,4) −→ (2,2)︸ ︷︷ ︸
even

⊕ (1,1) ⊕ (3,1)︸ ︷︷ ︸
odd

. (C.2)

This procedure gives rise to a half-maximal theory coupled to four vector multiplets,

whose field content is summarized in table 6.

The consistent embedding tensor deformations can be obtained by branching the 144c
of SO(5, 5) w.r.t. its R+ × SO(4, 4) subgroup and only retaining the parity-even irrep’s.

This yields

Θ ∈ 8(−1)
c︸ ︷︷ ︸
ξM

⊕ 8(+3)
c︸ ︷︷ ︸
ζM

⊕ 56(−1)
c︸ ︷︷ ︸

f[MNP ]

,
(C.3)

where ξ & f parametrize gaugings, of R+ and SO(4, 4) respectively, while ζ represents a

massive deformation inducing a Stückelberg coupling for the two-form. Such embedding

tensor needs to satisfy the following quadratic constraint (QC) for consistency (when

ξM = 0)

fR[MN f
R

PQ] = 0 , fMNP ζ
P = 0 , (C.4)

where all contractions are taken w.r.t. the SO(4, 4) invariant metric ηMN . It is worth

mentioning that, in order for our half-maximal theory to still admit an embedding within
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the maximal theory, the following set of extra QC is required

fMNP f
MNP = 0 , f[MNP ζQ]

∣∣
SD

= 0 , (C.5)

where |SD denotes the projection on the self-dual four-form of SO(4, 4).

The scalar potential induced by the above deformations (after setting ξM = 0) reads

V = fMNP fQRSX
2

(
1

12
MMQMNRMPS − 1

4
MMQηNRηPS +

1

6
ηMQηNRηPS

)
+

1

2
ζMζNX

−6MMN +
2

3
fMNP ζQX

−2MMNPQ ,

(C.6)

where MMNPQ = 1
4!εabcdV

MaVNbVPcVQd, V being the “vielbein” reproducing the scalar

coset representative M.

The Romans’ theory is further obtained by truncating away all scalars but X, i.e.

picking MMN = δMN , and keeping only fields with legs within the timelike SO(4), call it

a = 0, i, where i = 1, 2, 3. Finally pick the following embedding tensor

fijk = g εijk , ζ0 = −
√

2m, (C.7)

all the other components being zero. This choice can be checked to satisfy the QC in (C.4),

which are needed for consistency. The scalar potential (C.6) specified to this case reads

V (X) = m2X−6 − 4
√

2 gmX−2 − 2 g2X2 , (C.8)

which precisely reproduces (3.5).

As a final comment, we note that the extra QC (C.5) needed for a consistent embedding

in maximal supergravity are actually violated by (C.7), thus suggesting the presence of

spacetime-filling branes within the massive IIA realization of this theory.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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