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Abstract: By finding rare (but not exponentially rare) large-angle deflections of partons

within a jet produced in a heavy ion collision, or of such a jet itself, experimentalists

can find the weakly coupled short-distance quark and gluon particles (scatterers) within

the strongly coupled liquid quark-gluon plasma (QGP) produced in heavy ion collisions.

This is the closest one can come to probing QGP via a scattering experiment and hence

is the best available path toward learning how a strongly coupled liquid emerges from an

asymptotically free gauge theory. The short-distance, particulate, structure of liquid QGP

can be revealed in events in which a jet parton resolves, and scatters off, a parton from

the droplet of QGP. The probability for picking up significant transverse momentum via a

single scattering was calculated previously, but only in the limit of infinite parton energy

which means zero angle scattering. Here, we provide a leading order perturbative QCD

calculation of the Molière scattering probability for incident partons with finite energy,

scattering at a large angle. We set up a thought experiment in which an incident parton

with a finite energy scatters off a parton constituent within a “brick” of QGP, which we

treat as if it were weakly coupled, as appropriate for scattering with large momentum

transfer, and compute the probability for a parton to show up at a nonzero angle with

some energy. We include all relevant channels, including those in which the parton that

shows up at a large angle was kicked out of the medium as well as the Rutherford-like

channel in which what is seen is the scattered incident parton. The results that we obtain

will serve as inputs to future jet Monte Carlo calculations and can provide qualitative

guidance for how to use future precise, high statistics, suitably differential measurements

of jet modification in heavy ion collisions to find the scatterers within the QGP liquid.
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1 Introduction

When the short-distance structure of quark-gluon plasma is resolved, it must consist of

weakly coupled quarks and gluons because QCD is asymptotically free. And yet, at length

scales of order its inverse temperature 1/T and longer, these quarks and gluons become so

strongly correlated as to form a liquid. Heavy ion collisions at the Relativistic Heavy Ion

Collider (RHIC) and the Large Hadron Collider (LHC) produce droplets of this liquid QGP

whose expansion and cooling is well described by relativistic viscous hydrodynamics with an

– 1 –



J
H
E
P
0
1
(
2
0
1
9
)
1
7
2

unusually small viscosity relative to its entropy density. (For reviews, see refs. [1–3].) This

discovery poses a question: how does this strongly coupled liquid emerge (as a function of

coarsening resolution scale) from an asymptotically free gauge theory? In other contexts,

the path to addressing a question like this about some newly discovered complex strongly

correlated form of matter would begin with doing scattering experiments, and in particular

would begin with doing scattering experiments in which the momentum transfer is large

enough that the microscopic constituents (in our case, weakly coupled at short distance

scales) are resolved. Some analogue of such high resolution scattering experiments are a

necessary first step toward understanding the microscopic structure and inner workings

of QGP. Since the droplets of QGP produced in heavy ion collisions rapidly cool and

turn into an explosion of ordinary hadrons, the closest that anyone can come to doing

scattering experiments off QGP is to look for the scattering of energetic “incident” partons

that are produced in the same collision as the droplet of QGP itself. Since such energetic

partons shower to become jets, this provides one of the motivations for analyzing how jets

produced in heavy ion collisions are modified via their passage through QGP. Pursuing

such measurements with the goal of understanding the microscopic workings of QGP has

been identified [4–6] as a central goal for the field once higher statistics jet data anticipated

in the 2020s, at RHIC from the coming sPHENIX detector [7] and at the LHC from higher

luminosity running, are in hand.

The short-distance, particulate, structure of liquid QGP can be revealed by seeing

events in which a jet parton resolves, and scatters off, a parton from the droplet of QGP.

If the QGP were a liquid at all length scales, with no particulate microscopic constituents at

all, as for example is the case in the infinitely strongly coupled conformal plasma of N = 4

supersymmetric Yang-Mills (SYM) theory, then the probability for an energetic parton

plowing through it to pick up some momentum q⊥ transverse to its original direction is

Gaussian distributed in q⊥ [8–10], meaning that large-angle, large momentum transfer,

scattering is exponentially (maybe better to say “Gaussianly”) rare. The q⊥ distribution

should similarly be Gaussian for the case of an energetic parton plowing through the QGP

of QCD — as long as q⊥ is not too large. One way to see this is to realize that as long

as q⊥ is small enough the energetic parton probes the QGP on long enough wavelengths

and “sees” it as a liquid. Another way to reach the same conclusion is to imagine the not-

too-large q⊥ as being built up by multiple soft (low momentum transfer; strongly coupled)

interactions with the QGP. The key point, though, is that in QCD, unlike in N = 4

SYM theory, this cannot be the full story: real-world QGP must be particulate when its

short-distance structure is resolved. This means that large-angle, high momentum transfer,

scattering may be rare but is not Gaussianly rare, as Rutherford would have understood.

So, if experimentalists can detect rare (but not Gaussianly rare) large-angle deflections of

jet partons plowing through QGP, referred to as “Molière scattering” after the person who

first discussed the QED analogue [11–13], they can find its weakly coupled quark and gluon

constituents [10, 14] and begin to study how the strongly coupled liquid emerges from its

microscopic structure.

One idea for how to look for large angle scattering is to look for deflections of an

entire jet [10] by looking for an increase in the “acoplanarity” of dijets or gamma-jets
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(meaning the angle by which the two jets or the photon and jet are not back-to-back)

in heavy ion collisions relative to that in proton-proton collisions. The acoplanarity is

already quite significant in proton-proton collisions because many dijets (or gamma-jets)

are not back-to-back because they are two jets (or a photon and a jet) in an event with

more jets. This makes it challenging to detect a rare increase in acoplanarity due to rare

large-angle scattering, but these measurements have been pursued by CMS [15, 16], AT-

LAS [17] and ALICE [18] at the LHC and by STAR [19] at RHIC, and it will be very

interesting to see their precision increase in future higher statistics measurements. The

same study can be done using events with one (or more, unfortunately) jets produced

(only approximately) back-to-back with a Z-boson, albeit with lower statistics [20]. It was

realized in ref. [14] that Molière scattering can also be found by looking for rare large-angle

scattering of partons within a jet shower, rather than of the entire jet. We shall see that

this is advantageous in that it allows one to consider energetic partons within a jet with

only, say 20 or 40 GeV in energy, whose kinematics allow for larger angle scattering than

is possible if one considers the deflection of (higher energy) entire jets. However, the jet

substructure observables needed to detect rare large angle scattering of partons within a jet

(via measuring their modification in jets produced in heavy ion collisions) are of necessity

more complicated than acoplanarity. It is very important that such observables are now

being measured [21–25] and analyzed in heavy ion collisions, as it remains to be determined

which substructure observables, defined with which grooming prescription, will turn out to

be most effective. Quantitative predictions for experimental observables, whether acopla-

narities or substructure observables, require analysis of jet production and showering at

the level of a jet Monte Carlo, first in proton-proton collisions and then embedded within

a realistic hydrodynamic model for the expanding cooling droplet of matter produced in

a heavy ion collision. We shall not do such a study here; our goal is to provide a key

theoretical input for future phenomenological analyses, not to do phenomenology here.

Nevertheless, we expect that at a qualitative level our results can provide some guidance

for planning experimental measurements to come.

In this paper, we set up a thought experiment in which we “shoot” a single energetic

parton (quark or antiquark or gluon) with initial energy pin through a static “brick” of

QGP of thickness L in thermal equilibrium at a constant temperature T , cf. figure 1. For

simplicity, we shall model the medium within our brick as a cloud of massless quarks and

gluons, with Fermi-Dirac and Bose-Einstein momentum distributions, respectively. This is

surely only of value as a benchmark. Although treating the partons as massless is appro-

priate if the momentum transfer is high enough, as we shall quantify in section 3.3, adding

thermal masses would surely be a worthwhile extension of our study. Also, our calculations

could be repeated in future using any proposed model for the momentum distributions of

the quarks and gluons as seen by a high-momentum probe. Indeed, it is hard to imagine a

better possible future than the prospect of making experimental measurements that reveal

the presence of rare large-angle Molière scattering, seeing quantitative disagreements with

predictions obtained via incorporating our calculation within a jet Monte Carlo analysis,

and reaching the conclusion that the momentum distributions of the quarks and gluons seen

by a high-momentum probe differ from the benchmark distributions that we have chosen.
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Figure 1. Kinematics of the thought experiment that we analyze. An incident parton of “type”

C (type meaning gluon or quark or antiquark) with energy pin impinges on a “brick” of QGP with

thickness L. An outgoing parton of type A with energy p is detected at an angle θ relative to the

direction of the incident parton. We shall calculate the probability distribution of p and θ for a

given pin and for all possible choices A and C.

We shall then compute F (p, θ), the probability distribution for finding an outgoing

hard parton with energy p and angle θ relative to the direction of the incident hard parton.

We choose to normalize the distribution F (p, θ) as∫ π

θmin

dθ

∫ ∞
pmin

dpF (p, θ) = Nhard (θmin) , (1.1)

where Nhard (θmin) denotes the number of outgoing hard partons in a specific region of the

phase space θ ≥ θmin, p ≥ pmin per single incident parton. We have introduced a somewhat

arbitrary hard energy scale pmin so that we can refer to a parton with p > pmin as a hard

parton. We will specify pmin as needed in section 3, and will always choose pmin to be

significantly greater than T . F (p, θ) will depend on the temperature of the plasma, T , on

the energy of the incident parton, pin, on the time that the parton spends traversing the

brick of QGP, ∆t ≡ L/c, as well as on whether the incident parton and the outgoing parton

are each a quark, antiquark or gluon, but we shall keep all these dependences implicit in

our notation in this Introduction.

It should be evident that our thought experiment is only that. The droplet of QGP

produced in a heavy ion collision expands and cools rapidly; its dynamics is certainly not

that of a constant temperature static brick. And, a jet shower is made up from many par-

tons and has a complex showering dynamics of its own. In order to do phenomenology, our

results for F (p, θ) must be incorporated within a Monte Carlo calculation of jet production

and showering, with the jets embedded within a realistic hydrodynamic description of a

droplet of QGP. Such a future calculation, in which the dynamics of a jet (including the

splitting and propagation) and of the droplet of plasma is described ∆t by ∆t by ∆t, for

some small value of ∆t, after each ∆t our result for F (p, θ) could be applied to each parton

in the shower. In this way, our results can be used to add large-angle Molière scattering

to a jet Monte Carlo calculation which does not currently include it, like for example the

Monte Carlo calculations done within the hybrid model in refs. [26–29]. In the case of a

Monte Carlo calculation in which hard two-to-two scattering is already included, for exam-

ple those done within JEWEL [30–35], MARTINI [36] or LBT [37–39], our results can be
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used in a different way, namely as a benchmark against which to compare for the purpose of

identifying observable consequences of large-angle scattering. The other way in which the

results of our calculation will be of value is as a qualitative guide to experimentalists with

which to assess how large the effects of interest may turn out to be, namely as a qualitative

guide to what the probability is that a parton with a given energy in a jet could scatter

by an angle θ. In section 3.4 we shall illustrate our results by plotting what we obtain for

partons with pin = 25T = 10 GeV and pin = 100T = 40 GeV and pin = 250T = 100 GeV

incident on a brick with T = 0.4 GeV and ∆t = 3 fm.

Although we believe that our results will be of value as a qualitative guide for planning

and assessing future experiments, giving a sense of just how rare it should be for a parton

in a jet to scatter at a large enough angle that the jet grows a new prong that can be dis-

cerned via high-statistics measurements of suitably defined jet substructure observables,

there should be no illusion that this will be a straightforward program. We do not antici-

pate any smoking guns to be found. As an object lesson, it is worth considering the question

of how to detect evidence, in experimental data, for the Gaussian distribution of transverse

kicks q⊥ that all the partons in a jet must pick up as they traverse the plasma. As we noted

above, the probability distribution for small q⊥ is Gaussian, with a width often denoted by

q̂L, after passage through plasma over a distance L and this can be understood either via

holographic calculations at strong coupling or as a consequence of multiple scattering in a

weakly coupled picture. Constraints on the measured value of q̂ all come from comparing

calculations of energy loss (not transverse kicks themselves) to experimental data on ob-

servables that are sensitive to energy loss within a weakly coupled formalism in which q̂

also controls parton energy loss [40]. There is at present no clear experimental detection of

the Gaussian distribution of transverse kicks themselves. The natural way to look for them

is to look for increases in the angular width of jets, jet broadening, due to propagation

through plasma, as all the partons in a jet accumulate Gaussian-distributed transverse

kicks. In fact, it is with this in mind that these kicks are typically referred to as transverse

momentum broadening. There are many extant measurements of the modification of jet

shape observables in heavy ion collisions [18, 19, 21, 23, 25, 41–45], and many theorists

have made efforts to turn these measurements into constraints on transverse momentum

broadening, for example see refs. [28, 35, 37, 46–50], but there are two significant confound-

ing effects that obscure transverse momentum broadening [28]. The first effect is that the

energy and momentum “lost” by the jet becomes a wake in the plasma which then in turn

becomes soft particles spread over a large range of angles around the jet direction, carrying

momentum in the jet direction. Some of this momentum gets reconstructed as a part of

the jet, meaning that this contributes to jet broadening unless soft particles are groomed

away [28, 35, 38, 49, 51–55]. The second effect arises from the interplay between the fact

that higher energy jets are less numerous than lower energy jets and the tendency for nar-

row jets to lose less energy than wide jets. (This tendency is seen at weak coupling [56, 57],

in holographic models for jets at strong coupling [58], and in the hybrid model [28].) As a

consequence, the jets that remain in any given energy bin after an ensemble of jets passes

through a droplet of QGP tend to be narrower than the jets in that energy bin would

have been absent the QGP: wider jets are pushed into lower energy bins, where they are
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much less numerous than the narrower jets found there [28, 57, 59, 60]. So, even though

individual jets may broaden, at the ensemble level there is a strong tendency for the jets

with a given energy to be narrower after passage through the plasma than jets with that

energy would have been. Before an experimental measurement of transverse momentum

broadening can be made, careful work must be done to find ways to evade, or precisely

measure, both of these confounding effects. Relative to our goals in this paper, this is a

cautionary tale. Although what we are looking for (jets sprouting an extra prong due to

a parton within the jet scattering at a large angle) sounds more distinctive, because such

events will be rare the effort will require high statistics, judicious choice of observables,

and a very considerable phenomenological modeling effort. Our results provide an initial

input for such an effort.

The probability for picking up a given transverse momentum q⊥ via a single hard

scattering off a parton in the plasma was calculated previously [10, 61], but only in the

limit of infinite parton energy which means zero angle scattering. That is, these authors

calculated the probability that an infinite energy parton picks up some significant transverse

momentum q⊥ in a Molière scattering, without changing its direction. Since what is most

relevant to any experimental observable is the scattering angle, it is hard to use these results

per se to gain guidance for what to expect in future experimental measurements. Here,

we remedy this by providing a leading order perturbative QCD calculation of the Molière

scattering probability for incident partons with finite energy, computing the probability

distribution for both the scattering angle and the energy of the outgoing parton.

The computation of F (p, θ) in weakly coupled QGP, even a static brick of weakly cou-

pled QGP, is a multiscale problem and, in addition, there are different phase space regions

where F (p, θ) is governed by different processes, as discussed schematically in ref. [14]. We

specifically focus here on the kinematic regime in which the angle θ is sufficiently large that

the dominant process is a single binary collision between the incident hard parton and a

medium parton (a scatterer in the medium). For sufficiently large θ, the contribution from

multiple scattering is not relevant since one single collision is more likely to give a large

angle than multiple softer collisions in sum. At smaller values of θ, multiple softer collisions

do add up and dominate, yielding a Gaussian distribution in the momentum transfer as

discussed above. We shall focus on the large θ regime which is more likely to be populated

via a single Molière scattering

incident parton + target medium parton→ outgoing parton +X . (1.2)

The second important way in which our calculation extends what has been done before is

that we include all relevant channels. The parton that is scattered by a large angle need not

be the incident parton, as in Rutherford scattering or deep inelastic scattering; it could be

a parton from the medium that received a kick from the incident parton. We include this

channel as well, and we shall see that in some kinematic regimes it is dominant. That is, in

eq. (1.2) the outgoing hard parton (the one that we imagine detecting via its contribution

to some jet substructure observable or, if the incident parton represents an entire jet, via

its contribution to an acoplanarity), as well as the X which goes undetected in our thought

experiment, can each be either the deflected incident parton or the recoiling parton from

– 6 –



J
H
E
P
0
1
(
2
0
1
9
)
1
7
2

the medium that received a kick. F (p, θ) describes the energy and momentum transfer

of the incident parton to the medium and contains information about the nature of the

scatterers in QGP.

In this work, we shall evaluate F (p, θ) for sufficiently large θ by following the standard

methods of perturbative QCD. We then determine the probability distribution P (θ) for

the angle of an outgoing hard parton by integration over p:

P (θ) =

∫ ∞
pmin

dpF (p, θ) . (1.3)

Finally, we integrate P (θ) over θ to obtain Nhard (θmin), see eq. (1.1). Our calculation

allows us to estimate how rare large angle scatterings with some specified θ are and in this

way can be used to provide qualitative guidance for the ongoing experimental search for

evidence of point-like scatterers in QGP.

This paper is organized as follows. In section 2, we derive the expressions which relate

F (p, θ) to a summation over all possible 2 ↔ 2 scattering process and obtain a compact

expression involving the phase-space integration over the scattering amplitudes weighted

by the appropriate thermal distribution function. We then describe how to sum over the

individual processes as well as how to simplify the phase-space integration. The reader

only interested in results, not in their derivation, can jump to section 3, where we present

our results and compare them to previous studies, including the computations done in

the pin → ∞ limit in refs. [9, 10]. By considering incident partons with finite energy and

including all relevant channels, our goal is to provide a quantitative tool for incorporation

in future jet Monte Carlo calculations as well as qualitative guidance for how to use future

precise, high statistics, suitably differential measurements of jet modification in heavy ion

collisions to find the scatterers within the QGP liquid.

2 Kinetic theory set-up and calculation details

In this section, we explain how we derive the probability distribution F (p, θ) for finding

an outgoing parton with energy p at an angle θ relative to the direction of the incident

parton. Our key ingredient is the phase-space distribution fa(p, t)

fa(p, t) ≡ Probability of finding an energetic parton of species a

in a phase-space cell with momentum p at the time t,

averaged over helicity and color states,

(2.1)

where a can be u, ū, d, d̄, s, s̄ or g. As emphasized in the definition, we neglect the

dependence on helicity and color configurations. Although the phase-space distribution in

principle can depend also on these variables, we assume that the medium is unpolarized

and has no net color charge. Furthermore, if we average over the possible helicity and color

configurations for the incoming hard probe, we are allowed to use the averaged distribution

introduced in eq. (2.1). We shall set our calculation up as a calculation of the time evolution

of fa(p, t) in kinetic theory in which this distribution initially has delta-function support,

describing the incident hard parton, and later describes the probability of finding an ener-

getic parton of species a that has ended up with momentum p after a binary collision.
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2.1 Initial conditions

We imagine a static brick of quark-gluon plasma, and we then imagine shooting an energetic

parton with energy pin and momentum pin at it. The on-shell condition reads p2
in = p2

in,

therefore pin denotes both the energy and the magnitude of the momentum for the incoming

parton. (We shall assume that this parton does not radiate, split or shower during the

time ∆t that it is traversing our brick of plasma, since our goal is to focus on large-angle

scattering caused by a single binary collision. In future phenomenological studies in which

our results are used within a jet Monte Carlo, results from our calculation would be used

∆t by ∆t by ∆t, with the value of ∆t chosen small enough that radiation or splitting is

negligible during a single ∆t.) If the energetic parton of species a enters the medium at

the initial time tI , the initial condition for the phase space distribution function reads

fa(p, tI) ≡
1

νa
fI(p) ≡ 1

νa

1

V

4π2

p2
in

δ(p− pin) δ(cos θ − cos θin) , (2.2)

where V is a unit volume that will not appear in any results. Here, we have fixed the initial

energy and direction. Without any loss of generality we can take the z-axis to lie along

the direction of the incident parton, which fixes cos θin = 1. We normalize the expression

in eq. (2.2) in such a way that the incoming flux is one incoming parton per unit volume.

The degeneracy factor νa is defined as

νa =

{
2× (N2

c − 1) a = gluon

2×Nc a = quark or antiquark ,
, (2.3)

accounting for helicity and color configurations, with Nc the number of colors. And, for

later convenience we have introduced the definition of a function fI(p), where I refers to

initial and is not an index, that describes the species-independent momentum-distribution

in the initial condition.

2.2 Evolution of the phase-space distribution

We wish to answer the following question: if an incoming parton enters the medium at the

time tI , what is the probability of finding an energetic parton of species a (not necessarily

the same as that of the incident parton) exiting on the other side with a given energy and

at a given scattering angle? In order to give a quantitative answer, we need to track the

evolution of the function fa(p, t). At time t = tI , fa is zero for all p other than p = pin; at

later times, because the incident parton can scatter off partons in the medium fa can be

nonzero at other values of p, and in particular at nonzero angles θ. Henceforth, we shall

evaluate fa(p, t) at some nonzero angle θ, meaning that a labels the species of the energetic

parton detected there.

The calculation of the time evolution of fa(p, t) is performed in appendix A, we report

only the final result here. We assume that the probe scatters off a constituent of the

medium at most once during its propagation through the medium over a time ∆t. We will

later come back to this approximation and check when it is legitimate, namely when ∆t

is sufficiently small and/or when θ is sufficiently large so that no summation over multiple
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scattering is needed. Within this approximation, the phase space distribution at the time

tI + ∆t when the parton exits the medium takes the form

fa(p, tI + ∆t) =
∆t

νa

∑
processes

1

1 + δcd

∫
p′,k′,k

|Mab↔cd|2

×
[
nc(p

′)fd(k
′, tI) + fc(p

′, tI)nd(k
′)
]

[1± nb(k)] .

(2.4)

The form of this expression can be readily understood for all scattering processes except

qq̄ ↔ gg or qq̄ ↔ q′q̄′, where q and q′ are different flavors, as follows (although it applies

to those processes too). Our convention is that the parton a detected in the final state

comes from parton c in the initial state, and the undetected parton b comes from parton

d. So, the ncfd term in the result (2.4) corresponds to the case where the outgoing hard

parton a that is detected came from the medium, having been kicked out of the medium by

the incident parton d, whereas the fcnd term corresponds to the case where the detected

parton a came from the incident parton c, which scattered off parton d from the medium.

The [1± nB] factor (where the sign is + if b is a boson and − if b is a fermion) describes

Bose enhancement or Pauli blocking and depends on the occupation of the mode in which

the undetected particle of species b in the final state is produced. The sum runs over all

possible binary processes ab↔ cd, with p′,k′ (p,k) the momenta of c, d (a, b). The phase

space integral is written in a compact form∫
p′,k′,k

≡ 1

2p

∫
d3k

2k (2π)3

∫
d3p′

2p′ (2π)3

∫
d3k′

2k′ (2π)3

× (2π)4 δ(3)
(
p+ k − p′ − k′

)
δ
(
p+ k − p′ − k′

)
. (2.5)

The squared matrix elements are summed over initial and final helicity and color config-

urations, without any average. The term with the Kronecker delta function accounts for

the cases when c and d are identical particles. Finally, we must specify the “soft” medium

distribution functions na(p). As we discussed in section 1, we shall choose to use distri-

butions as if the quarks and gluons seen in the QGP by a high-momentum probe were

massless, noninteracting, and in thermal equilibrium, meaning that na(p) depends only on

the statistics and energy of the particle in the medium that is struck and is given by

na(p) =

{
[exp(p/T )− 1]−1 a = gluon

[exp(p/T ) + 1]−1 a = quark or antiquark
. (2.6)

Note that we are considering a medium in which the chemical potential for baryon number

vanishes, meaning that the equilibrium distributions for quarks and antiquarks are identi-

cal. For this locally isotropic medium, the equilibrium distributions depend on the parton

energy p but not on the direction of its momentum. They are also time-independent, since

we are considering a static brick of plasma with a constant T . By taking a noninteracting

gas of massless quarks, antiquarks and gluons, in thermal equilibrium, as our medium we

are defining a benchmark, not an expectation. As we noted in section 1, we look forward

to the day when comparisons between experimental data and predictions made using our

results incorporated within a jet Monte Carlo are being used to determine how na(p) for
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QGP differs from the benchmark that we have employed here. A future program along

these lines could be thought of as the analogue, for a thermal medium, of determining the

parton distribution functions for a proton.

Initially, at time tI , fa takes on the form (2.2) and is zero for all p except for p = pin.

The expression (2.4) encodes the fact that after the incident parton has propagated through

the medium for a time ∆t, because there is some nonzero probability that a 2→ 2 scattering

event occurred there is now some nonzero probability of finding a parton with any p.

2.3 QCD matrix elements

The formalism set up so far is valid for a generic theory with arbitrary degrees of freedom

and arbitrary interactions giving rise to binary scattering processes, and relies principally

just on the kinematics of the binary collisions. The specific dynamics becomes relevant

only when we have to specify the matrix elements in eq. (2.4). We do so here, in so doing

specializing to QCD. We collect the results for the matrix elements for all processes relevant

to our study in table 1. We label each process with an integer index (n = 1, 2, . . . , 11),

and we write the associated matrix element summing over initial and final colors and

polarizations. We also assign to each process a degeneracy factor w(n), different for each

degree of freedom involved in the collision, which will be useful shortly. With these matrix

elements in hand, we can evolve the initial phase-space distribution given in eq. (2.2) by

plugging it into eq. (2.4). In this way, we obtain the phase-space probability after the

incident parton has spent a time ∆t in the medium.

In addition to neglecting all medium-effects in the distribution functions (2.6) as we

discussed in section 2.2, we shall do the same in the QCD matrix elements for 2 → 2

collisions. This means that we are assuming weak coupling throughout and furthermore

means that we can only trust our results in the kinematic regime in which the energy

and momentum transferred between the incident parton and the parton from the medium

off which it scatters is much larger than the Debye mass. We shall check this criterion

quantitatively in section 3.3.

2.4 Probability distribution after passage through the medium

Having derived the evolution of the phase-space distribution in eq. (2.4), we can now define

and compute the probability distribution, which is the main result of this paper. Thus far,

we have denoted different parton species with lower case letters (i.e. a = u, ū, d, d̄, s, s̄, g).

It is convenient to introduce uppercase indices denoting different types of partons: gluons,

quark and antiquarks (i.e. A = G,Q, Q̄). We use this notation to define the probability

distribution that we introduced in figure 1:

FC→A(p, θ; pin) ≡ Probability of finding a parton of type A with energy p

at an angle θ with respect to the direction of

an incoming parton of type C with energy pin.

(2.7)
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n Process
∣∣M(n)

∣∣2 /g4
s w

(n)
Q w

(n)

Q̄
w

(n)
G

1 qq ↔ qq 8
d2F C

2
F

dA

(
s2+u2

t2
+ s2+t2

u2

)
+ 16 dFCF

(
CF−CA

2

)
s2

tu 1 0 0

2 q̄q̄ ↔ q̄q̄
∣∣M(1)

∣∣2 /g4
s 0 1 0

3 qq̄ ↔ qq̄ 8
d2F C

2
F

dA

(
s2+u2

t2
+ t2+u2

s2

)
+ 16 dFCF

(
CF−CA

2

)
u2

st 1 1 0

4 qq′ ↔ qq′ 8
d2F C

2
F

dA

(
s2+u2

t2

)
Nf − 1 0 0

5 q̄q̄′ ↔ q̄q̄′
∣∣M(4)

∣∣2 /g4
s 0 Nf − 1 0

6 qq̄′ ↔ qq̄′
∣∣M(4)

∣∣2 /g4
s Nf − 1 Nf − 1 0

7 qq̄ ↔ q′q̄′ 8
d2F C

2
F

dA

(
t2+u2

s2

)
Nf − 1 Nf − 1 0

8 qq̄ ↔ gg 8 dFC
2
F

(
t2+u2

tu

)
− 8 dFCFCA

(
t2+u2

s2

)
1 1 Nf

9 qg ↔ qg −8 dFC
2
F

(
u
s + s

u

)
+ 8 dFCFCA

(
s2+u2

t2

)
1 0 Nf

10 q̄g ↔ q̄g
∣∣M(9)

∣∣2 /g4
s 0 1 Nf

11 gg ↔ gg 16 dAC
2
A

(
3− su

t2
− st

u2
− tu

s2

)
0 0 1

Table 1. List of the binary collision processes that can produce a hard parton in the final state

with large transverse momentum with respect to the incoming probe. Here, q and q′ are quarks

of distinct flavors, q̄ and q̄′ the associated antiquarks, and g is a gauge boson (gluon). The third

column lists explicit leading order expressions for the corresponding QCD squared matrix elements,

in vacuum, summed over initial and final polarizations and colors, as a function of the standard

Mandelstam variables t = −2 (p′p− p′ · p), u = −2 (p′k − p′ · k) and s = −t − u. (See ref. [62].)

In a SU(Nc) theory with fermions in the fundamental representation, we have for the dimensions

of the representations and the Casimir factors dF = CA = Nc, CF =
(
N2

c − 1
)
/(2Nc), and dA =

2 dFCF = N2
c − 1. For SU(3) (i.e. QCD), dF = CA = 3, CF = 4/3, and dA = 8. Finally, we give the

degeneracy factors w
(n)
C appearing in eq. (2.13). Here, Nf is the number of light flavors; we take

Nf = 3 throughout.

This quantity is given by the sum over all possible processes with C and A in the initial

and final state, respectively. Its explicit expression reads

FC→A(p, θ; pin) = V
p2 sin θ

(2π)2

∑
a∈A

νafa(p, θ; tI + ∆t) . (2.8)

The prefactor in front of the sum is the Jacobian of the phase-space integration

V
d3p

(2π)3 =
p2dp d cos θ dφ

(2π)3 ⇒ V
p2 sin θ

(2π)2 dp dθ . (2.9)

The sum runs over all the lowercase indices corresponding to parton species of the type

A. For example, if A stands for a quark, the sum runs over the values a = u, d, s. The

degeneracy factor νa appears because our distribution functions are averaged over colors
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and polarizations; the detector cannot resolve these quantum numbers, we account for

all of them by this multiplicative factor. Finally, we note that the distribution function

fa(p, θ; tI+∆t) appearing in eq. (2.8) is the time-evolved quantity given in eq. (2.4), evolved

from an initial condition at time tI given by

fa(pin, tI) =

{
fI(pin)/νC for one value of a ∈ C
0 for all other values of a

(2.10)

where the function fI(pin) was defined in eq. (2.2). (For example, if C = Q meaning that

the incident parton is a quark then fa is nonzero for either a = u or a = d or a = s, and

the flavor of the incident quark makes no difference to our calculation.)

We have defined the probability (2.7) such that it does not distinguish between quarks

of different flavors, but it does distinguish between quarks, antiquarks and gluons. So, if

our goal is to find the total probability of finding any energetic parton in the final state

with energy p and angle θ, we have to sum over the different types of partons. As an

example, if we consider an incoming quark, the probability of getting any energetic parton

in the final state reads

FQ→all(p, θ; pin) = FQ→Q(p, θ; pin) + FQ→Q̄(p, θ; pin) + FQ→G(p, θ; pin) . (2.11)

In the last step in our derivation, we directly plug the expression for the time-evolved

phase-space distribution given in eq. (2.4) into our expression for the probability distri-

bution (2.8). Before doing that, it is useful to introduce some notation to make our final

expression more compact. We define the generalized Kronecker delta functions δ̃a,G ≡ δa,g,
δ̃a,Q which equals 1 if a = u or d or s and which vanishes for other values of a, and δ̃a,Q̄
which equals 1 if and only if a = ū or d̄ or s̄. Moreover, we define the generalized medium

“soft” distribution function

na(p) = δ̃a,G nB.E.(p) +
(
δ̃a,Q + δ̃a,Q̄

)
nF.D.(p) (2.12)

where nB.E.(p) and nF.D.(p) are the Bose-Einstein and Fermi-Dirac distributions from

eq. (2.6), respectively. With this notation in hand, we can now write the complete leading

order expression for the probability function defined in eq. (2.7):

FC→A(p, θ; pin) = V
κ

T

p2 sin θ

(2π)2

∑
n

w
(n)
C

δ̃a,A
1 + δcd

∫
p′,k′,k

∣∣∣M(n)
ab↔cd

∣∣∣2
g4
s

× 1

νC

[
δ̃d,C fI(k

′) nc(p
′) + δ̃c,C fI(p

′) nd(k
′)
]

[1± nb(k)] .

(2.13)

Here, we have defined a dimensionless parameter κ multiplying the overall expression via

κ ≡ g4
s T ∆t . (2.14)

κ becomes large either for a thick brick (large T∆t) or for a large value of the QCD

coupling constant gs that controls the magnitude of all the matrix elements for binary
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collision processes. Note that the V in the prefactor of eq. (2.13) cancels the 1/V from

eq. (2.2), meaning that no V will appear in any of our results. Henceforth we shall not

write the factors of V . Note also that neglecting multiple scattering as we do is only

valid when Nhard, the integral over FC→A(p, θ; pin) defined in eq. (1.1), is small. For any

given choice of p and θ, if κ is too large multiple scattering cannot be neglected and our

formalism breaks down. Equivalently, for any given κ our formalism will be valid in the

regime of p and θ, in particular for large enough θ, where FC→A(p, θ; pin) is small and

multiple scattering can be neglected.

The sum over n in eq. (2.13) runs over all the 11 processes in table 1. The delta δ̃a,A
ensures that only processes with a parton of type A present in the final state are accounted

for. Crucially, each process is multiplied by the C-dependent weight factor w
(n)
C , given

explicitly in the last three columns of table 1. As an example, if we are considering the

production of A = Q from an incident gluon, C = G, via gg → q̄q, the weight factor

w
(8)
G is Nf since we can produce this final state by pair-production of any flavor of light

quark. Thus, this multiplicative factor accounts for the multiple ways a given process can

produce the energetic parton A in the final state. When such an outgoing parton originates

from an incident parton c, the matrix element has to be multiplied by the thermal weight

δ̃c,C fI(p
′) nd(k

′), whereas when the incoming parton is d this factor is δ̃d,C fI(k
′) nc(p

′).

The expression eq. (2.13) is the central result of this paper, albeit written in a compact

and hence relatively formal fashion. We note again that this relation is valid only as long

as ∆t is much shorter than the characteristic time between those binary collisions between

the incident parton and constituents of the medium that produce scattered partons with a

given p and θ. We will see in section 3 that this is true as long as the scattering angle is

larger than some θmin, where θmin will depend on p, pin and κ. Before turning to results in

section 3, in section 2.5 we shall write the expression (2.13) more explicitly in specific cases

and in section 2.6 we shall describe some of details behind the computations via which we

obtain our results.

2.5 How to sum over different processes

In order to write the expression (2.13) more explicitly and in particular in order to sum the

various different phase space integrals over various different matrix elements that contribute

to a given physical process of interest, it is convenient to define the following set of phase

space integrals:

〈 (n) 〉D,B ≡
1

T

p2 sin θ

(2π)2

∫
p′,k′,k

∣∣M(n)
∣∣2

g4
s

fI(p
′)nD(k′) [1± nB (k)] , (2.15a)

〈 (ñ) 〉D,B ≡
1

T

p2 sin θ

(2π)2

∫
p′,k′,k

∣∣M(n)
∣∣2

g4
s

fI(k
′)nD(p′) [1± nB (k)] , (2.15b)

where the index n spans the 11 different binary collision processes listed in table 1. The ±
sign in both equations correspond to the cases where B is a boson or a fermion, respectively.

For processes with identical incoming partons (and also for process 8 in table 1), we have
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〈(n)〉D,B = 〈(ñ)〉D,B. More explicitly, we have

〈(n)〉D,B = 〈(ñ)〉D,B , n = 1, 2, 7, 8, 11 . (2.16)

If we look back at eq. (2.13), we notice that we can always express FC→A(p, θ; pin) as

a weighted sum over 〈 (n) 〉D,B and 〈 (ñ) 〉D,B. Obtaining such expressions is the goal of

this section. There are 3 × 3 = 9 different cases, corresponding to three options for both

the incoming and outgoing parton: quark, antiquark or gluon. We shall first list 4 cases,

corresponding to choosing either quark or gluon. Replacing quarks by antiquarks gives 3

more cases, with identical results. We shall end with the 2 cases where the incoming and

outgoing partons are quark and antiquark or vice versa. The brick of quark-gluon plasma

is assumed to not carry a net baryon number, therefore the results for these last 2 cases are

also identical. In the remainder of this subsection, we give explicit expressions for these 5

independent results. For each case, we define the partial contributions as follows

FC→A(p, θ; pin) ≡
∑
n

FC→A(n) (p, θ; pin) . (2.17)

That is, we decompose the total probability that we are interested in into a sum of up to 11

different terms, one for each of the processes listed in table 1. As we will see shortly, only

a subset of them will actually contribute in each case. For example, in order to understand

which ones are relevant to FQ→Q(p, θ; pin) we need to look at table 1 and identify those

processes with at least one quark in the initial and in the final states. The final result for

each case can then be expressed in terms of the functions defined in eqs. (2.15a) and (2.15b).

Individual processes in table 1 can contribute in more than one case; for example, process

9, quark-gluon scattering, contributes to the probabilities for four cases: FQ→Q(p, θ; pin),

FG→Q(p, θ; pin), FQ→G(p, θ; pin) and FG→G(p, θ; pin).

FQ→Q(p, θ; pin) (“incident quark, outgoing quark”). We start from the case where

both the incoming and the outgoing parton are quarks. The relevant processes are

the ones labeled by n = 1, 3, 4, 6, 7, 9 in table 1 with individual expressions given as

follows. First,

FQ→Q(1) (p, θ; pin) =
κ

νq

w
(1)
Q

2

[
〈 (1) 〉Q,Q + 〈

(
1̃
)
〉Q,Q

]
=

κ

2νq

[
〈 (1) 〉Q,Q + 〈

(
1̃
)
〉Q,Q

]
=

κ

νq
〈 (1) 〉Q,Q , (2.18a)

where the factor 1/2 is a symmetry factor (see eq. (2.13)), and w
(1)
Q is read from

table. 1. In the last step, we have used the fact that 〈 (1) 〉Q,Q = 〈
(

1̃
)
〉Q,Q according

to the relation (2.16). Likewise,

FQ→Q(3) (p, θ; pin) =
κ

νq
〈 (3) 〉Q,Q , (2.18b)

FQ→Q(4) (p, θ; pin) =
κ

νq
(Nf − 1)

[
〈 (4) 〉Q,Q + 〈

(
4̃
)
〉Q,Q

]
, (2.18c)

FQ→Q(6) (p, θ; pin) =
κ

νq
(Nf − 1) 〈 (6) 〉Q,Q

=
κ

νq
(Nf − 1) 〈 (4) 〉Q,Q , (2.18d)
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since the squared matrix elements for the processes 4 and 6 are identical. And,

FQ→Q(7) (p, θ; pin) =
κ

νq
(Nf − 1) 〈 (7) 〉Q,Q , (2.18e)

FQ→Q(9) (p, θ; pin) =
κ

νq
〈 (9) 〉G,G . (2.18f)

Upon summing the above, we find the final result

FQ→Q(p, θ; pin) =
κ

νq

{
〈 (1) 〉Q,Q + 〈 (3) 〉Q,Q + 〈 (9) 〉G,G +

(Nf − 1)
[
2〈 (4) 〉Q,Q + 〈

(
4̃
)
〉Q,Q + 〈 (7) 〉Q,Q

]}
.

(2.19)

FQ→G(p, θ; pin) (“incident quark, outgoing gluon”). This case gets contributions

from the processes labeled by n = 8, 9. We identify again the individual contri-

butions to the total probability

FQ→G(8) (p, θ; pin) =
κ

νq

[
〈 (8) 〉Q,G + 〈

(
8̃
)
〉Q,G

]
=

2κ

νq
〈 (8) 〉Q,G , (2.20a)

where we have used the relation (2.16). And,

FQ→G(9) (p, θ; pin) =
κ

νq
〈
(

9̃
)
〉G,Q , (2.20b)

which add up to give the final result for this case

FQ→G(p, θ; pin) =
κ

νq

[
2〈 (8) 〉Q,G + 〈

(
9̃
)
〉G,Q

]
. (2.21)

FG→Q(p, θ; pin) (“incident gluon, outgoing quark”). The calculation for this case

is analogous to the previous one. The partial contributions read

FG→Q(8) (p, θ; pin) =
κ

νg
Nf 〈 (8) 〉G,Q . (2.22a)

FG→Q(9) (p, θ; pin) =
κ

νg
Nf 〈

(
9̃
)
〉Q,G , (2.22b)

which, after summing, result in

FG→Q(p, θ; pin) =
κ

νg
Nf

[
〈 (8) 〉G,Q + 〈

(
9̃
)
〉Q,G

]
. (2.23)

FG→G(p, θ; pin) (“incident gluon, outgoing gluon”), When both the incoming and

outgoing energetic partons are gluons, the processes contributing to the probability

distribution are the ones labeled by n = 9, 10, 11. The individual terms are

FG→G(9) (p, θ; pin) =
κ

νg
Nf 〈 (9) 〉Q,Q , (2.24a)

FG→G(10) (p, θ; pin) =
κ

νg
Nf 〈 (10) 〉Q,Q =

κ

νg
Nf 〈 (9) 〉Q,Q , (2.24b)
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where we have take into account the fact that processes 9 and 10 have identical

squared matrix elements. And,

FG→G(11) (p, θ; pin) =
κ

νg

1

2

[
〈 (11) 〉G,G + 〈

(
1̃1
)
〉G,G

]
=

κ

νg
〈 (11) 〉G,G (2.24c)

where once again we have used the relation (2.16). Consequently, we find

FG→G(p, θ; pin) =
κ

νg
{2Nf 〈 (9) 〉Q,Q + 〈 (11) 〉G,G} . (2.25)

FQ→Q̄(p, θ; pin) (“incident quark, outgoing antiquark”). The last case we consider

is when a quark enters the medium and an energetic antiquark exits on the opposite

side. The processes that contribute to this case are

FQ→Q̄(3) (p, θ; pin) =
κ

νq
〈
(

3̃
)
〉Q,Q , (2.26a)

FQ→Q̄(6) (p, θ; pin) =
κ

νq
(Nf − 1) 〈

(
6̃
)
〉Q,Q

=
κ

νq
(Nf − 1) 〈

(
4̃
)
〉Q,Q , (2.26b)

where we use the fact that processes 6 and 4 have identical squared matrix elements.

In addition,

FQ→Q̄(7) (p, θ; pin) =
κ

νq
(Nf − 1) 〈

(
7̃
)
〉Q,Q

=
κ

νq
(Nf − 1) 〈 (7) 〉Q,Q , (2.26c)

where we have use the relation (2.16). The total probability for this case is

FQ→Q̄(p, θ; pin) =
κ

νq

{
〈
(

3̃
)
〉Q,Q + (Nf − 1)

[
〈
(

4̃
)
〉Q,Q + 〈 (7)〉Q,Q

]}
. (2.27)

2.6 Phase space integration

After performing the summation over different processes, our final task is to evaluate the

phase space integrals in eqs. (2.15a) and (2.15b). The expression in eq. (2.15a) involves

a 9-fold integration in the phase space (p′,k′,p). We first integrate over a 4-dimensional

delta function in eq. (2.5). The integration over the azimuthal angle is straightforward.

Finally, we perform two more integrations by taking the advantage of the delta function in

fI . (See appendix. B.1 for details.) Upon following techniques widely used in the literature

(see e.g. refs. [63–65]), we find

〈(n)〉D,B =
1

16 (2π)3

(
p sin θ

pin q T

)∫ ∞
kmin

dkT nD (kT ) [1± nB(kX)]

∫ 2π

0

dφ

2π

∣∣M(n)
∣∣2

g4
s

. (2.28)

Here, kT denotes the energy of the thermal parton from the medium whose momentum we

shall denote by kT and kX = k+ω denotes the energy of the undetected final state parton.

The integration range starts from the value

kmin =
q − ω

2
, (2.29)
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corresponding to the minimum energy allowed by kinematics for the thermal parton from

the medium. Moreover, φ is the angle between the two planes identified by the pair of

vectors (p, q) and (q,kT ), and we use ω ≡ pin − p and q = p − pin to denote energy and

momentum difference between the incident parton and the outgoing parton that is detected.

The matrix elementsM(n) that appear in eq. (2.28) are to be taken from table 1, with the

Mandelstam variables t and u occurring within them specified in terms of quantities t̃ and

ũ that can be expressed as functions of q, ω, kT and φ as follows

t̃ = ω2 − q2 , ũ = −s̃− t̃ , (2.30)

s̃ =

(
− t̃

2q2

){[
(pin + p) (kT + kX) + q2

]
−
√(

4pinp+ t̃
) (

4kTkX + t̃
)

cosφ

}
, (2.31)

where in the matrix elements in eq. (2.28) we have simply t = t̃ and u = ũ but where we

will need to set t = ũ and u = t̃ below in our result for 〈(ñ)〉D,B. Here, q, and t̃ can be

expressed as functions of p, pin and cos θ thus:

q =
√
p2

in + p2 − 2pin p cos θ , t̃ = −2p pin (1− cos θ) . (2.32)

Following a calculation that proceeds along similar lines, the quantity in eq. (2.15b)

can be expressed as

〈(ñ)〉D,B = 〈(n)〉D,B|t̃↔ũ

=
1

16(2π)3

(
psinθ

pinqT

)∫ ∞
kmin

dkTnD (kT ) [1±nB(kX)]

∫ 2π

0

dφ

2π

∣∣M(n)
∣∣2
t̃↔ũ

g4
s

,
(2.33)

where the role of t̃, ũ are interchanged in the squared matrix element with respect to

eq. (2.28). There are two integrations left in eqs. (2.28) and (2.33), over φ and kT . Remark-

ably, the integration over φ can be performed analytically, as explained in appendix B.2.

The remaining integration over kT has to be performed numerically.

3 Results and discussion

The purpose of this work is to evaluate FC→A(p, θ), the probability distribution for finding

an outgoing hard parton of type A with energy p and angle θ relative to the direction

of an incident hard parton of type C with energy pin. (For simplicity, here as in the

Introduction we shall write FC→A(p, θ; pin) as just FC→A(p, θ).) Recall that by “type” we

mean gluon or quark or antiquark. We consider a static brick of a weakly interacting QGP,

and have included the contributions from a single binary collision between the incident

hard parton and a medium parton. In section 2, we have presented a careful derivation

of the expression for FC→A(p, θ) in eq. (2.13), and have provided further technical details

on the summation over different processes in section 2.5, as well as the simplification of

the phase space integration in section 2.6. By summing over different types, we obtain the

probability distribution for finding final parton of any type,

FC→all(p, θ) = FC→G(p, θ) + FC→Q(p, θ) + FC→Q̄(p, θ) . (3.1)

Integration of FC→all(p, θ) over p using eq. (1.3) then yields P (θ), namely the probability

distribution for the angle θ.
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3.1 Comparison with previous work

Before we present our results, we shall briefly sketch how they agree with results obtained

previously where they should. The details of this comparison are found in appendix C.

The probability distribution for an energetic parton that travels for a distance L through

a weakly coupled QGP to pick up transverse momentum q⊥, which we shall denote P(q⊥),

was analyzed in ref. [10]. These authors confirmed that for sufficiently small L or for

sufficiently large q⊥, P(q⊥) will approach Psingle(q⊥) (denoted by Pthin(q⊥) in ref. [10]), the

probability distribution obtained upon including at most a single scattering between the

incident parton and a scatterer from the thermal medium. This is expected on physical

grounds since the most probable way of picking up a large q⊥ is via a single scattering.

Expressions for Psingle(q⊥) were calculated previously under the condition q⊥ � T in

ref. [66] and under the condition q⊥ � T in ref. [61]. The calculations of ref. [10] do not

assume any ordering between q⊥ and T , and their results agree with the older results in the

appropriate limits. In all of these previous studies, however, the calculations are performed

by first taking a limit in which pin/T →∞ while q⊥/T remains finite, meaning in a limit in

which θ → 0. In this limit, Rutherford-like scattering in which an incident parton scatters

off a parton from the thermal medium is dominant over all other 2 ↔ 2 processes, including

those in which a parton from the medium is kicked to a large angle as well as processes

such as qq̄ ↔ gg. We shall not take the pin/T → ∞ limit, meaning that we must include

all 2 ↔ 2 processes and that we can describe scattering processes that produce a parton

at some nonzero angle θ and hence can compute P (θ), the probability distribution for the

scattering angle θ.

To compare to the previous results referred to above, we take the limit θ � 1 in our

result for P (θ) and compare what we find there with Psingle(q⊥) from refs. [10, 61, 66].

When we take θ � 1, we find that FC→all(p, θ) is peaked at p ≈ pin, i.e. ω/pin � 1 where

we have defined

ω ≡ pin − p . (3.2)

Consequently, to compare to previous results we evaluate FC→all(p, θ) in the regime

θ � 1 , |ω|/pin � 1 , (3.3)

and then perform the necessary integrations to obtain P (θ) in this regime. In eq. (C.5)

in appendix. C.1, we show that our results agree with those from the literature if P (θ) is

given by (p2
inθ/2π)Psingle(q⊥) in the regime (3.3). In subsequent parts of appendix C, we

confirm in detail that our results do indeed match those found in refs. [10, 61, 66] in the

kinematic regime where they should.

In this work, we have extended the previous studies by considering finite (but large)

pin/T meaning that ω/pin and θ need not vanish. Consequently, there are new features in

our computations. In particular, we have included all 2 ↔ 2 scattering processes, as given

in table 1, in our evaluation of FC→A(p, θ). Furthermore, when ω/pin is finite, either the

deflected incident parton or the recoiling thermal parton or both can show up with energy

p and angle θ. Indeed, we shall see in the subsequent sections that P (θ) at nonzero θ

differs qualitatively from that obtained by extrapolating its behavior in the small θ limit.
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In particular, the large-angle tail of P (θ) is in reality fatter than one would guess from

such an extrapolation. This makes the inclusion of all 2 ↔ 2 processes as we do important

and interesting, not just necessary.

Next, we note that by working at finite pin/T we introduce a kinematic cutoff on

the momentum transfer, meaning that when we increase θ the probability distribution

P (θ) must eventually be suppressed since (because of energy/momentum conservation)

the minimum energy of the thermal parton needed to yield a specified θ will become

much larger than T . We shall illustrate this quantitatively later, see the blue curves in

figure 5. The analogous kinematic cutoff on q⊥ in Psingle(q⊥) computed in the limit in

which pin/T →∞ and θ → 0 is less constraining [10].

Finally, we note that in ref. [38] quantities analogous to F (p, θ) or integrals of F (p, θ)

have been computed in the Linear Boltzmann Transport (LBT) model for energetic partons

shooting through a brick of weakly coupled QGP as in our calculation, albeit largely with a

focus on a kinematic regime in which p, and hence the momentum transfer, are only a few

GeV. These authors also compute a quantity directly related to the transverse momentum

distribution P (q⊥) using the LBT model for q⊥ out to around 10 GeV, and provide a very

interesting study of how the distribution becomes more and more Gaussian as the thickness

of the brick is increased. However, even for the thinnest brick that they consider the values

of q⊥ that they investigate are not large enough for single scattering to be dominant. It

would be interesting to extend these LBT calculations to larger q⊥ where the probability of

multiple scattering is negligible and compare them to our results, upon taking into account

the appropriate Jacobian.

3.2 Results for the probability distributions F (p, θ) and P (θ)

We shall now present results from our numerical calculation of FC→all (p, θ) /κ as well as for

P (θ)/κ, both of which are independent of κ. Recall that κ ≡ g4
sT∆t. The probability for

a single 2 → 2 scattering with any specified kinematics is proportional to g4
s at tree-level,

and is proportional to ∆t ≡ L/c, the time that the incident parton would spend traversing

the brick if it did not scatter. Hence, increasing κ (either via increasing the coupling or via

increasing T∆t) must increase FC→all (p, θ) and P (θ). Upon increasing κ, though, at some

point the assumption that single scattering dominates must break down, and along with it

our calculation. The criterion here is that Nhard(θmin), defined in eq. (1.1), must remain

small and this defines an upper limit on the value of κ at which our calculation can be

used for angles θ greater than any specified θmin, or a lower limit on the angle θ at which

our calculation can be used for any given value of κ. We shall illustrate this quantitatively

in section 3.4. Note that in this section we shall work in the weak coupling limit gs → 0

in which κ→ 0 and our expression for FC→A(p, θ) in eq. (2.13) is valid for any nonzero θ

and any finite ∆t.

We shall consider Nf = 3 throughout and we shall only consider QGP with no net

baryon number, meaning zero baryon number chemical potential and meaning that the

distribution of quarks in our thermal medium is the same as that of antiquarks.

We begin our discussion by considering an incident gluon with pin/T = 100. In the top

row of figure 2, we plot FG→all (p, θ) /κ vs p/T . From left to right, we have selected three
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Figure 2. The probability distribution FC→all (p, θ) divided by κ = g4T∆t plotted as functions of

p/T for an “incident gluon” with pin/T = 100 (first row of panels) or pin/T = 25 (second row) and

that for an “incident quark” with pin/T = 100 (third row) or pin/T = 25 (fourth row). From left

to right, the columns correspond to choosing θ = 0.1, 0.4 and 0.8. Since we are considering a brick

of QGP with net baryon number zero, FG→Q(p, θ) = FG→Q̄(p, θ), FQ→G(p, θ) = F Q̄→G(p, θ),

FQ→Q̄(p, θ) = F Q̄→Q(p, θ), and FQ→Q(p, θ) = F Q̄→Q̄(p, θ). In the figure, the curves labelled

G→ Q+ Q̄ are the sum FG→Q(p, θ)+FG→Q̄(p, θ) = 2FG→Q(p, θ). The vertical dashed black lines

correspond, from right to left, to pin/T , and to the two different choices of pmin/T which we will

use below in the evaluation of P (θ) as shown in figure 4, namely pmin/T = 20 and 10.

different representative values of θ, namely θ = 0.1, 0.4, and 0.8. For θ = 0.1, we observe

that the probability distribution is peaked at p ≈ pin, meaning that outgoing partons with

a very small angle are likely to have a small value of ω/pin, where ω = pin−p. This implies

that computing FG→all(p, θ) in the limit (3.3) is sufficient to obtain P (θ) for θ � 1, as

we mentioned earlier. However, the dependence of FG→all(p, θ) on p changes qualitatively
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as we increase θ. F (p, θ) at θ = 0.4 and θ = 0.8 are both largest at small values of p

and decrease monotonically with increasing p. To understand this, let us recall that the

difference between p and pin, i.e. ω, measures the energy transfer during a binary collision,

with a smaller p corresponding to a larger energy transfer ω. Likewise, a larger θ means a

larger transverse momentum transfer. Since the typical energy of a thermal parton is quite

soft, of order T , a large momentum transfer in a single collision between an incident parton

and the thermal scatterer is more likely to be accompanied by a large energy transfer.

That is why we see FG→all(p, θ) telling us that when we ask about scattering at large θ

we find that it most often corresponds to scattering with a large ω and hence a small p.

Equivalently, although in different words, we note that in this regime the detected parton

is most likely to be a parton from the medium that was kicked to a large angle θ by the

incident parton, with the incident parton having lost only a small fraction of its energy to

the parton that is detected. The energy transfer defined as ω is large because the detected

parton is the parton from the medium, not the incident parton.

In figure 2, in addition to plotting FG→all (p, θ) we have also shown its separate

components corresponding to detecting an outgoing gluon or an outgoing quark or an-

tiquark, namely FG→G (p, θ) and FG→Q (p, θ) + FG→Q̄ (p, θ). (Note that FG→Q̄ (p, θ) =

FG→Q (p, θ).) While FG→Q(p, θ) � FG→G(p, θ) at small θ, meaning that at small θ the

outgoing parton is most likely to be a gluon when the incident parton is a gluon, we see

that FG→Q(p, θ) + FG→Q̄(p, θ) eventually becomes comparable to FG→G(p, θ) at larger

values of θ. This confirms that what is being seen at large values of θ and small values of

p is to a significant extent partons from the medium that have been struck by the incident

parton. The quarks and antiquarks seen in this regime also include those coming from the

process gg → qq̄. And, this observation convincingly demonstrates that Rutherford-like

scattering is not dominant over other processes at larger values of θ

We now consider an incident gluon with a lower initial energy, i.e. pin/T = 25, and

plot FG→all(p, θ)/κ for this case in the second row of figure 2. As before, we have selected

three representative values for θ, from left to right choosing θ = 0.1, 0.4 and 0.8. The

behavior of FG→all(p, θ) as a function of p is qualitatively similar to that with pin/T = 100:

FG→all(p, θ) features a peak at p ≈ pin at small θ, but it then becomes a decreasing function

of p/T at the larger values of θ. At a quantitative level, we observe that for θ = 0.1, the

peak value of FG→all(p, θ) with pin/T = 25 is much larger than that with pin/T = 100.

This is due to the dominance of Rutherford-like scattering at small θ, since the probability

of Rutherford scattering decreases with increasing q⊥ ≈ pinθ and we are comparing two

values of pin at the same small θ. As with pin/T = 100, we see that when we choose θ = 0.8

we find a probability that is peaked at small p and we see that the contribution of quarks

and antiquarks is not much smaller than that of gluons. Hence, at this large value of θ we

are seeing partons kicked out of the medium. We see that with pin/T = 25 the choice of

θ = 0.4 represents an intermediate case.

For completeness, in the third and fourth rows of figure 2 we plot FQ→all(p, θ) for an

incident quark with pin/T = 100 (third row) and 25 (fourth row) at three values of θ. We

have multiplied our results for an incident quark by the ratio of Casimirs CA/CF , which

is 9/4 for Nc = 3, to simplify the comparison to our results for an incident gluon. After
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Figure 3. The probability distributions FC→all (p, θ) divided by κ = g4T∆t plotted as functions

of θ for an incident gluon with pin/T = 100 (C = G, upper row) and for an incident quark

with pin/T = 100 (C = Q, lower row). From left to right, the columns correspond to choosing

p/T = 80, 40 and 20.

taking this Casimir scaling factor into account, the resulting FQ→all(p, θ) are very similar

to those for incident gluons with the same choice of pin/T . Similar to what we found for

gluons, if we look at small θ and p close to pin, we see that the Rutherford-like Q → Q

process makes the dominant contribution whereas if we look at larger θ and small p we see

that Q→ G is comparable to, and in fact slightly larger than, Q→ Q. This demonstrates

that Rutherford-like scattering is not dominant here and suggests that the detected parton

is most often a parton that was kicked out of the medium.

To complement figure 2, which illustrates the dependence of FG→all(p, θ) on p with

fixed θ, in the top row of figure 3 we show the dependence of FG→all(p, θ) on θ at three fixed

values of p/T . In another words, in figure 3 we are looking into the angular distribution

of an outgoing parton with a fixed p/T , considering three different values of p/T , namely

80, 40 and 20. We have chosen an incoming gluon with pin/T = 100 in all three panels.

In the second row of figure 3, we show results for an incoming quark with the same pin/T .

As before, we see that after, after multiplying by the ratio of Casimirs 9/4, FQ→all(p, θ)

is reasonably similar to FG→all(p, θ). From our results with p/T = 80, we see that when

we look at outgoing partons whose energies are not much lower than those of the incident

parton, smaller values of the scattering angle θ are favored and the scattered parton is

dominantly the same type as the incident parton. In contrast, in our results at smaller

p/T we see a much broader θ distribution and, in particular at larger values of θ, we

see comparable contributions from quarks or antiquarks and gluons in the final state,

confirming that the detected parton was a parton from the medium that was struck by the

incident parton.
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Figure 4. The probability distribution P (θ) divided by κ for an incident gluon with pin/T = 100

(upper row) and pin/T = 25 (lower row). In the two panels in the left column, the solid curves

correspond to choosing pmin, the lower limit on the integration over p in eq. (1.3), to take the value

pmin/T = 10 while the dashed curves correspond to choosing pmin/T = 20. In addition to plotting

the probability distribution for finding any outgoing parton at a given θ as the red curves, we also

present its breakdown into the cases of an outgoing gluon (blue curves) and an outgoing quark or

antiquark (orange curves). In the right column, we plot P (θ) for an incident gluon (red) as well

as for an incident quark times 9/4 (black dashed curves) as well as the θ � 1 result PAD(θ) from

eq. (3.4) first obtained by Arnold and Dogan [61].

We now present our results for the probability distribution P (θ), which we obtain by

integrating FC→all (p, θ) over p, following eq. (1.3). In the top-left panel of figure 4, we

plot P (θ) for an incident gluon with pin/T = 100. Since the integration (1.3) depends on a

somewhat arbitrary choice of pmin/T , we will consider two different choices, pmin/T = 10

and pmin/T = 20, and check the sensitivity of P (θ) to this variation in this choice. We

observe that for sufficiently small θ, P (θ) is insensitive to the choice of pmin/T . This is to

be expected, given our discussion of FC→all(p, θ): recall that it is peaked at p ∼ pin � pmin

for small θ, meaning that where we place pmin does not matter much in this case. However,

when we choose a larger value of θ the magnitude of P (θ) becomes much smaller if we

increase pmin/T from 10 to 20. This is also expected since at large θ we have seen that

F (θ, p) is a rapidly decreasing function of p. In the bottom-left panel of the figure, we

see similar behavior in the case in which the incident gluon has pin/T = 25. When θ is
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not small, P (θ) is highly suppressed when we choose pmin/T = 20. This is no surprise

since for this choice pmin is close to pin, meaning that the phase space included in the

integration (1.3) is quite restricted. In both the panels in the left column of figure 4, we

have in addition plotted P (θ) for an outgoing gluon, G → G, and for an outgoing quark

or antiquark, G→ Q. At small angles Rutherford-like scattering dominates and since the

incident parton is a gluon we see that the probability to find an outgoing gluon is much

greater than that for an outgoing quark or antiquark. At larger angles Rutherford-like

scattering is no longer dominant, the parton that is detected most likely comes from the

medium, and we see that the probability to find an outgoing quark or antiquark becomes

comparable to the probability to find an outgoing gluon.

In the right panels of figure 4, we compare P (θ) for an incident gluon with that for

an incident quark with the same choice of pin/T and pmin/T multiplied by CA/CF . We

observe that, after taking into account the appropriate Casimir scaling factor, P (θ) is

almost identical for both cases.

As we discussed in section 3.1, the transverse momentum distribution due to a single

binary scattering Psingle(q⊥) has been obtained previously in the small θ limit (3.3) [10, 61].

If in addition q⊥ � T , Psingle(q⊥) reduces to the expression first derived by Arnold and

Dogan (AD) in ref. [61] which we shall denote PAD
single(q⊥) and which we provide explicitly

in eq. (C.7). (See also ref. [10]).) In the small θ limit, we can convert PAD
single(q⊥) to a proba-

bility distribution for the angle θ that we shall denote by PAD(θ) using the Jacobian (C.3).

We obtain

PAD(θ) =
[
J −1
⊥ P

AD
single (q⊥ = pin sin θ)

]
= κCA ζ(3)

(
4Nc + 3Nf

4π3

) (
T

pin

)2

cos θ

(
1

sin θ

)3

(3.4)

where ζ(3) ≈ 1.202 is the Riemann zeta function. Here, the incident parton is a gluon; for

the case of an incident quark, one has to replace CA with CF in eq. (3.4). In the two panels

in the right column of figure 4, we have compared P (θ) with PAD(θ) extrapolated to finite

θ. We observe that, as expected, PAD(θ) agrees very well with P (θ) at small θ. However,

the large-angle tail of P (θ) is much fatter than that of PAD(θ) when pin/T = 100 for all

pmin/T under consideration, as well as when pin/T = 25 for pmin/T = 10. This implies

that when pin � pmin, it is important to include all 2→ 2 scattering processes as we have

done, not only the Rutherford-like scattering process that dominates at small θ.

The results that we have illustrated in this section are the principal results of our

calculation. We have presented them here upon dividing F (p, θ) and P (θ) by κ ≡ g4
sT∆t.

This is the appropriate form in which to provide them to anyone incorporating them in a

future jet Monte Carlo calculation, since the values of the coupling gs and the time-step ∆t

will be provided by that calculation and in such a calculation the local value of T will come

from the description of the expanding cooling droplet of QGP which the Monte Carlo jet

is traversing. As described in the Introduction, we also wish to provide some qualitative

guidance for the planning of future experiments and for how to use future precise, high

statistics, suitably differential measurements of jet substructure modification in heavy ion

collisions to find the scatterers within the QGP liquid. To this end, in section 3.4 we
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shall illustrate our results for P (θ) and its integral Nhard(θmin) using phenomenologically

motivated values for various input parameters including κ. First, though, in the next

section we shall discuss the regime of validity of our calculation.

3.3 Regime of validity of the calculation

In this section we pause to discuss the domain of applicability of the calculations presented

in the previous section. We have assumed that single scattering dominates, neglecting

multiple scattering. This assumption is valid when Nhard(θmin) is much smaller than one,

a criterion that depends on the value chosen for κ. We therefore leave the assessment of

this criterion to section 3.4, in particular to figure 6. We shall focus here on a different

limitation of our calculation. Since we are neglecting all medium-effects in the QCD matrix

elements for 2↔ 2 collisions, our results are trustable only in the kinematic regime in which

the energy and momentum transferred between the incident parton and the parton from

the medium off which it scatters are both much larger than the Debye mass mD. That is,

our results are trustable only in the regime where

−t̃� m2
D and − ũ� m2

D . (3.5)

Here, we will denote the square of the four momentum difference between the incident

parton and the detected outgoing parton and that between the incident parton and the

undetected parton by t̃ and ũ respectively, as in section 2.6. By using eq. (2.32), in which

t̃ is expressed in terms of pin, p and θ, we can determine the region in the (θ, p/T ) plane

where the condition −t̃ � m2
D is satisfied for any given pin and mD. Furthermore, ũ can

be written as

−ũ = 2pin pX (1− cos θX) , (3.6)

where pX and θX are determined from transverse momentum conservation and energy

conservation, respectively, and are given by

k⊥ = p sin θ − pX sin θX , pin + k = p+ pX , (3.7)

where k⊥ denotes the transverse momentum of the thermal scatterer. While in general ũ

also depends on the magnitude of the momentum of the parton from the thermal medium

k = |k|, we can express ũ in terms of pin, p, and θ for any value of θ that is not too

small because the characteristic values of k⊥ and k are of the order of T . First, since

p� T , the transverse momentum of the outgoing parton, p sin θ, will be much larger than

T when θ is not too small. To balance such a large transverse momentum, we need to have

pX sin θX ≈ p sin θ. Second, we have observed from our study of FC→all(p, θ) in section 3.2

that when the momentum transfer is large, the energy transfer in a binary collision is also

likely to be large, i.e. ω � T . We therefore have from energy conservation (3.7) that

pX ≈ pin−p = ω. Combining the above two approximations and substituting into eq. (3.6),

we obtain

ũ ≈ −2pin

[
(pin − p)−

√
(pin − p)2 − (p sin θ)2

]
, (3.8)
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Figure 5. The red and orange curves illustrate the boundary of the region in the (θ, p/T ) plane,

analogous to what is often called the Lund plane, defined by the conditions (3.5) where medium

effects can be neglected in the matrix elements for 2 ↔ 2 scattering processes, as we do in our

calculations. The red dashed curve and the orange dotted correspond to −t̃ = 10m2
D and −ũ =

10m2
D, respectively. Our calculations are valid in the region above both these curves, and should

not be relied upon quantitatively in the shaded region. In plotting the curves in the left panel

(right panel) we have chosen an incident parton with pin/T = 100 (pin/T = 25). The horizontal

black dashed lines in both panels show the location of p = pin, p = 20T and p = 10T , the latter

two corresponding to the two different choices of pmin that we employed in our evaluation of P (θ)

in figure 4. The solid blue curves in both panels are determined by the condition kmin = 7T where

kmin is the minimum possible value of the energy of a parton in the medium that, when struck by a

parton with incident energy pin, can yield an outgoing parton at a given point in the (θ, p/T ) plane.

kmin is given by the expression (2.29), and we have used pin/T = 100 (left panel) or pin/T = 25

(right panel) in our numerical evaluation of kmin. All our results become smaller and smaller farther

and farther above the blue curves. Hence, our calculations are valid and our results are not small

in the region below the blue curves and above the red and orange curves.

from which we can determine the region in the (θ, p/T ) plane where the condition −ũ� m2
D

is satisfied.

In figure 5, we illustrate the regimes in the (θ, p/T ) plane where the conditions (3.5)

are satisfied for incident partons with pin/T = 100 and pin/T = 25. We use the standard

expression for Debye mass squared:

m2
D =

g2
s

3

(
Nc +

Nf

2

)
T 2 , (3.9)

choosing Nc = Nf = 3 and, as described in the next section, choosing gs = 1.5. The red

dashed and orange dotted curves are determined by solving −t̃ = 10m2
D and −ũ = 10m2

D,

respectively. We observe that the conditions (3.5) are satisfied for sufficiently large θ,

although how large θ needs to be depends on the values of pin/T and p/T .

The blue curves in figure 5 do not represent limits on the validity of our calculation.

However, above the blue curves the results that we obtain must be small in magnitude,

for the following reason. For scattering processes to yield outgoing partons with values of

(θ, p/T ) above the blue curves, the only partons from the medium that can contribute are

those with energies k greater than 7T , whose na(k) in (2.6) are smaller than 10−3. For

this reason, the probability for scattering events that yield outgoing partons above the blue
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curves must be small. Hence, the regime in the (θ, p/T ) plane where medium effects can be

neglected in the matrix elements for 2↔ 2 scattering as we do and where our calculations

yield a significant scattering probability is the region above the red and orange curves and

below the blue curves.

3.4 Estimating P (θ) andNhard(θmin) for phenomenologically motivated inputs

In figure 4 in section 3.2, we have evaluated P (θ)/κ. By dividing the probability distri-

bution P (θ) by κ we obtained and plotted κ-independent results. And, as we noted in

section 3.2, this is the form of our results that we should provide for use in a future jet

Monte Carlo analysis, which is the path to phenomenologically relevant predictions for ex-

perimental observables. It may also be interesting to study the importance of processes in

which a photon is radiated [67] as well as 2→ 3 scattering processes in future phenomeno-

logical studies. This is for the future. In the present paper, we would like to get at least a

qualitative sense of P (θ) for incident partons with several values of pin. This means that

we need to input phenomenologically motivated values of gs, ∆t, and T — and hence κ.

Since we are interested in those binary collisions with characteristic momentum transfer

which is of the order 10 GeV, following ref. [68] we will use gs = 1.5 as our benchmark value

in the following analysis. Of course in reality gs runs, meaning that in a future calculation

that goes beyond tree-level one should allow gs to depend on the momentum transfer in a

particular collision. Working at tree level as we do, it is consistent just to pick a value of gs,

and we shall choose gs = 1.5. We shall pick T = 0.4 GeV as the temperature of our brick

of QGP and ∆t = 3 fm as the time that a parton spends in our brick of QGP. With these

choices of parameters, κ ≈ 30. (The actual value is 30.84, but this would be misplaced

precision. We shall use κ = 30 in plotting results in this section.) While we should only

expect our calculation to be quantitatively reliable for gs � 1, we hope our results with

gs = 1.5 will be of qualitative value in estimating the magnitude of P (θ) as well as its

θ-dependence. (We also note that gs = 1.5 corresponds to αQCD ≈ 0.18, in many contexts

a weak coupling.) Of course, any reader who has their own preferred values of gs, T and

∆t that they like to use to make phenomenologically motivated estimates should feel free

to do so. Our result for P (θ) is simply proportional to κ = g4
sT∆t.

We will concentrate on the case where the incident parton is a gluon. We plot P (θ) in

the left column of figure 6 for pin/T = 25 (upper left) and 100 (middle left), in each case

for pmin/T = 10 and 20. These curves correspond to results shown in figure 4, multiplied

by κ = 30. Taking T = 0.4 GeV, they correspond to incident gluons with pin = 10 GeV

and 40 GeV and scattered partons with p > 4 GeV and 8 GeV. In the lower left panel,

we plot P (θ) for pin/T = 250, corresponding to pin = 100 GeV, for scattered partons with

p > 10 GeV and p > 40 GeV. As we have demonstrated in figure 4, P (θ) for an incident

quark can be well described by multiplying P (θ) for an incident gluon by the ratio of

Casimirs CF /CA = 4/9.

In the right column of figure 6, we integrate P (θ) over θ and obtain Nhard(θmin),

defined in eq. (1.1). (Since P (θ) drops very quickly for large values of θ, when we evaluate

Nhard(θmin) numerically we stop the integration in eq. (1.1) at θ = 1.5.) Among the

quantities that we can calculate, Nhard(θmin) is perhaps the most useful for the purpose
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Figure 6. P (θ) (left column) and Nhard(θmin) (right column) for an incident gluon with pin/T = 25

(upper row) and pin/T = 100 (middle row). In the top four panels, the solid red curves (dashed red

curves) show our results when we include all partons with p > pmin = 10T (20T ). In the middle

panels, the dotted red curves show our results when we only include partons with p > pmin = 40T .

In the lower panels we consider an incident gluon with pin/T = 250 that yields a scattered parton

with p > pmin = 25T or 100T . We have set κ = 30, corresponding to gs ≈ 1.5, T = 0.4 GeV and

∆t = 3 fm, as discussed in the text. For comparison, we plot PGA(θ) from eq. (3.12) for K = 5 and

12 (black dotted and black dashed curves, respectively).
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of obtaining a qualitative sense of how large the effects of point-like scatterers in the

QGP will be. For example, reading from the dashed red curve in the middle-right panel

of figure 6, we see that if an incident gluon with pin = 100T = 40 GeV traverses 3 fm

of QGP with a temperature of 0.4 GeV, the probability that a parton with an energy

p > pmin = 20T = 8 GeV is detected at some angle θ > 0.8 is around 1/1000, while this

probability rises to around 1/100 for detection at an angle θ > 0.5, and the probability that

a parton with p > pmin = 10T = 4 GeV is detected at an angle θ > 0.8 is around 1/20. This

gives a sense of the probability of kicking partons to these angles and as such is helpful in

making qualitative assessment of how small (meaning how improbable) the effects that will

need to be looked for via detecting suitable modifications to jet substructure observables

may be. We would be happy to provide curves depicting our results for Nhard(θmin) or

P (θ) for different choices of pin, pmin, T , ∆t and gs.

In the middle row of figure 6, where we consider incident partons with pin = 100T ,

we have also included results where we only count scattered partons with p > pmin = 40T

(the red dotted curves). This allows us to look at the dependence of our results on pin

in two ways. If we compare the red solid curves above (pin = 25T and pmin = 10T ) to

the red dotted curves in the middle panels (pin = 100T and pmin = 40T ) we see that

increasing pin while increasing pmin proportionally rapidly reduces the probability for large

angle scattering. This corresponds to increasing the momentum transfer in the binary

collision, and is qualitatively as one would expect based upon intuition from Rutherford

scattering. On the other hand, if we compare the solid red curves in the top and middle

panels, or the dashed red curves in the top and middle panels, we see that increasing pin

while keeping pmin fixed results in a much smaller change in the probability for large angle

scattering. This corresponds to the observation that the probability for kicking a parton

with p & pmin for some fixed pmin out of the medium at some fixed large angle θ increases

slowly with increasing pin. This further highlights the importance in our results of processes

other than Rutherford scattering where what is detected is a parton that was kicked out

of the medium.

In figure 6, we have only plotted our results (the red solid, red dashed and red dotted

curves) for P (θ) and Nhard(θmin) at large enough values of θ and θmin that the condi-

tion (3.5) is satisfied. As we discussed in section 3.3, our calculation breaks down at

smaller values of θ. For example, for pin/T = 100 and pmin/T = 20 we observe from

figure 5 that the orange curve (determined by (−ũ) = 10m2
D) intersects with p/T = 20

at θ = 0.27, meaning the condition (3.5) will be satisfied for θ ≥ 0.27. We have therefore

plotted P (θ) and Nhard(θmin) for θ ≥ 0.27 and θmin ≥ 0.27 respectively.

Our results can also only be trusted where Nhard(θmin) � 1, since if Nhard(θmin)

approaches 1 this tells us that we cannot neglect multiple scattering. Including only single

scattering, as we have done, is only valid where Nhard(θmin) � 1. We see in the right

column of figure 6 that, for the values of parameters used, Nhard(θmin) < 0.1 wherever

we have shown our results, e.g. wherever we have plotted the red solid or dashed curves.

This means that, for κ = 30, everywhere that the condition (3.5) is satisfied we also have

Nhard(θmin) < 0.1. If we had chosen a larger value of κ this would not have been the case,

and we would have needed to enforce a separate constraint.

– 29 –



J
H
E
P
0
1
(
2
0
1
9
)
1
7
2

At values of θ and θmin that are smaller than those for which we have plotted our results

for P (θ) andNhard(θmin), multiple scattering will become important, making the calculation

much more difficult. At small enough angles, where many scatterings contribute, the result

will simplify as the probability distribution for the transverse momentum transfer P(q⊥)

becomes a Gaussian at small enough q⊥ [10]. As we noted in the Introduction, this is also

the result that must be obtained in the regime in which the momentum transfer is small

enough that the hard parton sees the QGP only as a liquid, without resolving the partons

within it. The transverse momentum picked up by an energetic parton traversing a strongly

coupled liquid is Gaussian distributed. Hence, whether we think of this from the perspective

of a hard parton traversing a strongly coupled liquid or from the perspective of multiple

scattering in a weakly coupled plasma, at small q⊥ we expect P(q⊥) to take the form

PGA(q⊥) =
4π

q̂ L
e
− q2⊥

q̂L , (3.10)

where we have written the width of the Gaussian as q̂L, denoting the mean transverse

momentum squared picked up per distance travelled by q̂ as is conventional. The physics

of multiple soft scattering in a weakly coupled plasma or the physics of how an energetic

probe “sees” a liquid then determine the value of the parameter q̂. Following ref. [28], it is

convenient to introduce a dimensionless parameter K to parametrize the magnitude of q̂ via

q̂ = K T 3 . (3.11)

We can then use eq. (C.3) from appendix C to convert PGA(q⊥) in eq. (3.10) to a probability

distribution PGA(θ) for the angle θ, obtaining

PGA(θ) =
[
J −1
⊥ P

GA(q⊥ = pin sin θ)
]

=

(
2 sin θ cos θ

K(T/pin)2T∆t

)
exp

(
− (sin θ)2

K(T/pin)2T∆t

)
, (3.12)

where we have used the approximation q⊥ ≈ pin sin θ, valid for small θ where p ≈ pin.

Hence, the behavior that we expect for P (θ) is that it should take the form (3.12)

at small θ, for some value of K, and should then have a tail at larger angles θ that is

due to single scattering of partons in the QGP, a tail that we have calculated and that is

illustrated by the red curves in figure 6. To get a sense of how this might look, in figure 6

in addition to plotting the results of our calculations, in red, we have plotted PGA(θ)

from (3.12) for two benchmark values of K, namely K = 5 and K = 12. (K = 5 is the

value obtained by the JET collaboration [40] upon comparing calculations of observables

sensitive to parton energy loss in a weakly coupled framework in which K controls energy

loss as well as transverse momentum broadening. K = 12 is half of the value found for an

energetic parton traversing the strongly coupled plasma of N = 4 SYM theory [8–10]; since

this theory has more degrees of freedom than QCD, its strongly coupled plasma would have

a larger value of K than the strongly coupled QGP.)

Plotting PGA(θ) in addition to our own results in figure 6 is useful for two reasons.

First, it helps us to imagine how these quantities may behave in a more complete cal-

culation, following one of the black curves at small angles and then behaving along the
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lines of our results in red at large angles where single Molière scattering off partons in the

QGP dominates. Second, by comparing the red curves to the black curves we can get a

sense of at how large values of θ single hard scattering off partons in the QGP is likely to

dominate over multiple soft scattering or the physics of the strongly coupled liquid. From

the middle panels of figure 6 we see that the situation is rather clean for incident partons

with pin = 100T = 40 GeV: as long as we look at partons that scatter into a direction that

deviates from the direction of the incident parton by θ > 0.3, we will be seeing Molière

scattering. And, the probability for scattering at these angles can be quite substantial. If

it proves possible to look at the scattering of even higher energy jet partons, for example as

in the bottom panels of figure 6 where we take pin = 250T = 100 GeV, Molière scattering

and multiple soft scattering or the physics of the strongly coupled liquid separate even

further. And, the probabilities for seeing large angle scattering remain quite significant as

long as one looks for scattered partons with p > pmin for a small enough pmin, for example

pmin = 25T = 10 GeV as in the solid red curves in the bottom panels of figure 6. The

situation is less clear when we look at incident partons with pin = 25T = 10 GeV, in the top

panels of figure 6. We see there that in order to see a red curve above the black curves at

a probability above 10−3 we need to look at the solid red curves, meaning we need to look

at scattered partons with energies down to pmin = 10T = 4 GeV and we need to look at

rather large angles. It will be hard to separate final state hadrons coming from scatterings

with these parameters from final state hadrons coming from the wake that the jet leaves

behind in the plasma.

To the extent that one can draw conclusions from a calculation of scattering off a brick

of plasma with T = 0.4 GeV and ∆t = 3 fm, our results suggest that experimentalists should

look for observables sensitive to phenomena along the following lines: 40 GeV partons

within a jet scatter off a parton in the plasma, yielding partons with energies greater than

8 GeV at angles θ > 0.5 with probability 1/100 and at angles θ > 0.8 with probability

1/1000. We would be happy to work with anyone planning future experiments to provide

them with results along these lines for other values of the various parameters. But, the real

path to predictions for observables is to take our results, formulated as in section 3.2, and

to incorporate them into a jet Monte Carlo analysis that also includes a realistic description

of the expanding cooling droplet of plasma produced in a heavy ion collision.

4 Summary and outlook

We have analyzed the thought experiment depicted in figure 1 in which an incident parton

(quark, antiquark or gluon) with energy pin traverses a brick of QGP with some thickness

L and some constant temperature T and computed the probability distribution F (p, θ) for

finding a parton (quark, antiquark or gluon) subsequently with an energy p that has been

scattered by an angle θ relative to the direction of the incident parton. By integrating over

p we obtain P (θ), the probability for finding a parton with p > pmin scattered by θ, and

then by integrating over θ we obtain Nhard(θmin), the number of hard partons scattered by

an angle θ > θmin. We only consider binary collision processes in which the incident parton

strikes a single parton from the medium, once. Because we neglect multiple scattering,
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our results are relevant only in the kinematic regime in which Nhard turns out to be small,

which means at large momentum transfer, and in particular at large values of θ. Because

we are focusing on binary collisions with a large momentum transfer, for our medium we

choose a gas of massless quarks, antiquarks and gluons with Fermi-Dirac or Bose-Einstein

momentum distributions. Although we have ensured that we work only in a regime in

which the momentum transfer in the binary collisions that we analyze is large enough that

it is reasonable to neglect the Debye masses of the partons in the plasma, choosing their

momentum distributions as if they were a noninteracting gas is relevant only as a simple

benchmark. Ultimately, we look forward to the day when experimental measurements

that are sensitive to the Molière scattering that we have analyzed can be used, first of

all, to provide tangible evidence that the liquid QGP that we see today really is made

of point-like quarks and gluons when probed at high momentum transfer and, second of

all, via deviations from predictions based upon our calculations, to learn about the actual

momentum distributions of these quarks and gluons. This would realize the vision of using

the scattering of jet partons to learn about the microscopic structure of liquid QGP and

would be analogous to learning about the parton distribution functions for QGP.

Realizing this vision will require incorporating the results of our calculations within jet

Monte Carlo analyses in which realistic jets are embedded within realistic hydrodynamic

models for the expanding cooling droplets of QGP produced in heavy ion collisions. Our

results as we have obtained them here are based upon a thought experiment and cannot

be compared directly to experimental data. It would be interesting to use comparisons

between our results and results from Monte Carlo analyses in which binary collisons are

already included (set up with jets probing a static brick like ours) to identify observable

consequences of large-angle scattering. With a view toward Monte Carlo calculations which

do not currently include binary collisions, we have presented our results in section 3.2 in a

form in which they could be incorporated into such analyses.

We note that we have worked only to leading order in perturbative QCD. This can cer-

tainly be improved upon in future work. However, it is our sense that incorporating these

results in more realistic (Monte Carlo) modeling of jets probing more realistic (hydrody-

namic) droplets of QGP is a more immediate priority than pushing our “brick calculation”

beyond leading order.

Although the road ahead toward quantitative comparison to experimental measure-

ments is a long one, our present results can already be used to reach several interesting

qualitative conclusions. Perhaps the most interesting aspect of our results from a theo-

retical perspective is the importance of channels that are not Rutherford-like. It is only

at small angles θ (where high momentum transfer requires large pin, as in previous cal-

culations done in the pin → ∞ limit) where the dominant binary collision process is the

Rutherford-like process where the parton that is detected is the incident parton, scattered

by an angle θ. We have checked that our results reproduce the results of previous calcu-

lations in this regime. At the larger values of θ that are of interest, though, processes in

which the detected parton is either a parton from the medium that received a kick or a

parton that was produced in the collision (cf gg ↔ qq̄) are much more important. Conse-

quently, also, we realize that at the values of θ that are of interest it is important to look
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for scattered partons that are still hard but that have substantially smaller energy than

the incident parton.

Even though quantitative predictions for experimental measurements await further

steps down the road ahead as we have discussed, the second place where our results are of

qualitative interest is in the context of gauging what sorts of observables experimentalists

should aim to measure. To get a sense of this, in section 3.4 we have considered a brick of

plasma that is 3 fm thick and that has a temperature T = 0.4 GeV, and have set gs = 1.5,

corresponding to αQCD ≈ 0.18. (This exercise can easily be redone with other values of

these parameters.) With these values, we find that it would be quite a challenge to look for

the Molière scattering of jet partons that have pin = 10 GeV before they scatter. Doing so

would require looking for observables that are sensitive to scattered partons with energies

down to 4 GeV, and even if that were possible it would be hard to differentiate between

partons scattering off particulate structures within the liquid QGP and partons picking up

a Gaussian distribution of transverse momentum just from soft interactions with the liquid

QGP. The picture is much more promising if instead we look for the Molière scattering of

jet partons that have pin = 40 GeV (or more). before they scatter. Molière scattering is the

dominant contribution if we look for scattering with θ > 0.3. And, although these processes

are rare (they have to be rare in the regime in which they are the dominant contribution),

the relevant probabilities are not tiny, given the high statistics data sets for jets in heavy

ion collisions anticipated in the 2020s. For an incident parton with pin = 40 GeV, the prob-

ability of seeing a scattered parton with p > 8 GeV deflected by θ > 0.5 (θ > 0.8) is around

1/100 (1/1000). Getting a sense of the kinds of values of pin, p and θ where one should look,

and a sense of the scale of the probability for the Molière scattering that one is looking for,

should be of value both to experimentalists planning future measurements and to theorists

exploring which jet substructure observables may be the most promising to measure.
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A Full Boltzmann equation

In this appendix, we present a full derivation of the Boltzmann equation describing the

evolution of the phase space density. After presenting the general formalism, we show how

we recover eq. (2.4) in the limit of a single binary collision. The expression (2.4) is then

the starting point for the derivation of all of our results.
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Beginning with greater generality than in eq. (2.4), we define the phase-space distri-

bution as follows

Fa(p, λa, χa) ≡ Phase-space probability of finding a parton of species a (u, d, s, ū, d̄, s̄ or g)

with momentum p, helicity λa and color state χa. (A.1)

This function depends on the time t, but we leave this dependence out of our notation

for the present. The Boltzmann equation describing the time-evolution of this phase-space

distribution takes the schematic form

∂Fa(p, λa, χa)
∂t

= Ca[Fa(p, λa, χa)] . (A.2)

On the left-hand side, we have the time derivative of the phase-space distribution. On the

right-hand side, we have the reason why such a function evolves with time: (binary) colli-

sions. The collision operator Ca is a functional that depends on the phase-space distribution

of the parton a under consideration.

The collision operator has two distinct contributions that we denote via

Ca[Fa(p, λa, χa)] = C(+)
a [Fa(p, λa, χa)]− C(−)

a [Fa(p, λa, χa)] , (A.3)

because there are two different ways to alter the distribution:

• a binary collision produces the parton a with momentum p in the final state, which

is accounted for by C(+)
a [Fa(p, λa, χa)] that appears with a plus sign;

• a parton a with momentum p in the initial state is involved in a binary collision,

which is accounted for by C(−)
a [Fa(p, λa, χa)] that appears with a minus sign.

We are interested only in the phase space distribution for the momentum, meaning that

later in our derivation we will average over the helicity and color states.

A.1 Collision operator for a specific binary process

The expression in eq. (A.2) is very general. Once we have a specific theory for the interac-

tions mediating the binary collisions (in our calculation, QCD), we can derive an explicit

expression for the collision operator. In this appendix we shall not specialize that far,

considering here a specific binary process

a(p) b(k) ↔ c(p′) d(k′) . (A.4)

In our derivation, we account for this process going both from left to right and from right

to left. In the former case, it contributes to C(−)
a (it can destroy a parton a with the given

momentum p), whereas in the latter case it can contribute C(+)
a . The explicit expressions
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for both contributions are given by:

C(−)
a [Fa(p,λa,χa)]

∣∣∣
ab↔cd

=
1

1+δcd

∑
λbcdχbcd

∫
p′,k′,k

|Mab→cd|2Fa(p,λa,χa)Fb(k,λb,χb)

×
[
1±Fc(p′,λc,χc)

][
1±Fd(k′,λd,χd)

]
. (A.5)

C(+)
a [Fa(p,λa,χa)]

∣∣∣
ab↔cd

=
1

1+δcd

∑
λbcdχbcd

∫
p′,k′,k

|Mab→cd|2Fc(p′,λc,χc)Fd(k′,λd,χd)

×[1±Fa(p,λa,χa)] [1±Fb(k,λb,χb)] . (A.6)

Here, the sign of the ± in a term like [1±Fc] is positive for bosons and negative for

fermions, and these factors describe the Bose enhancement or Pauli blocking for the parti-

cles produced in the final state. Note that we are using the short-handed notation∫
p′,k′,k

≡ 1

2p

∫
d3k

2k (2π)3

∫
d3p′

2p′ (2π)3

∫
d3k′

2k′ (2π)3

× (2π)4 δ(3)
(
p+ k − p′ − k′

)
δ
(
p+ k − p′ − k′

)
. (A.7)

The squared matrix elements |Mab→cd|2 are for a given polarization and color configuration,

and we explicitly sum over such configurations for the states b, c, d. The prefactor with the

δcd accounts for the case where c and d are identical particles, where we must not double

count. Upon assuming CP invariance, valid in particular for strong interactions, we have

the identity

|Mab→cd|2 = |Mcd→ab|2 ≡ |Mab↔cd|2 . (A.8)

Thus we can combine the two contributions together, and write the collision operator as

Ca[Fa(p,λa,χa)]|ab↔cd =
1

1+δcd

∑
λbcdχbcd

∫
p′,k′,k

|Mab↔cd|2{
Fc(p′,λc,χc)Fd(k′,λd,χd) [1±Fa(p,λa,χa)] [1±Fb(k,λb,χb)]+
−Fa(p,λa,χa)Fb(k,λb,χb)

[
1±Fc(p′,λc,χc)

][
1±Fd(k′,λd,χd)

]}
.

(A.9)

The total collision operator appearing in the Boltzmann equation for species a is then the

sum of all the individual ones accounting for each binary collision process in which a is

involved:

Ca[Fa(p, λa, χa)] =
∑
n

Ca[Fa(p, λa, χa)]|n , (A.10)

where n is the index labeling the different processes (e.g. n = ab↔ cd).

A.2 Average over helicity and color states

We are not interested in keeping track of helicities and colors, since they cannot be resolved

by the detector. We will average over them by introducing a new distribution

f̃a(p) ≡ 1

νa

∑
λaχa

Fa(p, λa, χa) . (A.11)
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The degeneracy factor νa is the sum of all helicity and color configurations. Upon applying

this definition to the Boltzmann equation in eq. (A.2) we find

∂f̃a(p)

∂t
=

1

νa

∑
λ,χ

∂Fa(p, λa, χa)
∂t

=
1

νa

∑
n

∑
λaχa

Ca[Fa(p, λa, χa)]|n . (A.12)

Focusing on a specific binary process n = ab↔ cd, we can then write the explicit expression

∂f̃a(p)

∂t

∣∣∣∣∣
ab↔cd

=
1

νa

1

1+δcd

∑
λaχa

∑
λbcdχbcd

∫
p′,k′,k

|Mab↔cd|2{
Fc(p′,λc,χc)Fd(k′,λd,χd) [1±Fa(p,λa,χa)] [1±Fb(k,λb,χb)]+
−Fa(p,λa,χa)Fb(k,λb,χb)

[
1±Fc(p′,λc,χc)

][
1±Fd(k′,λd,χd)

]}
.

(A.13)

Finally, we replace all the distributions occurring on the right-hand side with the those

averaged over polarizations and colors as defined in eq. (A.11). In doing so, we are assuming

that the medium has no net polarization and no net color charge. We also average over

the helicity and color state of the incoming parton probing the medium. We end up with

the expression

∂f̃a(p)

∂t

∣∣∣∣∣
ab↔cd

= C̃a[f̃a(p)]
∣∣∣
ab↔cd

, (A.14)

where we have defined the collision operator accounting for the process ab↔ cd by

C̃a[f̃a(p)]
∣∣∣
ab↔cd

≡ 1

νa

1

1 + δcd

∫
p′,k′,k

|Mab↔cd|2{
f̃c(p

′)f̃d(k
′)
[
1± f̃a(p)

] [
1± f̃b(k)

]
+

−f̃a(p)f̃b(k)
[
1± f̃c(p′)

] [
1± f̃d(k′)

]}
.

(A.15)

Here, we have introduced the matrix elements in the form that we use them in section 2,

namely

|Mab↔cd|2 ≡
∑

λabcdχabcd

|Mab↔cd|2 , (A.16)

summed over initial and final polarizations. For the QCD processes of interest to us, these

matrix elements are given in table 1 of section 2.3. The full evolution of the averaged phase

space distribution reads

∂f̃a(p)

∂t
=
∑
n

C̃a[f̃a(p)]
∣∣∣
n
, (A.17)

with the sum accounting for all possible processes affecting the phase space distribution of

the parton a.

A.3 Single scattering approximation

The results found so far allow for the possibility of multiple binary collisions. Next, we make

the further assumption that the incoming probe scatters off a constituent of the medium
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just once before escaping on the opposite side. In order to so do, we find it convenient to

employ the decomposition

f̃a(p) ≡ na(p) + fa(p) , (A.18)

where the “soft” thermal part na is constant in time, and the residual piece can be in-

terpreted as the “hard” part of the distribution, describing energetic partons. The col-

lision operator for a specific binary process ab ↔ cd, whose explicit expression is given

in eq. (A.15), can then be simplified as follows. First, we observe that once we employ

the decomposition in eq. (A.18) the contribution with only thermal distributions vanishes

because of the detailed balance principle. Next, we observe that we are only interested in

collisions in which an energetic parton collides with a soft parton from the medium. (If

we included many collisions, somewhere downstream from the first collision an energetic

parton might collide with another energetic parton. This is impossible in the first collision,

which for us is the only collision.) We furthermore observe that in the “hard region” of

phase space (i.e. p � T ) where we shall focus, we have na(p) � 1 and fa � 1 also.

Looking at the second and third lines in eq. (A.15), describing the process cd ↔ ab, we

find that via these considerations they simplify:

f̃c(p
′)f̃d(k

′)
[
1± f̃a(p)

] [
1± f̃b(k)

]
→
[
nc(p

′)fd(k
′) + fc(p

′)nd(k
′)
]

[1± nb(k)] , (A.19)

and

f̃a(p)f̃b(k)
[
1± f̃c(p′)

] [
1± f̃d(k′)

]
→ fa(p)nb(k)

[
1± nc(p′)± nd(k′)

]
. (A.20)

Upon making this single scattering assumption, and upon noting that the medium thermal

distribution functions for our brick of noninteracting QGP are known and independent of

the time, the Boltzmann equation takes the form

∂fa(p)

∂t
=
∑
n

Ca[fa(p)]
∣∣∣
n
. (A.21)

The sum still runs over all the different binary processes involving species a, and the

collision operator takes the final form

Ca[fa(p)]
∣∣∣
ab↔cd

=
1

νa

1

1 + δcd

∫
p′,k′,k

|Mab↔cd|2{[
nc(p

′)fd(k
′) + fc(p

′)nd(k
′)
]

[1± nb(k)] +

−fa(p)nb(k)
[
1± nc(p′)± nd(k′)

]}
.

(A.22)

We can now solve the Boltzmann equation (A.21), within the single scattering approx-

imation. Upon considering the system for a short time interval ∆t (much shorter than the

typical scattering time), the solution to the Boltzmann equation in eq. (A.21) takes the form

fa(p, tI + ∆t) = fa(p, tI) + ∆t
∑
n

Ca[fa(p, tI)]
∣∣∣
n
, (A.23)
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where we have now added explicit mention of the time dependence to our notation. Fo-

cusing on just a single binary process ab↔ cd, the solution reads

fa(p, tI + ∆t)

= fa(p, tI)

{
1− ∆t

νa

1

1 + δcd

∫
p′,k′,k

|Mab↔cd|2 nb(k)
[
1± nc(p′)± nd(k′)

]}
+

∆t

νa

1

1 + δcd

∫
p′,k′,k

|Mab↔cd|2
[
nc(p

′)fd(k
′, tI) + fc(p

′, tI)nd(k
′)
]

[1± nb(k)] .

(A.24)

The probability for the parton a to have momentum p at the time tI + ∆t, namely the

left-hand side of the above equation, is the sum of two contributions, the two terms on the

right-hand side. First, we could already have a parton a with momentum p at the initial

time tI and then have no further momentum transfer. Or we could achieve a momentum p

at the time tI+∆t by a binary scattering. In this paper, we only care about the latter, since

we are studying binary collisions with large momentum transfer resulting in the presence of

a parton with a large angle deflection with respect to the incoming direction. That is, we

shall always choose p to point in a direction that differs from that of the incident parton by

some large angle θ, meaning that there is no parton a with momentum p at tI . Thus, for our

purposes we need only consider the contribution in the last line of eq. (A.24), which then

becomes our eq. (2.4) in the main text after summing appropriately over different processes.

This is the key result of this appendix, and the starting point for our analysis in section 2.

B Phase space integration

B.1 The derivation of eqs. (2.28) and (2.33)

We present a detailed derivation of eqs. (2.28) and (2.33) in this appendix. We begin with

the desired phase space integration domain (2.5):

Iphase ≡
∫
p′,k′,k

=
1

2p

∫
d3p′

(2π)3 2p′

∫
d3k′

(2π)3 2k′

∫
d3k

(2π)3 2k

× (2π)4 δ(3)
(
p+ k − p′ − k′

)
δ
(
p+ k − p′ − k′

)
=

1

(2π)3

∫ ∞
0

dq1 q
2
1

∫ 1

−1
d cos θpq1

∫ ∞
0

dk′ k′2
∫ 1

−1
d cos θk′q1

∫ 2π

0

dφ1

2π

×
(

1

2p

) (
1

2k

) (
1

2p′

) (
1

2k′

)
δ
(
k′ + p′ − k − p

)
, (B.1)

where we used the spatial delta function to perform the integration over d3k and then

shifted variables p′ to q1 ≡ p′ − p, where φ1 is the angle between the (q1,p) plane and

the (q1,k
′) plane, and where cos θk′q1 and cos θpq1 denote the angles between k′ and q1

and between p and q1, respectively. The integration over the azimuthal angle of q1 has

been performed trivially. To further integrate over the remaining delta function in (B.1), we

follow the integration technology of ref. [69] (see also refs. [63–65]) and consider the identity

δ
(
k′ + p′ − k − p

)
=

∫ ∞
−∞

dω1 δ
(
ω1 −

(
p− p′

))
δ
(
ω1 −

(
k′ − k

))
. (B.2)
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The two delta functions in (B.2) can be recast as

δ
(
ω1 −

(
p− p′

))
=

p′

pq1
δ

(
cos θp′q1 −

2ω1p+ ω2
1 − q2

1

2pq1

)
, (B.3)

δ
(
ω1 −

(
k′ − k

))
=

k

k′q1
δ

(
cos θk′q1 −

2ωk′ + ω2
1 − q2

1

2k′q1

)
, (B.4)

where we have used kinematic relations

p′ =
√
p2 + q2

1 + 2p q1 cos θpq1 , k =

√
(k′)2 + q2

1 + 2k′ q1 cos θk′q1 , (B.5)

which follow from the definition of cos θpq1 and cos θk′q1 . Substituting eq. (B.3) and eq. (B.4)

into eq. (B.2) and then substituting eq. (B.2) into eq. (B.1), we have:

Iphase =
1

16 (2π)3 p2

∫ ∞
−∞

dω1

∫ ∞
0

dq1

∫ 1

−1
d cos θpq1

∫ ∞
0

dk′
∫ 1

−1
d cos θk′q1

× δ
(

cos θp′q1 −
2ω1p+ ω2

1 − q2
1

2pq1

)
δ

(
cos θk′q1 −

2ω1k
′ + ω2

1 − q2
1

2k′q1

)
. (B.6)

The integration over cos θpq1 and cos θk′q1 in eq. (B.9) can be performed trivially when the

following kinematic constraints are satisfied:

−1 ≤ 2ω1p+ ω2
1 − q2

1

2pq1
≤ 1 , (B.7)

−1 ≤ 2ω1k
′ + ω2 −1 q

2
1

2k′q1
≤ 1 . (B.8)

The constraints (B.7) and (B.8) imply that |ω1| ≤ q1 ≤ 2p + ω1 and k′ ≥ q1−ω1

2 . We

consequently have

Iphase =
1

16 (2π)3 p2

∫ ∞
−∞

dω1

∫ 2p+ω1

|ω1|
dq1

∫ ∞
(q1−ω1)/2

dk′
∫ 2π

0

dφ1

2π

=
1

16 (2π)3 p

∫ 1

−1
d cos (∆θ1)

∫ q1

−q1
dω1

(
p′

q1

)∫ ∞
(q1−ω1)/2

dk′
∫ 2π

0

dφ1

2π
, (B.9)

where ∆θ1 = θ1 − θ and θ1 denotes the angle between the directions of p′ and pin. Here,

we used the relation

d q1 =
pp′

q1
d cos (∆θ1) , (B.10)

which follows from the fact that

q2
1 = p2 +

(
p′
)2 − 2pp′ cos (∆θ1) . (B.11)

We now substitute eq. (B.9) into eq. (2.15a) to obtain:

〈(n)〉D,B =
p sin θ

16 (2π)5 T

∫ ∞
−∞

dω1

∫ −1

1
d cos (∆θ1)

(
p′

q1

)∫ ∞
(q1−ω1)/2

dk′
∫ 2π

0

dφ1

2π

×
∣∣∣M(α) (t, u)

∣∣∣2 fI(p′)nD(k′)
[
1± nB(k′ + ω1)

]
. (B.12)
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To proceed, we express fI(p
′) in eq. (2.2) as a function of ∆θ1 and ω1:

fI(p
′) =

1

V

(
(2π)2

p2
in

)
δ (ω − ω1) δ [cos (θ −∆θ1)− 1] . (B.13)

Therefore, the integration over ω1 and ∆θ1 in eq. (B.12) can be performed directly after

substituting eq. (B.13) into eq. (B.12). As a result, we replace ω1 with ω, q1 with q, ∆θ1

with θ and identify t, u with t̃, ũ as defined in eq. (2.30). After relabeling the dummy

integration variables k′ with kT and φ1 with φ, we eventually arrive at eq. (2.28).

The derivation of eq. (2.33) follows similar steps.

B.2 Integration over φ

In this subsection, we demonstrate how to integrate over φ in eq. (2.28) and eq. (2.33)

analytically.

We begin with the observation that |M(n)(t̃, ũ)|2 and |M(n)(ũ, t̃)|2 can always be de-

composed as:

1

g4
s

∣∣∣M(n)(t̃, ũ)
∣∣∣2 =

∑
i

c
(n)
i mi(t̃, ũ) ,

1

g4
s

∣∣∣M(n)(ũ, t̃)
∣∣∣2 =

∑
i

c̃
(n)
i mi(t̃, ũ) , (B.14)

where we have introduced:

m1 =

(
s̃

t̃

)2

, m2 =

(
s̃

t̃

)
, m3 = 1 , m4 =

(
t̃

s̃

)
, m5 =

(
t̃

s̃

)2

,

m6 =

(
t̃

s̃+ t̃

)
=− t̃

ũ
, m7 =

(
t̃

s̃+ t̃

)2

=

(
t̃

ũ

)2

, (B.15)

and i is summed from 1 to 7. As a reminder, ũ = −s̃ − t̃. Here the coefficients c
(n)
i and

c̃
(n)
i , with i = 1, 2, . . . , 7, only depend on Nc (i.e. the representation of color gauge group).

Consequently, we have from eq. (B.14) that:

1

g4
s

∫ 2π

0

dφ

2π

∣∣∣M(n)(t̃, ũ)
∣∣∣2 =

∑
i

c
(n)
i Mi (pin, p, q, kT ) ,

1

g4
s

∫ 2π

0

dφ

2π

∣∣∣M(n)(ũ, t̃)
∣∣∣2 =

∑
i

c̃
(n)
i Mi (pin, p, q, kT ) , (B.16)

where

Mi(pin, p, q, kT ) ≡
∫ 2π

0

dφ

2π
mi(t̃, ũ) (B.17)

will be obtained analytically below, in eq. (B.23). Substituting eq. (B.16) into eq. (2.28)

and eq. (2.33), we then have:

〈(n)〉D,B =
1

16 (2π)3

(
p sin θ

pin q T

)∑
i

c
(n)
i

∫ ∞
kmin

dkT nD(kT ) [1± nB(kX)] Mi(pin, p, q, kT ) ,

〈(ñ)〉D,B =
1

16 (2π)3

(
p sin θ

pin q T

)∑
i

c̃
(n)
i

∫ ∞
kmin

dkT nD(ki) [1± nB(kX)] Mi(pin, p, q, kT ) ,

(B.18)

where kX = kT + ω.
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We now determine the explicit expression for Mi(pin, p, q, kT ) in eq. (B.17). To save

notation, we rewrite eq. (2.31) as

s̃ =

(
− t̃

2q2

)
[A−B cosφ ] , ũ = −s̃− t̃ =

(
t̃

2q2

)
[Au −B cosφ ] , (B.19)

where

A (pin, p, q, kT ) ≡
[
(pin + p) (kT + kX) + q2

]
, (B.20)

Au (pin, p, q, kT ) ≡ A (pin, p, q, kT )− 2q2 =
[
(pin + p) (kT + kX)− q2

]
, (B.21)

B (pin, p, q, kT ) ≡
√(

4pin p+ t̃
) (

4kTkX + t̃
)
. (B.22)

We then have:

M1 =

∫ 2π

0

dφ

2π

(
s̃

t̃

)2

=

(
1

4q4

)∫ 2π

0

dφ

2π
(A−B cosφ)2 =

1

8q4

(
2A2 +B2

)
,

M2 =

∫ 2π

0

dφ

2π

(
s̃

t̃

)
=

(
− 1

2q2

) ∫ 2π

0

dφ

2π
(A−B cosφ) =

(
− 1

2q2

)
A ,

M3 =

∫ 2π

0

dφ

2π
1 = 1 ,

M4 =

∫ 2π

0

dφ

2π

(
t̃

s̃

)
=
(
−2q2

) ∫ 2π

0

dφ

2π

1

A−B cosφ
=

−2q2

√
A2 −B2

,

M5 =

∫ 2π

0

dφ

2π

(
t̃

s̃

)2

=
(
4q4
) ∫ 2π

0

dφ

2π

1

(A−B cosφ)2 =
4q4

(A2 −B2)3/2
,

M6 =

∫ 2π

0

dφ

2π

(
− t̃
ũ

)
=
(
−2q2

) ∫ 2π

0

dφ

2π

1

Au −B cosφ
=

−2q2√
A2
u −B2

,

M7 =

∫ 2π

0

dφ

2π

(
t̃

ũ

)2

=
(
4q4
) ∫ 2π

0

dφ

2π

1

(Au −B cosφ)2 =
4q4

(A2
u −B2)3/2

. (B.23)

With the explicit expressions for Mi in eq. (B.23) in hand, there is only one integration

(over kT ) remaining in each of the two expressions in eq. (B.18) that must be performed

numerically, as we advertised earlier.

C Comparison with previous results

C.1 The relation between P(q⊥) and P (θ)

To elucidate the connection with previous studies [10, 61, 66] in which the two-dimensional

probability distribution for the transverse momentum of the outgoing parton, P(q⊥), has

been computed, we need to relate this quantity, normalized as∫
d2q⊥
(2π)

P(q⊥) =

∫
dq⊥
2π

q⊥ P(q⊥) = 1 , (C.1)
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to the probability distribution P (θ) for the angle θ that we compute. Since the previous

studies all work in a limit in which pin is large and θ is small, energy loss is negligible in

these studies, i.e. p ≈ pin, and hence

q⊥ = pin sin θ . (C.2)

We shall also need to take into account the Jacobian J⊥ defined through the relation:∫ π

0
dθ

∫ ∞
0

dp=

∫
d2q⊥

(2π)2

∫
dpJ⊥(p,q⊥) , J⊥=

(
2π

q⊥

)
1√

p2−q2
⊥

=
2π

p2 sinθ cosθ
. (C.3)

We shall use this expression, with p replaced by pin, in eqs. (3.4) and (3.12).

It simplifies the explicit comparisons that we shall make in section C.2 if there we work

in the small-θ limit in which q⊥ ≈ pinθ and J⊥ reduces to

J⊥ ≈ J̃⊥ =
2π

p2
i θ

. (C.4)

In section C.2 our goal will be to check whether the following relation holds:

lim
θ→0

[
J̃⊥ P (θ)

]
= Psingle(q⊥ = pin θ) , (C.5)

where P (θ) is the result of our calculation and Psingle(q⊥) is one of the results from refs. [10,

61, 66] for P(q⊥) due to a single binary collision.

C.2 Previous results, compared to ours

The expression for P(q⊥) due to a single binary collision, Psingle(q⊥), has been obtained in

the limit mD � q⊥ � T , by Aurenche, Gelis and Zaraket (AGZ) [66], who showed that

(in our notation)

PAGZ
single (q⊥) = κCA

(
m2
D

g2
s

)
1

q4
⊥

(C.6)

in this regime, and in the limit q⊥ � T by Arnold and Dogan (AD) [61], who showed that

PAD
single (q⊥) = κCA (4Nc + 3Nf )

(
ζ(3)T 2

2π2

)
1

q4
⊥

(C.7)

in this regime. Each of these expressions is a limiting case of the more general expression

for Psingle(q⊥) computed by D’Eramo, Lekaveckas, Liu and Rajagopal (DLLR) [10]. In the

limit q⊥ � mD their result can be written as (see eq. (5.2) and eq. (5.15) of ref. [10]):

PDLLR
single (q⊥) =

2κCA
g2
sT

∫
dω

2π
[1 + nB.E.(ω)]

(
ImΠL − ImΠT

)
q2
⊥ q

2
, (C.8)

where Im ΠT,L are the imaginary parts of the gluon longitudinal and transverse self energy

in QGP. To obtain eq. (C.8), we have used the relation qz ≈ ω which is valid in the

limit (3.3). (See eq. (C.11) below.) After evaluating the integration in eq. (C.8) explicitly
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by substituting the appropriate expressions for the self-energies ΠT,L, eqs. (C.6) and (C.7)

are each reproduced upon taking the appropriate limits, as demonstrated in ref. [10]. The

above expressions (C.6), (C.7), (C.8) were all obtained for an incident gluon. Those for an

incident quark/antiquark differ only in that CA must then be replaced by CF in each case.

We wish to use (C.5) to compare our results P (θ) in the limit θ → 0 with the results

from previous studies above. In order to obtain P (θ) in the small θ limit from our calcu-

lation, we first need to consider FC→all(p, θ) in this limit. As we have already observed

in our results as presented in section 3.2, and as we shall check explicitly later, when θ is

small the integration over p in eq. (1.3) is dominated by p ≈ pin, namely ω/pin � 1. We

therefore wish to analyze FC→all(p, θ) in the limit (3.3) and subsequently evaluate P (θ)

using eq. (1.3):

P (θ) =

∫ pin−pmin

−∞
dω FC→all(p = pin − ω, θ) =

∫ ∞
−∞

dω FC→all(p = pin − ω, θ) , (C.9)

where we have first changed the integration variable from p to ω and then changed the

upper limit of the integration range from pin − pmin to ∞ since pin � ω, pmin. For later

use, we also note that in the limit (3.3) the expression (2.32) for t̃ simplifies:

t̃ = −2p pin (1− cos θ) ≈ −p2
in θ

2 ≈ −q2
⊥ . (C.10)

Consequently, we have from the first equation in (2.30) that

q2 = ω2 + t̃ ≈ ω2 + q2
⊥ , (C.11)

and consequently ω ≈ qz as we mentioned earlier.

In the limit (3.3), t̃ vanishes as t̃ ≈ −p2
inθ

2 (see eq. (C.10)) while s̃ remains finite. This

implies that m1 =
(
s̃/t̃
)2

will diverge as 1/θ4 and therefore will be dominant over the other

terms in eq. (B.14):

M(n)(t̃, ũ) ≈ c(n)
1

(
s̃/t̃
)2
, M(n)(ũ, t̃) ≈ c̃(n)

1

(
s̃/t̃
)2
. (C.12)

Consequently, eq. (2.28) and eq. (2.33) become:

〈(n)〉D,B ≈ c(n)
1 〈〈

(
s̃

t̃

)2

〉〉D,B , 〈(ñ)〉D,B ≈ c̃(n)
1 〈〈

(
s̃

t̃

)2

〉〉D,B , (C.13)

where we have introduced the notation

〈〈
(
s̃

t̃

)2

〉〉D,B ≡
1

16 (2π)2 q T

(
p2
i θ

2π

) ∫ ∞
kmin

dkT nD(kT ) (1± nB(kX))
1

p2
i

∫
dφ

2π

(
s̃

t̃

)2

,

=
1

32 q5T

1

(2π)2

(
p2
i θ

2π

)
×
∫ ∞
kmin

dkT nD(kT ) [1± nB(kT + ω)] H(kT , q, ω) , (C.14)

with

H(kT , q, ω) ≡ 2q4

p2
i

∫
dφ

2π

(
s̃

t̃

)2

, (C.15)
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and where s̃ and t̃ are to be expressed using eqs. (2.30) and (2.31). Using the first equation

in eq. (B.23) and the behavior of A,B defined in eq. (B.20) upon taking the limit (3.3),

namely

A2

p2
i

≈ 4(2kT + ω)2 ,
B2

p2
i

≈ 4
[
4kT (kT + ω) + ω2 − q2

]
, (C.16)

we have

H(kT , q, ω) ≈
(
12k2

T + 12kT ω + 3ω2 − q2
)
. (C.17)

Next, the nonzero values of c
(n)
1 (and c̃

(n)
1 ) can be computed straightforwardly through

their definitions (B.14):

c
(1,2)
1 = c̃

(1,2)
1 = c

(3,4,5,6)
1 =

16C2
Fd

2
F

dA
= 8CFdF

c
(9,10)
1 = 16CACF dF = 8CA dA , c

(11)
1 = c̃

(11)
1 = 16C2

A dA = 16NcCA dA , (C.18)

where we have used the relation (CF dF /dA) = 1/2 and CA = Nc. One important con-

sequence of eq. (C.18), in particular the fact that c
(8)
1 = c̃

(3,6,7,8,9)
1 = 0, can be found by

substituting these generic results together with eq. (C.13) which is valid in the small-θ

limit into eqs. (2.19), (2.21), (2.23), (2.25), (2.27) and discovering that FG→G (p, θ) �
FG→Q (p, θ) , FG→Q̄ (p, θ) and FQ→Q (p, θ)� FQ→G (p, θ) , FQ→Q̄ (p, θ). That is,

FG→all (p, θ) ≈ FG→G (p, θ) ,

FQ→all (p, θ) ≈ FQ→Q (p, θ) ,

F Q̄→all (p, θ) ≈ F Q̄→Q̄ (p, θ) . (C.19)

This simply reflects the fact that in the small-θ limit, Rutherford-like scattering (in which

the parton that is detected is the incident parton after scattering) is much more important

than other channels. We will focus on FG→G(p, θ) and FQ→Q(p, θ) from now on and

write explicit expressions for them by substituting eqs. (C.13) and (C.18) into eq. (2.25),

obtaining

FG→G (p, θ) =
κ

νg

[
2Nf c

(9)
1 〈〈

(
s̃

t̃

)2

〉〉Q,Q + c
(11)
1 〈〈

(
s̃

t̃

)2

〉〉G,G

]

=
κ

2 dA

[
2Nf (8CA dA) 〈〈

(
s̃

t̃

)2

〉〉Q,Q + (16NcCA dA) 〈〈
(
s̃

t̃

)2

〉〉G,G

]

= 8CA κ

[
Nf 〈〈

(
s̃

t̃

)2

〉〉Q,Q +Nc 〈〈
(
s̃

t̃

)2

〉〉G,G

]
, (C.20a)
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and into eq. (2.19), obtaining

FQ→Q(p, θ) =
κ

νq

{[
c

(1)
1 + c

(3)
1 + 2 (Nf − 1) c

(4)
1

]
〈〈
(
s̃

t̃

)2

〉〉Q,Q + c
(9)
1 〈〈

(
s̃

t̃

)2

〉〉G,G

}

=
κ

2 dF

[
2Nf (8CFdF ) 〈〈

(
s̃

t̃

)2

〉〉Q,Q + (16CACF dF ) 〈〈
(
s̃

t̃

)2

〉〉G,G

]

= 8CF κ

[
Nf 〈〈

(
s̃

t̃

)2

〉〉Q,Q +Nc 〈〈
(
s̃

t̃

)2

〉〉G,G

]
, (C.20b)

where we have used νq = 2dF , νg = 2dA, CA = Nc. Comparing eq. (C.20b) with eq. (C.20a),

we obtain the relation

FQ→Q(p, θ) =
CF
CA

FG→G(p, θ) . (C.21)

We can now compute the left-hand-side of (C.5) for an incident gluon by substituting

eq. (C.20a) into eq. (C.9). We find that

lim
θ→0
J̃⊥ P (θ) = 8κCA J̃⊥

∫ ∞
−∞

dω

[
Nc 〈〈

(
s̃

t̃

)2

〉〉G,G +Nf 〈〈
(
s̃

t̃

)2

〉〉Q,Q

]

=
κCA
8πT

∫ ∞
−∞

dω

2π

1

q5

∫ ∞
kmin

kT H(kT , q, ω)

×
[
Nc nB.E(kT ) [1 + nB.E(kT + ω)] +Nf nF.D(kT ) [1− nF.D(kT + ω)]

]
,

(C.22)

where we have used eq. (C.14). For an incident quark, the resulting P (θ) can be obtained

by replacing CA with CF thanks to the relation (C.21). Eq. (C.22) is a central result of

this appendix, as it will allow us to compare our results to those obtained previously in

the limits in which such comparisons can be made.

In order to compare our result to the AGZ result (C.6) [66] we must evaluate our

expression (C.22) in the limit ω, q⊥ � T . We see from eq. (C.11) that in this limit q � T .

Since the characteristic kT is of the order of T , we can set ω = 0 in nB.E(kT + ω) and

nF.D.(kT + ω) in eq. (C.22). Furthermore, kmin = 0 in eq. (C.22). From eq. (C.17), we see

that in this limit we can also replace H in eq. (C.22) with

H(kT , ω, q) ≈ 12k2
T . (C.23)

The integration in eq. (C.22) can then be evaluated analytically by using∫ ∞
0

dkT nB.E(kT ) [1 + nB.E(kT )] k2
T =

π2

3
T 3 ,∫ ∞

0
dkT nF.D(kT ) [1− nF.D(kT )] k2

T =
π2

6
T 3 , (C.24)

and ∫ ∞
−∞

dω
1

q5
=

∫ ∞
−∞

dω
1(

q2
⊥ + ω2

)5/2 =
4

3 q4
⊥
. (C.25)
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As a result, we have:

lim
θ→0
J̃⊥ P (θ) =

1

3
κCA (Nc +Nf/2)

T 2

q4
⊥

= κCA

(
m2
D/g

2
s

)
q4
⊥

(C.26)

where the Debye mass mD is given by eq. (3.9). We observe that, as advertised earlier,

eq. (C.26) is equivalent to the AGZ result (C.6) through the relation (C.5). It is worth

noting that the dominant contribution to the integration in eq. (C.25) comes from ω ∼
q⊥ � pin, which justifies taking the limit ω/pin � 1 in FC→all (p, θ).

We now turn to comparing our result (C.22) to the DLLR result (C.8) [10]. To simplify

the discussion, we will only include the contribution coming from thermal scatterers which

are gluons. This amounts to setting Nf = 0 in eq. (C.22), obtaining

lim
θ→0
J⊥ P (θ) =

κCA
8πT

∫ ∞
−∞

dω

2π

1

q5

∫ ∞
kmin

kT H(kT , q, ω) Nc nB.E.(kT ) [1 + nB.E.(kT + ω)] .

(C.27)

Correspondingly, we will only include the contribution to the gluon self-energy ΠL,T in

eq. (C.8) that comes from gluon loops, and show that the resulting PDLLR
single (q⊥) is equivalent

to eq. (C.27) through the relation (C.5). The comparison upon including the contribution

coming from fermionic thermal scatterers (quark and antiquark) is quite similar.

To proceed, we write the explicit expressions for Im ΠL and Im ΠT coming from the

gluon loop as given in ref. [10]:

Im ΠL

g2
s

=

(
Nc

8π

)(
q2
⊥
q3

) {∫ ∞
(q−ω)/2

dkT nB.E.(kT )
[
(2kT + ω)2 − 2q2

]
− (ω → −ω)

}
,

(C.28)

and

Im ΠT

g2
s

= −
(
Nc

16π

)(
q2
⊥
q3

) {∫ ∞
(q−ω)/2

dkT nB.E.(kT )
[
(2kT + ω)2 − q2

]
− (ω → −ω)

}
.

(C.29)

The contribution from fermion loops can be obtained by replacing nB.E. with nF.D. and

replacing Nc with Nf . Adding eq. (C.28) and eq. (C.29), we have:

[1 + nB.E.(ω)]
(ImΠL − ImΠT )

g2
s

=

=

(
Nc

16π

)(
q2
⊥
q3

)
[1 + nB.E.(ω)]

{∫ ∞
(ω−kT )/2

dkT nB.E.(k) [H(ω, q, kT )− (ω → −ω)]

}

=

(
Nc

16π

) (
q2
⊥
q3

) ∫ ∞
kmin

dkT nB.E(kT ) [1 + nB.E (kT + ω)] H(ω, q, kT ) , (C.30)

where H(ω, q, kT ) is given by eq. (C.17) and where we have used the identity

[1 + nB.E(ω)] [nB.E(k)− nB.E.(k + ω)] = nB.E(k) [1 + nB.E (k + ω)] . (C.31)
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Finally, we substitute eq. (C.30) into the DLLR result (C.8). It is now transparent that

our expression (C.27) is equivalent to eq. (C.8) through the relation (C.5).

Noting that it has been demonstrated in ref. [10] that the AD result (C.7) is obtained

from the DLLR result (C.8) in the q⊥ � T limit, this concludes our verification that our

result, in particular in the form (C.22), reduces to the previously known AGZ, AD and

DLLR results in the appropriate limits.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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