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1 Introduction and motivations

As a class of the simplest hadrons, heavy quarkonium is usually viewed as the “hydrogen
atom” in the strong-interaction theory QCD. While the knowledge of the nonperturbative
aspect in QCD is still quite limited, heavy quarkonium provides a unique opportunity to
probe the quark confinement in QCD by exploring the physics at the scale around the
nonperturbative and perturbative boundary. The intrinsic scales of the heavy quark mass
mQ and their binding energy mQv

2 lie in the perturbative and nonperturbative regimes
respectively, where v is the relative velocity between the heavy quark pair in the rest frame
of the quarkonium. Due to the smallness of the relative velocity v (e.g. v2 ' 0.3 and v2 ' 0.1

for the charmonium and bottomonium), the relativistic QCD can be reorganized via the
operator product expansion in the power counting of v. The effective theory was dubbed
as non-relativistic QCD (NRQCD) [1]. The reformulation of QCD provides a factorization
conjecture for calculating the rates of the quarkonium production and decay. In the case of
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Power counting ηQ ψ,Υ hQ χQJ

v3 1
S

[1]
0

3
S

[1]
1 − −

v5 − − 1
P

[1]
1 ,

1
S

[8]
0

3
P

[1]
J ,

3
S

[8]
1

v7 1
S

[8]
0 ,

3
S

[8]
1 ,

1
P

[8]
1

1
S

[8]
0 ,

3
S

[8]
1 ,

3
P

[8]
J − −

Table 1. The leading power counting of various Fock states contributing to various quarkonium
within NRQCD velocity scaling rule [1].

the quarkonium H production, the (differential) cross section at leading-order (LO) in the
QCD strong coupling constant αs can be schematically written as

dσ(H) =
∑
n

dσ̂(n)〈OH(n)〉, (1.1)

where n represents a Fock state, dσ̂(n) is a perturbatively calculable short-distance coef-
ficient (SDC) with the heavy quark pair in the Fock state n and 〈OH(n)〉 is the vacuum
expectation number of an operator OH(n). If the factorization formula eq. (1.1) holds, the
nonperturbative long-distance matrix element (LDME) 〈OH(n)〉 is independent of quarko-
nium production process as well as the production environment. The universal LDMEs,
which are analogous to the parton-distribution functions (PDFs) in the perturbative QCD
factorization, are to be determined from a subset of the experimental data and to predict
all of the rest experimental measurements. They have the probability explanations at LO,
while LDMEs depend on the renormalization scheme and they are not physical objects.

The prediction power of eq. (1.1) heavily relies on the perturbative convergences of v2

and αs in dσ(H). The leading power counting of various Fock states up to O(v7) for S-wave
and P-wave quarkonia is listed in table 1 according to the NRQCD velocity scaling rule [1].
The convergence in v2 can be improved by including the relativistic corrections. However,
the prices to pay are that one has to introduce more nonperturbative LDMEs that can
not be determined from the first principle, and the good relations like heavy-quark spin
symmetry holding at LO in v will be violated too.

The most subtle part is the αs stability in the SDCs dσ̂(n), which is the main point to
be discussed in this paper. For the high-transverse-momentum (PT ) quarkonium production
at a high-energy hadron collider, it was found that 3

S
[1]
1 receives a giant K factor from QCD

corrections to its SDC a decade ago [2], which was understood by the fact that due to the
quantum number conservation, there is a factor αs

P 2
T

4m2
Q

enhancement at O(α4
s) (next-to-

leading order, NLO) compared to O(α3
s) (LO). This enhancement spoils the perturbative

convergence in αs, shedding light on another possible enhancement from O(α5
s) (next-to-

next-to-leading order, NNLO) corrections, while the accomplishment of the full NNLO
calculation is even lacking today. The sole reason is the partonic cross sections dσ̂

dP 2
T
, before

convoluting PDFs, are asymptotically scaling as
(

2mQ
PT

)4
1
P 4
T
(next-to-next-to-leading power,

NNLP),
(

2mQ
PT

)2
1
P 4
T
(next-to-leading power, NLP) and 1

P 4
T
(leading power, LP) at LO, NLO,
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Accuracy
3
S

[1]
1

3
S

[8]
1

1
S

[1,8]
0 ,

3
P

[1,8]
J ,

1
P

[1,8]
1

LP NLP LP NLP LP NLP

LO α5
s α4

s α3
s α3

s α4
s α3

s

NLO α6
s α5

s α4
s α4

s α5
s α4

s

Table 2. The first αs orders needed in the SDCs for both LP and NLP in PT of various Fock states
in their hadroproduction in order to achieve the LO and NLO QCD accuracies.

NNLO respectively.1 Therefore, even with a full NNLO calculation at O(α5
s), the accuracy

for the LP part of 3
S

[1]
1 hadroproduction is still at LO level, while the NLP piece is indeed

NLO accurate. A NLO accuracy of the LP contribution can only be achieved with a next-
to-NNLO calculation in αs for the SDC. The situation is slightly better though still similar
for the other Fock states listed in table 1. Like 1

S
[1,8]
0 ,

3
P

[1,8]
J ,

1
P

[1,8]
1 , the NLP (LP) parts of

SDCs appear firstly at LO (NLO) in αs. On the other hand, because of the same quantum
number as the gluon, 3

S
[8]
1 has the leading PT behaviour as the jet, which means the LP

channel is already opened at LO O(α3
s). In table 2, we have collected the first αs powers in

order to achieve the LO and NLO QCD accuracies for various Fock states at both LP and
NLP in PT .

Following this observation, the complete NLO result for 3
S

[1]
1 production is possible

to be reproduced by the tree-level matrix element alone at O(α4
s) after introducing an ad

hoc infrared cutoff. A first attempt was given in ref. [3] to introduce an invariant-mass
cut on any final-final and initial-final massless parton pairs, which was called NLO?. It can
successfully reproduce the high-PT NLO calculation for 3

S
[1]
1 production.2 The same infrared

cut can be imposed in the phase-space integration of the O(α5
s) tree-level matrix element.

Another giant K factor was observed compared to the NLO calculation at high PT , which
may question on the extractions of color-octet LDMEs based on NLO calculations [6–10].
In contrast, a suspicion in ref. [11] on the size of O(α5

s) was given from their PT scaling
reanalysis of the NNLO? curves. Instead of the PT power enhancement, the observed giant
K factor dσNNLO?

dσNLO is mainly attributed to the introduction of the infrared cutoff. Therefore,
a reliable estimate of the size of O(α5

s) is still missing. It is necessary to clarify the situation
before drawing a solid conclusion.

The aim of this paper is to introduce an infrared-safe method to cure the problematic
giant K factors appearing in the SDC calculations in particular for high-PT quarkonium pro-
duction without performing complete higher-order calculations.3 In contrast to the NLO?

1Rigorously speaking, the associated production of 3
S

[1]
1 with the same flavoured heavy quark pair con-

tributes O(α4
s) and is LP in PT . We guide the readers to the discussion on this part in section 4.4.

2Besides the single 3
S

[1]
1 production, NLO? cut was also applied to 3

S
[1]
1 +

3
S

[1]
1 hadroproduction in ref. [4].

NLO? calculation is able to well reproduce the complete NLO result [5] in the double charmonium/bot-
tomonium production. Its good performance may rely on the fact that like the single 3

S
[1]
1 production, the

LO SDC of 3
S

[1]
1 +

3
S

[1]
1 is also NNLP in PT in the large transverse momentum region.

3In the processes of elementary particle production, a few proposals to cure the giant K factors, which
are mainly from logarithmic terms in perturbative calculations, are present [12–28]. Unfortunately, none of
them is straightforwardly applicable to the power-enhanced contributions in quarkonium production.
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calculations, the new method will not introduce the logarithmic dependence from the in-
frared cutoff. The estimate of the missing higher orders is to use the conventional renor-
malization and factorization scale variations. It is complemented with the fragmentation
function approach, which requires the analytical calculations of different single- and double-
parton fragmentation functions for single and multiple quarkonium production. Another
nontrivial task to use the fragmentation function approach is to solve the corresponding
coupled evolution equations. It has been shown in ref. [29] that the fragmentation function
approach without scale evolution can reproduce the spin-summed NLO cross sections of
3
S

[1]
1 ,

3
S

[8]
1 ,

1
S

[8]
0 ,

3
P

[8]
J at high PT , which shows the necessity of taking into account both the

single-parton (at LP) and the double-parton (at NLP) fragmentation contributions. The
factorization theorem for the single-inclusive quarkonium production cross sections in terms
of single- and double-parton fragmentation functions was first proven in ref. [30] under the
assumption of perturbative QCD factorization.

There are also other appealing reasons to introduce such a method. First of all, it can
be used to stabilize the higher-order QCD corrections in quarkonium associated produc-
tion processes, where most of them are absent of complete NLO calculations. The possible
cancellations between S-wave and P-wave are guaranteed in our approach. For instance, in
the double J/ψ at the LHC, it requires a NNLO calculation to have the full cancellations
between S-wave and P-wave Fock states. As we will see later in this paper, the good repro-
duction of the NLO results both in the spin-summed and spin-dependent cross sections for
single quarkonium production at high PT can serve as a fast way to the future phenomenol-
ogy studies. In practice, the phenomenology from a complicated calculation scales as an
inverse power of the computation time.

The outline of the remaining context is following. After introducing the remainders of
P-wave counterterms in section 2, we will show that one can reproduce the NLO results
for most of the Fock states (except 3

S
[8]
1 ) with fairly simple cuts based on tree-level matrix

elements in section 3. These simple cuts are not sufficient to remove large logarithms
introduced by the phase space cut parameters. Hence, a general infrared-safe method is
introduced to obtain the giant K factors for all the Fock states relevant for J/ψ and χcJ
production in section 4. Finally, we draw our conclusions in section 5. An instruction on
how to use HELAC-Onia [31, 32] to perform the calculations done in this paper is given in
appendix A. The appendix B contains supplemental figures.

2 Remainders of P-wave counterterms

It is well-known that the remaining infrared divergences in the SDC computations for the
productions and decays of P-wave Fock states should be cancelled by the P-wave countert-
erms arising from the renormalization group running of S-wave LDMEs beyond LO in αs,
which is analogous to the remaining collinear divergences absorbed by the PDF countert-
erms in a peturbative QCD calculation. The renormalization of NRQCD operators links
the S-wave LDMEs with the P-wave LDMEs as shown in eq. (150) of ref. [33]. Such coun-
terterms, after cancelling infrared divergences with the real and virtual matrix elements,
will leave finite remainders proportional to the S-wave SDCs and P-wave LDMEs. The
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introduction of the P-wave counterterms is crucial especially in the case that the S-wave
SDCs are much larger than the P-wave SDCs. In particular, the negative P-wave SDCs
for heavy quarkonium hadroproduction at high PT could be attributed to these negative
remainders. We have implemented the following finite remainders of P-wave counterterms:

dσC(
3
P

[8]
J ) = dσ̂Born(

3
S

[1]
1 )×

4

3

αs
π

log
m2
Q

4µ2
Λ

m2
Q

× 〈O(
3
P

[8]
J )〉

+ dσ̂Born(
3
S

[8]
1 )×

5

9

αs
π

log
m2
Q

4µ2
Λ

m2
Q

× 〈O(
3
P

[8]
J )〉,

dσC(
3
P

[1]
J ) = dσ̂Born(

3
S

[8]
1 )×

 8

27

αs
π

log
m2
Q

4µ2
Λ

m2
Q

× 〈O(
3
P

[1]
J )〉,

dσC(
1
P

[8]
1 ) = dσ̂Born(

1
S

[1]
0 )×

4

3

αs
π

log
m2
Q

4µ2
Λ

m2
Q

× 〈O(
1
P

[8]
1 )〉

+ dσ̂Born(
1
S

[8]
0 )×

5

9

αs
π

log
m2
Q

4µ2
Λ

m2
Q

× 〈O(
1
P

[8]
1 ),

dσC(
1
P

[1]
1 ) = dσ̂Born(

1
S

[8]
0 )×

 8

27

αs
π

log
m2
Q

4µ2
Λ

m2
Q

× 〈O(
1
P

[1]
1 )〉, (2.1)

where mQ is the mass of the heavy quark and µΛ is the NRQCD scale. In the following, we
will set µΛ = mQ as usually done in the complete NLO calculations. These remainders have
already been implemented in the HELAC-Onia [31, 32]. They are necessary ingredients to
reproduce the NLO results, which we will show in the following two sections.

3 A first step towards NLO

From the discussion in the section 1, it is known that large NLO QCD corrections to the
J/ψ production at a high-energy hadron collider are mainly due to the emergence of new PT
power-enhanced fragmentation contributions. Hence, all S- and P-wave Fock states except
3
S

[8]
1 receive giant K factors from NLO QCD calculations.

We first introduce the following basic phase space cuts in order to take into account
the hard radiations without using virtual amplitudes. In real part at O(α4

s), exact 2 light-
flavoured jets4 satisfying PT (j) > Pmin

T and |y(j)| < ymax are required, which is denoted
as dσR0 . The phase space integrations of Born dσB (O(α3

s)) and the remainders of the
NRQCD P-wave counterterms dσC (O(α4

s)) are infrared safe with PT (onium) larger than
4We mean “light-flavoured jet” here as a cluster of gluon, up, down, strange (anti-)quarks. Similarly, the

light-flavoured partons are defined as gluon, up, down, strange (anti-)quarks.

– 5 –



J
H
E
P
0
1
(
2
0
1
9
)
1
1
2

〈O(
3
S

[1]
1 )〉 〈O(

3
S

[8]
1 )〉 〈O(

1
S

[8]
0 )〉 〈O(

3
P

[8]
J )〉/(2J + 1) 〈O(

3
P

[1]
J )〉/(2J + 1)

1.16GeV3 9.03 · 10−3 GeV3 1.46 · 10−2 GeV3 3.43 · 10−2 GeV5 0.107GeV5

Table 3. The values of LDMEs used in the differential distributions of various Fock states.

a given positive value Pmin
T (onium). We call the summed results of dσB + dσR0 + dσC as

approximated NLO (aNLO).
In the following, we take Pmin

T (onium) = 5GeV, and light-flavoured jets are clustered
with anti-kT algorithm [34] using radius R = 0.5 and |y(j)| < 5, PT (j) > Pmin

T by Fast-

Jet [35]. We will vary Pmin
T from 3GeV to 6GeV as a way to estimate the infrared-cut

dependence. We have shown the spin-summed double differential distributions for the cc̄
Fock state 3

S
[1]
1 in figure 1 with the 13TeV proton-proton collisions, while the distributions

for the 5 Fock states 1
S

[8]
0 ,

3
P

[8]
J ,

3
P

[1]
0 ,

3
P

[1]
1 ,

3
P

[1]
2 are displayed in figure 18 as our supple-

mental material. The complete NLO curves (denoting as NLO) from refs. [7, 36] are also
shown in order to have a comparison. The red-hatched bands represent the infrared cut
variations Pmin

T ∈ [3, 6]GeV, and the grey bands are the uncertainty from the indepen-
dent variations of renormalization and factorization scales µR, µF around the central value
µ0 =

√
P 2
T (onium) + 4m2

c by a factor of 2. It is interesting to notice that the scale un-
certainty in general captures the missing virtual and soft/collinear pieces. The agreements
between NLO and aNLO are improved as PT (onium) increases. A similar behaviour can be
observed for the spin-dependent differential cross sections shown in figure 2 for 3

S
[1]
1 and in

figures 19, 20 for 3
P

[8]
J ,

3
P

[1]
1 ,

3
P

[1]
2 Fock states, where the NLO curves are from refs. [8, 37].

The spin-density matrix elements of the scalars 1
S

[8]
0 ,

3
P

[1]
0 are trivial.5 We have utilized

CTEQ6M PDF [38] to be consistent with the NLO results. For the reproducible purpose,
the values of LDMEs for the distributions of the Fock states are listed in table 3.

Because the LP in PT for 3
S

[8]
1 already exists at Born dσB (i.e. O(α3

s)) from the gluon
fragmentation, it is expected that the scale uncertainty at LO would already give a reliable
estimate of the missing NLO QCD corrections, which is indeed observed from the left-
panel of figure 3. In such a case, a request of 2 light-flavoured jets in the computation
of dσR0 is insufficient to obtain an infrared-safe differential cross section. From the right-
panel of figure 3, the aNLO PT spectra are too hard compared to the complete NLO
ones. The reason is because of the large logarithms arising from the very asymmetric
dijet system PT (j1) � PT (j2). Such a configuration is suppressed in other Fock states,
because the leading fragmentation topologies require at least one light-flavoured parton
along with the quarkonium direction at high PT . The weights of the asymmetric dijet
events will be enhanced due to the unphysical logarithm log PT (j1)

PT (j2) in the aNLO calculations

of 3
S

[8]
1 , which should be in principle cancelled by the virtual contributions because of the

unitarity. Therefore, one must introduce a more general infrared-safe method to avoid these
large logarithms, and at meantime one should maintain the hard radiations from the real
contributions.

5The spin-density matrix elements dσJzJz
dPT

shown in this paper are defined in the usual helicity frame.
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Figure 1. Comparison of spin-summed differential cross sections for the Fock state 3
S
[1]
1 between

our aNLO calculations and the complete NLO calculations.
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Figure 2. Comparisons of spin-dependent differential cross sections for the Fock state 3
S
[1]
1 between

our aNLO calculations and the complete NLO calculations.
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Figure 3. Comparisons of spin-summed differential cross sections for the Fock state 3
S
[8]
1 between

LO (left), aNLO (right) calculations and the complete NLO calculations.

4 A general infrared-safe method

4.1 Infrared-safe cutoffs

Let us assume a LO fragmentation process for a given Fock state On is accompanying with
k final massless partons:

F : p0 → POn + p1 + · · ·+ pk. (4.1)

For a given observable, one needs to consider On plus i recoiling partons. For example,
in the case of the transverse-momentum distribution for a single quarkonium production
(schematically depicted in figure 4), the quarkonium at least recoils against one parton
at the lowest order (bar the zero transverse momentum bin). The soft- and collinear-safe
calculations can be achieved based on pure tree-level matrix elements via the following
conditions:

1. The number of jets is larger than i+ 1 with the transverse momentum of jet PT (j) >

Pmin
T and the rapidity |y(j)| < ymax. On is also taken into account in the jet-clustering

procedure. One should make sure that there is exactly one jet containing On passing
the above PT and rapidity cuts. Such a jet is called an onium-jet here.

2. In the onium-jet, there are at least k light-flavoured partons to fulfill the above frag-
mentation process. Let us say there are m light-flavoured partons inside the onium-jet
with m ≥ k.6

6At LO one should have m = k since the configuration of i + k − m < i recoiling partons is zero by
definition for the given observable when m > k.
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Figure 4. Schematic depiction of inclusive quarkonium On production.

3. If m ≥ 2, each pair of parton 1 and 2 inside the onium-jet should pass the following
soft drop condition [39]

min(pT,1, pT,2)

pT,1 + pT,2
> zcut

(
∆R12

R0

)β
(4.2)

where pT,i is the transverse momentum of parton i and ∆R12 =
√

∆φ2
12 + ∆y2

12.
The above cut already excludes the soft singularity as long as zcut > 0, while the
requirement of the collinear safety is guaranteed by choosing β < 0. R0 is the original
jet radius, which is an order one number.

The condition eq. (4.2) in item 3 is chosen to kill the infrared unsafe configurations (a) and
(b) given in figure 5. Either when partons 1 and 2 are close to be collinear ∆R12 � R0

or if one parton is soft pT,2 � pT,1, eq. (4.2) cannot be fulfilled when zcut > 0, β < 0. In
practice, the absolute value of β is at order one and zcut is at the order of v2.

If one goes to extra o radiations (i.e. On plus i+k+o final light-flavoured QCD partons),
one should impose the following additional cuts:

4. There are i + k + o −m partons outside the onium-jet. Each parton should form a
single jet within PT (j) > Pmin

T and |y(j)| < ymax to avoid the collinear divergences.
In order to get rid of large logarithms from infrared cuts arising from the soft large-
angle radiations illustrated in the case (d) in figure 5, when i + k + o −m ≥ 2, it is
necessary to impose an asymmetric cut on these parton jets

min (PT (j1), · · · , PT (ji+k+o−m))

max (PT (j1), · · · , PT (ji+k+o−m))
> zcut,a. (4.3)

The value of zcut,a should be a positive number smaller than 1 but not close to 0. It
is important to vary its value in order to assess this cut dependence.
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Figure 5. Infrared unsafe configurations to be considered in inclusive quarkonium production,
where the first 3 subfigures are for the onium jet jOn

and the last one is for the light-flavoured jets.

5. If k = 0,7 and m > 0, each parton 1 in the onium jet jOn should pass the soft cut

z1 > zcut,s (4.4)

where z1 can be the energy fraction E1
E(jOn ) , the transverse mass fraction

pT,1√
P 2
T (jOn )+M2(jOn )

, the transverse momentum fraction pT,1
PT (jOn ) or other similar frac-

tions corresponding to z1 → 0 when the parton 1 is soft. This condition is needed in
order to kill the case (c) in figure 5, where all light-flavoured partons in the onium-jet
jOn can be soft and the condition eq. (4.2) is still satisfied. Similar to the value of
zcut in eq. (4.2), the proper value of zcut,s should be O(v2) as the effect of the soft
radiations should be absorbed into the long-distance part of the quarkonium.

In fact, the combination of items 1–5 introduces a general infrared-safe method for any
Fock state production if k = 0 is assumed at the beginning.8 In other words, we do not need
to pay a special attention to which kind of fragmentation process F is allowed for a given
Fock state. We call such cuts as STOP cuts, where “STOP” is an acronym of “STabilize
quarkOnium Production”.

In the case of the PT spectrum of a quarkonium On production at a hadron collider, i
is equal to 1 and the LO process is On plus one parton. For a real emission process On plus
o+1 partons with o > 0, we should impose the cuts listed in items 1–5 with k = 0, where the
condition in item 2 is fulfilled automatically. Same as the previous section, we will denote
the Born contribution at O(α3

s) as dσB and the remainders of the P-wave counterterms at
O(α4

s) as dσC . dσRSTOP (dσR2
STOP) stands for the contribution from On plus two (three)

partons within the STOP cuts.
7For example, On = QQ̄(3S

[8]
1 ) has g → QQ̄(3S

[8]
1 ) fragmentation at LO.

8When k = 0, the cut in item 2 will not be applied.
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4.2 Reproducing NLO results

In this section, we will present the results up to NLO QCD corrections (i.e. O(α4
s)). In

order to differentiate our partial NLO calculations with the complete NLO results, we
will denote our partial NLO calculations by imposing STOP cuts as “nLO”, i.e. dσnLO ≡
dσB+dσC+dσRSTOP . In the following, we will illustrate that the complete NLO results can
be reproduced with the tree-level generators under the following setup of the STOP cuts:

PT (j) > Pmin
T , Pmin

T ∈ [3, 6] GeV, |y(j)| < 5.0,

zcut = 0.1, β = −1, R0 = 1.0,

zcut,a ∈ [0.1, 0.7], zcut,s =
0.1

m
, (4.5)

wherem is the number of light-flavoured partons inside the onium jet. Jets are reconstructed
with the anti-kT clustering algorithm using FastJet. Since there is no infrared divergence
in the Born after imposing PT (onium) > 0 cut, the STOP cuts will not be applied to the
Born and Born-like counterterm events.

4.2.1 Reproducing 3
S

[8]
1

After imposing the STOP cuts on 3
S

[8]
1 , we can reproduce the complete NLO curves within

the theoretical uncertainties. They are shown in figure 6 and figure 7 for the spin-summed
and spin-dependent differential cross sections respectively. In the left panel of figure 6 and
the upper panels of figure 7, we estimate infrared cutoff dependence (the red-hatched bands)
via the combined variations of Pmin

T ∈ [3, 6]GeV and zcut,a ∈ [0.1, 0.7]. The grey-shadowed
bands represent the scale uncertainties. Opposed to the aNLO results in the right panel of
figure 3, it indeed shows that the STOP cuts improve the perturbative calculations, and the
transverse-momentum dependence in dσnLO

dPT
is the same as the NLO distributions dσNLO

dPT
.

It demonstrates that the large logarithmic dependence from the simple cuts in section 3
disappears after imposing the STOP cuts. The STOP-cut dependence (the red-hatched
bands) is not reduced by increasing the PT of the quarkonium. It is expected since the LP
contribution is already present at LO. The variations of the STOP cut variables only alter
the fractions of hard radiations in the real matrix elements, which are not logarithmically
enhanced. In fact, a careful tuning of STOP cut parameters can reproduce the NLO results
at high precision. In the right panel of figure 6 and the lower panels of figure 7, we have
calculated the 3

S
[8]
1 differential distributions after using zcut,a = 0.6 and zcut,s = 0.2

m . The
comparisons to the full NLO calculations imply that the PT spectra of 3

S
[8]
1 in different

rapidity intervals can be precisely reproduced as long as PT (
3
S

[8]
1 ) > 10GeV.

4.2.2 Reproducing other Fock states

We are now in the position to check the calculations for the other Fock states with the
STOP cuts. Like the case of the simple cuts in section 3, the general infrared-safe STOP
cuts can reproduce the complete NLO results within theoretical uncertainties well. These
Fock states do not show LP behaviour at LO. The comparisons of nLO calculations to NLO
calculations for spin-summed and spin-dependent differential cross sections in the states
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Figure 6. Comparisons of spin-summed differential cross sections for the Fock state 3
S
[8]
1 between

nLO (left), tunned nLO with zcut,a = 0.6, zcut,s = 0.2
m (right) calculations and the complete NLO

calculations.

3
S

[1]
1 ,

1
S

[8]
0 are displayed in figure 8 and figure 9 respectively, while we put the supplemental

plots figures 21, 22, 23 for the other Fock states in the appendix B. With the scale variations
shown by the grey bands, nLO results in general are able to successfully reproduce the NLO
calculations in both cases. The only exception is the differential cross section of 1

S
[8]
0 (see

the right panel of figure 8) at very large PT , i.e. PT > 90GeV. Such a discrepancy in 1
S

[8]
0

can be better understood from the LO fragmentation function g → 1
S

[8]
0 + g [40], which has

the functional form

D
g→

1
S

[8]
0

(zonium) ∝ 3zonium − 2z2
onium + 2(1− zonium) log (1− zonium), (4.6)

where zonium is the momentum fraction of 1
S

[8]
0 . The function peaks at zonium = 1. A finite

value of zcut,s in the STOP cuts will remove a non-negligible fraction of radiations in the
LP contributions. In fact, we have explicitly checked that if we set zcut,s = 10−2

m instead
of zcut,s = 0.1

m , the agreement between nLO and NLO results are significantly improved at
large PT , which can be found in figure 10. In the spirit of the NRQCD factorization, the
soft gluons from the heavy quark pair with the momentum fraction smaller than v2 should
be absorbed into the LDMEs as well as their energy evolutions, where v2 is around 0.3

for the charmonium. Therefore, without taking into account the relativistic corrections,
the resolution of NRQCD in describing the heavy quarkonium production should be not
better than v2. Hence, it is not straightforward to judge which is a better choice between
the two different values zcut,s = 0.1

m and zcut,s = 10−2

m . In fact, we believe zcut,s = 0.1
m

is a compromising choice in order to avoid spoiling the perturbative convergence in the
fixed-order calculations by a large logarithm log zcut,s.
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Figure 7. Comparisons of spin-dependent differential cross sections for the Fock state 3
S
[8]
1 between

nLO (up), tunned nLO with zcut,a = 0.6, zcut,s = 0.2
m (down) calculations and the complete NLO

calculations.

We have compared the recent CMS measurement [41] to our nLO calculations (with
and without STOP cut tuning on 3

S
[8]
1 ) for ψ(2S) production at 13TeV LHC in figure 11,

where the nonperturbative LDMEs are taken from eqs. (2.17) and (2.18) in ref. [42]. A
factor 10−1 has been multiplied to the nLO results with tuned 3

S
[8]
1 in order to improve the

visibility between the two theoretical bands. Without surprising, the CMS data agree very
well with our nLO calculations, because nLO does a similarly good job as NLO.

4.3 Going beyond NLO

It is usually believed that the color-octet states for J/ψ hadroproduction will not receive
giant K factors beyond NLO as the LP topologies in PT appear at NLO. On the other hand,
the color-singlet Fock state 3

S
[1]
1 , which is LO in v2 expansion, contains the LP single-gluon

fragmentation contributions starting from NNLO in αs (i.e. O(α5
s)). A giant K factor for
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Figure 8. Comparisons of spin-summed differential cross sections for the Fock states 3
S
[1]
1 ,

1
S
[8]
0

between our nLO calculations and the complete NLO calculations.
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Figure 9. Comparisons of spin-dependent differential cross sections for the Fock state 3
S
[1]
1 between

our nLO calculations and the complete NLO calculations.

3
S

[1]
1 from NLO to NNLO might be possible in J/ψ production, though the NLO calculation

shows that the 3
S

[1]
1 contribution to J/ψ hadroproduction seems to be negligible compared to

the color-octet contributions. If it is true, the extractions of color-octet NRQCD LDMEs
solely based on NLO calculations will be questionable. This is one of the reasons why
the importance of color-octet contributions in J/ψ hadroproduction is still under debate.
Although the accomplishment of NNLO calculations for 3

S
[1]
1 is still beyond state-of-the art,

it was indeed suggested in ref. [3] that the partial calculation shows a giant K factor dσ
NNLO?

dσNLO .
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Figure 10. Comparisons of the differential cross sections for 1
S
[8]
0 between our nLO calculations

with zcut,s = 10−2

m and the complete NLO calculations.

Later on, it was pointed out in ref. [11] that the giant K factor observed in ref. [3] is in
fact due to the logarithmic enhancement induced by the infrared cutoff. Such a logarithm
is expected to be absent in a full NNLO calculation because of the infrared safety.

We have the opportunity to clarify the situation with our infrared-safe STOP cut
method. With the same setup done in section 4.2, we have performed the calculations for
3
S

[1]
1 plus three light-flavored jets production at O(α5

s) at the 13TeV. The spin-summed PT
differential distributions are shown in figure 12, where we have used “nnLO” and “nNLO”
for the O(αns ), n ≤ 4 parts being nLO and NLO cross sections respectively. In other words,
we have used dσnnLO ≡ dσnLO + dσR

2
STOP and dσnNLO ≡ dσNLO + dσR

2
STOP . In the nNLO

results, no theoretical uncertainties are taking into account from the NLO piece dσNLO.
In contrast to the finding made in ref. [3], we do not observe any giant K factor up to
PT ' 100GeV. In fact, the PT spectra of nnLO and nNLO are not harder than NLO
ones. Such an observation can be explained if the coefficient of the LP PT part arising
from the single-gluon fragmentation is much smaller than the coefficient of the NLP PT
part and/or if the average momentum fraction of 3

S
[1]
1 taking from the original gluon is

significantly smaller than 1. The calculation based on the gluon fragmentation function
shows a similar behaviour, and the normalization of 3

S
[1]
1 is significantly smaller than the

color-octet contributions [43]. In our calculation, the K factor dσnnLO

dσNLO is ranging from 1 to
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Figure 11. Comparisons of the nLO ψ(2S) differential cross sections d2σ
dPT dy

in |y| < 0.6 with the
CMS measurement [41].

3 depending on the infrared cutoff choices. A similar conclusion can be drawn for the spin-
dependent differential distributions from figure 13. We believe a complete NLO calculations
of 3

S
[1]
1 plus two jets will help to reduce the remaining large infrared cutoff as well as the

renormalization/factorization scale dependence.

4.4 Reassessing the charm fragmentation

So far, we have only considered the light-flavoured jet(s) accompanying with the quarko-
nium, which is usually thought to be dominant because the gluons are more often produced
than the heavy quarks at high-energy hadron colliders. However, since the LP PT contri-
bution from the charm quark fragmentation appears at O(α4

s), one should not overlook the
associated production processes of a quarkonium plus a heavy quark pair. They were first
studied in ref. [44] for 3

S
[1]
1 , in ref. [45] for 3

S
[8]
1 ,

1
S

[8]
0 ,

3
P

[8]
J and in ref. [46] for 3

P
[1]
0 ,

3
P

[1]
1 ,

3
P

[1]
2 .

To the best of our knowledge, the existing calculations only focus on the spin-summed
differential cross sections, while we will also present the spin-dependent results in this sec-
tion. In fact, one has to examine the relevance of these contributions if large cancellations
between various Fock states happen.

In figure 14 and figure 15, we compared the tree-level 3
S

[1]
1 + cc̄ (tagged as “cc̄”) pro-

duction with the nnLO calculations of 3
S

[1]
1 plus light-flavoured partons. The 3

S
[1]
1 + cc̄

contribution has a harder PT spectrum than the nnLO contribution. The former one ex-
ceeds the latter one above PT ' 55GeV in the spin-summed case, while such a kind of
crossover happens earlier for the spin transverse component dσ11

dPT
around PT ' 20GeV.

– 16 –



J
H
E
P
0
1
(
2
0
1
9
)
1
1
2

d
σ

/d
P

T
 [

n
b

/G
e

V
]

3
S1

[1]

nnLO

|y|<0.75

0.75<|y|<1.5(×10
-1

)

1.5<|y|<2.0(×10
-2

)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

|y|<0.75

 0.5

 1

 1.5

N
L

O
/n

n
L

O

0.75<|y|<1.5

 0.5

 1

 1.5

PT [GeV]

1.5<|y|<2.0

 0.5

 1

 1.5

 0  10  20  30  40  50  60  70  80  90  100
H
E
L
A
C
-
O
n
i
a
 
2
.
0

d
σ

/d
P

T
 [

n
b

/G
e

V
]

3
S1

[1]

nNLO

|y|<0.75

0.75<|y|<1.5(×10
-1

)

1.5<|y|<2.0(×10
-2

)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

|y|<0.75

 0.5

 1

 1.5

N
L

O
/n

N
L

O

0.75<|y|<1.5

 0.5

 1

 1.5

PT [GeV]

1.5<|y|<2.0

 0.5

 1

 1.5

 0  10  20  30  40  50  60  70  80  90  100

H
E
L
A
C
-
O
n
i
a
 
2
.
0

Figure 12. Comparisons of spin-summed differential cross sections for the Fock state 3
S
[1]
1 between

nnLO (left), nNLO (right) calculations and the complete NLO calculations.
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Figure 13. Comparisons of spin-dependent differential cross sections for the Fock state 3
S
[1]
1 be-

tween nnLO calculations and the complete NLO calculations.

On the other hand, the charm quark associated contributions are orders of magnitude
smaller than the light-flavoured jet contributions for 3

S
[8]
1 productions as clearly shown in

figure 16 and figure 17 for the spin-summed and spin-dependent distributions. The similar
conclusion can be drawn for the other Fock states 1

S
[8]
0 ,

3
P

[8]
J ,

3
P

[1]
0 ,

3
P

[1]
1 ,

3
P

[1]
2 as shown in

figures 24, 25, 26 in the appendix B.
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Figure 14. Comparisons of spin-summed differential cross section dσ
dPT

for the Fock state 3
S
[1]
1

between our nnLO calculations and the LO charmonium plus charm quark pair calculations.
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Figure 15. Comparisons of spin-dependent differential cross section dσ
dPT

for the Fock state 3
S
[1]
1

between our nnLO calculations and the LO charmonium plus charm quark pair calculations.
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Figure 16. Comparisons of spin-summed differential cross sections dσ
dPT

for the Fock state 3
S
[8]
1

between our nLO calculations and the LO charmonium plus charm quark pair calculations.
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Figure 17. Comparisons of spin-dependent differential cross sections dσ
dPT

for the Fock state 3
S
[8]
1

between our nLO calculations and the LO charmonium plus charm quark pair calculations.
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5 Summary and outlooks

After implementing the remainders of P-wave counterterms in section 2, we have introduced
a general infrared-safe method to estimate the giant K factors in quarkonium production
in high PT region. As a proof of concept, we have validated our approach with the existing
complete NLO QCD calculations of the Fock states 3

S
[1,8]
1 ,

1
S

[8]
0 ,

3
P

[1,8]
J in both spin-summed

and spin-dependent cases. They are relevant for J/ψ and χcJ hadroproduction up to
O(v7). Our approach only requires the tree-level amplitudes provided by HELAC-Onia.
To the best of our knowledge, it is the first time to be able to reproduce the complete
NLO spin-dependent results with tree-level amplitudes only. These spin-dependent results
can be used to predict the polarization observables. We are also firstly able to obtain the
spin-summed NLO results for 3

P
[1]
J without performing complete NLO calculations. With

our new approach, we have estimated the partial NNLO contributions at O(α5
s) for 3

S
[1]
1

production. It is believed to be at LP in PT scaling starting at this order, and is the
last missing piece for the heavy quarkonium PT spectrum up to O(v7). In contrast to
the NNLO? calculations based on the simple invariant-mass cuts [3], we do not observe
the similar orders of magnitude enhancement compared to the NLO calculations, while an
enhancement factor of 1 to 3 is still possible up to PT ' 100GeV depending on the infrared
cutoff choices. We believe the complete NLO calculations of 3

S
[1]
1 plus 2 jets will reduce

this uncertainty. Finally, we have also calculated the charmonium plus a charm quark pair
production, where the spin-dependent differential cross sections presented here are new.
Their contributions to the inclusive PT distributions of charmonium are only relevant in
the 3

S
[1]
1 channel.

Our approach stabilizes the QCD corrections in the heavy quarkonium production rate
calculations at high PT . It is quite appealing not only because it provides a fast way to
perform the phenomenology studies of inclusive quarkonium production but also it can be
used to improve the predictions in the associated quarkonium production processes. To-
gether with the controlled perturbative SDCs, it is feasible to study various nonperturbative
effects in the heavy quarkonium hadroproduction in an acceptable amount of computation
time. Last but not least, with a similar method, we believe that we are able to promote the
accuracy of both LP and NLP pieces to NLO level simultaneously with the full one-loop
calculations.
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A Calculations with HELAC-Onia

In this section, we will give an instruction on how to use HELAC-Onia to perform nLO
and nnLO calculations. The implementations are available from version 2.3.6 and onwards,
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which can be downloaded from http://hshao.web.cern.ch/hshao/helaconia.html. An exam-
ple of a Fortran analysis file plot_pp_psinjets_spin2.f90 is given in the subdirectory
analysis/user in order to get the differential distributions in this paper. The common
calculation setup is given by the following entries in user.inp:

# basic setup for running
colpar 1 # colliding particles: 1=pp, 2=ppbar, 3=e+e-
energy_beam1 6500d0 # beam 1 energy (GeV)
energy_beam2 6500d0 # beam 2 energy (GeV)
alphasrun 1 # 0=alpha QCD not running, 1=alpha QCD running
useMCFMrun F # alphas running with MCFM (if False run it with original
one)
qcd 2 # 0=only electroweak, 1=electroweak and QCD, 2=only QCD,3=only QED,
4=QCD and QED
cmass 1.5d0 # charm quark mass
unwevt F # unweighting on/off
reweight_Scale T # reweight to get scale dependence (only when
alphasrun=T)
hwu_output T # hwu output file (T) or not (F)
ranhel 4 # doing Monte Carlo over helicities
pdf 1000 # 10000=cteq6m
Scale 1 # central value of the renormalization/factorization scale =
Sqrt(m1**2+pt1**2)

# basic kenematic cuts
minptq 0d0 # minimum gluon/light-quark pt
minptc 0d0 # minimum charm quark pt
minptconia 5d0 # minimum charmonium pt
maxrapq 30d0 # maximum gluon/light-quark pesudorapidity
maxrapc 30d0 # maximum charm quark pesudorapidity
maxrapconia 30d0 # maximum charmonium pesudorapidity
maxyrapconia 4.5d0 # maximum charmonium rapidity
mindrqq 0d0 # minimum delta R (quark/gluon-quark/gluon)

# technical details on the numerical integration
gener 0 # onte Carlo generator: 0 PHEGAS 1 RAMBO 2 DURHAM 3 VEGAS -1
From PS.input
nmc 10000000 # maximal number of weighted events
nopt 1000000
nopt_step 1000000
noptlim 10000000
nlimit 1 # The lower limit of the number of channels
grid_nchmax 3000 # maximum number of channels for griding
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# Long Distance Matrix Elements For Charmonium
# Long Distance Matrix Element <O(3S1[1])>=|R(0)|**2/4/Pi
# in JHEP 02 (2008) 102 <O(3S1[1])>=(2J+1)*2Nc*|R(0)|**2/4/Pi,
# i.e. LDME****1=<O(2S+1)LJ[1]>/2Nc/(2J+1)
# For p-wave <O(3P0[1])>=<O(3P1[1])>=<O(3P2[1])>=3*|R’(0)|**2/4/Pi
# in JHEP 02 (2008) 102 LDME****8=<O((2S+1)LJ[8])>/(Nc**2-1)/(2J+1)
LDMEcc3S11 0.064444444444d0 # LDME for 3S1[1] charmonium
LDMEcc3S18 0.00037621791666666665d0 # LDME for 3S1[8] charmonium
LDMEcc1S01 0.064444444444d0 # LDME for 1S0[1] charmonium
LDMEcc1S08 0.001825d0 # LDME for 1S0[8] charmonium
LDMEcc3P08 0.00428365d0 # LDME for 3P0[8] charmonium
LDMEcc3P18 0.00428365d0 # LDME for 3P1[8] charmonium
LDMEcc3P28 0.00428365d0 # LDME for 3P2[8] charmonium
LDMEcc3P01 0.017904931097838226d0 # LDME for 3P0[1] charmonium
LDMEcc3P11 0.017904931097838226d0 # LDME for 3P1[1] charmonium
LDMEcc3P21 0.017904931097838226d0 # LDME for 3P2[1] charmonium

A.1 Born and counterterms

The Born dσB at O(α3
s) for S-wave Fock states can be achieved via the following commands:

HO> define ppsi = cc~(1 s08) cc~(3s11) cc~(3 s18)
HO> decay ppsi > m+ m- @ 1.0
HO> generate p g > ppsi j
HO> generate g p > ppsi j
HO> launch

where we have always excluded the quark-quark initial states due to their very small parton
luminosity from PDFs. No extra kinematical cuts are needed for the Born-like events.

The color-octet P-wave Fock states 3
P

[8]
J can be grouped together as we will always

use the relation from heavy-quark spin symmetry 〈O(
3
P

[8]
J )〉 = (2J + 1)〈O(

3
P

[8]
0 )〉. The

contributions from the Born and the remainders of the counterterms dσB + dσC can be
included via:

HO> set generate_CT = T
HO> decay cc~(3p08) > m+ m- @ 1.0
HO> generate p g > cc~(3 p08) j
HO> generate g p > cc~(3 p08) j
HO> launch

The command sets generate_CT to be T in order to get the contributions from counterterms
dσC .

The color-singlet P-wave Fock states 3
P

[1]
J will be calculated separately since they con-

tribute to χcJ , J = 0, 1, 2 respectively. The commands are:

HO> set exp3pjQ = T
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HO> set generate_CT = T
HO> define pchic = cc~(3 p01) cc~(3p11) cc~(3 p21)
HO> decay pchic > cc~(3 s11) a @ 1.0
HO> decay cc~(3s11) > m+ m- @ 1.0
HO> generate p g > pchic j
HO> generate g p > pchic j
HO> launch

We set exp3pjQ=T in order to get 3
P

[1]
J , J = 0, 1, 2 individually. At the meantime, 3

P
[1]
J are

cascaded decaying to 3
S

[1]
1 +γ → µ+µ−+γ. The counterterms should be taken into account

by setting generate_CT=T.

A.2 Real terms

One should apply the STOP cuts to the real terms at O(αns ), n ≥ 4. It requires us to
implement the following additional entries in user.inp:

# STOP cuts
use_stop_cut T # whether use stop cuts (following cuts will be ignored if it is F)
stop_minptjet 3d0 # minimum jet pt cut (include onium in the jet clustering)
stop_maxrapjet 5d0 # max jet rapidity, negative no such a cut
stop_zcut 0.1d0 # zcut in the soft drop
stop_beta -1d0 # beta in the soft drop (negative to make it collinear safe)
stop_jet_alg -1 # 1: kt; 0: C/A; -1: anti-kt
stop_jet_radius 1.0d0 # jet radius R
stop_jet_dyn_radius -1d0 # if it is > 0,

it will use dynamical jet radius R=max[stop_jet_radius,stop_jet_dyn_radius*M_onium/P_T,onium]
stop_min_n_jet 2 # min number of jet (should be n hard jet + 1 onium jet), negative no such a cut
stop_max_n_jet -1 # max number of jet, negative no such a cut
stop_n_frag_gluon 0 # minimal number of final gluon in the LO fragmentation process
stop_n_frag_quark 0 # minimal number of final bare quark in the LO fragmentation process
stop_zsoftcut 0.1d0 # z_s,cut for the soft cut applied to (stop_n_frag_gluon+stop_n_frag_quark)==0
# It will be divided by number of partons inside the onium jet
stop_zasymcut 0.1d0 # asymmetric cut for the light-flavoured jets if the number of light jets are >= 2

The HELAC-Onia commands to calculate the O(α4
s) real terms dσRSTOP are

HO> set exp3pjQ = F
HO> define ppsi = cc~(1 s08) cc~(3s11) cc~(3 s18) cc~(3p08)
HO> decay ppsi > m+ m- @ 1.0
HO> generate p g > ppsi j j
HO> generate g p > ppsi j j
HO> launch

for the S-wave and color-octet P-wave Fock states, while for 3
P

[1]
J one should type

HO> set exp3pjQ = T
HO> define pchic = cc~(3 p01) cc~(3p11) cc~(3 p21)
HO> decay pchic > cc~(3 s11) a @ 1.0
HO> decay cc~(3s11) > m+ m- @ 1.0
HO> generate p g > pchic j j
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HO> generate g p > pchic j j
HO> launch

With the same STOP cuts, the generation of weighted events at O(α5
s) dσ

R2
STOP for

3
S

[1]
1 can be achieved by the following commands:

HO> decay cc~(3s11) > m+ m- @ 1.0
HO> generate p g > cc~(3 s11) j j j
HO> generate g p > cc~(3 s11) j j j
HO> launch

B Supplemental plots

We provided the supplemental plots in this appendix for the sake of completeness. The
comparisons of spin-summed differential cross sections for the 5 Fock states 1

S
[8]
0 , 3

P
[8]
J ,

3
P

[1]
0 , 3

P
[1]
1 , 3

P
[1]
2 between aNLO and NLO are shown in figure 18, while the spin-dependent

ones for 3
P

[8]
J , 3

P
[1]
1 , 3

P
[1]
2 can be found in figure 19 and figure 20. The nLO versus NLO plots

for 3
P

[8]
J , 3

P
[1]
0 , 3

P
[1]
1 , 3

P
[1]
2 are available in figure 21 (spin-summed ones) and in figures 22, 23

(spin-dependent ones). The contributions from On + cc̄ with On =
1
S

[8]
0 , 3

P
[8]
J , 3

P
[1]
0 , 3

P
[1]
1 ,

3
P

[1]
2 are shown in figures 24, 25, 26.
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Figure 18. Comparisons of spin-summed differential cross sections for the Fock states 1
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0 , 3
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J ,
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Figure 19. Comparisons of spin-dependent differential cross sections for the 2 Fock states 3
P

[8]
J ,

3
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between our aNLO calculations and the complete NLO calculations. They are similar to figure 2.
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Figure 20. Comparisons of spin-dependent differential cross sections for the Fock state 3
P

[1]
2

between our aNLO calculations and the complete NLO calculations. They are similar to figure 2.
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Figure 21. Comparisons of spin-summed differential cross sections for the Fock states 3
P

[8]
J , 3

P
[1]
0 ,

3
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[1]
1 , 3

P
[1]
2 between our nLO calculations and the complete NLO calculations. They are similar to

figure 8.
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Figure 22. Comparisons of spin-dependent differential cross sections for the 3 Fock states 3
P

[8]
J ,

3
P

[1]
1

between our nLO calculations and the complete NLO calculations. They are similar to figure 9.
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Figure 23. Comparisons of spin-dependent differential cross sections for the Fock state 3
P

[1]
2

between our nLO calculations and the complete NLO calculations. They are similar to figure 9.
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Figure 24. Comparisons of spin-summed differential cross sections dσ
dPT

for the 5 Fock states
1
S
[8]
0 ,

3
P

[8]
J ,

3
P

[1]
0 ,

3
P

[1]
1 ,

3
P

[1]
2 between our nLO calculations and the LO charmonium plus charm quark

pair calculations. They are similar to figure 16.

– 31 –



J
H
E
P
0
1
(
2
0
1
9
)
1
1
2

d
σ

0
0
/d

P
T
 [

n
b

/G
e

V
]

PT [GeV]

3
PJ

[8]

nLO

cc
-

nLO+cc
-

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 0  10  20  30  40  50

H
E
L
A
C
-
O
n
i
a
 
2
.
0

d
σ

1
1
/d

P
T
 [

n
b

/G
e

V
]

PT [GeV]

3
PJ

[8]

-nLO

cc
-

-(nLO+cc
-
)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 0  10  20  30  40  50

H
E
L
A
C
-
O
n
i
a
 
2
.
0

d
σ

0
0
/d

P
T
 [

n
b

/G
e

V
]

PT [GeV]

3
P1

[1]

-nLO

cc
-

-(nLO+cc
-
)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 0  10  20  30  40  50

H
E
L
A
C
-
O
n
i
a
 
2
.
0

d
σ

1
1
/d

P
T
 [

n
b

/G
e

V
]

PT [GeV]

3
P1

[1]

-nLO

cc
-

-(nLO+cc
-
)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 0  10  20  30  40  50

H
E
L
A
C
-
O
n
i
a
 
2
.
0

Figure 25. Comparisons of spin-dependent differential cross sections dσ
dPT

for the Fock states
3
P

[8]
J ,

3
P

[1]
1 between our nLO calculations and the LO charmonium plus charm quark pair calculations.

They are similar to figure 17.
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Figure 26. Comparisons of spin-dependent differential cross sections dσ
dPT

for the Fock state 3
P

[1]
2

between our nLO calculations and the LO charmonium plus charm quark pair calculations. They
are similar to figure 17.
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