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Abstract: In the present work we analyse N = (2, 2) supersymmetric Yang-Mills (SYM)

theory with gauge group SU(2) in two dimensions by means of lattice simulations. The

theory arises as dimensional reduction of N = 1 SYM theory in four dimensions. As in

other gauge theories with extended supersymmetry, the classical scalar potential has flat

directions which may destabilize numerical simulations. In addition, the fermion determi-

nant need not be positive and this sign-problem may cause further problems in a stochastic

treatment. We demonstrate that N = (2, 2) super Yang-Mills theory has actually no sign

problem and that the flat directions are lifted and thus stabilized by quantum corrections.

Only the bare masses of the scalars experience a finite additive renormalization in this

finite theory. On various lattices with different lattice constants we determine the scalar

masses and hopping parameters for which the supersymmetry violating terms are minimal.

By studying four Ward identities and by monitoring the π-mass we show that supersym-

metry is indeed restored in the continuum limit. In the second part we calculate the

masses of the low-lying bound states. We find that in the infinite-volume and supersym-

metric continuum limit the Veneziano-Yankielowicz super-multiplet becomes massless and

the Farrar-Gabadadze-Schwetz super-multiplet decouples from the theory. In addition, we

estimate the masses of the excited mesons in the Veneziano-Yankielowicz multiplet. We

observe that the gluino-glueballs have comparable masses to the excited mesons.
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1 Introduction

Many extensions of the standard model of particle physics make use of supersymmetry

in order to cure well-known flaws of the standard model, as for instance the hierarchy

problem. Some of the additional particles of supersymmetric (susy) gauge theories may

be identified as dark matter particles in the universe. Since no additional particles have

been observed in experiments up to now it is of utmost interest to investigate the spectrum

of susy gauge theories, in particular in the strongly coupled regime. The most simple

supersymmetric gauge theories are probably the N = 1 Super-Yang-Mills (SYM) theories
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with gauge groups SU(N). These are supersymmetric extensions of SU(N) Yang-Mills

theories [1, 2]. For SU(3) the bosonic sector is identical to that of QCD. It describes

the gluons of strong interaction in interaction with their superpartners, the gluinos. The

gluinos are Majorana fermions transforming in the adjoint representation of the gauge

group. Like in QCD, the theory is asymptotically free and it is expected, that the gluons

and gluinos are confined in colorless bound states. But differently from one-flavor QCD,

the U(1)A chiral symmetry is anomalously broken only to the discrete subgroup Z2N . At

low temperatures this symmetry is further broken spontaneously to Z2 by the formation

of a gluino condensate and thus gives rise to N physically equivalent vacua [3].

The SYM theory has a richer spectrum of colour-blind bound states than QCD since the

gluinos are in the adjoint representation. Beside (adjoint) mesons, baryons and glueballs,

hybrid bound states of gluons and gluinos are expected to show up in the low energy

spectrum. Implementing symmetries and anomalies of the theory, low energy effective

actions have been proposed [4–6] describing the supersymmetric spectrum of bound states.

Thereby the chiral multiplet containing the adjoint f- and η-meson is extended to a super-

multiplet by a gluino-glueball. A second multiplet contains a 0+ glueball, a 0− glueball and

in addition a gluino-glueball. The low-energy effective action depends on free parameters

and hence it is not clear which multiplet is the lighter one. Various arguments were given

for both scenarios, see [4–7]. Another difficulty stems from the fact, that for every state

in the first multiplet there exists a state in the second multiplet with the same quantum

numbers. This mixing of states may lead to an even more complex multiplet structure.

Similarly as QCD the N = 1 SYM theory is strongly coupled at low energies and

non-perturbative methods are necessary to investigate its mass spectrum. We simulate the

theory on a discrete spacetime lattice. This is a non-trivial task since a lattice regularisation

breaks supersymmetry explicitly. This can be seen from the susy algebra

{Q,Q} ∝ Pµ,

where Q is a generator of supersymmetry and the Pµ generate translations in space and

time. Since a discrete lattice does not admit arbitrary small translations, we can not

preserve the full supersymmetry on a lattice, similar to chiral symmetry. In order to

recover both symmetries in the continuum limit, certain parameters have to be fine-tuned,

making simulations more expensive. Fortunately for N = 1 SYM theory, the only relevant

operator that breaks supersymmetry (softly) is a non-vanishing gluino condensate which

at the same time breaks chiral symmetry. Thus it suffices to restore chiral symmetry in the

continuum limit to recover supersymmetry [8], making chiral Ginsparg-Wilson fermions the

preferred choice [9–11]. Unfortunately chiral fermions are computationally very expensive

such that it seems to be more efficient to fine-tune the bare gluino mass parameter of

Wilson fermions. For the gauge group SU(2) with Wilson fermions, the theory has been

extensively investigated by the DESY-Münster collaboration [12–19]. Their results confirm

the formation of the predicted super-multiplets and reveal, that the glueballs are heavier

than the mesons. Simulations for the gauge group SU(3) are underway [20, 21].

Another strategy is to look at the dimensionally reduced model, namely N = (2, 2)

SYM theory in two dimensions. By calculating the mass spectrum of this related and
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simpler model we should get further insights into the four-dimensional model. The two-

dimensional super-renormalizable descendant of the four-dimensional theory allows for

larger lattices and much better statistics. This will lead to a mass spectrum with less

statistical errors than in four dimensions.

A first numerical simulation of the two-dimensional model was presented in [22, 23],

where the dimensional reduction was done for the lattice theory with compact link variables.

Accordingly the scalar fields in the reduced model appear in the exponent of the compact

link variables. In the simulation the quenched configurations were reweighted with the Pfaf-

fian. Because of large (statistical) errors the results for Ward identities were inconclusive.

Apart from being a descendant of SYM theory in four dimensions, the N = (2, 2)

theory in two dimensions has further interesting properties. Theoretical arguments [24, 25]

and numerical calculations based on a discretized light cone quantization [26, 27], both

suggest massless states in the physical spectrum. This massless super-multiplet is not seen

in four dimensions. Furthermore, it has been conjectured that dynamical susy breaking

may occur in the theory [28]. Recent lattice results for the vacuum energy however show

no sign of susy breaking [29].

Analogous to the two-dimensional N = (2, 2) Wess-Zumino model [30], the two-

dimensional N = (2, 2) SYM theory admits a conserved and nilpotent supercharge. This

is possible because there are four supercharges from which one can build one nilpotent su-

percharge Q. On a lattice only the subalgebra generated by nilpotent supercharges can be

realized. SeveralQ-exact lattice models were proposed [31–33]. All these models suffer from

the following problem: usually one can expand the link variables as Uµ = 1 + iaAµ + · · · ,
in which case we expect an unique vacuum state. This is not the case in all three models

proposed and thus one expects an ambiguous continuum limit. In the models in [31, 32] the

problem is solved by adding the susy-breaking term µ2 tr
(
U †U − 1

)2
to the Lagrangian,

which dynamically picks a unique vacuum state. In the limit µ → 0, supersymmetry is

recovered in this construction. In contrast, by deforming the model [33] the unphysical vac-

uum states can be removed without breaking the nilpotent supersymmetry explicitly [34].

Several numerical investigations show the restoration of the full susy (not only the nilpo-

tent one) [35–41]. The relations between these models were investigated in [42–45]. For a

more detailed overview see the reviews [46–50].

Two-dimensional continuum gauge theories have less dynamical degrees of freedom

than four-dimensional ones and thus we may expect that topology of the (Euclidean)

spacetime becomes more important. In our work we use periodic lattices which discretize

a two-torus. In the works [51–53] different lattices with other spacetimes were scrutinized.

In particular a generalized topological twisting on generic Riemann surfaces in two dimen-

sions [51] has been considered. The authors revealed the connection of the sign problem,

which is absent on the torus, to the U(1)A anomaly. With a so called compensator the

sign problem can be solved on Riemann surfaces with genus 6= 1. Ward identities and the

U(1)A anomaly — the latter is intimately related to the zero modes of the Dirac operator

— have been looked at.

The paper is organized as follows: in section 2 we introduce the N = (2, 2) theory,

discuss its continuum properties and in particular the expected particle spectrum. There is
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only one relevant operator tr φ2 that needs to be fine-tuned to recover susy in the continuum

limit. The corresponding mass-parameter is calculated to one-loop order. To investigate the

restoration of susy we derive three independent Ward identities. In section 3 we introduce

our lattice formulation with Wilson fermions and discuss some technical points like the

fermion sign problem, potentially flat directions of the effective potential and fine-tuning

of the bare parameters. In [54, 55] it was argued that it is important to control flat

directions of the scalar potential. We shall see in our simulations that the flat directions

are lifted and we observe no instabilities in the scalar subsector. Furthermore the model

has no sign problem in the simulations. Since susy is broken at finite lattice spacing, the

Ward identities are not fulfilled. The additional contributions at finite lattice spacing are

discussed in section 4 for the gauge group SU(2), together with our simulation results

concerning the restoration of supersymmetry in the continuum and thermodynamic limit.

In section 5 we present our accurate results for the masses of the low lying bound states.

One super-multiplet becomes massless in the thermodynamic and supersymmetric limit

and a second super-multiplet decouples from the theory. In addition we see a massive

super-multiplet of excited states. At the end we present our conclusions in section 6.

2 N = (2, 2) SYM theory in two dimensions

In this section we will deriveN = (2, 2) supersymmetric Yang-Mills (SYM) theory in two di-

mensions by a dimensional torus-reduction from N = 1 SYM theory in four dimensions. To

recall this reduction is useful since there is a one-to-one correspondence between the N = 1

super-multiplets in four dimensions and the N = (2, 2) super-multiplets in two dimensions.

We expect that related super-multiplets have the same length since the length can only

change when supersymmetry is (partially) broken or the members of a super-multiplet be-

come massless. Thus we may expect that bound states in the two-dimensional theory ar-

range in super-multiplets corresponding to super-multiplets in the four-dimensional theory.

Note that the assignment of spins in a super-multiplet may change during the reduction.

This happens for the vector super-multiplet but not for the chiral super-multiplet. But the

mass spectrum may change, even if there is a one-to-one assignment of super-multiplets.

We begin with reviewing some relevant properties of the four-dimensional theory [1, 2].

The action is given by

S =

∫
d4x tr

(
−1

4
FMNF

MN +
i

2
λ̄ΓMDMλ

)
, (2.1)

where capital indices M,N assume the values 0, 1, 2, 3, the matrices ΓM build an irreducible

representation of the four-dimensional Clifford algebra and FMN is the field strength tensor

FMN = ∂MAN − ∂NAM − i g [AM , AN ] (2.2)

with gauge potential AM in the adjoint representation of the gauge group SU(N). The

gauge potential and Majorana-field are components of the same super-field such that λ

transforms under the adjoint representation as well. Hence, the covariant derivative of the

Majorana fermion is

DMλ = ∂Mλ− i g [AM , λ] . (2.3)
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The action (2.1) is invariant under the on-shell supersymmetry transformations

δεAµ = iε̄ΓMλ, δελ = iFMNΣMN ε, δελ̄ = −iε̄ FMNΣMN (2.4)

with [ΓM ,ΓN ] = 4i ΣMN . These transformations are generated by ε̄Q, where ε is a constant

anticommuting Majorana-valued parameter and the {Qα} are the four components of the

Majorana-valued supercharge Q. The Majorana condition relates the four entries of a

spinor according to λ = λc = Cλ̄T, where C is a charge conjugation matrix.

The action is also invariant under global U(1)A transformations

λ→ eiαΓ5λ , Γ5 = i Γ0Γ1Γ2Γ3 . (2.5)

In the quantum theory, this chiral symmetry is broken down to Z2N via instantons. If a

chiral condensate
〈
λ̄λ
〉
6= 0 forms, it is further broken spontaneously to Z2

U(1)A
instantons−→ Z2N

〈λ̄λ〉
→ Z2 . (2.6)

The N physically equivalent vacua are related by the discrete chiral rotations

λ→ exp

(
i
2nπ

N
Γ5

)
λ , n = 0, 1, 2, . . . , N − 1. (2.7)

Lattice simulations of four-dimensional N = 1 SYM show that chiral symmetry is indeed

spontaneously broken at zero temperature and restored above a critical temperature [17].

The two-dimensional N = (2, 2) SYM theory can be derived from the four-dimensional

theory via a Kaluza-Klein torus reduction. Thereby one compactifies two directions on a

torus such that R4 → R2 × T 2 and assumes, that the fields are constant on the torus, e.g.

∂Mλ = 0 for M = 2, 3. The remaining non-compact coordinates are xµ with µ ∈ {0, 1}.
Although the reduction does not depend on the particular representation of the four-

dimensional Γ matrices, it is convenient to choose a particular one:

Γµ = 1⊗ γµ, Γ2 = iσ1 ⊗ γ5, Γ3 = iσ3 ⊗ γ5, Γ5 = σ2 ⊗ γ5 (2.8)

with γ5 = γ0γ1. In this representation, the charge conjugation matrices in two and four

dimensions are related as C4 = 1⊗ C2 and satisfy

C2γµC−1
2 = −γTµ =⇒ C4ΓMC−1

4 = −ΓT
M . (2.9)

In a Majorana representation with purely real or imaginary γµ we may choose C2 = −γ0.

Applying the dimensional reduction to the Yang-Mills Lagrangian yields

− 1

4
FMNF

MN = −1

4
FµνF

µν +
1

2
DµφmD

µφm +
g2

4
[φm, φn] [φm, φn] , (2.10)

where the first term on the right hand side is the two-dimensional Yang-Mills Lagrangian,

the second term a kinetic term for the two adjoint scalar fields φm = Am+1 with m ∈ {1, 2}
and the third term a quartic interaction potential for the scalar fields. The kinetic term
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for the four-dimensional Majorana fermion decomposes in a two-dimensional kinetic part

and a Yukawa interaction between the Majorana fermion λ and the scalar fields φm,

λ̄ΓMDMλ = λ̄ΓµDµλ− i gλ̄Γm+1 [φm, λ] . (2.11)

Note, that the four-component Majorana spinor λ turns into two (real) Majorana spinors

in two dimensions (in two dimensions an irreducible spinor has two components only).

Later we will merge them into one complex two-component Dirac spinor. After rescaling

all fields A, λ and φ according to A → g−1A and absorbing afterwards the volume of

the compactified torus in the gauge coupling 1/g2 → VT /g2, we obtain the action of the

two-dimensional N = (2, 2) SYM theory

S =
1

2g2

∫
d2x tr

{
−1

2
FµνF

µν + iλ̄ΓµDµλ+DµφmD
µφm

+λ̄Γm+1 [φm, λ] +
1

2
[φm, φn] [φm, φn]

}
,

(2.12)

the Euclidean version of which we use in our lattice simulations. In a next step we combine

the four components of the Majorana spinor λ in two components of an irreducible Dirac

spinor in two dimensions and rewrite the action in terms of Dirac fermions and complex

scalars. Then the symmetries of the model are transparent and we can easily compare with

the Q-exact formalism [32]. With the ansatz

λ =
2∑
r=1

er ⊗ χr =⇒ λ̄ =
2∑
r=1

eTr ⊗ χ̄r , (2.13)

where {e1, e2} is a Cartesian basis of R2, on which Γ0 in (2.8) acts trivially, and χr are

irreducible Majorana spinors in two dimensions, we obtain

S =
1

2g2

∫
d2x tr

{
− 1

2
FµνF

µν +DµφmD
µφm +

1

2
[φm, φn][φm, φn]

+ iχ̄rγ
µDµχr − χ̄r(iσ1)rsγ5[φ1, χs]− χ̄r(iσ3)rsγ5[φ2, χs]

}
(2.14)

that contains two flavours χr of Majorana fermions and two real scalar fields. Introducing

the Dirac fermion ψ and the complex scalar ϕ according to

ψ =
1√
2

(χ1 + iγ5χ2) , ψ̄ =
1√
2

(χ̄1 + iχ̄2γ5) , ϕ = φ1 + iφ2 , (2.15)

we end up with

S =
1

g2

∫
d2x tr

{
− 1

4
FµνF

µν +
1

2
(Dµϕ)†(Dµϕ)− 1

8

[
ϕ†, ϕ

]2
+ i ψ̄γµDµψ − ψ̄P+ [ϕ,ψ]− ψ̄P−

[
ϕ†, ψ

]}
(2.16)

with chiral projection operators P± = (1± γ5) /2. When proving this result one may

use that for two Majorana spinors χ1, χ2 the trace of χ̄1[ϕ, χ2] + χ̄2[ϕ, χ1] vanishes. Un-

der dimensional reduction, the four-dimensional Lorentz transformations in SO(1, 3) turn

– 6 –



J
H
E
P
0
1
(
2
0
1
9
)
0
9
9

particle spin name

λγ5λ 0 a-η

λλ 0 a-f

FMNΣMNλ 1
2 gluino-glueball

(a) VY multiplet.

particle spin name

FMNFMN 0 0++ glueball

FMN εMNRSF
RS 0 0−+ glueball

FMNΓMDNλ 1
2 gluino-glueball

(b) FGS multiplet.

Table 1. Multiplet structure of N = 1 SYM theory as predicted by low energy effective

actions [4, 6].

into two-dimensional Lorentz transformations and flavour rotations for the scalar fields

(R-symmetry), i.e.

SO(1, 3)→ SOL(1, 1)× SOR(2) , (2.17)

and correspondingly Spin(1, 3) turns into Spin(1, 1) andR-transformations of the two spinor

fields, generated by Σ23 = −σ3 ⊗ 1/2. This R-symmetry acts on the real fields as(
φ1

φ2

)
→ R(2α)

(
φ1

φ2

)
,

(
χ1

χ2

)
→ R(−α)

(
χ1

χ2

)
, (2.18)

where R(α) is a rotation with angle α. The complex fields transform as

ϕ→ exp(2 iα)ϕ , ψ → exp(−iαγ5)ψ, ψ̄ → ψ̄ exp(−iαγ5) , (2.19)

which is identified as chiral symmetry in two dimensions. In contrast, the four-dimensional

chiral symmetry turns into a phase rotation of the Dirac field,

λ′ = exp(iαΓ5)λ =

(
cosα γ5 sinα

−γ5 sinα cosα

)(
λ1

λ2

)
⇒ ψ′ = exp(−iα)ψ (2.20)

and implies fermion number conservation in two dimensions. This observation allows us to

introduce two different fermion mass terms in the lattice formulation with Wilson fermions.

A four-dimensional Majorana mass term proportional to λ̄λ which violates fermion number

conservation in two dimensions or a two-dimensional Dirac mass term ψ̄ψ which violates

chiral symmetry. When fine-tuning to the supersymmetric continuum limit we shall break

chiral symmetry of the reducible model in order to have the same fermionic symmetries as

in the Q-exact formulation in [33], to which we shall compare our results.

2.1 Expected mass spectrum

Veneziano and Yankielowicz were the first to derive a low energy effective Lagrangian for

N = 1 SYM theory in four dimensions, in analogy to QCD [4]. They conjectured that the

lightest super-multiplet contains the bound states shown in table 1(a): a scalar meson a-f,

a pseudoscalar meson a-η and a spin 1/2 bound state between a Majorana fermion and a

gauge boson, called gluino-glueball. We refer to this super-multiplet as the VY-multiplet.

In a confining theory one also expects glueballs in the particle spectrum. Therefore a second
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particle spin name

λΓ5λ 0 a-η

λλ 0 a-f

FµνΣµνλ+ 2i[φ1, φ2]Σ23λ 1
2 gluino-glue/scalarball

particle spin name

[φ1, φ2]Fµν 0 glue-scalarball

FµνF
µν − 2DµφmD

µφm − 2[φ1, φ2]2 0 0++-glueball, scalarball

FµνΓµDνλ−Dµφm
(
iΓµ [φm, λ] + Γm+1Dµλ

)
1
2 gluino-glue/scalarball

−[φm, φn]Γm+1 [φn, λ]

Table 2. Two-dimensional reduced super-multiplets for the N = (2, 2) theory. In the main body

of the text we will call FµνΣµνλ the gluino-glueball and [φ1, φ2]Σ23λ the gluino-scalarball.

super-multiplet was added by Farrar, Gabadadze and Schwetz [6]. The FGS-multiplet

is shown in table 1(b). It contains a scalar glueball, a pseudoscalar glueball as well as

a spin 1/2 gluino-glueball. Predictions about the mass-hierarchy of the two multiplets

vary in the literature [4–7]. In four dimensions large scale Monte-Carlo simulations with

Wilson fermions have been performed to investigate the spectrum of bound states [19].

The formation of the VY-multiplet containing both mesons and a gluino-glueball has been

observed while the 0−+ glueball is significantly heavier. Within (large) errors the 0++

glueball has the same mass as the f-meson, but due to mass mixing, it is not clear whether

the operator projects onto the correct state. Thus the formation of a heavier multiplet has

not been confirmed yet.

The multiplet structure of the N = (2, 2) SYM model can be extracted either from

an effective Lagrangian of the two-dimensional system or by dimensionally reducing the

super-multiplets of the four-dimensional effective theory. Thereby one should be cautious

since the reduced model should contain massless states [26] and a super-multiplet with

massless states looks different as a massive super-multiplet. Thus it is not straightforward

to foresee the multiplet structure of the reduced system. In any case, the expected bound

states — massive or massless — of the N = (2, 2) SYM model are listed in table 2.

2.2 Supersymmetry restoration in the continuum limit

As argued in the introduction, the lattice will break supersymmetry explicitly. To restore it

in the continuum limit, we have to fine-tune all relevant supersymmetry breaking operators

that are allowed by the remaining symmetries on the lattice. For N = (2, 2) SYM, a

discussion of supersymmetry breaking operators is contained in [33]. Thereby the authors

use a lattice formulation where one nilpotent supersymmetry is exactly preserved on the

lattice. In contrast, in our lattice formulation with Wilson fermions the operator φ2 may

show up in the effective action. To cancel this term we must introduce a scalar mass counter-

term m2
sφ

2 that has to be fine-tuned. The fine-tuned continuum value m2
s = 0.65948255(8)
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has been calculated to one-loop order (which is sufficient for this theory) in [22]. Although

a formulation with compact scalar fields has been used, we checked that this value is also

correct for non-compact scalar fields used in our simulation. This can be explained as

follows: the Jacobian of the transformation from the compact variables in [22] to non-

compact variables cancels (in one-loop) the additional contribution in the action for the

compact fields. Thus we find the identical continuum value for m2
s in both formulations.

As for the four-dimensional mother-theory there is only one relevant susy breaking term

in two dimensions. Because of the similarity of the two theories one expects an important

role of the fermion mass term in two dimensions as well. Let us first recall the impact of a

fermion mass in four dimensions. Calculating the Ward identities for the chiral symmetry

and the supersymmetry on the lattice, Curci and Veneziano demonstrated that only the

renormalized gluino mass will appear as a relevant additional lattice contribution in the

Ward identities [8]. Therefore by fine-tuning the bare gluino mass (in our case the fermion

mass), one recovers chiral symmetry and supersymmetry in the same limit. We expect the

same mechanism to be at work in two dimensions and thus will fine-tune the fermion mass.

Note that this idea is in line with [33], as the fermion mass must vanish in the continuum

limit to recover the chiral limit, as it is not a relevant operator. A fine-tuning on the lattice

will act as an improvement, reducing further supersymmetric violating contributions for

finite lattice spacing.

2.3 Euclidean formulation

Since we can not simulate a model with Minkowski spacetime, we must construct a continu-

ation to the corresponding Euclidean theory. This continuation for theories with Majorana

fermions was discussed in [56–58]. In contrast to Dirac fermions there is only one Majorana

spinor with λ = λTC. One cannot impose the reality condition λ = λ†. The action picks

up an overall negative sign leading to

S =

∫
d4xL, L = tr

(
1

4
FMNF

MN +
1

2
λ̄ΓMDMλ

)
(2.21)

with Euclidean Gamma-matrices ΓM . Majorana fermions exist in the dimensionally re-

duced Euclidean theory. As convenient representation we may use

Γµ = 1⊗ γµ, Γ2 = σ1 ⊗ γ5, Γ3 = σ3 ⊗ γ5, Γ5 = −σ2 ⊗ γ5 , (2.22)

now with Euclidean γµ. The hermitean matrices Γ5 = Γ0Γ1Γ2Γ3 and γ5 = iγ0γ1 are

related as Γ5 = −σ2 ⊗ γ5. Rescaling the fields and absorbing the volume of the torus in a

dimensionful gauge coupling the Lagrangian of the reduced Euclidean model reduces to

L =
1

2g2
tr

{
1

2
F 2
µν +

(
Dµφm

)2 − 1

2
[φm, φn]2 + λ̄ΓµDµλ− iλ̄Γm+1 [φm, λ]

}
. (2.23)

In terms of complex fields ψ and ϕ it takes the form

L =
1

g2
tr

{
1

4
F 2
µν +

1

2
(Dµϕ)†(Dµϕ) +

1

8

[
ϕ†, ϕ

]2
+ ψ̄γµDµψ + i ψ̄P+[ϕ,ψ] + i ψ̄P−[ϕ†, ψ]

}
. (2.24)
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In actual simulations we choose the formulation (2.23) with two real scalar fields and a

reducible four-component Majorana spinor.

2.4 Ward identities

In order to check for the restoration of supersymmetry in the continuum limit, we monitor

supersymmetric Ward identities

〈QO〉 = 0, (2.25)

with supercharge Q introduced in (2.4) and operators O. In four dimensions the fermionic

operator

Oa(x) = trc

{
λb(x)

(
ΓMN

)b
a
FMN (x)

}
(2.26)

is frequently used and gives rise to a bosonic Ward identity [48]. On a finite lattice with

lattice constant a supersymmetry is violated and in terms of the rescaled dimensionless

lattice fields the approximate Ward identity reads

1

NtNs
〈SB〉 = 〈LB〉 =

1

4

〈
trFMNFMN

〉
= −3

8

1

2

〈
tr λ̄ /Dλ

〉
+O

(
β−1

)
=

3

2

(
N2
c − 1

)
+O

(
β−1

)
=

9

2
+O

(
β−1

)
,

1

β
= (ag)2 . (2.27)

We made use of the fact that by translational invariance expectation values of densities do

not depend on the site x. The identity relates the expectation values of the bosonic and

fermionic parts of the action, up to a one-loop term of order 1/β which originates from the

violation of supersymmetry. Note that in the on-shell formulation, one obtains the factor

of 3
8 instead of the factor 1

2 in the off-shell formulation [48].

In accordance with the dimensional reduction we decompose the operator (2.26) into

three terms: one with {M,N} being {m,n}, one with {µ, ν} and finally one with {m,µ}
or {µ,m}. The corresponding three (two-dimensional) Ward identities read

W1 =
1

2

〈
[φ1, φ2]2

〉
− i

8

〈
λ̄Γ2 [φ1, λ] + λ̄Γ3 [φ2, λ]

〉
= 0 ,

W2 =
1

4

〈
FµνF

µν
〉

+
i

8

〈
λ̄Γ2 [φ1, λ]− λ̄Γ3 [φ2, λ]

〉
=

3

2
,

W3 =
1

2

〈
Dµφ

mDµφm
〉

= 3.

(2.28)

Note that the sum rule W1 +W2 +W3 just reproduces the result 9
2 in (2.27).

3 Lattice formulation

In the simulations we use Wilson fermions and the tree-level improved Lüscher-Weisz gauge

action [59]. The scalar fields are treated as non-compact site-variables in the adjoint

representation of the gauge group. The action for the scalar fields is implemented by using

the forward difference

Df
µφx = φx+eµ − UA

x,µφx (3.1)
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in the kinetic term, where the link variables UA
x,µ are in the adjoint representation. The

fermion operator for Wilson fermions is

Dxy = (mf + 2 + Γm+1f
aφma ) δx,y −

1

2

∑
µ

(1− Γµ) δx+eµ,yU
A
x,µ + (1 + Γµ) δx−eµ,yU

A
y,µ

T

(3.2)

where the matrices (fa)bc are the structure constants of the gauge group SU(2). Integration

over the Majorana fermion yields the Pfaffian of CD and we obtain for the partition function

as integral over the bosonic fields,

Z =

∫
DUDφ Sign(Pf(CD)) det(D†D)

1
4 e−S[U,φ]. (3.3)

We made use of the Γ5-hermiticity of the fermion operator Γ5DΓ5 = D†. The fourth root

of D†D is approximated by a rational approximation in the rHMC [60–63] algorithm.

3.1 Sign problem and flat directions

Two known problems may potentially spoil the Monte-Carlo simulations: a potential sign

problem introduced by the Pfaffian and possible flat directions in which the scalar potential

is constant. We address both issues in turn. Although the eigenvalues λi of the hermitian

matrix Q = Γ5D are real and doubly degenerate [12], the Pfaffian can still introduce a sign

problem that we have to take into account in the simulations. Using the dependence of

the Pfaffian on the hopping parameter κ = 1/(2mf + 4) it is possible to show [15] that the

Pfaffian and the determinant are related by

detD =
∏
i

λ2
i ⇒ Pf(CD[U ]) =

∏
i

λi . (3.4)

We use the nice spectral flow method introduced in [15] to monitor a potential sign problem.

The idea is that for a given gauge field configuration (a typical one for fixed β and κ) the

eigenvalues λi vary continuously when the hopping parameter κspec in the fermion operator

increases. For the free operator with κspec = 0 the Pfaffian is positive. Therefore, the

Pfaffian can only become negative if an odd number of eigenvalues λi(κspec) change their

signs as a function of κspec. We have monitored the 8 eigenvalues with smallest absolute

values, shown in the left panel of figure 1 for configurations generated with β = 15.5 and

κ = 0.27020 as function of the flow parameter κspec increasing from 0 to the value of interest

κ. The positive eigenvalues decrease monotonously while the negative eigenvalues increase

as κspec → κ, but they do not cross zero such that the Pfaffian for this configuration remains

positive. Furthermore we show the smallest eigenvalues for three ensembles of 1000 gauge

configurations each belonging to the three flow parameters κspec = κ, 0.25379, 0.26174 in

figure 1. Even for κspec = κ no eigenvalue is small enough to change its sign. Hence the

sign of the Pfaffian is always positive. We repeated the simulation for different volumes,

inverse gauge couplings and hopping parameters. For κ < κc we never observed a negative

Pfaffian while for κ > κc approximately one in thousand configurations had a negative

sign. Thus we safely conclude that there is no sign problem in our simulations.

The scalar potential

V [φ1, φ2] = [φ1, φ2]2 (3.5)

– 11 –



J
H
E
P
0
1
(
2
0
1
9
)
0
9
9

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.250 0.255 0.260 0.265 0.270

λ

κspec

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0 100 200 300 400 500 600 700 800 900 1000

λ

gauge configuration

Figure 1. Left: spectral flow of 8 eigenvalues with smallest absolute values for β = 15.5,

κ = 0.27020 on a 64 × 32 lattice. Right: smallest eigenvalues for three different values of the

spectral flow parameter κspec: 0.25379 (blue triangles), 0.26174 (orange circles) and κ (purple

squares).

in the bosonic action is invariant under a shift

φ1 → φ1 + αφ2 φ2 → φ2 , (3.6)

where α is an arbitrary real parameter. This is an example of a flat direction in the space

of fields (φ1, φ2) along which the potential is constant. Flat directions are generic for SYM

theories with extended susy and may destabilize Monte-Carlo simulations since the scalar

fields may escape along these directions. Flat directions may either be lifted dynamically

by quantum corrections or explicitly by introducing a mass term m2
sφ

2. Actually, as em-

phasized earlier, on the lattice we must introduce a mass term with finite ms to find the

correct supersymmetric continuum limit. This term (which is needed even for a→ 0) lifts

the flat directions explicitly. This is shown in figure 2 where we plotted the spatial average

φ2 = 1
V

∑
φ2
x as function of Monte-Carlo time for β = 14, κ = 0.27233 on a 64× 32 lattice

in the left panel and the expectation value of φ2 as function of ms in the right panel.

For all sets of parameters considered, the absolute value of the scalar fields does not run

away. Hence we conclude, that flat directions are lifted for values ms near the value of the

supersymmetric model and thus cause no problems in the simulations. In a previous work

the lifting of flat directions has been observed even for the susy-breaking value m2
s = 0 and

small values of the inverse gauge coupling [64].

3.2 Scalar and fermion mass fine tuning

The scalar mass is the only relevant coupling that has to be fine-tuned to restore super-

symmetry in the continuum limit (in two dimensions the fermion mass needs not be fine-

tuned). Its value in the thermodynamic and continuum limit is analytically known from

one-loop perturbation theory m2
s = 0.65948255(8) [22]. On the finite 64×32 lattice the mass

is shifted towards the smaller value m2
s = 0.62849. In order to investigate the dependence of

expectation values on m2
s we performed simulations for a larger range m2

s ∈ [0, 1]. Although
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s

Figure 2. Spatial average of squared scalar field as function of Monte-Carlo time for β = 14,

κ = 0.27233, m2
s = 0.6594826 (left) and its expectation as function of m2

s (right) on a 16 × 16

lattice.

the scalar mass breaks supersymmetry explicitly, it turns out that within the statistical

uncertainties the Ward identities are independent of the scalar mass. Therefore we set the

scalar mass to the continuum value m2
s = 0.6594826.

In contrast to four-dimensional N = 1 SYM theory, a fine-tuning of the bare fermion

mass mf is not necessary to restore supersymmetry in the continuum limit. Nevertheless we

shall enhance the chiral properties on the lattice by tuning mf to its critical value mc
f (L, β),

that depends on the inverse gauge coupling β but depends little on the lattice size. In the

continuum limit, the critical fermion mass should approach mc
f = 0, in agreement with

the results in [22, 33]. There are two straightforward methods to determine the critical

fermion mass on a finite lattice. The first uses the order parameter for chiral symmetry〈
λ̄λ
〉

and defines mc
f by the peak position of the chiral susceptibility. The second method

comes from an analogy to QCD which is also employed in the four-dimensional N = 1

SYM theory [4, 16, 65]: although the pion is not a physical particle in the theory, one can

define its correlation function in a partially quenched setup (for details see also appendix B)

which mimics a second Majorana flavour in N = 1 SYM. The pion mass is related to the

renormalized gluino mass by

mq ∝ m2
π. (3.7)

We expect this relation to hold in two dimensions as well and define the critical fermion

mass at the value where the gluino mass vanishes. The results for the two methods are

given in table 3. Both methods yield comparable values for the critical fermion mass. One

observes that the fermion mass approaches the expected continuum value from below.

In the following section we show that
√
β ∝ a. Therefore we extrapolate our results to

the continuum with the ansatz

mc
f (β) = m∞ + c1β

−e1 + c2β
−e2 . (3.8)

The coefficients ci encode lattice artifacts and in the continuum limit mc
f (β →∞) = m∞.
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β 14.0 15.5 17.0 40

mc
f (χs) −0.1738(8) −0.1595(7) −0.1488(4) −0.0757(4)

mc
f (π) −0.1730(11) −0.1615(6) −0.1511(7) −0.0756(7)

β 60 80 100

mc
f (χs) −0.0553(3) −0.0448(3) −0.0380(5)

mc
f (π) −0.0542(4) −0.0433(26) −0.0365(6)

Table 3. Critical fermion mass mc
f for different β. To determine the mass we use the chiral

susceptibility and the mass of the pion ground state.

m∞ c1 c2 e1 e2 χ2
w χ2

0.0051(26) −0.285(32) −1.44(8) 1/2 1 1.33 6.33× 10−7

−0.0126(8) −2.64(5) 5.48(69) 1 2 2.31 7.88× 10−7

−0.0041(18) −1.48(6) 0 0.820(18) - 1.06 5.42× 10−7

Table 4. Fit values for the fit function given in (3.8), for three different sets of parameters. The

mass m∞ represents the continuum value of the critical fermion mass mc
f , which should be zero.

The underlined parameters are prescribed in the 2-parameter fits.

Since mc
f (β) does not depend significantly on the lattice size, we also include simulations

at β = 40, 60, 80, 100 on smaller lattices into the extrapolation. The results of the fits are

shown in table 4. We give two different values χ2
w and χ2 for the goodness of the fit. The

first χ2
w was calculated including the errors for mc

f as weights in the fit and the second χ2

without weights. χ2 is much smaller, showing that the fit of the given ansatz to the data

is very good, but the errors for the critical masses are probably underestimated.1 Within

uncertainties the values for m∞ are compatible with the expected result m∞ = 0.

3.3 Wilson loops and confinement

In order to determine the lattice spacing and perform the continuum limit in section 3.4,

we consider the static quark-antiquark potential

V (r) = A+ σr (3.9)

in the fundamental representation of SU(2) with the string tension σ. In two dimensions

the Coulomb potential is a linear function in r and the Lüscher term is absent. Hence we

do not expect a 1/r term for small and large separations of the static charges. For large

separations of the charges the potential may flatten if there is string breaking. If there is

screening by massless particles then the string tension should vanish.

In this subsection we calculate the static quark-antiquark potential to see whether the

theory is confining or whether the fermions can screen the external charges. In addition

to the theory of investigation we calculate the potential for the simpler N = (1, 1) SYM

1The errors given for the critical fermion masses mc
f include only fit errors but not statistical errors.
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theory in two dimensions. The latter is obtained by a dimensional reduction of the three-

dimensional N = 1 SYM theory and its action in the continuum reads

S =
1

2g2

∫
d2x tr

{
−1

2
FµνF

µν + iλ̄γµDµλ+DµφD
µφ− iλ̄γ5[φ, λ]

}
. (3.10)

It contains one adjoint scalar φ as well as one adjoint Majorana fermion λ. The γµ are

two-dimensional matrices as they are for the three-dimensional mother theory. It has been

argued in [66, 67] that in N = (1, 1) SYM theory a cloud of massless gluinos screens a static

quark in the fundamental representation. When the gluinos become massive, supersymme-

try is broken, screening disappears and confinement should be observed. It is believed that

this is a generic feature of two-dimensional YM-theories with massless adjoint fermions.

Our lattice results for the static quark-antiquark potential VT (R) = log
(

WR,T

WR,T+1

)
with

Wilson loops WR,T are shown in figure 3. For both theories2 we find a linear raising poten-

tial. To suppress statistical fluctuations, we used different numbers of STOUT smearing

steps. With more smearing the potential becomes flatter, since fluctuations on scales of the

final broken-string state are suppressed. We also measured Wilson-loops with unusual small

T to amplify the signal to noise ratio. For T ≈ R > 10 the errors become large since the

signals are exponentially suppressed. The unsmeared and smeared data (with controlled

statistical errors) both show no evidence of string breaking. If there would be screening

for massless fermions, then the string tension should tend to zero for light fermions. We

performed simulations for several values of the fermion mass mf ∈ [−0.1640, 0.0] and al-

ways obtained a linear rising potential. The string tension decreases approximately 10%

towards the chiral limit. Hence there seems to be no signal of screening in the simulations.

It may be that the Wilson loop has a poor overlap to the broken-string ground state,

but this seems unlikely since its behavior does not change even close to the chiral limit.

Another explanation could be, that in a compact formulation of gauge theories certain

states are projected out of the Hilbert space and screening cannot occur. Of course, for

an affirmative answer we would need a larger set of operators and higher statistics or even

better, a method similar to the multi-level Lüscher-Weisz algorithm with exponential error

reduction, as it exists for pure gauge theories [68, 69].

3.4 Scale setting and lattice spacing

In order to determine the lattice spacing and perform the continuum limit, we consider

the static quark-antiquark potential in the fundamental representation of SU(2) and ex-

trapolate with the expected form (3.9) to the chiral limit. For β = 17 and κ = 0.26655

the potential is shown in figure 4. To compare our results to usual QCD lattice data, we

employ the Sommer scale [70] and define a lattice spacing in physical units. The results

for three different values of the inverse gauge coupling

β =
1

a2g2
(3.11)

2The N = (1, 1) SYM theory suffers from a mild sign problem which can be treated with the help of a

exact reweighing by measuring the Pfaffian.
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Figure 3. Left: static fundamental quark-antiquark potential of N =(1, 1) and N =(2, 2) SYM

theory. The measurements where done for several temporal extends T on the 64×32 lattice includ-

ing reweighting of the Pfaffian. The N =(2, 2) data is shifted slightly for clarity of presentation.

Right: comparison of different levels of STOUT smearing with smearing parameter ε = 0.4 for the

N =(2, 2) SYM with temporal Wilson loop size T = 16.
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Figure 4. Left: static quark potential and fit to (3.9) for β = 17.0 and κ = 0.26655. Right: lattice

spacing a for β = 14.0, 15.5 and 17.0 as function of κ on a 64× 32 lattice.

are depicted in table 5. Since the lattice spacing a depends on the fermion mass, we

extrapolate the latter to its chiral limit mf = mc
f . The results are given in table 5. In the

last rows we checked that the inverse dimensional coupling 1/g2 = βa2 in (3.11) is almost

independent of β, confirming that the continuum limit is reached for β →∞.

3.5 Smearing

We use three different types of smearing. For the scalar fields we utilize the low pass filter

for functions. This smearing process is defined as

φ̃n(x) = (1 + ε∆) φ̃n−1(x) with φ̃0(x) = φ(x), (3.12)
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β = 14.0 β = 15.5

κ− κc a[fm] βa2[fm] κ− κc a[fm] βa2[fm]

−0.00440 0.07993(4) 0.08944(9) −0.00400 0.07646(4) 0.09062(9)

−0.00294 0.07989(4) 0.08935(9) −0.00256 0.07612(4) 0.08981(9)

−0.00257 0.07993(4) 0.08944(9) −0.00220 0.07613(4) 0.08983(9)

−0.00220 0.07959(5) 0.08838(11) −0.00183 0.07560(5) 0.08859(12)

−0.00183 0.07958(4) 0.08833(9) −0.00167 0.07563(4) 0.08866(9)

−0.00146 0.07938(5) 0.08822(11) −0.00110 0.07564(4) 0.08868(9)

0 0.07926(322) 0.08795(51) 0 0.07524(310) 0.08774(47)

β = 17.0

κ− κc a[fm] βa2[fm] κ− κc a[fm] βa2[fm]

−0.00354 0.07311(4) 0.09087(10) −0.00168 0.07263(4) 0.08968(10)

−0.00230 0.07281(4) 0.09012(10) −0.00138 0.07237(4) 0.08904(10)

−0.00200 0.07290(4) 0.09034(10) −0.00106 0.07243(4) 0.08918(10)

0 0.07212(266) 0.08842(38)

Table 5. Lattice spacing for different combinations of β and mf. In the last rows of each β section

we give the extrapolations to the chiral limit.

where φ(x) is the scalar field, φ̃n(x) is the smeared field and ε is the smearing parameter. For

gauge fields we use STOUT smearing [71] and for the fermionic sinks and sources we apply

Jacobi smearing [72, 73]. In table 6 we give the number of configurations generated for the

given sets of parameters {β,mf,ms} on a 64× 32 lattice. A large number of configurations

is needed to extract the masses of the ground- and excited states of the f-meson. This

is due to large fluctuations of the two scalar fields entering the fermion operator via the

Yukawa terms which give rise to strong fluctuations in the fermion correlators.

4 Restoration of Ward identities

The simple continuum Ward identities (2.28) do not hold on the lattice since (in our

formulation) there are just no supersymmetries which leave the lattice action invariant.

But in the continuum limit we must recover these identities if we take the finite additive

renormalization of the parameter m2
s into account.

Inspired by the treatment of four-dimensional models in [8, 14, 74–76] we impose three

rules to define the lattice transformations:

1. They become the continuum susy transformations in the continuum limit.

2. They commute with the gauge transformations.

3. The transformation of the covariant derivative is the lattice equivalent of the contin-

uum counterpart.
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β mf m2
s # C

14.0 -0.1440 0.6594826 10000

14.0 -0.1550 0.6594826 10000

14.0 -0.1565 0.6594826 10000

14.0 -0.1590 0.6594826 10000

14.0 -0.1615 0.6594826 10000

14.0 -0.1640 0.6594826 10000

15.5 -0.1320 0.6594826 10000

15.5 -0.1420 0.6594826 10000

15.5 -0.1445 0.6594826 10000

β mf m2
s # C

15.5 -0.1470 0.6594826 10000

15.5 -0.1495 0.6594826 10000

15.5 -0.1520 0.6594826 10000

17.0 -0.1242 0.6594826 10000

17.0 -0.1329 0.6594826 10000

17.0 -0.1350 0.6594826 10000

17.0 -0.1372 0.6594826 10000

17.0 -0.1393 0.6594826 10000

17.0 -0.1415 0.6594826 10000

Table 6. Number of Configurations (# C) for the given parameters β, mf and ms on a 64 × 32

lattice.

These rules allow us to reduce the plethora of possible lattice transformations acting on

the lattice fields {Uµ(x), λ(x), φm(x)} to a small set. We choose the transformations

Q̄αUµ(x) =
a

2
Uµ(x)(Γµ)αβ λ

β(x+ aeµ) , Q̄αU †µ(x) = −a
2

(Γµ)αβ λ
β(x+ aeµ)U †µ(x) ,

Q̄αλβ = 0 , Q̄αλ̄β = −(Γµν)αβG
µν , Q̄αφm =

1

2
(Γm+1)αβλ

β , (4.1)

where all fields but Uµ carry the canonical dimensions in four dimensions and a2Gµν is the

clover plaquette. Since the lattice action is not invariant the continuum Ward identities

are deformed to lattice identities 〈
Q̄O
〉

=
〈
O Q̄Slat

〉
, (4.2)

where the transformation of the Lagrangian is given by

Q̄αLlat =
β

2

{
∂µs

α
µ − (mf −mc

f ) χ
α
f +

(
m2

s − (mc
s)

2
)
χαs

}
+O(a) (4.3)

with dimensional quantities Llat and β. After summing over all lattice sites the contribution

of the supercurrent sαµ vanishes, up to terms of order O(a). In addition, the terms χαf and

χαs represent corrections introduced by a nonzero fermion mass mf and scalar mass ms away

from their critical values. These terms are suppressed after fine-tuning the masses. Details

of the calculation are given in appendix A. Finally we obtain the lattice Ward identities in

the chiral limit mf → mc
f

WB = βV −1〈SB〉+m2
s 〈trφ2〉 → 9

2
, W3 =

β

2
〈trDµφ

aDµφa〉+m2
s 〈trφ2〉 → 3 ,

W2 =
β

4
〈trFµνFµν〉+ β〈tr λ̄Υ

〉
→ 3

2
, W1 =

β

2
〈tr [φ1, φ2]2〉 − β〈tr λ̄Υ〉 → 0 ,

(4.4)

where we used the abbreviation

Υ =
i

8

(
Γ2 [φ1, λ] + Γ3 [φ2, λ]

)
. (4.5)
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Figure 5. The Ward identity W2 in (4.4) is shown for β = 17 (left) and β = 40 (right).

4.1 Extrapolation to the chiral limit

We did check that the Ward identities show no dependence on the lattice size for LS,T >

8 for all β. Thus we simulated on a moderate 32 × 16 lattice with parameters β =

40, 60, 80, 100. To extrapolate our results to the chiral limit we need a guess for the func-

tional dependence of the Ward identities on the bare mass mf. In two dimensions there is

no spontaneous symmetry breaking and correlators are smooth functions of mf. Our sim-

ulations indicate that bosonic correlators show, up to an additive constant b, a smoothed

step function behavior on the fermion mass. This motivates the following ansatz for their

mf -dependence near the critical fermion bare mass m∗:

W (mf) ∼ a arctan {ξ (mf −m∗)}+ b (4.6)

with fit parameters a, b,m∗ and ξ, where ξ is to be interpreted as lattice correlation length.

For example, in the left panel of figure 5 we depicted the arctan-fit to the Ward identity

W2 which is dominated by the term quadratic in the field strength tensor. We observe that

our ansatz yields a good approximation for the functional dependence of the data on mf.

The extracted value for m∗ is very close to the critical fermion mass mc
f . For β ' 40 this

ansatz is not appropriate anymore and we use a linear fit function, as seen on the right

hand side of figure 5. These fits allow us to study the Ward identities in the chiral limit.

Finally we have to extrapolate the Ward identities to the continuum limit. In figure 6

we show the results for W1 and the two contributions to W2 in (4.4) for different β. In all

cases we observe a monotonic convergence with increasing β.

In table 7 we listed the values of all Ward identities for the chiral limit and different

β together with the expected continuum value. The plots in figure 7 show the dependence

on β. The Ward identities clearly converge to the supersymmetric continuum value. In

order to extrapolate to the continuum limit, we use three different fits of the form

W (β) = W∞ + b β−c (4.7)

with the prescribed value c = 1/2 for Fit 1 and c = 1 for Fit 2 (b and W∞ are free fit

parameters). Fit 3 has three free fit parameters. The fits are shown in figure 7. In table 7
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Figure 6. Ward identities (4.4) as functions of mf −mc
f for various values of β between 14 and

100. The colors represent different β: 14 •, 15.5 •, 17 •, 40 •, 60 •, 80 • and 100 •. For W1 (left

panel) we show the fits and standard deviations (confident band). For W2 (right panel) we show

the two components β〈tr λ̄Υ
〉

(upper half) and β
4 〈trFµνF

µν〉 (lower half).

Ward identity W1 W2 W3 WB

β = 14.0 0.0323(8) 1.4678(79) 3.0222(5) 4.5241(126)

β = 15.5 0.0304(16) 1.4732(118) 3.0231(8) 4.5298(143)

β = 17.0 0.0288(10) 1.4688(38) 3.0185(9) 4.5197(128)

β = 40.0 0.0165(5) 1.4834(6) 3.0007(6) 4.4867(11)

β = 60.0 0.0123(1) 1.4918(6) 2.9968(8) 4.5053(6)

β = 80.0 0.0101(1) 1.4901(6) 2.9977(6) 4.4973(9)

β = 100.0 0.0085(1) 1.4920(5) 2.9972(6) 4.5004(8)

β →∞ (Fit 1) −0.0053(3) 1.5105(71) 2.9773(66) 4.4825(140)

β →∞ (Fit 2) 0.0046(1) 1.4981(46) 2.9909(27) 4.4936(74)

β →∞ (Fit 3) −0.0021(14) 1.5507(872) 3.0006(125) 4.5492(1011)

β →∞ (weighted average) −0.0024(13) 1.5267(424) 2.9885(70) 4.5128(507)

theor. value 0 3
2 3 9

2

Table 7. Values of Ward identities for different values of β on a 32× 16 lattice. The last five rows

contain the continuum extrapolations with three different fit functions and a weighted average as

well as the theoretical value for unbroken susy.
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Figure 7. Ward identity W1 and various terms contributing to the identities W2 and W3 in (4.4)

for different values of β together with three different fits used for the continuum extrapolation. The

theoretical value in the supersymmetric continuum limit for W1 is zero.

we give W∞ for W1, the sum of the extrapolated components of W2 and W3 and the sum of

these values for WB. From the three fit functions we can estimate a systematic error coming

from the choice of a particular fit function. This error alleviates our bias in choosing such

a function. The weighted average takes into consideration the goodness of the fits. The

Ward identities clearly point to the restoration of supersymmetry in the continuum limit,

indicating also no sign of spontaneous susy breaking.

5 Mass spectrum

In order to determine the mass spectrum of the theory, we first perform the infinite volume

limit, then the chiral limit and finally the continuum limit. For the infinite volume limit we

study the dependence of the mass of the lightest state on the size of the system in order to

locate a κ- and β-range where the results are (almost) insensitive to the volume. Then we

simulate the theory at a fixed lattice volume for different values of the hopping parameter κ

and extrapolate the results to the critical value κc(β), where the gluino becomes massless.
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Figure 8. Infinite volume extrapolation for the mass of the η-meson at β = 14 and different values

of the hopping parameter κ compared to the smallest lattice momentum π/LT. The horizontal lines

indicate the infinite volume mass m.

Finally we repeat the simulations for three different values of the gauge coupling β and try

to extrapolate the results to β →∞.

5.1 Volume dependence

The finite volume dependency of bound states is given by [77, 78]

mL = m− c

L
exp

(
− L

L0

)
, (5.1)

where mL is the mass at a finite lattice with spatial length L and m the mass in the

infinite volume limit. The parameter L0 represents the scale at which finite volume effects

set in. In order to eliminate this fit parameter, we relate it to the infinite volume mass

of the lightest particle, i.e. L0 = π/mη. The η-meson ground state mass mL is shown

for β = 14 and four different values of κ in figure 8. We observe two different kinds of

behaviour. For κ = 0.26940, 0.27086 and 0.27159 the mass is monotonously increasing for

LT ≥ 32. For κ = 0.27233 it is monotonous decreasing. The explanation is that in the last

case the infinite volume mass of 0.0365(14) is much smaller than the lattice cutoff π/LT

for all lattices. If the mass gets close to the lattice cutoff, we get back the monotonously

increasing function. Nevertheless, we observe that the fit function works well for all cases

and yields reliable results for the infinite volume mass. For the largest LT value the mass

mL is within statistical errors the same as the infinite volume mass m. Thus we will restrict

ourselves to this lattice size for the spectroscopy.

5.2 Mesons

We have calculated the π -, η - and f-meson correlation function (see appendix B) for dif-

ferent values of the hopping parameter κ. In figure 9 we show our results for two values of

κ ≤ κc. For the larger value κ = 0.26903 the masses are slightly above the lattice momen-

tum cutoff. First of all we observe that the π- and the η-meson correlation functions are
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Figure 9. The η -,π - and f-meson correlation functions C(t) as function of the temporal extend t

are shown for β = 17 and κ = 0.26655 (left) and κ = 0.26903 (right).
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Figure 10. Connected and disconnected part of the η-meson (left) and f-meson (right) correlation

function C(t) as function of the temporal extend t for β = 17 and κ = 0.26903.

very similar for all values of κ considered and for intermediate values of t. For even larger

t, the π meson correlation function decreases faster than the one for the η meson. Thus

the ground state of the latter must be lighter. As the π ground state mass becomes zero

in the chiral limit, the same will be true for the η-meson.

Next we observe that the correlation functions for the f- and the η-meson become

degenerate in the chiral limit. This suggests, that indeed both mesons form a multiplet in

the chiral limit, independent of the restoration of susy in the continuum limit. To further

investigate this behaviour we study the connected and the disconnected contributions to the

correlation functions. Recall, that the pion correlation function is defined as the connected

part of the η-meson correlation function. In figure 10 we depicted the two contributions to

the correlation functions for the η-meson (left) and the f-meson (right). For the η-meson we

find that the connected part is at least one order of magnitude larger than the disconnected

part and thus the η- and the π-meson correlation function are hard to distinguish. With
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β = 14.0

κ 0.26940 0.27086 0.27122 0.27159 0.27196 0.27233

mη 0.135(4) 0.089(1) 0.076(1) 0.064(2) 0.053(1) 0.041(1)

mf 0.359(7) 0.247(4) 0.254(3) 0.074(2) 0.053(1) 0.046(2)

mη∗ 0.382(113) 0.347(30) 0.313(39) 0.287(31) 0.319(24) 0.318(29)

mf∗ - - - 0.509(7) 0.475(10) 0.471(9)

β = 15.5

κ 0.26767 0.26911 0.26947 0.26983 0.27020 0.27056

mη 0.130(2) 0.081(2) 0.074(1) 0.060(1) 0.047(1) 0.036(1)

mf 0.362(5) 0.275(4) 0.140(5) 0.059(1) 0.052(1) 0.037(1)

mη∗ 0.412(72) 0.281(33) 0.357(27) 0.318(22) 0.301(19) 0.302(26)

mf∗ - - 0.656(23) 0.442(3) 0.504(8) 0.459(4)

β = 17.0

κ 0.26655 0.26779 0.26810 0.26841 0.26872 0.26903

mη 0.116(1) 0.076(1) 0.062(2) 0.054(1) 0.043(1) 0.034(2)

mf 0.335(2) 0.094(2) 0.064(3) 0.052(4) 0.030(1) 0.034(1)

mη∗ 0.407(42) 0.353(24) 0.285(32) 0.305(24) 0.295(23) 0.278(25)

mf∗ - 0.473(4) 0.434(5) 0.437(4) 0.402(4) 0.433(4)

Table 8. Masses of the η- and f-meson ground and excited states.

increasing t (but 2t ≤ NT ) the disconnected part gets even smaller. But despite of this we

can still disentangle two slightly different masses in our simulations. Only in the chiral limit

will η and π both become massless. For the f-meson the situation is different: the connected

and disconnected contributions are roughly of equal size over the whole t range. Hence a

observed degeneracy between η-meson and f-meson correlation functions is nontrivial. We

determined the ground state and excited state masses of both mesons. The results are

depicted in table 8 as well as in figure 11.

We see that the mass of the η-meson ground state depends linearly on the fermion mass

mf. In fact, the zero crossing almost exactly hits the critical mc
f . Thus mη is proportional

to mf−mc
f and will vanish in the chiral limit. For the f meson, a linear dependence is seen

only for a fermion mass close to the critical fermion mass, where the latter is the same as

for the pion. This behaviour is more pronounced for the larger values of β. Thus in the

chiral limit we find the same ground state masses for the f-meson and the η-meson.

For the excited states we can not make a comparably strong statement, since it is more

difficult to extract their masses. For the η-meson we used a fit with three masses, which

agrees rather well over the whole t-range with the correlator. As the largest mass was

above 1, it is heavily afflicted with discretization artifacts and thus discarded. Hence only

the masses of the ground states and first excited states are given in table 8. We compared
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Figure 11. Ground (left) and excited (right) state masses of the η- and f-meson as function of the

pion mass squared for β = 14, 15.5 and 17. For the η ground states we show linear fits.

these results with the effective mass extracted from the corresponding correlation function.

For both η and f we find one plateau corresponding to their ground state mass. Using the

so obtained values to fit the correlation functions for small t leads to the values of the first

excited state of the f meson, given in table 8. Unfortunately this method of determination

leads to a large unknown systematic error. Comparing the results for different values of β,

we observe that the mass of the excited f-meson decreases slowly with increasing β. Thus

it could approach the mass of the excited η meson in the continuum limit. Unfortunately

our results do not allow for an unambiguous extrapolation to the chiral limit, preventing

also the continuum extrapolation.

5.3 Gluino-glueball

In the four-dimensional multiplet we have two gluino-glueball particles, which differ by

their transformation under parity. As interpolating fermionic operator we use

OGG = ΣµνF
µνλ (5.2)

where the Fµν is approximated on the lattice by the clover plaquette. Although the pro-

jectors on a definite parity quantum number are P± = (1± Γ0)/2 it is more convenient to

project on periodic (S) and antiperiodic (A) correlation functions

CA(t) =
〈
OGG(t)O†GG(0)

〉
, CS(t) =

〈
OGG(t)Γ0O

†
GG(0)

〉
. (5.3)

All other contractions over Γ-matrices can be written as a linear combination of these two

correlation functions, as expected for two independent physical states.

The determination of masses on larger lattices is only possible with the help of gauge

field smearing. We introduce the smearing level S = steps × parameter, where ‘steps’ are

the amount of smearing steps and ‘parameter’ is the smearing parameter for these steps.

The correlation functions CS(t) for different smearing levels are shown in figure 12 (left

panel). Even for a large number of smearing steps the signal still improves. Table 9 shows
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S 12 40 120 200 300 400

mA 0.486(11) 0.360(7) 0.320(5) 0.310(5) 0.289(12) 0.287(10)

mS 0.410(10) 0.313(5) 0.265(2) 0.252(3) 0.246(3) 0.243(3)

Table 9. Extracted masses for different smearing levels S for the symmetric and antisymmetric

gluino-glueball states for β = 17 and mf = −0.1415.
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Figure 12. Left: gluino-glue correlation function C(t) as function of the temporal extend t at

β = 17 and mf = −0.1350 for different smearing levels S. Right: gluino-glue mass as a function of

the squared pion mass.

our results for β = 17 and mf = −0.1415. For both masses, we see a nice convergence

with increasing smearing. This behaviour is even seen for large smearing levels (S = 400).

Both masses mA and mS converge to the same value as expected in a parity symmetric

theory. Furthermore the mass depends only very weakly on the gauge coupling β and the

bare fermion mass mf (see figure 12, right panel).

Comparing with the masses of the mesons, we find that the gluino-glueballs have com-

parable masses as the excited state of the η-meson. An explanation for this unexpected

behavior could be, that the first excited state of the gluino-glueball dominates the corre-

lation function over a long t-range, such that the ground state contribution is not visible

on our lattice sizes. To see whether this is the case, we applied this large amount of

smearing (S = 400), but we did not observe any sign of a lighter particle in this channel.

Thus an alternative explanation could be, that we indeed detected the ground state of

the gluino-glueball. But then one must explain why the gluino-glueball forms a multiplet

with the excited mesons and not the mesons in their ground states. The fermionic state

in the VY-multiplet is a mixture of the gluino-glue and a gluino-scalarball. Possibly the

gluino-scalarball has a lighter mass. Unfortunately, also with a large amount of smearing

for the scalar field, we are not able to obtain an estimate for its mass.
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Figure 13. Glueball correlation function C(t) as function of the temporal extend t for β = 17 and

mf = −0.074.

5.4 Glue- and scalarballs

The second multiplet of bound states consists of glue-, scalar- and glue-scalarballs. The

correlation functions of the corresponding interpolating operators show no correlation at

all for large distances. For the glueball, this is shown in figure 13. The only nonzero values

of the correlation function are at distances t = 0, 1, 63 and 64. A similar behavior is seen in

pure Yang-Mills theory on a two-dimensional lattice. Indeed, with Migdals prescription [79]

one obtains for the correlation function of the glueball operator G(x) in this theory

〈G(x)G†(y)〉 = CG = const. (5.4)

This holds true in case the supports of the interpolating operators are disjunct. Hence

the correlation function of glueballs will show only a correlation between time slices with

distance less than the diameter AG of the support of G(x). We observe the very same

behaviour in the supersymmetric theory in figure 13, where the diameter is two. In the

continuum limit, the physical diameter shrinks to zero and the expectation value is constant

in the whole spacetime volume. Furthermore one can show, that this value goes to zero

and the glueball decouples completely from the theory. This lattice result is in agreement

with the analytical result presented in [80].

Since we use smearing of sources and sinks in our analysis, it maybe instructive to

study the effect of smearing on the correlation function of glueballs. Every smearing step

increases the diameter AG, and thus induces more artificial correlations between the lattice

points, which are uncorrelated without smearing. The results can be seen in figure 14, where

we compare pure Yang-Mills theory (left) to susy Yang-Mills theory (right). In both cases

we observe more nonzero values in the correlation functions for higher smearing levels,

as expected. Smearing effects can also be seen in the effective mass: in both theories

it is an ever increasing function of the distance for all values of the smearing level. We

conclude that, similarly as in pure YM-theory in two dimensions, there is no correlation

for glueballs. In other words, the glueball completely decouples from the N = (2, 2) SYM
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Figure 14. Comparison between the glueball correlation function C(t) as function of the temporal

extend t for the two-dimensional Yang-Mills theory (left) and the two-dimensional Super Yang-Mills

theory (right) for different smearing levels S. In the bottom row we plot the effective mass.

theory in two dimensions. Similarly we could not detect any correlations in the scalarball

and glue-scalarball correlator functions. Since they should form a super-multiplet with the

glueball, they will decouple from the theory as well. The additional gluino-glueball state in

the super-multiplet will also show no correlations, and thus is not seen in our simulations.

6 Conclusions

In our work, we simulated the two-dimensional N = (2, 2) SYM lattice-theory in a conven-

tional approach without twisting. The simulation could be afflicted with two potentially

serious problems common in gauge theories with extended supersymmetry: flat directions

and a sign problem. In the present work we demonstrate that these problems do not arise

for all parameters which are relevant to approach the supersymmetric continuum limit.

As concerning the sign problem, this is related to the absence of the sign problem in the

Q-exact formulation of the continuum theory [81].

When studying various Ward identities, we did observe that they are rather insen-

sitive to the bare mass of the scalars ms, as long as the latter is in the vicinity of the
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particle m m∗

a-η 0.034(2)→ 0 0.278(25)

a-f 0.034(1)→ 0 0.433(4)

gluino-glueball — 0.243(3)/0.287(10)

Table 10. We observe the formation of a massive VY-multiplet while the ground states are

massless. The FGS-multiplet decouples from the theory.

(all-loop) perturbative value in the supersymmetric continuum model, which is given by

m2
s = 0.659 482 55(8). Away from the continuum limit this may not be the optimal choice.

Spotting an observable, which allows for further fine-tuning of the scalar mass on the lattice

could perhaps improve the results and would allow for more accurate predictions. But such

an improvement is probably not easy to achieve since our results are stable and reliable.

They do not depend on the scalar mass in the vicinity of the above value and thus a further

fine-tuning of ms does not help much.

The restoration of supersymmetry is observed in the chiral limit. Since the fermion

mass is not a relevant coupling (contrary to the situation in four dimensions) this may

come as a surprise. But generally speaking fine-tuning of an irrelevant coupling may

be helpful away from criticality. In any case, the result confirms the assumption, that

supersymmetry is recovered in the chiral limit, similarly as in the four-dimensional mother-

theory. But the spectrum of bound states looks different than in the four-dimensional

N = 1 theory. We found a massless multiplet — the dimensionally reduced Veneziano-

Yankielowicz multiplet — which contains the mesons, while the Farrar-Gabadadze-Schwetz

multiplet decouples from the theory (see table 10). The mass of the lightest gluino-glueball

seen in the simulations is still a bit ambiguous. Within errors its mass is equal to that of

the excited mesons. We believe we could not follow the corresponding correlation function

for large enough t-values, in order to disentangle the signals from the ground state and

excited state. Probably we did only see the excited gluino-glueball which forms a multiplet

with the excited meson states. If this is true, then finding the missing ground state of the

gluino-glueball may be as difficult as finding a needle in a haystack.

In this work we could not see any screening of static charges in the fundamental repre-

sentation, although the dynamical fermions are in the adjoint. Instead our accurate simu-

lations indicate that N = (2, 2) and N = (1, 1) SYM theory in two dimensions both confine

static charges in the fundamental representation. At least the result for the N = (1, 1) the-

ory with Majorana fermions seems to be in conflict with analytic results in [66]. Clearly, this

clash of numerical simulations with analytical results should be resolved in future works.

In future studies we intend to study the phase structure of the N = (2, 2) SYM theory

as well as related systems with more supersymmetries. It would be interesting to measure

the two independent holonomies (Wilson loops with windings) on the two-torus and their

dependence on the geometry of the torus. This way one could first compare with results

obtained withQ-exact formulations for N = (8, 8) SYM theory [82] and furthermore extend

to systems with less supersymmetry where no Q-exact formulation exists. Since we did
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not encounter any sign problems for κ < κc and since the flat directions are stabilized,

we should be able to accurately localize the expected phases and phase-transition lines in

two-dimensional SYM with extended supersymmetry.
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A Exact lattice Ward identities

In the main body of the text we studied the violation of several Ward identities due to lattice

artifacts. Thereby we neglected contributions stemming from mf and ms deviating from

their critical values. Here we derive lattice Ward identities without any approximation. The

application of the lattice supersymmetry transformations (4.1) to the lattice Lagrangian

results in

Q̄αLlat =
β

2

{
∂µsµ

α − 2mf (ΓMN )αβFMNλβ

}
+ 2m2

s (Γm+1)αβλ
βφm +XS

=
β

2

{
∂µs

α
µ −mf χ

α
f

}
+m2

s χ
α
s +XS,

(A.1)

with

χαf = 2 tr
(
ΓαβMNF

MNλβ
)

and χαs = 2 tr
(
Γαβm+1λβφ

m
)
. (A.2)

The contributions χα originate from the fermion and scalar mass terms introduced in the

lattice Lagrangian. As pointed out previously the supercurrent sαµ vanishes after summation

over the lattice sites. The term XS originates from the lattice regularisation and is of order

O(a). Clearly, at tree-level supersymmetry is restored in the continuum limit for the critical

values mc
f = mc

s = 0. At one-loop a finite scalar mass is generated due to different lattice

momenta of bosons and fermions. Furthermore, the Wilson term in the fermion operator

gives rise to a nonzero critical fermion mass. In the continuum limit, no further corrections

are generated at higher loop order such that mc
f → 0. In order to compensate for the shifts

at finite lattice spacing one adds counter-terms to the tree-level lattice action and ends up

with the full quantum lattice Ward identity (4.3). The scalar mass counter-term must also

be included in the Ward identity W3 and the bosonic Ward identity because they contain

the kinetic term for the scalar fields. Thus, the set of lattice Ward identities read

WB = βV −1〈SB〉+m2
s 〈trφ2〉+ β〈tr λ̄ΓMNFMN Θ〉 → 9

2
,

W3 =
β

2
〈trDµφ

aDµφa〉+m2
s 〈trφ2〉+ 2β

〈
tr λ̄ΓµmDµφm Θ

〉
→ 3 ,

W2 =
β

4
〈trFµνFµν〉+ β〈tr λ̄Υ

〉
+ β〈tr λ̄ΓµνFµνΘ〉 → 3

2
,

W1 =
β

2
〈tr [φ1, φ2]2〉 − β〈tr λ̄Υ〉+ β〈tr λ̄Γmn [φm, φn] Θ〉 → 0 ,

(A.3)
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Figure 15. On the left we see the term W b
2 and on the right the term Cs.

where we used the abbreviations

Θ =
(
m2

s − (mc
s)

2
)
χs − (mf −mc

f )χf, Υ =
i

8

(
Γ2 [φ1, λ] + Γ3 [φ2, λ]

)
. (A.4)

Near the supersymmetric continuum limit, lattice artifacts should be sufficiently suppressed

such that the breaking of Ward identities originate from the missing fine-tuning of mc
f and

mc
s . Since we anyway use the π-mass to fine-tune mc

f we will focus on the fine-tuning of

mc
s in what follows. We will show this fine-tuning approach for the Ward-identity W2. The

results for the other identities are very similar.

First we introduce W b
2 and the correction terms Cs and Cf

W b
2 = β

〈1

4
trFµνF

µν + tr λ̄Υ
〉
, Cs = 〈tr λ̄ΓµνFµνχs〉, Cf = β〈tr λ̄ΓµνFµνχf〉 , (A.5)

which enter the Ward identity W2 of interest,

W2 = W b
2 +

(
m2

s − (mc
s)

2
)
Cs + (mf −mc

f ) Cf . (A.6)

Now we simulate the gauge theory for a set of values m2
s near the one-loop value 0.6594826

and measure the expectation values W b
2 , Cs and Cf. Note that ms and mf are the masses

used to generate the ensemble, whereas the trial mass mc
s only enters via the operators

defining the Ward identities. Next we should extract a trial mass for which W2 ≈ 3
2 for

all ms near the critical value. Note that the extracted mc
s could deviate from the one-loop

results due to lattice artifacts.

Figure 15 clearly shows that W b
2 and Cs do not depend sensitively on ms near the

critical one-loop value. The same holds true for Cf, which is not shown in the figure. This

means that it is difficult to find any deviations of mc
s from its known continuum one-loop

value. But since the correction terms Cs and Cf in (A.6) are two orders of magnitude smaller

than W b
2 we may safely neglect the lattice correction Θ if we are close to the critical masses,

which we ensure by extrapolating to the chiral limit and using 0.6594826. This leads to

the final set of approximate Ward identities (4.4) which are measured in our simulations.
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B Meson correlation functions

In order to extract meson masses, we measure the connected two-point functions of the

operators λ̄mΓλn,

CΓ,m,n(x, y) =
〈(
λ̄mΓλn

)
x

(
λ̄nΓλm

)
y

〉
−
〈(
λ̄mΓλn

)
x

〉〈(
λ̄nΓλm

)
y

〉
(B.1)

with Γ = 1 for the scalar mesons and Γ = Γ5 for the axial mesons. The indices m,n are

flavour indices. In a two-flavour setup, the f-meson mass is extracted from the decay of

Cf = C1,1,1, the η-meson mass from Cη = CΓ5,1,1 and the pion mass from Cπ = CΓ5,1,2.

After integration over the fermions, we obtain

CΓ,m,n(x, y) =
〈
tr
(
∆mn
x,xΓ

)
tr
(
∆nm
y,y Γ

)
− tr

(
∆mm
x,y Γ∆nn

y,xΓ
)〉

−
〈
tr
(
∆mn
x,xΓ

)〉 〈
tr
(
∆nm
y,y Γ

)〉 (B.2)

with the fermion propagator ∆. In our simulations, only one fermion flavour is dynamic.

The pion correlation function is therefore defined in a partially quenched setup which

implies ∆11 = ∆22 = ∆ and ∆1,2 = ∆2,1 = 0. We get for the different correlation functions

Cf(x, y) = 〈tr (∆x,x) tr (∆y,y)− tr (∆x,y∆y,x)〉 − 〈tr (∆x,x)〉 〈tr (∆y,y)〉 ,
Cη(x, y) = 〈tr (∆x,xΓ5) tr (∆y,yΓ5)− tr (∆x,yΓ5∆y,xΓ5)〉 − 〈tr (∆x,xΓ5)〉 〈tr (∆y,yΓ5)〉 ,
Cπ(x, y) = 〈− tr (∆x,yΓ5∆y,xΓ5)〉 .

(B.3)

For a single flavour, the pion correlation function is therefore defined as the connected part

of the η-meson correlation function, where connected refers to a diagramatical interpreta-

tion of traces over the fermion propagator.
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[45] M. Ünsal, Twisted supersymmetric gauge theories and orbifold lattices, JHEP 10 (2006) 089

[hep-th/0603046] [INSPIRE].

[46] D.B. Kaplan, Recent developments in lattice supersymmetry, Nucl. Phys. Proc. Suppl. 129

(2004) 109 [hep-lat/0309099] [INSPIRE].

[47] J. Giedt, Deconstruction and other approaches to supersymmetric lattice field theories, Int. J.

Mod. Phys. A 21 (2006) 3039 [hep-lat/0602007] [INSPIRE].
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