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1 Introduction

Bootstrap approaches using symmetries are a mainstay of modern research, providing

unparalleled glimpses into the exact nature of quantum field theories. Meanwhile, the

Lagrangian-based formalism, when it exists, remains arguably the most concrete handle

on the theory. It is of interest, when possible, to compare these frameworks.

In two dimensions, a further reason to study this connection1 stems from the intimate

relationship of supersymmetric Lagrangians, or non-linear σ-models, with the geometry of

their space M of field configurations. This may inform us on string dualities generalising

mirror symmetry, amongst other applications; see e.g. [2–9]. A particularly interesting

case is when the target space of the σ-model is a manifold with reduced G-structure.
1Similar considerations can be found in [1].
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Related to these, there exist, in the conformal case, exact field theory descriptions based

on chiral symmetry W -algebras. The most well-known example is when the target space

is a complex manifold, corresponding to the N = 2 Virasoro algebra [10]. Other more

intricate algebras, in particular related to exceptional structure groups [3, 11], have also

appeared in this context [12, 13].

It is natural to ask for a characterisation of the precise G-structure target manifolds

M related to a given W -algebra, at least to leading orders in σ-model perturbation theory.

At the classical level, a long-established result due to Howe and Papadopoulos [14–16]

sheds light on this question in the context of massless (1, 0) non-linear models with generic

target space metric and B-field [17]. Their result is a correspondence between certain

conserved currents associated to symmetries and differential forms Φ on M preserved by

a connection ∇+,

∇+Φ = 0 , (1.1)

with connection symbols Γ+ = Γ+ 1
2dB twisted by the flux.

In this work we highlight a simple but enlightening generalisation of this result, which

we refer to as extended G-structure symmetry. We assume minimal (1, 0) supersymmetry

and we include a Fermi sector in the σ-model, allowing us to incorporate a vector bundle

V → M with gauge field A and curvature F , while keeping a general metric and B-field

background. We also allow a mass term [18, 19] coupled through a section S of V∗. Our

symmetry is described in sections 3.1–3.2. It holds provided we impose (1.1) and further

geometric constraints, to be defined and discussed extensively later:

iF (Φ) = 0 , idAS(Φ) = 0 . (1.2)

We comment on the systems (V → M ; G,B,A, S) solving these conditions in sec-

tion 3.3. These geometries are closely related to supersymmetric backgrounds of heterotic

supergravity. Often in this paper we will refer to the natural application of our results to

heterotic compactifications. Meanwhile our statements are very general — we need only

minimal supersymmetry — and valid regardless of the role played by the σ-model. Hence

they are likely to find applications beyond the realm of the heterotic string.

In section 4, we examine whether G-structure symmetries are anomalous. We

prove (section 4.2) that the one-loop quantum effective action corresponding to (1, 0) σ-

models [20] is invariant provided we assign order-α′ quantum corrections to the conditions

mentioned above. In particular, there must be a connection Θ on TM satisfying a curva-

ture condition analogous to (1.2),

iRΘ(Φ) = 0 , (1.3)

and the torsion in (1.1) must be replaced by the gauge-invariant combination

dB +
α′

4
(CS3(A)− CS3(Θ)) . (1.4)

This result is beautifully consistent with the world-sheet Green-Schwarz mechanism in het-

erotic string theory [20, 21], reviewed in section 4.1. This connection appears to have gone

unnoticed until now. We discuss how sensitive these results are to counterterm ambiguities.
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We also comment on gauge-invariance at order α′ in relation with (1, 0) superconformal

symmetry. Again, with the effective action, we show how to α′-correct the supercurrent

when flux is turned on. We connect with familiar results on conformal anomalies. Fi-

nally, an appendix clarifies classical facts about the superconformal-type chiral symmetries

discussed in this paper. The next section sets up our conventions.

2 Two-dimensional (1, 0) non-linear σ-model

2.1 Conventions

Our σ-model conventions are as follows [17, 20, 22]. We work on a compact world-sheet

without boundary in Lorentzian signature and use lightcone coordinates z+, z−. To avoid

cluttering formulæ, we omit some of the usual Lorentz indices when no confusion is possible.

The Grassmann direction is parametrized by θ and generic superspace coordinates are

denoted by ζµ = (z+, z−, θ). We write the superspace measure as d2|1ζ = dz+dz−dθ. The

superderivative and supercharge are given by

D = ∂θ + iθ∂+ , Q = ∂θ − iθ∂+ , (2.1)

where by convention

∂+z
+ = ∂−z

− = ∂θθ = 1 . (2.2)

They satisfy −Q2 = D2 = i∂+ and both have weights (h+, h−) = (1/2, 0).

We need two types of superfields,

Xi = xi + θψi , Λα = λα + θfα . (2.3)

The Bose superfields X locally define a map X : Σ −→ M from superspace Σ to a

d-dimensional target space M, and have weights (0, 0). Their leading components are

ordinary bosonic fields, while ψ are left-moving Majorana-Weyl fermions. The Fermi su-

perfields Λ have weights (0, 1/2) and form a section of the bundle
√
K−⊗X∗V , where V is

a vector bundle with connection A on the target space M, and
√
K is the spin bundle over

the world-sheet. The Majorana-Weyl fermions λ are right-moving and f are auxiliary fields.

The most general renormalisable action preserving (1, 0) supersymmetry [17, 23] that

can be written for these fields follows from dimensional analysis. Allowing also for a mass

term, we shall consider S = SM + SV + SS , where

SM[X] =

∫

Σ

d2|1ζ

4πα′
(−i)Mij(X)DXi∂−X

j , (2.4)

SV [X,Λ] =

∫

Σ

d2|1ζ

4πα′
tr(ΛDAΛ) , (2.5)

SS [X,Λ] =

∫

Σ

d2|1ζ

4πα′
m tr(S(X) Λ) . (2.6)

Here M(X) is a d × d matrix whose symmetric and anti-symmetric parts are the target

space metric and Kalb-Ramond field: Mij = Gij + Bij . We also use the gauge covariant

superspace derivative

DAΛ
α = DΛα + Âα

βΛ
β . (2.7)
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Here and later, we add hats to operators constructed by appending factors of superderiva-

tives of the Bose superfields to expressions with form indices. For example,

Âα
β = Ai

α
β(X)DXi . (2.8)

The trace over bundle-valued forms is taken with respect to the bundle metric hαβ(X), so

in the expression for the action this means

tr(ΛDAΛ) = hαβ(X) ΛαDAΛ
β . (2.9)

We choose, without loss of generality, the bundle metric hαβ to be constant. Finally, m is

a constant parameter of mass dimension one and S(X) is a section of V∗. The associated

term is a potential for the bosonic fields introduced in [18, 19]. It may be used to cure

infrared divergences [18, 24] and is related to solitonic effects [25] and Landau-Ginzburg

theories [26].

2.2 General variations

We begin by considering general variations of the action (2.4)–(2.6) to prepare the ground

for our symmetry,

δS =

∫
d2|1ζ

4πα′

(
δS

δXi
δXi +

δS

δΛα
δΛα

)
. (2.10)

For variations with respect to X, we find

δSM
δXi

= 2iGij

(
D∂−X

j + Γ+ j
kl ∂−X

kDX l
)
, (2.11)

δSV
δXi

= tr
(
ΛFijDXjΛ

)
+ 2hαβ

(
DAΛ

α
)
Ai

β
δΛ

δ , (2.12)

δSS
δXi

= m tr
(
(∂iS)Λ

)
, (2.13)

where F is the curvature two-form of A,

F = dA+A ∧A , (2.14)

and we have defined a connection ∇+ on TM with symbols Γ+ given by

Γ+i
jk = Γ i

jk +
1

2
(dB)ijk , (2.15)

where Γ represents the Levi-Civita connection symbols. In deriving these expressions, we

have integrated by parts and discarded boundary terms. We will continue to do so in this

paper. The variations with respect to the Fermi superfields are

δSM
δΛα

= 0 ,
δSV
δΛα

= 2hαβ DAΛ
β ,

δSS
δΛα

= mSα . (2.16)

It will be easier to demonstrate our symmetry if we write the variations of the σ-model

action these expressions in terms of covariant perturbations δAΛ of Λ [19], that is

δAΛ
α = δΛα +Ai

α
βΛ

β δXi . (2.17)
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In terms of this, a general variation of the action can be written as

δS =

∫
d2|1ζ

4πα′

(
∆S

∆Xi
δXi +

∆S

∆Λα
δAΛ

α

)
, (2.18)

where we have reorganised the expressions above to define

∆S

∆Xi
=

δSM
δXi

+ tr
(
ΛFijDXjΛ

)
+m tr

(
(dAS)i Λ

)
, (2.19)

∆S

∆Λα
= 2hαβ DAΛ

β +mSα =
δS

δΛα
. (2.20)

Here

dAS = dS − SA = (∂iS − SAi) dx
i (2.21)

is the appropriate covariant exterior derivative for the section S of V∗.

3 Extended G-structure symmetry

Suppose the target space manifoldM, with dimM = d, admits a globally-defined nowhere-

vanishing p-form Φ. The existence of such a form amounts to a reduction of the structure

group GL(d) of the frame bundle of M to a subgroup G. Howe and Papadopoulos [14–16]

showed that if Φ satisfies a certain constraint, then the σ-model with action SM (that is, in

the case where Λ = 0) has an extra symmetry. In this section we generalise this symmetry

to include the bundle and the mass terms by SV and SS . That is, we extend G-structure
symmetries to the full non-linear σ-model.

3.1 Review of the Howe-Papadopoulos symmetry

Let ǫ(ζ) be a general function over superspace with left-moving weight h+ = (1 − p)/2.

It has even/odd Grassmann parity depending on whether p is odd/even. Consider the

transformation

δΦXi =
ǫ(ζ)

(p− 1)!
Φi

i2...ip(X)DXi2...ip = ǫ(ζ) Φ̂i , (3.1)

where DXi2...ip is a shorthand for DXi2 . . . DXip .

The variation of the σ-model action SM induced by (3.1) follows from the analysis of

section 2.2. Only the first terms in (2.18) and in (2.19) participate and after integrating

by parts we find

δSM =

∫
d2z

4πα′
ǫ(ζ)dθ (−2i)∇+

i Φ̂ ∂−X
i +

∫

Σ

d2z

4πα′
∂−ǫ(ζ) dθ Φ̂ , (3.2)

where we have defined

Φ̂ =
1

p
DXi Φ̂i =

1

p!
Φi1···ip DXi1···ip (3.3)

and2

∇+
i Φ̂ =

1

p!
∇+

i Φj1...jp DXj1...jp . (3.4)

2We take covariant derivatives to act as ∇iΦj = ∂iΦj − Γk
ijΦk on one forms.
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It is easy to see that the first term gives the main result of [14]. If Φ is parallel under the

connection ∇+ with torsion3 T = dB, i.e.

∇+
i Φj1j2...jp = 0 (T = dB) , (3.5)

then the first term vanishes identically. Moreover, if ǫ = ǫ(z+, θ) is purely left-moving,

the last term in equation (3.2) also vanishes and we conclude that (3.1) is an infinitesimal

chiral symmetry of SM. Note that this symmetry is non-linear for p ≥ 3. The last term in

equation (3.2) corresponds to the current [14]

J− = 2i(−1)pΦ̂ , (3.6)

which is simply the operator naturally associated to the differential form Φ. Its conservation

equation is the statement that, up to the equation of motion for X, it is left-moving:

∂−Φ̂ ≈ 0 . (3.7)

General facts and notations about chiral symmetries can be found in the appendix, in

particular our normalisation leading to the overall factor in (3.6).

Chiral currents such as (3.6) are fundamental to the quantum description of conformal

field theories in terms of W-algebras. The p-form current here and the classical stress-

tensor derived in the appendix (cf. equation (A.7)) are classical limits of corresponding

generators in appropriate W-algebras. (We give examples in section 3.2.) An importance

difference between them to bear in mind is that a choice of normal ordering must be made

when quantum operators are build from classical composite fields. In interacting theories,

such as our non-linear σ-models, there is, to our knowledge, no canonical resolution to this

ordering ambiguity.

3.2 The extended G-structure symmetry

We now proceed to generalise the Howe-Papadopoulos symmetry to the full model, includ-

ing the gauge and mass sectors. As a first step, we set δAΛ = 0 and focus on the variation

of S induced only by the Howe-Papadopoulos transformation of X given by (3.1). The

ansatz δΦAΛ = 0 will be relaxed below.4 All the terms in (2.19) now participate and we

find, for the full σ-model variation,

δS =

∫
d2z

4πα′
ǫ(ζ)dθ

(
(−2i)∇+

i Φ̂ ∂−X
i + tr

(
ΛFij DXjΦ̂iΛ + (−1)p−1m(dAS)i Φ̂

iΛ
))

+

∫

Σ

d2z

4πα′
∂−ǫ(ζ) dθ (−2i)Φ̂ . (3.8)

The vanishing of the first term in (3.8) gives back of course the results reviewed in

section 3.1, but there are now two extra terms. As it is manifest in (3.8), we have a

3The torsion T of a covariant derivative ∇ which has connection symbols Γi
jk is defined as T i

jk = 2Γi
[jk].

4Recall that the covariant variation of Λ is given in equation (2.17). Nevertheless δΦAΛ
α = 0 means that

Λ does transform according to δ
ΦΛα = −Ai

α
βΛ

β
δ
Φ
X

i

– 6 –
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symmetry if and only if the following geometric conditions are satisfied

∇+
i Φj1j2...jp = 0 (T = dB) , (3.9)

Fi[j1Φ
i
j2...jp] = 0 , (3.10)

(dAS)iΦ
i
j2...jp = 0 . (3.11)

As we will see, this already constitutes an interesting extension of the Howe-

Papadopoulos symmetry, but we can generalise it one step further. We keep (3.1), but

we now also assign a covariant variation to the Fermi superfields:

δΦXi =
ǫ(ζ)

(p− 1)!
Φi

i2...ip(X)DXi2...ip = ǫ(ζ) Φ̂i , (3.12)

δΦAΛ
α = ǫ(ζ)Υ̂α

β (2DAΛ
β +mSβ) = ǫ(ζ)Υ̂α

β
∆S

∆Λβ

. (3.13)

Here, a priori, the superfield

Υ̂α
β =

1

(p− 2)!
Υα

βi1...ip−2(X)DXi1...ip−2 (3.14)

corresponds to an arbitrary End(V)-valued differential (p − 2)-form. It is easy to see

from (2.18) that the variation δS corresponding to (3.12)–(3.13) is composed of (3.8) as

well as the extra term
∫

d2|1ζ

4πα′

∆S

∆Λα
δΦAΛ

α =

∫
d2|1ζ

4πα′
ǫ(ζ)Υ̂αβ

∆S

∆Λα

∆S

∆Λβ
. (3.15)

The vanishing of this term is achieved if and only if the endomorphism-valued form satisfies

Υ(αβ) = 0, in other words, whenever Υ ∈ Ωp−2(M,
∧2 V). Summarising,

Eq. (3.12)–(3.13) is a symmetry of the full σ-model (2.4)–(2.6) if and

only if the geometric conditions (3.9)–(3.11) and Υ(αβ) = 0 are satisfied.

This transformation was in fact considered in [19, 27] in the case G = U(d/2) and

p = 2. In these references, the Howe-Papadopoulos symmetry is constructed such that it

is a new supersymmetry transformation hence enhancing the superconformal symmetry to

(2, 0). In this case, the form Υ is a section of End(V) and it corresponds to a complex

structure on V .
The constraints needed for extended G-structure symmetries, (3.10) and (3.11), can

be written nicely in terms of insertion operators. An insertion operator is a linear map

which satisfies the Leibniz rule, that is, it is a derivation, which is defined as follows.

Consider the space of forms, perhaps with values in a vector bundle E over M which we

denote as Ω•(M, E). Let P be a p-form with values in the tangent bundle of M, that is

P ∈ Ωp(M, TM). The insertion operator iP is a derivation on Ω•(M, E) of degree p − 1

defined by

iP : Ωk(M, E) −→ Ωk+1(M, E)
α 7→ iP (α) = P i ∧ αi ,

(3.16)
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where α is any k-form and

αi =
1

(k − 1)!
αij1···jk−1

dxj1···jk−1 . (3.17)

The constraint equation (3.10), which restricts the connection A on the bundle V , can
be written as

iF (Φ) = 0 , (3.18)

where in this equation F is interpreted as a one form with values in TM⊗ End(V),

F i = Gij Fjk dx
k . (3.19)

In this paper we say that a connection A which satisfies this condition is a σ-model quasi-

instanton. As we illustrate in section 3.3, in some definite examples this condition does

agree on the nose with the usual notion of a gauge bundle instanton in heterotic super-

gravity. More generally however, we do not have this equivalence.

Similarly, using insertion operators, the constraint (3.11) can be written as

idAS(Φ) = 0 . (3.20)

In summary, the conditions for our extended G-structure symmetry to hold are writ-

ten as

∇+Φ = 0 , iF (Φ) = 0 , idAS(Φ) = 0 , Υ(αβ) = 0 . (3.21)

In section 4 we consider the potential anomalies of this symmetry and show that the

one-loop effective action is invariant as long as we assign appropriate α′-corrections to

these conditions.

We return below to a description of these geometric constraints. Before doing so, it is

worth noting the following remarkable fact:

The conserved current for the extended G-structure symmetry is the same

as for the corresponding Howe-Papadopoulos symmetry: the bundle sec-

tor and the mass terms do not affect the current.

This follows from (3.8) and (3.15). In the classical limit, this fact explains why the bundle

sector does not feature prominently in abstract conformal field theoretic descriptions of

heterotic compactifications. An analysis based only on currents can hardly distinguish

between the models with and without bundles.

To illustrate this fact, we mention [28], where the authors identify the internal super-

conformal algebras preserving various amounts of supersymmetry in Minkowski space-times

of low dimensions 10 − d after compactifying critical heterotic string theory. Focusing on

minimal space-time supersymmetry, they find the so-called SW(3/2, 2) algebra at c = 12

in the case d = 8 and an algebra of type SW(3/2, 3/2, 2) with c = 21/2 for d = 7. These

two algebras were originally introduced in the context of type II string compactifications [3]

on Spin(7) and G2 holonomy manifolds respectively. Obviously no vector bundles arise in

type II, but the associated W -algebras nevertheless play a role in heterotic strings.

– 8 –
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Another heterotic application of the SW(3/2, 3/2, 2) algebra for G2 features in [29].

The algebra was used to define a world-sheet BRST operator whose cohomology contains

infinitesimal marginal deformations of the conformal field theory. Again, the heterotic

vector bundle was encompassed almost automatically in the framework.

3.3 Geometrical constraints on (M,V)

As discussed earlier, the existence of a well-defined nowhere-vanishing p-form Φ on the

target spaceM of dimension d amounts to a reduction of the structure group to G ⊂ GL(d).

Interesting examples are SO(d), U(d/2), SU(d/2), Sp(d/4), Sp(1)·Sp(d/4), G2, and Spin(7).

In some cases (as for example Spin(7), G2 and SU(d/2)) the target manifold admits at least

one well-defined nowhere-vanishing spinor which is the basic topological condition on the

target manifold necessary to obtain space-time supersymmetric effective field theories.

We now turn to a geometrical explanation of the conditions (3.21). We illustrate these

with examples of Riemannian target spaces so that G ⊂ SO(d), and which are related to

heterotic supergravity compactifications preserving at least one space-time supersymmetry.

Consider, for example, an eight dimensional target space with structure group G =

Spin(7), or a seven dimensional manifold with G = G2. In both of these cases, the form Φ

is of degree p = 4, and such target spaces admit one well-defined nowhere-vanishing spinor.

Compactifying heterotic supergravity on a manifold with a G2-structure gives rise to three

dimensional Yang-Mills N = 1 supergravity [30–35], while compactification on a manifold

with a Spin(7) structure gives a (1, 0) supersymmetric two dimensional field theory [35, 36].

Other interesting examples are G = U(d/2) and G = SU(d/2). The case where

G = U(d/2) corresponds to even dimensional almost Hermitian target spaces where Φ = ω

is the Hermitian two form. Heterotic string compactifications on almost Hermitian man-

ifolds are not supersymmetric (the group U(d/2) ⊂ SO(d) does not leave any invariant

spinors) unless the structure group is reduced further to G = SU(d/2). In this case there

is another nowhere-vanishing form Φ = Ω with p = n = d/2 and the corresponding tar-

get spaces are almost Hermitian with vanishing first Chern class. Compactifying heterotic

supergravity on a manifold with such an SU(d/2)-structure is not yet sufficient to ob-

tain a non-supersymmetric space-time supergravity. For example, it was shown in [37, 38]

that when d = 6, one needs to demand further that the almost complex structure is in-

tegrable to obtain space-time Yang-Mills N = 1 supergravity. Furthermore, as mentioned

in section 3.2, the Howe-Papadopoulos symmetry in [19, 27] corresponds precisely to an

enhancement of the superconformal symmetry to (2, 0). This is of course beautifully con-

sistent with the work of [39] in which it is shown that the world-sheet quantum field theory

corresponding to a four dimensional supersymmetric space-time theory obtained from su-

perstring compactifications must be N = 2 superconformal invariant.

Manifolds with a G-structure admit connections∇ which are metric and are compatible

with the G-structure, that is ∇Φ = 0. These connections have an intrinsic torsion T (Φ)

which is uniquely determined by the G-structure Φ. Equation (3.9) says that the form Φ

needs to be covariantly constant with respect to a connection with totally antisymmetric

torsion T (Φ) = dB. Note that this relation ties the target space geometry with the physical

flux. Not all manifolds with a given G-structure admit such a connection with a totally

– 9 –
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antisymmetric torsion except in the case of G = Spin(7) [36]. For instance, when G = G2,

taking Φ to be the co-associative four form, the necessary and sufficient condition for the

existence of a G2-compatible connection with totally antisymmetric torsion is that the five

form dΦ is in the 7 dimensional representation5 of G2. In fact, in this case there is a unique

G2-compatible connection with totally antisymmetric torsion [40]. In even dimensions, with

G = U(d/2), there exists a unique metric connection compatible with the U(d/2) structure

with totally antisymmetric torsion which is called the Bismut connection [32, 41].6

We now turn to the σ-model quasi instanton connection A on the bundle V

iF (Φ) = 0 . (3.22)

For the examples pertaining to the heterotic compactifications with G = Spin(7), G2 or

SU(n), we want to see to what extent this corresponds to the instanton condition obtained

from the BPS equations in heterotic supergravity, in particular, to the vanishing of the

supersymmetric variations of the gaugino.

Suppose the target manifold admits a Spin(7) or a G2 structure. It is a well known fact

about the geometry of these manifolds that (3.22) is equivalent to F ∈ Ω2
21(M,End(V)) in

the case of Spin(7), and to F ∈ Ω2
14(M,End(V)) for G2 [42]. In both cases, one can in fact

write this condition using an appropriate projection operator on F into the appropriate

irreducible representation of G.

(2δklij +Φkl
ij)Fkl = 0 , (3.23)

or equivalently,

FyΦ = −F . (3.24)

In the case of U(n) structures (where the dimension of M is d = 2n), the condi-

tion (3.22) constrains the bundle V to be holomorphic, that is, we have

iF (ω) = 0 ⇐⇒ F (0,2) = 0 . (3.25)

To see this, note that

iF (ω) = F i ∧ ωi = −FkiJ
k
jdx

ij , J i
j = Gikωjk , (3.26)

where J is the almost complex structure. Therefore,

iF (ω) = 0 ⇐⇒ Fij = Jk
iJ

l
j Fkl , (3.27)

and the result (3.25) follows. If moreover, the structure group reduces to SU(n), then there

is a further constraint on V due to the existence of a second n-form Ω, which is

iF (Ω) = 0 ⇐⇒ ωyF = 0 . (3.28)

5A five form on a manifold with a G2 structure decomposes into the G2 irreducible representations 7+14.
6Note that the complex structure does not need to be integrable for this statement to be true.
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that is, F must be a primitive two form. To see this equivalence, note first that, when

F (0,2) = 0, the three form iF (Ω) must be type (n, 0). Then

iF (Ω) = 0 ⇐⇒ Ωy iF (Ω) = 0 . (3.29)

Noting that the (n, 0) form Ω satisfies

Ω
ik1···kn−1 Ωjk1···kn−1 ∝ δij − i J i

j , (3.30)

we obtain

iF (Ω) = 0 ⇐⇒ Ωy iF (Ω) = 0 ⇐⇒ ωyF = 0 . (3.31)

Together, the conditions (3.25) and (3.28), are equivalent to F being a primitive (1, 1) form

or, equivalently, F ∈ Ω2
8(M,End(V)) One can also show that this is equivalent to

Fy ρ = −F , ρ =
1

2
ω ∧ ω . (3.32)

Note the similarity with equation (3.24).

In summary, for the examples G = Spin(7), G2 and SU(n), we have that

F ∈ Ω2
adj(M,End(V)) , (3.33)

where adj is the adjoint representation of G, or equivalently

FyΦ = −F , (3.34)

where Φ is the Cayley four form for G = Spin(7) structure, the co-associative four form

for G = G2, and, for G = SU(n), we have Φ = ρ. We say that the bundle connection A

satisfying this condition is an instanton, meaning that the curvature F of such an instanton

connection A on the bundle satisfies the Yang-Mills equation7

d†AF = −Fyd†Φ . (3.35)

The final constraint (3.20) can be written as

dAS = 0 , (3.36)

for the examples at hand, because dAS is a one form. This means that the section S

must be a flat section. In this paper however we will not be concerned with this condition

any further.

We close here with a comment about the minimally supersymmetric heterotic com-

pactifications we have been discussing in this section. In order for these supersymmetric

solutions to satisfy the supergravity equations of motion to first order in α′, it is also nec-

essary that there is a connection Θ on the tangent bundle TM which is an instanton [44].

On the other hand, in the (1, 0) σ-model the connection Θ appears in order to cancel the

gravitational anomalies. We will see in the following section that to first order in α′, the

one-loop effective action is invariant under the G-structure symmetries, provided that Θ is

a σ-model quasi-instanton together with the usual corrections to the torsion involving the

Chern-Simons forms for A and Θ.
7See for example the paper by Harland and Nölle [43] which contains a very good discussion about

instantons as solutions of the Yang-Mills equation.
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4 Anomalies

In this part, we propose an analysis of anomalies of G-structure and superconformal sym-

metries from the angle of effective actions.

In the absence of anomalies, a standard argument shows formally that the σ-model

effective action [20, 45, 46], denoted Γ , obeys the Slavnov-Taylor identity

∫
d2|1ζ

4πα′

(
δΓ [X,Λ]

δXi
〈δXi〉+ δΓ [X,Λ]

δΛα
〈δΛα〉

)
= 0 , (4.1)

where the expectation values are taken with background sources for the dynamical fields,

and where the bars refer to specific symmetry variations as explained near (A.1)–(A.2).

In the presence of chiral fermions, the functional measure in the path integral generically

transforms anomalously, leading to a non-vanishing right hand side in (4.1). For linear

symmetries, this can be probed by a first order variation of the effective action since

〈δXi〉 = δXi and similarly for the Fermi superfield.

General G-structure symmetries are however non-linear which complicates their anal-

ysis. Very few research appears to have gone into this problem; in fact, we are only aware

of [47]. In this work, anomalies of G-structure symmetries of (1, 1) models without torsion

(dB = 0) were examined within a BV-BRST framework, and multiple related difficulties

were highlighted.

In this paper, we take a simplified approach which nevertheless yields results consistent

with supergravity. We assume an expansion in powers of α′ of the form

〈δXi〉 = δXi + α′δXi
(1) +O(α′2) (4.2)

and address anomalies perturbatively. We allow for the possibility of α′-corrections to

G-structure symmetries. We also use an effective action computed order by order using

the background field method [24, 48–52]. This implies the usual limitations: target space

curvature and fluxes must be small and slowly varying in string units.8

Our method is analogous to the treatment of sigma-model anomalies [53–55] for target

space gauge and Lorentz transformations [17, 56, 57], especially as covered in [20]. We

start by reviewing this discussion in order to prepare the ground for our treatment of G-
structure anomalies in section 4.2. The corresponding analysis of conformal anomalies is

then presented for comparison in section 4.3.

4.1 Effective action and Green-Schwarz mechanism

In 1986, there were some questions as to whether the world-sheet implementation of the

target space Green-Schwarz cancellation mechanism [17, 21] was consistent with (1, 0)

supersymmetry [56, 57]. Hull and Townsend addressed the issue in [20] by calculating

a world-sheet one-loop effective action directly in superspace and used it to cancel the

8Allowing non-trivial fluxes makes this assumption questionable and it is important to verify self-

consistency.
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anomaly supersymmetrically. They found that the non-local and gauge non-invariant con-

tributions can be packaged as

S(A)
an [X] =

∫
d2|1ζ

4πα′

α′

4
tr

(
∂−Â

1

∂+
DÂ

)
, (4.3)

where Â = Ai(X)DXi and where the trace is over the gauge indices of A. There is also a

similar term due to gravitational anomalies,

S(Θ)
an [X] =

∫
d2|1ζ

4πα′
(−1)

α′

4
tr

(
∂−Θ̂

1

∂+
DΘ̂

)
, (4.4)

where Θ is the spin connection on TM associated to a covariant derivative ∇− with

connection symbols Γ− defined by9

Γ−i
jk = Γi

jk −
1

2
(dB)ijk , (4.5)

and where we must now trace over the corresponding Roman spin indices. The analysis of

S
(Θ)
an is entirely parallel to that of S

(A)
an so we will mostly omit it for simplicity.

The formal inverse in (4.3) is defined using the Green’s function of ∂+. We refer to [58]

for more details. For our purposes it suffices to know that an analogue of integration by

parts holds for such operators, and that it can be commuted through ordinary differen-

tial operators.

We stress that S
(A)
an correctly describes gauge non-invariance only up to quadratic order

in the gauge connection. This is important for example when describing the Green-Schwarz

mechanism, which we now review. Under a general variation of Â, S
(A)
an transforms as

δS(A)
an =

∫
d2|1ζ

4πα′
(−1)

α′

2
tr

[(
∂−

1

∂+
DÂ

)
δÂ

]
. (4.6)

In order to check gauge anomalies, we substitute in (4.6) the target space gauge variation

δÂ =
(
∂iΞ + [Ai,Ξ]

)
DXi = DΞ + [Â,Ξ] (4.7)

where we use δ to distinguish gauge from generic variations and where Ξ(X) is the gauge

parameter. We obtain

δS(A)
an = −i

∫
d2|1ζ

4πα′

α′

2
tr
(
Ai(∂jΞ)DXi∂−X

j
)
, (4.8)

which is finite and local. Clearly, this has the same form as the classical action (2.4) and

can thus be cancelled by assigning a compensating gauge variation to Mij ,

δMij(X) = −α′

2
tr (Ai ∂jΞ) . (4.9)

9We remark that ∇− is not compatible with the G-structure (∇−Φ 6= 0). It is however metric because

the torsion is totally antisymmetric.
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This process cancels the anomaly but introduces a gauge-variant metric. One generally

prefers to work with invariant objects. This can be achieved as follows. The effective

action is only well-defined up to finite local counterterms. Consider then adding the metric

counterterm

S
(A)
add[X] = i

∫
d2|1ζ

4πα′

α′

4
tr(ÂAj∂−X

j) . (4.10)

Under a gauge transformation, this varies by

δS
(A)
add = i

∫
d2|1ζ

4πα′

α′

2
tr
(
A(i∂j)Ξ)

)
DXi∂−X

j . (4.11)

This is enough to cancel the symmetric part of the anomaly,

δ(S(A)
an + S

(A)
add) = −i

∫
d2|1ζ

4πα′

α′

2
tr
(
Ξ∂[iAj]

)
DXi∂−X

j , (4.12)

so that we may simply assign an anomalous gauge transformation to the B-field,

δBij = −α′

2
tr
(
Ξ ∂[iAj]

)
, (4.13)

and leave the metric gauge-invariant. Repeating this argument for (4.4) we obtain the

usual Green-Schwarz mechanism and heterotic Bianchi identity. The associated gauge-

invariant field strength involves Chern-Simons three forms for the gauge and tangent

bundle connections:

H = dB +
α′

4
(CS3(A)− CS3(Θ)) . (4.14)

We briefly note that there is an ambiguity in this cancellation scheme, whereby any connec-

tion Θ can be used in the Bianchi identity. This ambiguity is usually lifted by demanding

conformal symmetry at the quantum level. For more details, we refer to [59]. As we discuss

in the next part, it can also be fixed by demanding preservation of our extended G-structure
symmetries at first order in α′.

4.2 G-structure symmetries and α
′-corrections

We now investigate the effects of a G-structure transformation on S
(A)
an + S

(A)
add. The gauge

field varies here purely through the chain rule,

δΦÂ = ∂iAj(δ
ΦXi)DXj +AiD(δΦXi). (4.15)

Substituting this in (4.6), we find the nonlocal result

δΦS(A)
an =

∫
d2|1ζ

4πα′

α′

2
tr

[
−2

(
∂−D

∂+
Â

)
∂[iAj]DXj + i(∂−Â)Ai

]
δΦXi. (4.16)

Next we vary the local counterterm. We obtain

δΦS
(A)
add = i

∫
d2|1ζ

4πα′

α′

2
tr
[
−AiAj∂−DXj

+
(
Aj∂[iAk] +Ak∂[iAj] −Ai∂(jAk)

)
∂−X

kDXj
]
δΦXi .

(4.17)
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In the sum of (4.16) and (4.17), the following combination appears:

2
(
Aj∂[iAk] +Ak∂[iAj] +Ai∂[kAj]

)
= −(AdA)ijk + 4Ak∂[iAj] . (4.18)

The first term on the right hand side is minus the Chern-Simons three form in the ap-

proximation where cubic powers of the gauge field are discarded. In the full variation

δΦ(S + S
(A)
an + S

(A)
add), it naturally couples to Γ+

ijk in (2.18)–(2.19) and (2.11) and redefines

its torsion to be the gauge-invariant combination:

δΦ(S + S(A)
an + S

(A)
add) =

∫
d2|1ζ

4πα′
2i

(
Γ +

1

2
dB +

α′

8
CS3(A)

)

ijk

∂−X
jDXkδΦXi + . . .

(4.19)

The complete field H as in (4.14) is generated when repeating this derivation starting with

the term S
(Θ)
an also included in the effective action.

Finally, we notice that the remaining term in (4.18) shares with the non-local term

in (4.16) a crucial factor. Ignoring the Chern-Simons term,

δΦ(S(A)
an + S

(A)
add) =

∫
d2|1ζ

4πα′

α′

2
tr

(
−∂−D

∂+
Â+ i Ak∂−X

k

)
2∂[iAj]δ

ΦXiDXj + . . . (4.20)

Keeping in mind that only quadratic terms in the gauge field are accounted for, we identify

2∂[iAj] = Fij and realise the following remarkable fact:

We see this by recalling δΦXi = ǫΦ̂i and because (4.20) has the factor

iF (Φ) = 0 . (4.21)

We knew about this constraint on V from the classical symmetry. Repeating the analysis

with the Lorentz anomalous term S
(Θ)
an given by (4.4), we now obtain the same constraint

on the tangent bundle TM as a quantum condition,

iRΘ(Φ) = 0 , (4.22)

that is, Θ must be a σ-model quasi-instanton. Geometrically, the appearance of this con-

dition is reasonable and in fact gives credence to our σ-model approach. For the examples

discussed in section 3.3, where G = Spin(7), G2, SU(n) (including both forms (ω,Ω) in

the SU(n) case), the connection Θ becomes in fact a gauge-bundle instanton. This extra

condition is necessary for a supersymmetric solution of a heterotic string compactifica-

tion on (M,V) to satisfy the supergravity equations of motion to first order in α′ (see for

example [44]).

We conclude from this analysis that the G-structure symmetry (3.12)–(3.13) is strictly-

speaking anomalous. However, it can be corrected at first order in α′ provided we impose

the new target space constraint (4.22) and provided we change the torsion from dB to H

in the classical condition,

∇+
i Φi1...ip = 0 (T = H) . (4.23)

This is consistent with the redefinition induced by (4.19).
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4.2.1 Current

Revisiting the analysis of section 4.2, we remark that we did not use that the infinitesimal

parameter ǫ of the transformation is purely left-moving (∂−ǫ = 0). This has implications

for the α′-corrected current associated to the symmetry (cf. appendix A). As explained

above, the variation of S
(A)
an +S

(A)
add contains a term proportional to iF (Φ) and a term which

redefines the classical torsion found in δΦS, eq. (2.18)–(2.19). Assuming iF (Φ) = 0 this

means that the full G-structure variation of S+S
(A)
an +S

(A)
add (with general ǫ) has exactly the

same form (3.8) as the variation of S. The only difference is the redefined torsion dB → H.

We conclude that, after using all the appropriate geometric conditions,

δΦ(S + San + Sadd) =

∫
d2z

4πα′
∂−ǫ(ζ) dθ (−2i)Φ̂ , (4.24)

Therefore, remarkably, the tree-level current proportional to Φ̂ persists at one-loop. Fur-

thermore, all results thus far are true regardless of whether δΦAΛ vanishes or otherwise. The

current is now conserved up to the non-local equation of motion derived from S+S
(A)
an +S

(A)
add,

which is easy to write down from our formulæ. This equation of motion should be inter-

preted as the one-loop approximation to the operator equation

δΓ

δXi
= 0 , (4.25)

where Γ is the exact effective action. Note that the corresponding equation obtained by

varying with respect to Λ is not necessary in the conservation statement. Its role is solely

to impose constraints; with no contribution to the current.

4.2.2 Counterterms

Effective actions are only well-defined up to finite local counterterms. These arise in partic-

ular when different schemes are used to regulate ultraviolet divergences. In our discussion

so far, we have made implicit choices when writing the effective action. We now briefly

reconsider our discussion of G-structure symmetries at order α′ in light of these ambiguities.

The original action (2.4)–(2.6) is the most general covariant renormalisable (1, 0) su-

persymmetric functional. Hence, counterterms must have the same form in order not to

spoil these properties [37, 57]. All the couplings in the σ-model (metric, B-field, gauge

field and S) have corresponding counterterms ∆Gij , ∆Bij , ∆Ai
α
β, and ∆Sα. We de-

fine G̃ij = Gij + ∆Gij , and similarly for the others, and add tildes to identify quantities

constructed from such redefined tensors. In this section, we also write explicitely the depen-

dence of action functionals on target space tensors: for example, the allowed counterterms

are collectively written as Sc.t. = S(∆G,∆B,∆A,∆S). The one-loop effective action, with

counterterms, is then taken as

S(G̃, B̃, Ã, S̃) + S(A)
an (A) + S

(A)
add(A) , (4.26)

where we still ignore S
(Θ)
an to simplify the discussion.
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It is important to distinguish carefully the gauge fields in (4.26) from the gauge field in

the symmetry variation. We must use the same symmetry as before, namely (3.12)–(3.13)),

δΦXi = ǫΦ̂i , δΦΛα +Ai
α
βΛ

βδΦXi = ǫΥ̂α
β
∆S(A,S)

∆Λβ
, (4.27)

but computations are simpler if we write this variation of Λ as

δΦ
Ã
Λα = (∆A)i

α
βΛ

βδΦXi + ǫΥ̂α
β
∆S(A,S)

∆Λβ
. (4.28)

Focusing for the moment on the symmetry variation of S(G̃, B̃, Ã, S̃) with respect to

X, we find equation (3.8) again, this time written in terms of tilde tensors

δS =

∫
d2z

4πα′
ǫ(ζ)dθ

[
− 2i

p
∂−X

iDXj1∇̃+
i (G̃jj1Φ̂

j)

+ tr
(
ΛF̃ij DXjΦ̂iΛ + (−1)p−1m (d

Ã
S̃)i Φ̂

iΛ
)]

+

∫

Σ

d2z

4πα′
∂−ǫ(ζ) dθ (−2i)

1

p!
G̃jj1Φ

j
j2...jpDXj1...jp .

(4.29)

Meanwhile S
(A)
an + S

(A)
add is independent of Λ and its variation with respect to X is

exactly as in section 4.2. It produces the non-local term (4.20) and a term which redefines

the torsion in (4.29) to be

T = dB̃ +
α′

4
CS3(A) . (4.30)

as in (4.19).

Finally, we account for the variation of S(G̃, B̃, Ã, S̃) due to (4.28). We find

δS =

∫
d2|1ζ

4πα′

[
∆S(A,S)

∆Λα

(
(∆A)iαβΛ

βδΦXi −
(
2 ∆̂A

β

γΛ
γ +m∆Sβ

)
ǫΥ̂αβ

)

+m∆Sα(∆A)iαβΛ
βδΦXi

]
.

(4.31)

To obtain this we used Υ(αβ) = 0 and

∆S(Ã, S̃)

∆Λα
= 2D

Ã
Λα +mS̃α =

∆S(A,S)

∆Λα
+ 2 ∆̂A

α

βΛ
β +m∆Sα . (4.32)

The next step is to group the terms in the full variation (the sum of (4.29), (4.20),

and (4.31)) sharing the same powers of the fundamental superfields and their derivatives.

From their prefactors, it is straightforward to read off constraints on counterterms and

target space tensors ensuring preservation of the symmetry. We leave the general case to

the reader, and focus here on the most commonly encountered counterterms ∆G and ∆B.

If we set ∆A = 0 and ∆S = 0, then (4.31) does not interfere with (4.29) and we can

read off, much like before, the condition

iF (Φ) = 0 , (4.33)
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from the non-local term and, from (4.29),

∇̃+
i (G̃j[j1Φ

j
j2...jp]) = 0

(
T = dB̃ +

α′

4
CS3(A)

)
, (4.34)

idAS(Φ) = 0 , (4.35)

and the current

2i(−1)p
1

p!
G̃jj1Φ

j
j2...jpDXj1...jp = 2i(−1)p

(
Φ̂ +

1

p
∆GijDXiΦ̂j

)
. (4.36)

4.3 Superconformal anomalies

Appendix A gives a short account of the basic features of (1, 0) superconformal symmetry

in our non-linear σ-model (for vanishing mass). It is tantalizing to try on this symmetry the

anomaly analysis presented in the last section, using the effective action. A good motivation

to treat all symmetries on the same footing is in prevision to study the algebra they

form. This is particularly interesting at the quantum level. In the case of superconformal

symmetries, we have a prejudice on the outcome based on the substantial literature on

conformal anomalies in two dimensional σ-models (see e.g. [18, 22, 23, 37, 46, 60, 60–64]).

Nevertheless the method we use, based on the effective action (4.1), is non-standard in this

context. As a complement to our discussion of G-structure anomalies, it is worthwhile to

connect our angle of analysis with classical string theory lore.

Our main result is simply that the superconformal variation of the one-loop effective

action (4.4) vanishes,

δǫS(A)
an = 0 . (4.37)

This fact will be proven shortly. It follows after some algebraic manipulations only,

without using any equations of motion and without imposing any constraints on the

σ-model couplings.

Naively, the conclusion is that superconformal symmetries are not anomalous at one-

loop, which is consistent with the expectation that a nearby superconformal fixed point

exists in the universality class of S. However, this should only be true for certain config-

urations of the σ-model couplings: those which satisfy effective target space equations of

motion [37, 65].

To reconcile (4.37) with the literature, it is useful to reconsider the calculation of

the effective action itself. Along the way, ultraviolet divergences are generated and are

renormalised away in redefined couplings [45, 66]. This generates beta functionals for the

metric, B-field and gauge field, which must be trivial (not necessarily zero) to guarantee

scale invariance. It is at this step that the familiar constraints on the couplings arise.

Only for those configurations satisfying the target space equations of motion is the model

scale invariant.

After renormalisation, there remains in the effective action ultraviolet-finite terms

only, which are all expressed in terms of renormalised quantities. The term S
(A)
an that we

have been using and the whole discussion of this section, were in terms of renormalised

objects. At this level, the fact that we find δS
(A)
an = 0, and thus no further restrictions
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by imposing conformal symmetry, can essentially10 be understood from the argument that

scale invariant theories in two dimensions are automatically conformal [69].

We now prove (4.37). It is useful to break the proof into two steps. First we show

that the superconformal variation is local. Then we show that it vanishes. The derivation

starts as in section 4.2 and we can reuse (4.16),

δΦS(A)
an =

∫
d2|1ζ

4πα′

α′

2
tr

[
−2

(
∂−D

∂+
Â

)
∂[iAj]DXj + i(∂−Â)Ai

]
δǫXi. (4.38)

now for superconformal transformations (A.4)

δǫXi = iǫ∂+X
i +

1

2
DǫDXi . (4.39)

Focusing on the non-local part, we notice that

2∂[iAj]DXjδǫXi = D(ǫDAiDXi) . (4.40)

Integrating by parts with D, we find the local representation

δǫS(A)
an = i

∫
d2|1ζ

4πα′

α′

2
tr
[
∂−Â(ǫDAiDXi +Aiδ

ǫXi)
]
. (4.41)

We now show that this vanishes. It is useful to define the operator

Dǫ = ǫD +
1

2
Dǫ (4.42)

so that δǫXi = DǫDXi and identify in (4.41)

ǫDAiDXi +Aiδ
ǫXi = DǫÂ . (4.43)

Then, integrating by parts with ∂−,

δǫS(A)
an = −i

∫
d2|1ζ

4πα′

α′

2
tr(Â∂−DǫÂ) . (4.44)

Alternatively, we can integrate by parts with Dǫ. Indeed, it is easy to prove that, given

two superfields U and V

(DǫU)V + (−1)F UDǫV = D(ǫ UV ) , (4.45)

where F = +1 if U is a commuting superfield and F = −1 if it is anticommuting.

From (4.41) this yields

δǫS(A)
an = i

∫
d2|1ζ

4πα′

α′

2
tr
(
(Dǫ∂−Â)Â

)
= i

∫
d2|1ζ

4πα′

α′

2
tr(ÂDǫ∂−Â) , (4.46)

where we have used cyclicity of the trace in the last step. We complete the proof of (4.37)

by comparing (4.46) and (4.44), and by using [∂−, Dǫ] = 0, which follows from ∂−ǫ = 0.

For a general symmetry parameter, we have instead

δǫS(A)
an = i

∫
d2|1ζ

4πα′

α′

4
tr(Â[Dǫ, ∂−]Â) = −i

∫
d2|1ζ

4πα′

α′

4
∂−ǫ tr(ÂDÂ) . (4.47)

10Strictly speaking it is best to revisit [67] Zamolodchikov’s theorem when working with non-linear σ-

models. Assumptions sometimes fail, such as discreteness of the spectrum for noncompact target manifolds

and unitarity for Lorentzian signature [68].
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4.3.1 Gauge-invariant supercurrent at order α
′

As an application of the proof above, we now derive the α′-correction to the left-moving

stress-tensor and supersymmetry currents of generic massless (1, 0) σ-models (2.4)–(2.5).

To the best of our knowledge, this calculation is new. Classically, the Noether procedure

yields the superfield (A.7)

T 6=+ = Gij ∂+X
iDXj − i d̂B . (4.48)

This supercurrent is right-moving on shell, ∂−T 6=+ ≈ 0, and is composed of the supersym-

metry current G 6=+ and stress-tensor T 6= 6=. The second term in (4.48) is often discarded

in the literature. At order α′, dB is not gauge-invariant, as reviewed in section 4.1. It is

natural to ask if our considerations from this section can fix this issue.

It turns out they do. To see this, we extract from (4.47) the contribution

of S
(A)
an to T 6=+,

− i
α′

4
tr(ÂDÂ) . (4.49)

Substituting DÂ = F̂ + iAi∂+X
i this is composed of two terms. The first one immediately

yields the Chern-Simons correction necessary to make T 6=+ gauge-invariant:

tr(ÂF̂ ) = ĈS3(A) , (4.50)

up to corrections cubic in Â. The second term can be absorbed by the variation of S
(A)
add. A

particularly easy way to see this is to remember that S
(A)
add is a metric counterterm, so we can

read off its contribution to the current directly from (4.48). With ∆Gij = −α′

4 tr(AiAj),

this is

∆Gij∂+X
iDXj = −α′

4
tr(AiAj)∂+X

iDXj . (4.51)

More generally, the impact of changing counterterms is easy to analyse for supercon-

formal transformations. Assuming counterterms of the form of the classical action, with G

replaced by ∆G, and similarly for the other couplings, superconformal invariance cannot

be spoiled. Indeed, no assumption on the couplings are made to prove classical supercon-

formal invariance. As for the current, the modifications are as discussed in the case of S
(A)
add.

The most general form of the α′-corrected supercurrent, including counterterms, is

T 6=+ = (Gij +∆Gij) ∂+X
iDXj − i(Ĥ + d̂(∆B)) . (4.52)

4.4 A caveat: gauge-invariant contributions to Γ

It should be stressed that our analysis of α′-corrections in this section has turned out to

be much simpler than it should perhaps have been. There is an important caveat to our

analysis, which we now point out even if it seems to be largely unimportant given the

sensible results obtained so far in section 4.

As they were primarily interested in the Green-Schwarz mechanism, the authors of [20]

focused only on Yang-Mills and Lorentz non-covariance in the σ-model one-loop effective

action, leading to what we called San. Analyses of gauge anomalies at higher loops have
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been performed [22, 70–73]. However, we have not been able to locate in the existing

literature a more complete calculation of the effective action which would include all co-

variant terms.11 Such terms are crucial to our analysis because they may lead to anomalies

of G-structure (and superconformal) symmetries even if they do not produce gauge and

gravity anomalies.

The fact that our results at order α′ so far nicely align with supergravity expectations

suggests that this problem in fact does not arise. More precisely, we conjecture that gauge

and Lorentz invariant contributions to the effective action are automatically invariant under

G-structure symmetries — up to the usual target space conditions (3.9)–(3.11). We hope

to report on this conjecture more fully in a future communication.

5 Conclusion

Our main result in this work is the generalisation (3.12)–(3.13) of the symmetry of [16]

holding for general (1, 0) non-linear σ-models with non-Abelian background gauge fields

turned on and also possibly a mass term. This symmetry is defined with a target space

p-form Φ as well as a tensor Υ ∈ Ωp−2(M,
∧2 V), which may, or may not, be chosen

to vanish identically. The constraints (3.21) on these tensors and the couplings of the σ-

model are strongly reminescent of the supersymmetry conditions appearing in the context of

heterotic compactifications. In fact, for the cases of Spin(7) and G2 compactifications that

we discussed more closely, these conditions are equivalent. Contrastingly in the SU(3) case,

our symmetry does not require an integrable complex structure, but this can be enforced

by demanding that it generates with (1, 0) superconformal symmetry the (2, 0) algebra.

We have demonstrated moreover how a modified version of our G-structure symmetry

persists quantum-mechanically. There remains caveats to this statement: crucially, a com-

plete calculation of the σ-model one-loop effective action at first order in α′ is necessary for

definitive conclusions. Nevertheless, our analysis based only on the non-local term San has

already produced quantum conditions impressively close to the supergravity expectations,

such as the quasi-instanton condition iRΘ(Φ) = 0 on TM.

The conserved current for all the G-structure symmetries that we considered is the

operator Φ̂ naturally associated to the differential p-form. This remains true when including

α′-corrections but can be affected by metric counterterms.

Superconformal transformations were also discussed from the angle of the quantum

effective action and compared with string theory. Our results at order α′ are all consistent

with Green-Schwarz gauge-invariance and the heterotic Bianchi identity.

The most immediate application of our G-structure symmetry is in finding marginal

deformations of σ-models used as internal sectors in heterotic string compactifications.

This project was started by the authors in [29, 74] for the case where α′ = 0. By isolating

explicitly the symmetry associated with supersymmetric backgrounds, it becomes clear

how to impose that it be preserved by deformations. One consequence of this study is

11One particular covariant but infrared divergent term was reported in [20]. We have not included it

in our present analysis given that further terms on the same footing are expected to exist, and should be

analysed together.
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the better understanding, to first order in α′, of the relation between nilpotent operators

which describe marginal deformations in terms of their cohomology and analogous operators

formulated in supergravity [75–82]. This will be the subject of a forthcoming publication.

Besides, it is likely that there will be some connections of our results with the con-

siderations of [83, 84], where the Chiral de Rham complex [85] was likened to a formal

quantisation of the (1, 1) nonlinear σ-model. In these papers, Λ-brackets were proposed as

a way to interpolate between special holonomy OPE algebras [3, 13] and the classical sym-

metries of [16]. A more detailed comprehension of commutator and current algebras of our

extended G-structure symmetries would make a useful start about this. This is especially

interesting at order α′, where the condition dH = 0 fails, suggesting radical alterations to

the algebras. We hope to return to these issues in the near future.

It will also be interesting to clarify if our symmetry perhaps can be thought of as

the infrared limit of some useful symmetry of gauged linear σ-model (see e.g. [86] and

references therein).

More speculatively, sinceN = 2 supersymmetry is a subcase of G-structure symmetries,

it is permitted to think that some of the powerful tools following from the former admit

a non-linear generalisation to the latter. We might ask for example for a “G-structure”
analogue of supersymmetric localisation, to name but one, which would encompass (2, 0)

localisation [87]. In any case, whenever they are preserved, these symmetries put strong

constraints on the dynamics of the σ-model and should guide the study of string vacua

in the α′ expansion from a world-sheet point of view [88–90]. They might find applica-

tions for instance to generalise the results of [91] to target spaces other than Calabi-Yau

manifolds [92, 93].
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A Semi-local and superconformal symmetries

A.1 Semi-local symmetries

We give here a brief account of continuous semi-local (or chiral) symmetries of the ac-

tion (2.4)–(2.6), of which the G-structure symmetry is an example. Such symmetries sit

somewhere between global and local symmetries in that they are parametrized, in their

infinitesimal version, by a small function ǫ(ζ) depending on some, but not all, of the super-

space coordinates. Equivalently, ǫ(ζ) is a constrained parameter. It could be Grassmann
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even or odd. A symmetry transformation is generally given as

δXi = δXi(ǫ,X,Λ) , (A.1)

δΛα = δΛα(ǫ,X,Λ) , (A.2)

where the right hand sides are specific expressions involving the infinitesimal parameter, the

fundamental fields and, in general, their (super)derivatives. The statement of symmetry is

that the induced variation of the action can be recasted in the form

δS =

∫
d2|1ζ

4πα′

(
δS

δXi
δXi +

δS

δΛα
δΛα

)
=

∫
d2|1ζ

4πα′
∂µǫ(ζ)J

µ , (A.3)

where we must still define the right hand side. The first equality here is general for arbitrary

variations, while the second is specific to the barred symmetry variations. The index µ

covers all directions (z+, z−, θ) of superspace, but in the case of semi-local symmetries, at

least one of the superfields J+, J−, Jθ vanishes identically. Because of this, δS = 0 to

leading order if and only if we impose the constraint ∂µ̄ǫ(ζ) = 0 for all directions µ̄ with

non-vanishing J µ̄.

Integrating by parts, (A.3) is Noether’s theorem in (1, 0) superspace. When ǫ(ζ) is

freed from its constraint, i.e. made fully local on superspace, then δS 6= 0, but the second

equality in (A.3) still holds. The familiar local current conservation rule ∂µ̄J
µ̄ ≈ 0 then

follows from the fact that ǫ(ζ) is made to depend on all integration variables (including θ),

and from the equations of motion. We use curly equal signs for equations holding on-shell.

A.2 Superconformal symmetry

Arguably the most important examples of chiral symmetries are conformal transforma-

tions. We focus on symmetries acting on the supersymmetric side (+) of the massless

σ-model (2.4)–(2.5). Consider the transformation

δǫXi = iǫ∂+X
i +

1

2
DǫDXi , (A.4)

δǫAΛ
α = iǫ∂+AΛ

α +
1

2
DǫDAΛ

α , (A.5)

where ǫ(ζ) is an infinitesimal function of the world-sheet coordinates and

DAΛ = DΛ + ÂΛ , ∂+AΛ = ∂+Λ + (Ai ∂+X
i)Λ . (A.6)

The statement in this case is that the massless action is invariant under these supercon-

formal transformations whenever ǫ = ǫ(z+, θ). The chiral supercurrent associated to this

symmetry is given by

T 6=+ = Gij ∂+X
iDXj − id̂B . (A.7)

Note that this is the same current as the one obtained when Λ = 0.
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