
J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

Published for SISSA by Springer

Received: July 24, 2018

Revised: November 30, 2018

Accepted: December 17, 2018

Published: January 7, 2019

QCD-aware recursive neural networks for jet physics

Gilles Louppe,a,b,1 Kyunghyun Cho,b Cyril Becota,2 and Kyle Cranmera,b

aCenter for Cosmology & Particle Physics, New York University,

726 Broadway, New York, NY, U.S.A.
bCenter for Data Science, New York University,

60 5th Ave., New York, NY, U.S.A.

E-mail: g.louppe@uliege.be, kyunghyun.cho@nyu.edu,

cyril.becot@cern.ch, kyle.cranmer@nyu.edu

Abstract: Recent progress in applying machine learning for jet physics has been built

upon an analogy between calorimeters and images. In this work, we present a novel class

of recursive neural networks built instead upon an analogy between QCD and natural

languages. In the analogy, four-momenta are like words and the clustering history of

sequential recombination jet algorithms is like the parsing of a sentence. Our approach

works directly with the four-momenta of a variable-length set of particles, and the jet-based

tree structure varies on an event-by-event basis. Our experiments highlight the flexibility of

our method for building task-specific jet embeddings and show that recursive architectures

are significantly more accurate and data efficient than previous image-based networks. We

extend the analogy from individual jets (sentences) to full events (paragraphs), and show

for the first time an event-level classifier operating on all the stable particles produced in

an LHC event.

Keywords: Jets, QCD Phenomenology

ArXiv ePrint: 1702.00748

1Currently at University of Liège.
2Currently at DESY.

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP01(2019)057

mailto:g.louppe@uliege.be
mailto:kyunghyun.cho@nyu.edu
mailto:cyril.becot@cern.ch
mailto:kyle.cranmer@nyu.edu
https://arxiv.org/abs/1702.00748
https://doi.org/10.1007/JHEP01(2019)057

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

Contents

1 Introduction 1

2 Problem statement 3

3 Recursive embedding 3

3.1 Individual jets 3

3.2 Full events 4

4 Data, preprocessing and experimental setup 5

5 Experiments with jet-level classification 8

5.1 Performance studies 8

5.2 Infrared and collinear safety studies 11

6 Experiments with event-level classification 13

7 Related work 15

8 Conclusions 16

A Gated recursive jet embedding 17

B Gated recurrent event embedding 18

C Implementation details 18

1 Introduction

By far the most common structures seen in collisions at the Large Hadron Collider (LHC)

are collimated sprays of energetic hadrons referred to as ‘jets’. These jets are produced

from the fragmentation and hadronization of quarks and gluons as described by quantum

chromodynamics (QCD). Several goals for the LHC are centered around the treatment of

jets, and there has been an enormous amount of effort from both the theoretical and ex-

perimental communities to develop techniques that are able to cope with the experimental

realities while maintaining precise theoretical properties. In particular, the communities

have converged on sequential recombination jet algorithms, methods to study jet substruc-

ture, and grooming techniques to provide robustness to pileup.

One compelling physics challenge is to search for highly boosted standard model par-

ticles decaying hadronically. For instance, if a hadronically decaying W boson is highly

– 1 –

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

boosted, then its decay products will merge into a single fat jet with a characteristic sub-

structure. Unfortunately, there is a large background from jets produced by more mundane

QCD processes. For this reason, several jet ‘taggers’ and variables sensitive to jet substruc-

ture have been proposed. Initially, this work was dominated by techniques inspired by our

intuition and knowledge of QCD; however, more recently there has been a wave of ap-

proaches that eschew this expert knowledge in favor of machine learning techniques. In

this paper, we present a hybrid approach that leverages the structure of sequential recom-

bination jet algorithms and deep neural networks.

Recent progress in applying machine learning techniques for jet physics has been built

upon an analogy between calorimeters and images [1–7]. These methods take a variable-

length set of 4-momenta and project them into a fixed grid of η − φ towers or ‘pixels’ to

produce a ‘jet image’. The original jet classification problem, hence, reduces to an image

classification problem, lending itself to deep convolutional networks and other machine

learning algorithms. Despite their promising results, these models suffer from the fact that

they have many free parameters and that they require large amounts of data for training.

More importantly, the projection of jets into images also loses information, which impacts

classification performance. The most obvious way to address this issue is to use a recurrent

neural network to process a sequence of 4-momenta as in ref. [8]. However, it is not clear how

to order this sequence. While pT ordering is common in many contexts [8], it does not cap-

ture important angular information critical for understanding the subtle structure of jets.

In this work, we propose instead a solution for jet classification based on an analogy

between QCD and natural languages, as inspired by several works from natural language

processing [9–14]. Much like a sentence is composed of words following a syntactic struc-

ture organized as a parse tree, a jet is also composed of 4-momenta following a structure

dictated by QCD and organized via the clustering history of a sequential recombination jet

algorithm. More specifically, our approach uses ‘recursive’ networks where the topology of

the network is given by the clustering history of a sequential recombination jet algorithm,

which varies on an event-by-event basis. This event-by-event adaptive structure can be

contrasted with the ‘recurrent’ networks that operate purely on sequences (see e.g., [15]).

The network is therefore given the 4-momenta without any loss of information, in a way

that also captures substructures, as motivated by physical theory.

It is convenient to think of the recursive neural network as learning a ‘jet embedding’,

which maps a set of 4-momenta into Rq. This embedding has fixed length and can be

fed into a subsequent network used for classification or regression. Thus the procedure

can be used for jet tagging or estimating parameters that characterize the jet, such as the

masses of resonances buried inside the jet. Importantly, the embedding and the subsequent

network can be trained jointly so that the embedding is optimized for the task at hand.

Extending the natural language analogy paragraphs of text are sequence of sentences,

just as event are sequence of jets. In particular, we propose to embed the full particle

content of an event by feeding a sequence of jet-embeddings into a recurrent network. As

before, this event-level embedding can be fed into a subsequent network used for classifi-

cation or regression. To our knowledge, this represents the first machine learning model

operating on all the detectable particles in an event.

– 2 –

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

The remainder of the paper is structured as follows. In section 2, we formalize the

classification tasks at the jet-level and event-level. We describe the proposed recursive

network architectures in section 3 and detail the data samples and preprocessing used in

our experiments in section 4. Our results are summarized and discussed first in section 5 for

experiments on a jet-level classification problem, and then in section 6 for experiments on

an event-level classification problem. In section 7, we relate our work to close contributions

from deep learning, natural language processing, and jet physics. Finally, we gather our

conclusions and directions for further works in section 8.

2 Problem statement

We describe a collision event e ∈ E as being composed of a varying number of particles,

indexed by i, and where each particle is represented by its 4-momentum vector vi ∈ R4,

such that e = {vi|i = 1, . . . , N}.
The 4-momenta in each event can be clustered into jets with a sequential recombination

jet algorithm that recursively combines (by simply adding their 4-momenta) the pair i, i′

that minimize

dαii′ = min(p2αti , p
2α
ti′)

∆R2
ii′

R2
(2.1)

while dαii′ is less than min(p2αti , p
2α
ti′) [16–19]. These sequential recombination algorithms

have three hyper-parameters: R, pt,min, α, and jets with pt < pt,min are discarded. At that

point, the jet algorithm has clustered e into M jets, each of which can be represented by

a binary tree tj ∈ T indexed by j = 1, . . . ,M with Nj leaves (corresponding to a subset

of the vi). In the following, we will consider the specific cases where α = 1, 0,−1, which

respectively correspond to the kt, Cambridge-Aachen and anti-kt algorithms.

In addition to jet algorithms, we consider a ‘random’ baseline that corresponds to

recombining particles at random to form random binary trees tj , along with ‘asc-pT ’ and

‘desc-pT ’ baselines, which correspond to degenerate binary trees formed from the sequences

of particles sorted respectively in ascending and descending order of pT .

For jet-level classification or regression, each jet tj ∈ T in the training data comes

with labels or regression values yj ∈ Y jet. In this framework, our goal is to build a pre-

dictive model f jet : T 7→ Y jet minimizing some loss function Ljet. Similarly, for event-level

classification or regression, we assume that each collision event el ∈ E in the training data

comes with labels or regression values yl ∈ Yevent, and our goal is to build a predictive

model f event : E 7→ Yevent minimizing some loss function Levent.

3 Recursive embedding

3.1 Individual jets

Let us first consider the case of an individual jet whose particles are topologically structured

as a binary tree tj , e.g., based on a sequential recombination jet clustering algorithm or a

simple sequential sorting in pT . Let k = 1, . . . , 2Nj − 1 indexes the node of the binary tree

tj , and let the left and right children of node k be denoted by kL and kR respectively. Let

– 3 –

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

also kL always be the hardest child of k. By construction, we suppose that leaves k map

to particles i(k) while internal nodes correspond to recombinations. Using these notations,

we recursively define the embedding hjet
k ∈ Rq of node k in tj as

hjet
k =


uk if k is a leaf

σ

Wh


hjet
kL

hjet
kR

uk

+ bh

 otherwise
(3.1)

uk = σ (Wug(ok) + bu) (3.2)

ok =

{
vi(k) if k is a leaf

okL + okR otherwise
(3.3)

where Wh ∈ Rq×3q, bh ∈ Rq, Wu ∈ Rq×6 and bu ∈ Rq form together the shared parameters

to be learned, q is the size of the embedding, σ is the ReLU activation function [20], and g is

a function extracting the kinematic features p, η, θ, φ, E, and pT from the 4-momentum ok.

When applying eq. (3.1) recursively from the root node k = 1 down to the outer nodes

of the binary tree tj , the resulting embedding, denoted hjet
1 (tj), effectively summarizes the

information contained in the particles forming the jet into a single vector. In particular,

this recursive neural network (RNN) embeds a binary tree of varying shape and size into a

vector of fixed size. As a result, the embedding hjet
1 (tj) can now be chained to a subsequent

classifier or regressor to solve our target supervised learning problem, as illustrated in

figure 1. All parameters (i.e., of the recursive jet embedding and of the classifier) are

learned jointly using backpropagation through structure [9] to minimize the loss Ljet, hence

tailoring the embedding to the specific requirements of the task. Further implementation

details, including an efficient batched computation over distinct binary trees, can be found

in appendix C.

In addition to the recursive activation of eq. (3.1), we also consider and study its

extended version equipped with reset and update gates (see details in appendix A). This

gated architecture allows the network to preferentially pass information along the left-child,

right-child, or their combination.

While we have not performed experiments, we point out that there is an analogous

style of architectures based on jet algorithms with 2 → 3 recombinations [19, 21, 22].

3.2 Full events

We now embed entire events e of variable size by feeding the embeddings of their individual

jets to an event-level sequence-based recurrent neural network.

As an illustrative example, we consider here a gated recurrent unit [23] (GRU) oper-

ating on the pT ordered sequence of pairs (v(tj),h
jet
1 (tj)), for j = 1, . . . ,M , where v(tj) is

the unprocessed 4-momentum of the jet tj and hjet
1 (tj) is its embedding. The final output

hevent
M (e) (see appendix B for details) of the GRU is chained to a subsequent classifier to

solve an event-level classification task. Again, all parameters (i.e., of the inner jet embed-

ding function, of the GRU, and of the classifier) are learned jointly using backpropagation

– 4 –

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

v1 v2 ... vNj

hjet
1 (tj)

hjet
k

hjet
kL

hjet
kR

...

f jet(tj)

C
la

ss
ifi

er
J

et
em

be
d

d
in

g

Figure 1. QCD-motivated recursive jet embedding for classification. For each individual jet, the

embedding hjet
1 (tj) is computed recursively from the root node down to the outer nodes of the

binary tree tj . The resulting embedding is chained to a subsequent classifier, as illustrated in the

top part of the figure. The topology of the network in the bottom part is distinct for each jet and

is determined by a sequential recombination jet algorithm (e.g., kt clustering).

through structure [9] to minimize the loss Levent. Figure 2 provides a schematic of the

full classification model. In summary, combining two levels of recurrence provides a QCD-

motivated event-level embedding that effectively operates at the hadron-level for all the

particles in the event.

In addition and for the purpose of comparison, we also consider the simpler baselines

where i) only the 4-momenta v(tj) of the jets are given as input to the GRU, without

augmentation with their embeddings, and ii) the 4-momenta vi of the constituents of

the event are all directly given as input to the GRU, without grouping them into jets or

providing the jet embeddings.

4 Data, preprocessing and experimental setup

In order to focus attention on the impact of the network architectures and the projection

of input 4-momenta into images, we consider the same boosted W tagging example as used

in refs. [1, 2, 4, 5]. The signal (y = 1) corresponds to a hadronically decaying W boson

– 5 –

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

hjet
1 (t1)

v(t1)

hjet
1 (t2)

v(t2)

...

...

hjet
1 (tM)

v(tM)

hevent
M (e)

Event embedding

... f event(e)

Classifier

Figure 2. QCD-motivated event embedding for classification. The embedding of an event is

computed by feeding the sequence of pairs (v(tj),h
jet
1 (tj)) over the jets it is made of, where v(tj)

is the unprocessed 4-momentum of the jet tj and hjet
1 (tj) is its embedding. The resulting event-

level embedding hevent
M (e) is chained to a subsequent classifier, as illustrated in the right part of

the figure.

with 200 < pT < 500 GeV, while the background (y = 0) corresponds to a QCD jet with

the same range of pT .

We are grateful to the authors of ref. [5] for sharing the data used in their studies. We

obtained both the full-event records from their PYTHIA benchmark samples [24], including

both the particle-level data and the towers from the DELPHES detector simulation [25].

In addition, we obtained the fully processed jet images of 25×25 pixels, which include

the initial R = 1 anti-kt jet clustering and subsequent trimming, translation, pixelisation,

rotation, reflection, cropping, and normalization preprocessing stages detailed in refs. [2, 5].

Our training data was collected by sampling from the original data a total of 100,000

signal and background jets with equal prior. The testing data was assembled similarly by

sampling 100,000 signal and background jets, without overlap with the training data. For

direct comparison with ref. [5], performance is evaluated at test time within the restricted

window of 250 < pT < 300 and 50 ≤ m ≤ 110, where the signal and background jets

are re-weighted to produce flat pT distributions. Results are reported in terms of the

area under the ROC curve (ROC AUC) and of background rejection (i.e., 1/FPR) at

50% signal efficiency (Rε=50%). Average scores reported include uncertainty estimates that

come from training 30 models with distinct initial random seeds. About 2% of the models

had technical problems during training (e.g., due to numerical errors), so we applied a

simple algorithm to ensure robustness: we discarded models whose Rε=50% was outside of

– 6 –

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

3 standard deviations of the mean, where the mean and standard deviation were estimated

excluding the five best and worst performing models.

For our jet-level experiments we consider as input to the classifiers the 4-momenta vi
from both the particle-level data and the DELPHES towers. We also compare the performance

with and without the projection of those 4-momenta into images. While the image data

already included the full pre-processing steps, when considering particle-level and tower

inputs we performed the initial R = 1 anti-kt jet clustering to identify the constituents

of the highest pT jet t1 of each event, and then performed the subsequent translation,

rotation, and reflection pre-processing steps (omitting cropping and normalization). When

processing the image data, we inverted the normalization that enforced the sum of the

squares of the pixel intensities be equal to one.1

For our event-level experiments we were not able to use the data from ref. [5] because

the signal sample corresponded to pp → W (→ J)Z(→ νν̄) and the background to pp →
jj. Thus the signal was characterized by one high-pT jet and large missing energy from

Z(→ νν̄) which is trivially separated from the dijet background. For this reason, we

generated our own PYTHIA and DELPHES samples of pp → W ′ → W (→ J)Z(→ J) and

QCD background such that both the signal and background have two high-pT jets. We

use mW ′ = 700 GeV and restrict p̂t of the 2→ 2 scattering process to 300 < p̂t < 350 GeV.

A best effort was made to choose the other parameters for PYTHIA and DELPHES to be the

same as in the jet-level experiments. Our focus is to demonstrate the scalability of our

method to all the particles or towers in an event, and not to provide a precise statement

about physics reach for this signal process. In this case each event e was clustered by the

same anti-kt algorithm with R = 1, and then the constituents of each jet were treated

as in section 3.1 (i.e., reclustered using kt or a sequential ordering in pT to provide the

network topology for a non-gated embedding). Additionally, the constituents of each jet

were pre-processed with translation, rotation, and reflection as in the individual jet case.

The minimum pT jet threshold was set to 20 GeV, so most events had a few additional

jets beyond the two hard fat jets. Training was carried out on a dataset of 100,000 signal

and background events with equal prior. Performance was evaluated on an independent

test set of 100,000 other events, as measured by the ROC AUC and Rε=80% of the model

predictions. Again, average scores are given with uncertainty estimates that come from

training 30 models with distinct initial random seeds.

In both jet-level and event-level experiments, centering and scaling was applied inde-

pendently on each feature before feeding the data to the recursive neural network. The

dimension of the embeddings q was set to 40. Training was conducted using Adam [26] as

an optimizer for 25 epochs, with a batch size of 64 and a learning rate of 0.0005 decayed

by a factor of 0.9 after every epoch. These parameters were found to perform best on av-

erage, as determined through an optimization of the hyper-parameters. Performance was

monitored during training on a validation set of 5000 samples to allow for early stopping

and prevent from overfitting.

1In ref. [2], the jet images did not include the DELPHES detector simulation, they were comparable to our

particle scenario with the additional discretization into pixels.

– 7 –

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

5 Experiments with jet-level classification

5.1 Performance studies

We carried out performance studies where we varied the following factors: the projection

of the 4-momenta into an image, the source of those 4-momenta, the topology of the RNN,

and the presence or absence of gating.

Impact of image projection. The first factor we studied was whether or not to project

the 4-momenta into an image as in refs. [2, 5]. The architectures used in previous studies

required a fixed input (image) representation, and cannot be applied to the variable length

set of input 4-momenta. Conversely, we can apply the RNN architecture to the discretized

image 4-momenta. Table 1 shows that the RNN architecture based on a kt topology per-

forms almost as well as the MaxOut architecture in ref. [5] when applied to the image

pre-processed 4-momenta coming from DELPHES towers. While the MaxOut architecture in

ref. [5] has 975,693 parameters and was trained with 6M examples, the non-gated RNN ar-

chitecture has 8,481 parameters and was trained with 100,000 examples only. This suggests

that the the RNN architecture is more data efficient; however, at this point the MaxOut

architecture has a slight advantage in terms of performance.

Next, we compare the RNN classifier based on a kt topology on tower 4-momenta

with and without image preprocessing. Table 1 and figure 3 show significant gains in not

using jet images, improving ROC AUC from 0.8321 to 0.8807 (resp., Rε=50% from 12.7 to

24.1) in the case of kt topologies. In addition, this result outperforms the MaxOut ar-

chitecture operating on images by a significant margin. This suggests that the projection

of high-resolution 4-momenta into a lower-resolution image loses information and impacts

classification performance. We suspect the loss of information to be due to some of the

construction steps of jet images (i.e., pixelisation, rotation, zooming, cropping and normal-

ization). In particular, all are applied at the image-level instead of being performed directly

on the 4-momenta, which might induce artifacts due to the lower resolution, particle super-

position and aliasing. By contrast, the RNN is able to work directly with the 4-momenta

of a variable-length set of particles, without any loss of information. For completeness, we

also compare to the performance of a classifier based purely on the single n-subjettiness

feature τ21 := τ2
τ1

and a classifier based on two features (the trimmed mass and τ21) [27].

In agreement with previous results based on deep learning [2, 5], we see that our RNN

classifier clearly outperforms this variable.

Measurements of the 4-momenta. The second factor we varied was the source of

the 4-momenta. The towers scenario, corresponds to the case where the 4-momenta come

from the calorimeter simulation in DELPHES. While the calorimeter simulation is simplistic,

the granularity of the towers is quite large (10◦ in φ) and it does not take into account

that tracking detectors can provide very accurate momenta measurements for charged

particles that can be combined with calorimetry as in the particle flow approach. Thus,

we also consider the particles scenario, which corresponds to an idealized case where the

4-momenta come from perfectly measured stable hadrons from PYTHIA. Table 1 and figure 3

show that further gains could be made with more accurate measurements of the 4-momenta,

– 8 –

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

Input Architecture ROC AUC Rε=50%

Projected into images

towers MaxOut 0.8418 –

towers kt 0.8321 ± 0.0025 12.7 ± 0.4

towers kt (gated) 0.8277 ± 0.0028 12.4 ± 0.3

Without image preprocessing

towers τ21 0.7644 6.79

towers mass + τ21 0.8212 11.31

towers kt 0.8807 ± 0.0010 24.1 ± 0.6

towers C/A 0.8831 ± 0.0010 24.2 ± 0.7

towers anti-kt 0.8737 ± 0.0017 22.3 ± 0.8

towers asc-pT 0.8835 ± 0.0009 26.2 ± 0.7

towers desc-pT 0.8838 ± 0.0010 25.1 ± 0.6

towers random 0.8704 ± 0.0011 20.4 ± 0.3

particles kt 0.9185 ± 0.0006 68.3 ± 1.8

particles C/A 0.9192 ± 0.0008 68.3 ± 3.6

particles anti-kt 0.9096 ± 0.0013 51.7 ± 3.5

particles asc-pT 0.9130 ± 0.0031 52.5 ± 7.3

particles desc-pT 0.9189 ± 0.0009 70.4 ± 3.6

particles random 0.9121 ± 0.0008 51.1 ± 2.0

With gating (see appendix A)

towers kt 0.8822 ± 0.0006 25.4 ± 0.4

towers C/A 0.8861 ± 0.0014 26.2 ± 0.8

towers anti-kt 0.8804 ± 0.0010 24.4 ± 0.4

towers asc-pT 0.8849 ± 0.0012 27.2 ± 0.8

towers desc-pT 0.8864 ± 0.0007 27.5 ± 0.6

towers random 0.8751 ± 0.0029 22.8 ± 1.2

particles kt 0.9195 ± 0.0009 74.3 ± 2.4

particles C/A 0.9222 ± 0.0007 81.8 ± 3.1

particles anti-kt 0.9156 ± 0.0012 68.3 ± 3.2

particles asc-pT 0.9137 ± 0.0046 54.8 ± 11.7

particles desc-pT 0.9212 ± 0.0005 83.3 ± 3.1

particles random 0.9106 ± 0.0035 50.7 ± 6.7

Table 1. Summary of jet classification performance for several approaches applied either to particle-

level inputs or towers from a DELPHES simulation.

improving e.g. ROC AUC from 0.8807 to 0.9185 (resp., Rε=50% from 24.1 to 68.3) in the case

of kt topologies. We also considered a case where the 4-momentum came from the DELPHES

particle flow simulation and the data associated with each particle was augmented with

a particle-flow identifier distinguishing ± charged hadrons, photons, and neutral hadrons.

This is similar in motivation to ref. [6], but we did not observe any significant gains in

classification performance with respect to the towers scenario.

– 9 –

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Signal efficiency

100

101

102

1
 /

 B
a
ck

g
ro

u
n
d
 e

ff
ic

ie
n
cy

particles

towers

images

Figure 3. Jet classification performance for various input representations of the RNN classifier,

using kt topologies for the embedding. The plot shows that there is significant improvement from

removing the image processing step and that significant gains can be made with more accurate

measurements of the 4-momenta.

Topology of the binary trees. The third factor we studied was the topology of the

binary tree tj described in sections 2 and 3.1 that dictates the recursive structure of the

RNN. We considered binary trees based on the anti-kt, Cambridge-Aachen (C/A), and kt
sequential recombination jet algorithms, along with random, asc-pT and desc-pT binary

trees. Table 1 and figure 4 show the performance of the RNN classifier based on these

various topologies. Interestingly, the topology is significant.

For instance, kt and C/A significantly outperform the anti-kt topology on both tower

and particle inputs. This is consistent with intuition from previous jet substructure studies

where jets are typically reclustered with the kt algorithm. The fact that the topology is

important is further supported by the poor performance of the random binary tree topol-

ogy. We expected however that a simple sequence (represented as a degenerate binary tree)

based on ascending and descending pT ordering would not perform particularly well, par-

ticularly since the topology does not use any angular information. Surprisingly, the simple

descending pT ordering slightly outperforms the RNNs based on kt and C/A topologies.

The descending pT network has the highest pT 4-momenta near the root of the tree, which

we expect to be the most important. We suspect this is the reason that the descending

pT outperforms the ascending pT ordering on particles, but this is not supported by the

performance on towers. A similar observation was already made in the context of natural

languages [28–30], where tree-based models have at best only slightly outperformed sim-

pler sequence-based networks. While recursive networks appear as a principled choice, it

is conjectured that recurrent networks may in fact be able to discover and implicitly use

recursive compositional structure by themselves, without supervision.

– 10 –

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Signal efficiency

100

101

102

1
 /

 B
a
ck

g
ro

u
n
d
 e

ff
ic

ie
n
cy

kt

C/A

anti-kt
asc-pT
desc-pT
random

Figure 4. Jet classification performance of the RNN classifier based on various network topologies

for the embedding (particles scenario). This plot shows that topology is significant, as supported

by the fact that results for kt, C/A and desc-pT topologies improve over results for anti-kt, asc-pT
and random binary trees. Best results are achieved for C/A and desc-pT topologies, depending on

the metric considered.

Gating. The last factor that we varied was whether or not to incorporate gating in the

RNN. Adding gating increases the number of parameters to 48,761, but this is still about

20 times smaller than the number of parameters in the MaxOut architectures used in

previous jet image studies. Table 1 shows the performance of the various RNN topologies

with gating. While results improve significantly with gating, most notably in terms of

Rε=50%, the trends in terms of topologies remain unchanged.

Other variants. Finally, we also considered a number of other variants. For example,

we jointly trained a classifier with the concatenated embeddings obtained over kt and anti-

kt topologies, but saw no significant performance gain. We also tested the performance

of recursive activations transferred across topologies. For instance, we used the recursive

activation learned with a kt topology when applied to an anti-kt topology and observed a

significant loss in performance. We also considered particle and tower level inputs with an

additional trimming preprocessing step, which was used for the jet image studies, but we

saw a significant loss in performance. While the trimming degraded classification perfor-

mance, we did not evaluate the robustness to pileup that motivates trimming and other

jet grooming procedures.

5.2 Infrared and collinear safety studies

In proposing variables to characterize substructure, physicists have been equally concerned

with classification performance and the ability to ensure various theoretical properties

– 11 –

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

Scenario Architecture ROC AUC Rε=50%

nominal kt 0.9185 ± 0.0006 68.3 ± 1.8

nominal desc-pT 0.9189 ± 0.0009 70.4 ± 3.6

collinear1 kt 0.9183 ± 0.0006 68.7 ± 2.0

collinear1 desc-pT 0.9188 ± 0.0010 70.7 ± 4.0

collinear10 kt 0.9174 ± 0.0006 67.5 ± 2.6

collinear10 desc-pT 0.9178 ± 0.0011 67.9 ± 4.3

collinear1-max kt 0.9184 ± 0.0006 68.5 ± 2.8

collinear1-max desc-pT 0.9191 ± 0.0010 72.4 ± 4.3

collinear10-max kt 0.9159 ± 0.0009 65.7 ± 2.7

collinear10-max desc-pT 0.9140 ± 0.0016 63.5 ± 5.2

soft kt 0.9179 ± 0.0006 68.2 ± 2.3

soft desc-pT 0.9188 ± 0.0009 70.2 ± 3.7

Table 2. Performance of pre-trained RNN classifiers (without gating) applied to nominal and

modified particle inputs. The collinear1 (collinear10) scenarios correspond to applying collinear

splits to one (ten) random particles within the jet. The collinear1-max (collinear10-max) scenarios

correspond to applying collinear splits to the highest pT (ten highest pT) particles in the jet. The

soft scenario corresponds to adding 200 particles with pT = 10−5 GeV uniformly in 0 < φ < 2π and

−5 < η < 5.

of those variables. In particular, initial work on jet algorithms focused on the Infrared-

Collinear (IRC) safe conditions:

• Infrared safety. The model is robust to augmenting e with additional particles

{vN+1, . . . ,vN+K} with small transverse momentum.

• Collinear safety. The model is robust to a collinear splitting of a particle, which is

represented by replacing a particle vj ∈ e with two particles vj1 and vj2 , such that

vj = vj1 + vj2 and vj1 · vj2 = ||vj1 || ||vj2 || − ε.

The sequential recombination algorithms lead to an IRC-safe definition of jets, in the

sense that given the event e, the number of jets M and their 4-momenta v(tj) are IRC-safe.

An early motivation of this work is that basing the RNN topology on the sequential

recombination algorithms would provide an avenue to machine learning classifiers with some

theoretical guarantee of IRC safety. If one only wants to ensure robustness to only one soft

particle or one collinear split, this could be satisfied by simply running a single iteration

of the jet algorithm as a pre-processing step. However, it is difficult to ensure a more

general notion of IRC safety on the embedding due to the non-linearities in the network.

Nevertheless, we can explicitly test the robustness of the embedding or the subsequent

classifier to the addition of soft particles or collinear splits to the input 4-momenta.

Table 2 shows the results of a non-gated RNN trained on the nominal particle-level

input when applied to testing data with additional soft particles or collinear splits. The soft

scenario corresponds to adding 200 particles with pT = 10−5 GeV uniformly in 0 < φ < 2π

– 12 –

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

and −5 < η < 5. The collinear splits were uniform in the momentum fraction and main-

tained the small invariant mass of the hadrons. We considered one or ten collinear splits

on both random particles and the highest pT particles. We see that while the 30 models

trained with a descending pT topology very slightly outperform the kt topology for almost

scenarios, their performance in terms of Rε=50% decreases relatively more rapidly when

collinear splits are applied (see e.g., the collinear10-max scenarios where the performance

of kt decreases by 4%, while the performance of pT decreases by 10%). This suggests a

higher robustness towards collinear splits for recursive networks based on kt topologies.

We also point out that the training of these networks is based solely on the classification

loss for the nominal sample. If we are truly concerned with the IRC-safety considerations,

then it is natural to augment the training of the classifiers to be robust to these variations.

A number of modified training procedures exist, including e.g., the adversarial training

procedure described in ref. [31].

6 Experiments with event-level classification

As in the previous section, we carried out a number of performance studies. However, our

goal is mainly to demonstrate the relevance and scalability of the QCD-motivated approach

we propose, rather than making a statement about the physics reach of the signal process.

Results are discussed considering the idealized particles scenario, where the 4-momenta

come from perfectly measured stable hadrons from PYTHIA. Experiments for the towers

scenario (omitted here) reveal similar qualitative conclusions, though performance was

slightly worse for all models, as expected.

Number of jets. The first factor we varied was the maximum number of jets in the

sequence of embeddings given as input to the GRU. While the event-level embedding can

be computed over all the jets it is constituted by, QCD suggests that the 2 highest pT
jets hold most of the information to separate signal from background events, with only

marginal discriminating information left in the subsequent jets. As table 3 and figure 5

show, there is indeed significant improvement in going from the hardest jet to the 2 hardest

jets, while there is no to little gain in considering more jets. Let us also emphasize that

the event-level models have only 18,681 parameters, and were trained on 100,000 training

examples.

Topology of the binary trees. The second factor we studied was the architecture of

the networks used for the inner embedding of the jets, for which we compare kt against

descending pT topologies. As in the previous section, best results are achieved with de-

scending pT topologies, though the difference is only marginal.

Other variants. Finally, we also compare with baselines. With respect to an event-level

embedding computed only from the 4-momenta v(tj) (for j = 1, . . . ,M) of the jets, we

find that augmenting the input to the GRU with jet-level embeddings yields significant

improvement, e.g. improving ROC AUC from 0.9606 to 0.9875 (resp. Rε=80% from 21.1 to

174.5) when considering the 2 hardest jets case. This suggests that jet substructures are

– 13 –

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

Input ROC AUC Rε=80%

Hardest jet

v(tj) 0.8909 ± 0.0007 5.6 ± 0.0

v(tj), h
jet(kt)
j 0.9602 ± 0.0004 26.7 ± 0.7

v(tj), h
jet(desc−pT)
j 0.9594 ± 0.0010 25.6 ± 1.4

2 hardest jets

v(tj) 0.9606 ± 0.0011 21.1 ± 1.1

v(tj), h
jet(kt)
j 0.9866 ± 0.0007 156.9 ± 14.8

v(tj), h
jet(desc−pT)
j 0.9875 ± 0.0006 174.5 ± 14.0

5 hardest jets

v(tj) 0.9576 ± 0.0019 20.3 ± 0.9

v(tj), h
jet(kt)
j 0.9867 ± 0.0004 152.8 ± 10.4

v(tj), h
jet(desc−pT)
j 0.9872 ± 0.0003 167.8 ± 9.5

No jet clustering, desc-pT on vi

i = 1 0.6501 ± 0.0023 1.7 ± 0.0

i = 1, . . . , 50 0.8925 ± 0.0079 5.6 ± 0.5

i = 1, . . . , 100 0.8781 ± 0.0180 4.9 ± 0.6

i = 1, . . . , 200 0.8846 ± 0.0091 5.2 ± 0.5

i = 1, . . . , 400 0.8780 ± 0.0132 4.9 ± 0.5

Table 3. Summary of event classification performance. Best results are achieved through nested

recurrence over the jets and over their constituents, as motivated by QCD.

important to separate signal from background events, and correctly learned when nesting

embeddings. Similarly, we observe that directly feeding the GRU with the 4-momenta

vi, for i = 1, . . . , N , of the constituents of the event performs significantly worse. While

performance remains decent (e.g., with a ROC AUC of 0.8925 when feeding the 50 4-

momenta with largest pT), this suggests that the recurrent network fails to leverage some

of the relevant information, which is otherwise easier to identify and learn when inputs

to the GRU come directly grouped as jets, themselves structured as trees. In contrast to

our previous results for jet-level experiments, this last comparison underlines the fact that

integrating domain knowledge by structuring the network topology is in some cases crucial

for performance.

Overall, this study shows that event embeddings inspired from QCD and produced

by nested recurrence, over the jets and over their constituents, is a promising avenue for

building effective machine learning models. To our knowledge, this is the first classifier

operating at the hadron-level for all the particles in an event, in a way motivated in its

structure by QCD.

– 14 –

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Signal efficiency

100

101

102

103

104

105

1
 /

 B
a
ck

g
ro

u
n
d
 e

ff
ic

ie
n
cy

 1 jet

 2 jets

 5 jets

Figure 5. Event classification performance of the RNN classifier when varying the maximum

number of jets given as input to the GRU. This plots shows there is significant improvement from

going to the hardest to the 2 hardest jets, while there is no to little gain in considering more jets.

7 Related work

Neural networks in particle physics have a long history. They have been used in the past for

many tasks, including early work on quark-gluon discrimination [32, 33], particle identifi-

cation [34], Higgs tagging [35] or track identification [36]. In most of these, neural networks

appear as shallow multi-layer perceptrons where input features were designed by experts to

incorporate domain knowledge. More recently, the success of deep convolutional networks

has triggered a new body of work in jet physics, shifting the paradigm from engineering in-

put features to learning them automatically from raw data, e.g., as in these works treating

jets as images [1–7]. Our work builds instead upon an analogy between QCD and natural

languages, hence complementing the set of algorithms for jet physics with techniques ini-

tially developed for natural language processing [9–14]. Initial steps in this direction used

recurrent networks over variable length list of tracks for jet flavor classification [8]. Our

approach does not delegate the full modeling task to the machine. It allows to incorpo-

rate domain knowledge in terms of the network architecture, specifically by structuring the

recursion stack for the embedding directly from QCD-inspired jet algorithms (see section 3)

Between the time that this work appeared on the arXiv preprint server and submitted

for publication there has been a flurry of activity connecting deep learning techniques

and jet physics (for reviews see refs. [37–39]). In particular the method described here

was also used for quark/gluon tagging in ref. [40] and a variant of this method was used to

reconstruct a jet’s charge [41] and also inspired further work by the CMS collaboration [42].

– 15 –

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

The authors of ref. [43] used the tree structure defined by the jet clustering history to define

a substructure ordering scheme for use with a sequential recurrent neural network. Going

the opposite direction, graph neural networks and message passing neural networks have

also been applied to the the same jet-level classification problem and data described in this

work [44]. There has also been a spate of recent work on using QCD-inspired variables,

enforcing physical constraints into neural networks, and ensuring infrared safety of neural

network based approaches to jet physics [45–49]. Exploring a complementary direction,

several authors have developed ways to train machine learning techniques using real data

to avoid sensitivity to systematic effects in the simulation [50–53]. These recent training

techniques are agnostic to the network architecture and can be paired with the RNN

architectures described here. Finally, deep learning techniques are now being studied as

generative models for jets, where the tree-based model mimics the parton shower and can

be trained on real data [54]. Learning generative modes for both signal and background

classes of jets can be used to define a classifier in which each branch of the tree can be

interpreted as a contribution to a likelihood ratio discriminant [54].

8 Conclusions

Building upon an analogy between QCD and natural languages, we have presented in

this work a novel class of recursive neural networks for jet physics that are derived from

sequential recombination jet algorithms. Our experiments have revealed that preprocessing

steps applied to jet images during their construction (specifically the pixelisation) loses

information, which impacts classification performance. By contrast, our recursive network

is able to work directly with the four-momenta of a variable-length set of particles, without

the loss of information due to discretization into pixels. Our experiments indicate that this

results in significant gains in terms of accuracy and data efficiency with respect to previous

image-based networks. Finally, we also showed for the first time a hierarchical, event-level

classification model operating on all the hadrons of an event. Notably, our results showed

that incorporating domain knowledge derived from jet algorithms and encapsulated in

terms of the network architecture led to improved classification performance.

While we initially expected recursive networks operating on jet recombination trees

to outperform simpler pT -ordered architectures, our results still clearly indicate that the

topology has an effect on the final performance of the classifier. However, our initial

studies indicate that architectures based on jet trees are more robust to infrared radiation

and collinear splittings than the simpler pT -ordered architectures, which may outweigh

what at face value appears to be a small loss in performance. Accordingly, it would be

natural to include robustness to pileup, infrared radiation, and collinear splittings directly

in the training procedure [31]. Moreover, it is compelling to think of generalizations in

which the optimization would include the topology used for the embedding as learnable

component instead of considering it fixed a priori. An immediate challenge of this approach

is that a discontinuous change in the topology (e.g., from varying α or R) makes the

loss non-differentiable and rules out standard back propagation optimization algorithms.

Nevertheless, solutions for learning composition orders have recently been proposed in

– 16 –

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

NLP, using either explicit supervision [55] or reinforcement learning [56]; both of which

could certainly be adapted to jet embeddings. Another promising generalization is to use

a graph-convolutional network that operates on a graph where the vertices correspond to

particle 4-momenta vi and the edge weights are given by dαii′ or a similar QCD-motivated

quantity [44, 57–63]. In conclusion, we feel confident that there is great potential in hybrid

techniques like this that incorporate physics knowledge and leverage the power of machine

learning.

Acknowledgments

We would like to thank the authors of ref. [5] for sharing the data used in their studies and

Noel Dawe in particular for his responsiveness in clarifying details about their work. We

would also like to thank Joan Bruna for enlightening discussions about graph-convolutional

networks. Cranmer and Louppe are both supported through NSF ACI-1450310, addition-

ally Cranmer and Becot are supported through PHY-1505463 and PHY-1205376. We would

also like to thank the Moore-Sloan Data Science Initiative and the NYU Center for Data

Science for fostering this cross-disciplinary research.

A Gated recursive jet embedding

The recursive activation proposed in section 3.1 suffers from two critical issues. First, it

assumes that left-child, right-child and local node information hjet
kL

, hjet
kR

, uk are all equally

relevant for computing the new activation, while only some of this information may be

needed and selected. Second, it forces information to pass through several levels of non-

linearities and does not allow to propagate unchanged from leaves to root. Addressing these

issues and generalizing from [12–14], we recursively define a recursive activation equipped

with reset and update gates as follows:

hjet
k =


uk if k is a leaf

zH � h̃jet
k + zL � hjet

kL
+ otherwise

↪→ zR � hjet
kR

+ zN � uk

(A.1)

uk = σ (Wug(ok) + bu) (A.2)

ok =

{
vi(k) if k is a leaf

okL + okR otherwise
(A.3)

h̃jet
k = σ

Wh̃

rL � hjet
kL

rR � hjet
kR

rN � uk

+ bh̃

 (A.4)


zH
zL
zR
zN

 = softmax

Wz


h̃jet
k

hjet
kL

hjet
kR

uk

+ bz

 (A.5)

– 17 –

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

rL
rR
rN

 = sigmoid

Wr

hjet
kL

hjet
kR

uk

+ br

 (A.6)

where Wh̃ ∈ Rq×3q, bh̃ ∈ Rq, Wz ∈ Rq×4q, bz ∈ Rq, Wr ∈ Rq×3q, br ∈ Rq, Wu ∈ Rq×6

and bu ∈ Rq form together the shared parameters to be learned, σ is the ReLU activation

function and � denotes the element-wise multiplication.

Intuitively, the reset gates rL, rR and rN control how to actively select and then

merge the left-child embedding hjet
kL

, the right-child embedding hjet
kR

and the local node

information uk to form a new candidate activation h̃jet
k . The final embedding hjet

k can

then be regarded as a choice among the candidate activation, the left-child embedding, the

right-child embedding and the local node information, as controlled by the update gates

zH , zL, zR and zN . Finally, let us note that the proposed gated recursive embedding is

a generalization of section 3.1, in the sense that the later corresponds to the case where

update gates are set to zH = 1, zL = 0, zR = 0 and zN = 0 and reset gates to rL = 1,

rR = 1 and rN = 1 for all nodes k.

B Gated recurrent event embedding

In this section, we formally define the gated recurrent event embedding introduced in

section 3.2. Our event embedding function is a GRU [23] operating on the pT ordered

sequence of pairs (v(tj),h
jet
1 (tj)), for j = 1, . . . ,M , where v(tj) is the unprocessed 4-

momentum (φ, η, pT ,m) of the jet tj and hjet
1 (tj) is its embedding. Its final output hevent

j=M

is recursively defined as follows:

hevent
j = zj � hevent

j−1 + (1− zj)� h̃event
j (B.1)

h̃event
j = σ

(
Whxxj +Whh(rj � hevent

j−1) + bh
)

(B.2)

xj =

[
v(tj)

hjet
1 (tj)

]
(B.3)

zj = sigmoid
(
Wzxxj +Wzhh

event
j−1 + bz

)
(B.4)

rj = sigmoid
(
Wrxxj +Wrhh

event
j−1 + br

)
(B.5)

where Whx ∈ Rr×(4+q), Whh ∈ Rr×r, bh ∈ Rr, Wrx ∈ Rr×(4+q), Wrh ∈ Rr×r, br ∈ Rr,
Wzx ∈ Rr×(4+q), Wzh ∈ Rr×r and bz ∈ Rr are the parameters of the embedding function,

r is the size of the embedding, σ is the ReLU activation function, and hevent
0 = 0. In the

experiments of section 6, only the 1, 2 or 5 hardest jets are considered in the sequence

j = 1, . . . ,M , as ordered by ascending values of pT .

C Implementation details

While tree-structured networks appear to be a principled choice in natural language pro-

cessing, they often have been overlooked in favor of sequence-based networks on the account

of their technical incompatibility with batch computation [55]. Because tree-structured

– 18 –

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

networks use a different topology for each example, batching is indeed often impossible

in standard implementations, which prevents them from being trained efficiently on large

datasets. For this reason, the recursive jet embedding we introduced in section 3.1 would

undergo the same technical issues if not implemented with caution.

In our implementation, we achieve batch computation by noticing that activations

from a same level in a recursive binary tree can be performed all at once, provided all nec-

essary computations from the deeper levels have already been performed. This principle

extends to the synchronized computation across multiple trees, which enables the batch

computation of our jet embeddings across many events. More specifically, the computation

of jet embeddings is preceded by a traversal of the recursion trees for all jets in the batch,

and whose purpose is to unroll and regroup computations by their level of recursion. Em-

beddings are then reconstructed level-wise in batch, in a bottom-up fashion, starting from

the deepest level of recursion across all trees.

Finally, learning is carried out through gradients obtained by the automatic differen-

tiation of the full model chain on a batch of events (i.e., the recursive computation of jet

embeddings, the sequence-based recurrence to form the event embeddings, and the for-

ward pass through the classifier). The implementation is written in native Python code

and makes use of Autograd [64] for the easy derivation of the gradients over dynamic

structures. Code is available at https://github.com/glouppe/recnn under BSD license for

further technical details.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J. Cogan, M. Kagan, E. Strauss and A. Schwarztman, Jet-Images: Computer Vision Inspired

Techniques for Jet Tagging, JHEP 02 (2015) 118 [arXiv:1407.5675] [INSPIRE].

[2] L. de Oliveira, M. Kagan, L. Mackey, B. Nachman and A. Schwartzman, Jet-images — deep

learning edition, JHEP 07 (2016) 069 [arXiv:1511.05190] [INSPIRE].

[3] L.G. Almeida, M. Backović, M. Cliche, S.J. Lee and M. Perelstein, Playing Tag with ANN:

Boosted Top Identification with Pattern Recognition, JHEP 07 (2015) 086

[arXiv:1501.05968] [INSPIRE].

[4] P. Baldi, K. Bauer, C. Eng, P. Sadowski and D. Whiteson, Jet Substructure Classification in

High-Energy Physics with Deep Neural Networks, Phys. Rev. D 93 (2016) 094034

[arXiv:1603.09349] [INSPIRE].

[5] J. Barnard, E.N. Dawe, M.J. Dolan and N. Rajcic, Parton Shower Uncertainties in Jet

Substructure Analyses with Deep Neural Networks, Phys. Rev. D 95 (2017) 014018

[arXiv:1609.00607] [INSPIRE].

[6] P.T. Komiske, E.M. Metodiev and M.D. Schwartz, Deep learning in color: towards automated

quark/gluon jet discrimination, JHEP 01 (2017) 110 [arXiv:1612.01551] [INSPIRE].

[7] G. Kasieczka, T. Plehn, M. Russell and T. Schell, Deep-learning Top Taggers or The End of

QCD?, JHEP 05 (2017) 006 [arXiv:1701.08784] [INSPIRE].

– 19 –

https://github.com/glouppe/recnn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP02(2015)118
https://arxiv.org/abs/1407.5675
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.5675
https://doi.org/10.1007/JHEP07(2016)069
https://arxiv.org/abs/1511.05190
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.05190
https://doi.org/10.1007/JHEP07(2015)086
https://arxiv.org/abs/1501.05968
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.05968
https://doi.org/10.1103/PhysRevD.93.094034
https://arxiv.org/abs/1603.09349
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.09349
https://doi.org/10.1103/PhysRevD.95.014018
https://arxiv.org/abs/1609.00607
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.00607
https://doi.org/10.1007/JHEP01(2017)110
https://arxiv.org/abs/1612.01551
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.01551
https://doi.org/10.1007/JHEP05(2017)006
https://arxiv.org/abs/1701.08784
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.08784

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

[8] D. Guest, J. Collado, P. Baldi, S.-C. Hsu, G. Urban and D. Whiteson, Jet Flavor

Classification in High-Energy Physics with Deep Neural Networks, Phys. Rev. D 94 (2016)

112002 [arXiv:1607.08633] [INSPIRE].

[9] C. Goller and A. Kuchler, Learning task-dependent distributed representations by

backpropagation through structure, IEEE Int. Conf. Neural Networks 1 (1996) 347.

[10] R. Socher, C.C. Lin, C. Manning and A.Y. Ng, Parsing natural scenes and natural language

with recursive neural networks, in Proceedings of the 28th international conference on

machine learning (ICML-11), Bellevue U.S.A. (2011), pg. 129.

[11] R. Socher, J. Pennington, E.H. Huang, A.Y. Ng and C.D. Manning, Semi-supervised

recursive autoencoders for predicting sentiment distributions, in Proceedings of the Conference

on Empirical Methods in Natural Language Processing, Edinburgh U.K. (2011), pg. 151.

[12] K. Cho, B. van Merriënboer, D. Bahdanau and Y. Bengio, On the properties of neural

machine translation: Encoder-decoder approaches, arXiv:1409.1259.

[13] K. Cho et al., Learning phrase representations using rnn encoder-decoder for statistical

machine translation, arXiv:1406.1078.

[14] X. Chen, X. Qiu, C. Zhu, S. Wu and X. Huang, Sentence modeling with gated recursive

neural network, in Proceedings of the 2015 Conference on Empirical Methods in Natural

Language Processing, Lisbon Portugal (2015), pg. 793.

[15] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, Cambridge U.S.A.

(2016).

[16] S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant Kt

clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].

[17] Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms,

JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

[18] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008)

063 [arXiv:0802.1189] [INSPIRE].

[19] G.P. Salam, Towards Jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833]

[INSPIRE].

[20] V. Nair and G.E. Hinton, Rectified linear units improve restricted boltzmann machines, in

Proceedings of the 27th international conference on machine learning (ICML-10), Haifa

Israel (2010), pg. 807.

[21] N. Fischer, S. Prestel, M. Ritzmann and P. Skands, Vincia for Hadron Colliders, Eur. Phys.

J. C 76 (2016) 589 [arXiv:1605.06142] [INSPIRE].

[22] M. Ritzmann, D.A. Kosower and P. Skands, Antenna Showers with Hadronic Initial States,

Phys. Lett. B 718 (2013) 1345 [arXiv:1210.6345] [INSPIRE].

[23] J. Chung, C. Gulcehre, K. Cho and Y. Bengio, Empirical evaluation of gated recurrent neural

networks on sequence modeling, arXiv:1412.3555.

[24] T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015)

159 [arXiv:1410.3012] [INSPIRE].

[25] DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for

fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346]

[INSPIRE].

– 20 –

https://doi.org/10.1103/PhysRevD.94.112002
https://doi.org/10.1103/PhysRevD.94.112002
https://arxiv.org/abs/1607.08633
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.08633
https://doi.org/10.1109/ICNN.1996.548916
https://arxiv.org/abs/1409.1259
https://arxiv.org/abs/1406.1078
https://doi.org/10.1016/0550-3213(93)90166-M
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B406,187%22
https://doi.org/10.1088/1126-6708/1997/08/001
https://arxiv.org/abs/hep-ph/9707323
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9707323
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/0802.1189
https://inspirehep.net/search?p=find+EPRINT+arXiv:0802.1189
https://doi.org/10.1140/epjc/s10052-010-1314-6
https://arxiv.org/abs/0906.1833
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.1833
https://doi.org/10.1140/epjc/s10052-016-4429-6
https://doi.org/10.1140/epjc/s10052-016-4429-6
https://arxiv.org/abs/1605.06142
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.06142
https://doi.org/10.1016/j.physletb.2012.12.003
https://arxiv.org/abs/1210.6345
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6345
https://arxiv.org/abs/1412.3555
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.3012
https://doi.org/10.1007/JHEP02(2014)057
https://arxiv.org/abs/1307.6346
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6346

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

[26] D.P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, arXiv:1412.6980

[INSPIRE].

[27] J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03

(2011) 015 [arXiv:1011.2268] [INSPIRE].

[28] S. R. Bowman, C. D. Manning and C. Potts, Tree-structured composition in neural networks

without tree-structured architectures, arXiv:1506.04834.

[29] S.R. Bowman, Modeling natural language semantics in learned representations, Ph.D. Thesis,

Stanford University, Stanford U.S.A. (2016).

[30] X. Shi, I. Padhi and K. Knight, Does string-based neural mt learn source syntax?, in

Proceedings of EMNLP 2016, Austin U.S.A. (2016).

[31] G. Louppe, M. Kagan and K. Cranmer, Learning to Pivot with Adversarial Networks,

arXiv:1611.01046 [INSPIRE].

[32] L. Lönnblad, C. Peterson and T. Rognvaldsson, Finding Gluon Jets With a Neural Trigger,

Phys. Rev. Lett. 65 (1990) 1321 [INSPIRE].

[33] L. Lönnblad, C. Peterson and T. Rognvaldsson, Using neural networks to identify jets, Nucl.

Phys. B 349 (1991) 675 [INSPIRE].

[34] R. Sinkus and T. Voss, Particle identification with neural networks using a rotational

invariant moment representation, Nucl. Instrum. Meth. A 391 (1997) 360 [INSPIRE].

[35] P. Chiappetta, P. Colangelo, P. De Felice, G. Nardulli and G. Pasquariello, Higgs search by

neural networks at LHC, Phys. Lett. B 322 (1994) 219 [hep-ph/9401343] [INSPIRE].

[36] B.H. Denby, Neural Networks and Cellular Automata in Experimental High-energy Physics,

Comput. Phys. Commun. 49 (1988) 429 [INSPIRE].

[37] A.J. Larkoski, I. Moult and B. Nachman, Jet Substructure at the Large Hadron Collider: A

Review of Recent Advances in Theory and Machine Learning, arXiv:1709.04464 [INSPIRE].

[38] D. Guest, K. Cranmer and D. Whiteson, Deep Learning and its Application to LHC Physics,

Ann. Rev. Nucl. Part. Sci. 68 (2018) 161 [arXiv:1806.11484] [INSPIRE].

[39] M. Russell, Top quark physics in the Large Hadron Collider era, Ph.D. Thesis, Glasgow

University, Glasgow U.K. (2017) [arXiv:1709.10508] [INSPIRE].

[40] T. Cheng, Recursive Neural Networks in Quark/Gluon Tagging, Comput. Softw. Big Sci. 2

(2018) 3 [arXiv:1711.02633] [INSPIRE].

[41] K. Fraser and M.D. Schwartz, Jet Charge and Machine Learning, JHEP 10 (2018) 093

[arXiv:1803.08066] [INSPIRE].

[42] CMS collaboration, New Developments for Jet Substructure Reconstruction in CMS,

CMS-DP-2017-027 (2017).

[43] S. Egan, W. Fedorko, A. Lister, J. Pearkes and C. Gay, Long Short-Term Memory (LSTM)

networks with jet constituents for boosted top tagging at the LHC, arXiv:1711.09059

[INSPIRE].

[44] I. Henrion et al., Neural Message Passing for Jet Physics, in Proceedings of the Deep

Learning for Physical Sciences Workshop at NIPS (2017), Long Beach U.S.A. (2017),

https://dl4physicalsciences.github.io/files/nips dlps 2017 29.pdf.

– 21 –

https://arxiv.org/abs/1412.6980
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.6980
https://doi.org/10.1007/JHEP03(2011)015
https://doi.org/10.1007/JHEP03(2011)015
https://arxiv.org/abs/1011.2268
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.2268
https://arxiv.org/abs/1506.04834
https://arxiv.org/abs/1611.01046
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.01046
https://doi.org/10.1103/PhysRevLett.65.1321
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,65,1321%22
https://doi.org/10.1016/0550-3213(91)90392-B
https://doi.org/10.1016/0550-3213(91)90392-B
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B349,675%22
https://doi.org/10.1016/S0168-9002(97)00524-X
https://inspirehep.net/search?p=find+J+%22Nucl.Instrum.Meth.,A391,360%22
https://doi.org/10.1016/0370-2693(94)91110-X
https://arxiv.org/abs/hep-ph/9401343
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9401343
https://doi.org/10.1016/0010-4655(88)90004-5
https://inspirehep.net/search?p=find+J+%22Comput.Phys.Commun.,49,429%22
https://arxiv.org/abs/1709.04464
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.04464
https://doi.org/10.1146/annurev-nucl-101917-021019
https://arxiv.org/abs/1806.11484
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.11484
https://arxiv.org/abs/1709.10508
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.10508
https://doi.org/10.1007/s41781-018-0007-y
https://doi.org/10.1007/s41781-018-0007-y
https://arxiv.org/abs/1711.02633
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.02633
https://doi.org/10.1007/JHEP10(2018)093
https://arxiv.org/abs/1803.08066
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.08066
https://cds.cern.ch/record/2275226
https://arxiv.org/abs/1711.09059
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.09059
https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf

J
H
E
P
0
1
(
2
0
1
9
)
0
5
7

[45] A. Butter, G. Kasieczka, T. Plehn and M. Russell, Deep-learned Top Tagging with a Lorentz

Layer, SciPost Phys. 5 (2018) 028 [arXiv:1707.08966] [INSPIRE].

[46] K. Datta and A.J. Larkoski, Novel Jet Observables from Machine Learning, JHEP 03 (2018)

086 [arXiv:1710.01305] [INSPIRE].

[47] P.T. Komiske, E.M. Metodiev and J. Thaler, Energy flow polynomials: A complete linear

basis for jet substructure, JHEP 04 (2018) 013 [arXiv:1712.07124] [INSPIRE].

[48] S.H. Lim and M.M. Nojiri, Spectral Analysis of Jet Substructure with Neural Networks:

Boosted Higgs Case, JHEP 10 (2018) 181 [arXiv:1807.03312] [INSPIRE].

[49] S. Choi, S.J. Lee and M. Perelstein, Infrared Safety of a Neural-Net Top Tagging Algorithm,

arXiv:1806.01263 [INSPIRE].

[50] E.M. Metodiev, B. Nachman and J. Thaler, Classification without labels: Learning from

mixed samples in high energy physics, JHEP 10 (2017) 174 [arXiv:1708.02949] [INSPIRE].

[51] P.T. Komiske, E.M. Metodiev, B. Nachman and M.D. Schwartz, Learning to classify from

impure samples with high-dimensional data, Phys. Rev. D 98 (2018) 011502

[arXiv:1801.10158] [INSPIRE].

[52] J.H. Collins, K. Howe and B. Nachman, Anomaly Detection for Resonant New Physics with

Machine Learning, Phys. Rev. Lett. 121 (2018) 241803 [arXiv:1805.02664] [INSPIRE].

[53] R.T. D’Agnolo and A. Wulzer, Learning New Physics from a Machine, arXiv:1806.02350

[INSPIRE].

[54] A. Andreassen, I. Feige, C. Frye and M.D. Schwartz, JUNIPR: a Framework for

Unsupervised Machine Learning in Particle Physics, arXiv:1804.09720 [INSPIRE].

[55] S.R. Bowman, J. Gauthier, A. Rastogi, R. Gupta, C.D. Manning and C. Potts, A fast unified

model for parsing and sentence understanding, arXiv:1603.06021.

[56] D. Yogatama, P. Blunsom, C. Dyer, E. Grefenstette and W. Ling, Learning to compose words

into sentences with reinforcement learning, arXiv:1611.09100.

[57] J. Bruna, W. Zaremba, A. Szlam and Y. LeCun, Spectral networks and locally connected

networks on graphs, arXiv:1312.6203.

[58] M. Henaff, J. Bruna and Y. LeCun, Deep convolutional networks on graph-structured data,

arXiv:1506.05163.

[59] Y. Li, D. Tarlow, M. Brockschmidt and R.S. Zemel, Gated graph sequence neural networks,

arXiv:1511.05493.

[60] M. Niepert, M. Ahmed and K. Kutzkov, Learning convolutional neural networks for graphs,

arXiv:1605.05273.

[61] M. Defferrard, X. Bresson and P. Vandergheynst, Convolutional neural networks on graphs

with fast localized spectral filtering, arXiv:1606.09375.

[62] T.N. Kipf and M. Welling, Semi-supervised classification with graph convolutional networks,

arXiv:1609.02907.

[63] T.N. Kipf and M. Welling, Semi-supervised classification with graph convolutional networks,

arXiv:1609.02907.

[64] D. Maclaurin, D. Duvenaud, M. Johnson and R.P. Adams, Autograd: Reverse-mode

differentiation of native Python, http://github.com/HIPS/autograd (2015).

– 22 –

https://doi.org/10.21468/SciPostPhys.5.3.028
https://arxiv.org/abs/1707.08966
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.08966
https://doi.org/10.1007/JHEP03(2018)086
https://doi.org/10.1007/JHEP03(2018)086
https://arxiv.org/abs/1710.01305
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.01305
https://doi.org/10.1007/JHEP04(2018)013
https://arxiv.org/abs/1712.07124
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.07124
https://doi.org/10.1007/JHEP10(2018)181
https://arxiv.org/abs/1807.03312
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.03312
https://arxiv.org/abs/1806.01263
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.01263
https://doi.org/10.1007/JHEP10(2017)174
https://arxiv.org/abs/1708.02949
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.02949
https://doi.org/10.1103/PhysRevD.98.011502
https://arxiv.org/abs/1801.10158
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.10158
https://doi.org/10.1103/PhysRevLett.121.241803
https://arxiv.org/abs/1805.02664
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.02664
https://arxiv.org/abs/1806.02350
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.02350
https://arxiv.org/abs/1804.09720
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.09720
https://arxiv.org/abs/1603.06021
https://arxiv.org/abs/1611.09100
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1506.05163
https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1605.05273
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
http://github.com/HIPS/autograd

	Introduction
	Problem statement
	Recursive embedding
	Individual jets
	Full events

	Data, preprocessing and experimental setup
	Experiments with jet-level classification
	Performance studies
	Infrared and collinear safety studies

	Experiments with event-level classification
	Related work
	Conclusions
	Gated recursive jet embedding
	Gated recurrent event embedding
	Implementation details

