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1 Introduction

In this article, we investigate the signal of CP violation in a set of η muonic decays. In

doing so, we assume the signal as arising from heavy physics, so that the Standard Model

effective field theory (SMEFT) can be applied. As a result, two different scenarios arise:

that of CP -violating purely hadronic operators (CPH) and that of CP -violating quark-lepton

ones (CPHL). We provide the required amplitudes for Monte Carlo (MC) generators and

evaluate the impact of such operators in terms of certain asymmetries, using as a benchmark

a proposed η factory with the ability of measuring the polarization of muons: REDTOP [1].

After estimating the impact of these operators on the neutron dipole moment (nEDM), we

find that CP -violating quark-lepton interactions could be at the reach of REDTOP, while

evading nEDM bounds. Dealing with muons, these bounds are complementary to those of

the electron case which have been put recently after the ACME Collaboration results [2]

in ref. [3].
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The article is organized as follows: in section 2, we discuss the two CP -violating sce-

narios arising from the SMEFT operators and their connection from quark to hadron

degrees of freedom (e.g. with η-physics). Then, in section 3, we compute the η →
µ+µ−, γµ+µ−, µ+µ−e+e− decays, accounting for the polarization of muons in dilepton

and single-Dalitz decays. We provide the required expressions for MC generators and com-

pute different asymmetries that could be generated, providing the sensitivities at reach at

REDTOP. Finally, in section 4, we evaluate the impact of both CP -violating scenarios on

the nEDM, that sets stringent constraints.

2 The CP -violating scenarios

In our study, we assume that the CP -violating new-physics effects are heavy enough to

be described through the SMEFT. Following the operator basis in ref. [4], we can find

here CP violation in three different sectors: that involving the hadronic part only, which

we include in the CPH category; that mixing quark and leptons, which we include in the

CPHL one; and that affecting lepton-photon interactions (OeW,eB), which we checked to be

negligible and discard1 for brevity.2 Regarding the CPH category, since we are interested

in decays connecting η to muons, these will result, at low-energies, in a CP -violating shift

of the ηγ∗γ∗ coupling, a scenario extensively discussed in the literature in the context of

light pseudoscalar mesons [8–10]. In general, one has

iMµν = ie2
(
εµνρσq1ρq2σFηγ∗γ∗(q

2
1, q

2
2) + [gµν(q1 · q2)− qµ2 qν1 ]FCP1

ηγ∗γ∗(q
2
1, q

2
2)

+
[
gµνq2

1q
2
2 − q2

1q
µ
2 q

ν
2 − q2

2q
µ
1 q

ν
1 + (q1 · q2)qµ1 q

ν
2

]
FCP2
ηγ∗γ∗(q

2
1, q

2
2)
)
, (2.1)

where ε0123 = +1, Fηγ∗γ∗ is the standard transition form factor (TFF), and the latter two

are CP -violating ones. For some details on our TFF description, we refer to section A. Ac-

counting for the hadronization details linking the SMEFT CPH operators to FCP1,2
ηγ∗γ∗ (q2

1, q
2
2)

in a quantitative manner is a formidable task; however, this is enough to our purposes as

we shall see. Coming back to the CPHL category, the relevant operators here are

O(1)
`equ=

c
(1)prst
`equ

v2
(¯̀j
per)εjk(q̄

k
sut)+h.c. →−

Imc
(1)prst
`equ

2v2

[
(ēpiγ

5er)(ūsut)+(ēper)(ūsiγ
5ut)

]
,

(2.2)

O`edq=
cprst`edq

v2
(¯̀j
per)(d̄sq

j
t )+h.c. →

Imcprst`edq

2v2

[
(ēpiγ

5er)(d̄sdt)−(ēper)(d̄siγ
5dt)

]
, (2.3)

1Particularly, the µEDM [5] put tight constraints on these operators [6].
2We could have CP violation in the pure leptonic side via the Ole operator [6, 7]. However, this is

irrelevant in what we find the best channel, η → µ+µ−, and should be negligible in other cases — see

discussions later.
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where v2 '
√

2GF , and {p, r, s, t} flavor indices. Concerning the η, these produce CP -

violating interactions of the kind L = −C(ηēper), with3

C ≡ Im cO
2v2

〈Ω| q̄siγ5qt |η〉 = Im(1.57(c
(1)pr11
`equ + cpr11

`edq )− 2.37cpr22
`edq )× 10−6. (2.4)

3 Muonic decays and asymmetries

Having discussed the relevant hadronic matrix elements, we are prepared to discuss the

different muonic decays, which in the first two cases involve the muon polarization — a

property that can be measured at REDTOP [1].

3.1 The golden channel: η → µ+µ−

In general, there are two structures governing the η → µ+µ− decay amplitude, namely [13,

14] (gP and gS are dimensionless):

iM = i
[
gP (ūiγ5v) + gS(ūv)

]
, (3.1)

where the first(second) term is CP even(odd). In the SM, gP = −2mµα
2FηγγA, where

A ≡ A(m2
η) is defined in terms of a loop integral, see refs. [15, 16] and references therein.4

The polarized decay yields5

|M(λn, λ̄n̄)|2 =
m2
η

2

[
|gP |2

(
1− λλ̄[n · n̄]

)
+ |gS |2β2

µ

(
1− λλ̄[nzn̄z − nT · n̄T ]

)
+ 2

[
λλ̄Re(gP g

∗
S)(n̄× n) · βµ + Im(gP g

∗
S)βµ · (λn− λ̄n̄)

] ]
, (3.2)

where — hereinafter — n(n̄) will refer to the polarization axis for the µ+(µ−) (in its rest

frame), the ẑ-axis will point along µ+ direction, and βµ will refer to the µ+ velocity in the

dimuon rest frame — here coinciding with the η one. This would suffice to produce a MC

for polarized decays.6 Still, in order to define the asymmetries and estimate their size (in

vacuum), we need to suplement this with the polarized muon decay (see section B), that

leads to7

dΓ

Γγγ
= 2βµ

(
αmµ

πmη

)2 [
|A|2

(
1 + bb̄

{
β · β̄

})
+ 2βµg̃S

{
bb̄[(β × β̄) · ẑ] ReA

− (bβz + b̄β̄z) ImA
}

+ g̃2
S

(
1 + bb̄

{
βzβ̄z − βT · β̄T

}) ]
de± , (3.3)

3The FKS scheme [11] is employed for describing the η − η′ mixing (with parameters from ref. [12]),

implying 〈Ω| 2maq̄
aiγ5qa |η(P )〉 = F qηm

2
π tr(aλq) +F sη (2m2

K −m2
π) tr(aλs). Moreover, we employ the quark

mases in PDG [5], at the scale µ = 2 GeV: mu ' md ≡ m̂ = 3.5 MeV and ms = 96 MeV.
4In particular, and neglecting uncertainties, we take A(m2

η) = −1.26− 5.47i [15].
5For that, we use the polarized spin projectors u(p, λn)ū(p, λn) = 1

2

(
1 + λγ5/n

) (
/p+m

)
and

v(p, λn)v̄(p, λn) = 1
2

(
1 + λγ5/n

) (
/p−m

)
. Particularly, nµ = (0,n)→ (γβnz, nT , γnz), with |n| = 1.

6In a real experiment the muon trajectory, its polarization, and subsequent — polarized — decay are

accounted through Geant4 [17].
7We use, as it is standard, Γγγ = |Fηγγ |2m3

ηα
2π/4 to normalize the result. Although we give g̃2S terms

for completeness, in the following we will only consider the interference with SM terms, which are g̃S- rather

than g̃2S-suppressed.
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µ−(p−; λ̄)

µ+(p+; λ)

γ(k; ε)

q
η(P )

p∗−

k∗

x̂

ŷ

p∗+ ẑ

θ

Figure 1. Left: the LO SM contribution to the Dalitz decay. Right: the momentum labeling in

the µ+µ− reference frame.

where g̃S = −gS/(2mµα
2Fηγγ) and de± = dΩdxdΩ̄dx̄(4π)−2n(x)n(x̄) refers to the e+e−

differential spectra, which is normalized to BR(µ → eνν) ' 1. The unbarred(barred)

variables are kept for the e+(e−) and b ≡ b(x), with n(x) and b(x) defined below eq. (B.4).

If integrating over de± , the terms in braces vanish, recovering the standard result for

g̃2
S → 0.

For the CPHL scenario, gS = −C, and from eq. (2.4), g̃S = (0.510(c
(1)2211
`equ + c2211

`edq ) −
0.771c2222

`edq ). For the CPH one, the contribution is generated at the loop level and parallels

the SM calculation. Defining q(l) = pµ− ± pµ+ , we find

g̃S =
iF−1
ηγγ

π2q2β2
µ

∫
d4k

FCP1
ηγ∗γ∗(k

2, (q − k)2)w1 + FCP2
ηγ∗γ∗(k

2, (q − k)2)w2

k2(q − k)2((pµ− − k)2 −m2
µ)

, (3.4)

w1 = k · (q − k)l2 − (k · l)(k2 + (q − k)2), w2 = k2(q − k)2
(
l2 + 2k · l

)
.

Using the form factors description in section A, we find g̃S = (−0.87 − 5.5i)ε1 + 0.66ε2,

where large hadronic uncertainties are implied.

In order to test our CP -violating scenarios, we define the following asymmetries

AL ≡
N(cθ > 0)−N(cθ < 0)

N(all)
= ĀL =

βµ
3

ImA g̃S
|A|2 , (3.5)

AT ≡
N(sφ−φ̄ > 0)−N(sφ−φ̄ < 0)

N(all)
=
πβµ
36

ReA g̃S
|A|2 , (3.6)

where the barred version is the AL asymmetry for the e−. As a result, we find

AHL = 0.11ε1 − 0.04ε2, ALL = − Im(2.7(c
(1)2211
`equ + c2211

`edq )− 4.1c2222
`edq )× 10−2,

AHT = −0.07ε1 − 0.002ε2, ALT = − Im(1.6(c
(1)2211
`equ + c2222

`edq )− 2.5c2222
`edq )× 10−3,

for the CPH and CPHL scenarios, respectively. Taking BR(η → µ+µ−) = 5.8 × 10−6 [5],

and the expected number of η mesons at REDTOP (2 × 1012) [1], we obtain that the SM

background for the asymmetry at the 1σ level is of the order of N−1/2 = 3 × 10−4. As a

result, we find the following sensitivities: ε1(2) ∼ 10−3(2) and c22st
O ∼ 10−2.

3.2 The Dalitz decay: η → γµ+µ−

In the following, we introduce the — polarized — Dalitz decays: for simplicity we do not

consider the most general amplitude, but the interference of the LO SM result with our

– 4 –
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CP -violating amplitudes. Concerning the SM, the LO amplitude arises from the diagram

in figure 1 (left)8

iM = ie3εµνρσk
νqσεµ∗(ūγρv)Fηγγ∗(q

2)q−2. (3.7)

Employing the phase space description in terms of the dilepton invariant mass q2 = (p+ +

p−)2 ≡ s ≡ xµm
2
η and the polar angle θ (see figure 1 [right]), the differential decay width

can be expressed as9

dΓ =
1

(2π)3

mη

64
(1− xµ)|M|2dxµdy = Γγγ

α

2π

1− xµ
m2
η

|M|2
|e3Fηγγ |2

dxµdy. (3.8)

The LO SM result for the polarized Dalitz decay results in

|M(λn, λ̄n̄)|2 =
1

4

e6|Fηγγ∗(s)|2
2s

(m2
η − s)2

[
2− β2

µ sin2 θ + λλ̄
{
β2
µ sin2 θ(nzn̄z − nT · n̄T )

+ 2
(
nzn̄z cos2 θ + nyn̄y sin2 θ

)
− 2
√

1− β2
µ sin θ cos θ(nzn̄y + n̄zny)

}]
, (3.9)

with similar conventions to those in the previous section (note that we choose, again, the µ+

to mark the ẑ direction and the γ to have an additional component along the ŷ directions —

see figure 1 [right]). Once more, we include the muon decay to estimate the asymmetries,

obtaining10

dΓ

Γγγ
=

α

4π

|F̃ηγγ∗(s)|2
s

(1− xµ)3dsdyde±
[
2− β2

µ sin2 θ − bb̄
{
β2
µ sin2 θ(βzβ̄z − βT · β̄T )

+ 2
(
βzβ̄z cos2 θ + βyβ̄y sin2 θ

)
− 2
√

1− β2
µ sin θ cos θ(βzβ̄y + β̄zβy)

}]
. (3.10)

Integrating over de± , the terms in braces vanish and we obtain the standard result [18, 19].

Concerning our CP -violating scenarios, we give here the main results and relegate the

intermediate steps to section C. The final result reads

dΓCPH

Γγγ
=
α

π

Im F̃ηγγ∗(s)F̃
CP1∗
ηγγ∗ (s)

s
(1− xµ)3dsdyde±

×
[√

1− β2
µ sin θ(bβy − b̄β̄y)− cos θ(bβz − b̄β̄z)

]
, (3.11)

dΓCPHL

Γγγ
=
α

π

(1− xµ)

s(1− y2)

2Cdsdyde±
e2mηFηγγ

[
α̃R Re F̃ηγγ∗(s) + α̃I Im F̃ηγγ∗(s)

]
, (3.12)

where α̃R,I is obtained from the results in section C upon αR,I → αR,I/m
3
η and, for αR,

λn(λ̄n̄) → bβ(b̄β̄) while, for α̃I , λn(λ̄n̄) → −bβ(+b̄β̄). In the following, we introduce two

additional asymmetries besides those defined in section 3.1,

ALγ ≡
N(sφ > 0)−N(sφ < 0)

N(all)
, ATL ≡

N(cφcθ̄ > 0)−N(cφcθ̄ < 0)

N(all)
. (3.13)

8The Z boson contribution is discussed in section D and does not affect the results here.
9We defined y = βµ cos θ and β2

µ = 1− 4m2
µ/s.

10F̃ηγγ∗(s) stands for the normalized transition form factor.
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While for the SM result [eq. (3.9)] these asymmetries vanish, in our CP -violating scenarios

we find11

AHL = 0 AHLL = −4 Im(1.1(c
(1)221
`equ + c221

`edq)− 1.7c2222
`edq )× 10−7, (3.14)

AHLγ = −0.002ε1 AHLLγ = 5 Im(1.1(c
(1)2211
`equ + c2211

`edq )− 1.7c2222
`edq )× 10−6, (3.15)

AHTL = 0 AHLTL = 2 Im(1.1(c
(1)221
`equ + c221

`edq)− 1.7c2222
`edq )× 10−5, (3.16)

AHT = 0 AHLT = −5 Im(1.1(c
(1)221
`equ + c221

`edq)− 1.7c2222
`edq )× 10−6. (3.17)

Taking BR(η → µ+µ−γ) = 3.1 × 10−4 [5], we obtain that the SM background for the

asymmetry at the a 1σ level is of the order of 10−5 for REDTOP statistics, which results

in the following sensitivities: ε1 ∼ 10−2 and c22st
O ∼ 1. For completeness, we show in

section D that the Z-boson parity-violating asymmetry is irrelevant for such statistics.

3.3 Classical channel: η → µ+µ−e+e−

The double Dalitz decay has been the standard way to test for CP -violation in pseudoscalar

mesons decays, as it does not require to measure the polarization of the leptons [8–10]. In

this study, we restrict ourselves to the η → µ+µ−e+e− decay12 and study the interference

terms alone. Concerning the SM result, notation, etc., we refer to ref. [20]. Regarding the

CPH interaction, we recover the results in [20] with the addition of the second form factor

that was omitted there,

dΓCPH

Γγγ
=

α2

32π3
Re

F̃ηγ∗γ∗

s12s34
λ2
[
y12y34

√
w2(λ2

12 − y2
12)(λ2

34 − y2
34)
(

2F̃CP1∗
ηγ∗γ∗ − zm2

ηF̃
CP2∗
ηγ∗γ∗

)
− (λ2

12 − y2
12)(λ2

34 − y2
34) cosφ

(
2zF̃CP1∗

ηγ∗γ∗ − w2m2
ηF̃

CP2∗
ηγ∗γ∗

) ]
sinφ dΦ. (3.18)

Concerning the CPHL scenario, there are four different contributions. Those arising from

the effective operators coupling to muons are

iM1 = −i e2C
s34(p2

134 −m2
a)

[
ū1γ

µ(/p134
+ma)v2

][
ū3γµv4

]
, (3.19)

iM2 = i
e2C

s34(p2
234 −m2

a)

[
ū1γ

µ(/p234
−ma)v2

][
ū3γµv4

]
, (3.20)

while, if considering the coupling to electrons, the remaining two would be obtained upon

1(2)→ 3(4) and µ→ e exchange. Their contribution to the differential decay width reads

dΓCPHL

Γγγ
=

α

16π4

Re F̃ηγ∗γ∗

s12s34
λ2 sinφ

[
mµC
Fηγγ

2x34y12y34(1 + δ)− (1− δ)Ξ
s34[(1− δ)2 − λ2y2

12]

]
×
√
w2(λ2

12 − y2
12)(λ2

34 − y2
34) dΦ. (3.21)

11For analytic results in terms of phase-space integrals, see section C. In these results, we use the form

factors in section A and assume the CP -violating form factors to be real.
12The SMEFT operators involving electrons are tightly constrained as we shall see and we neglect them,

while the purely muonic channel is less interesting since its BR is two orders of magnitude below [20].
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As said, in these decays a polarization analysis is not required to test for CP violation; this

is related to the lepton plane angular asymmetries. Defining

Aφ/2 =
N(sφcφ > 0)−N(sφcφ < 0)

N(all)
, (3.22)

we obtain

AHφ/2 = − α2

9π3

1

N

∫
Re

F̃Pγ∗γ∗

s12s34
λ2λ3

12λ
3
34

(
2zF̃CP1∗

ηγ∗γ∗ − w2m2
ηF̃

CP2∗
ηγ∗γ∗

)
ds12ds34, (3.23)

AHLφ/2 = − 4α

3π4

1

N

∫
Re F̃ηγ∗γ∗

λm4
ηFηγγ

mµC
s34

λ3
34

×
(
λλ12(1− δ)− [(1− δ)2 − λ2λ2

12] tanh−1

[
λλ12

1∓ δ

])
ds12ds34. (3.24)

Employing the form factors defined in section A, we obtain

AHφ/2 = −0.2ε1 + 0.0003ε2, AHLφ/2 = − Im(1.3(c
(1)2211
`equ + c2211

`edq )− 1.9c2222
`edq )× 10−5. (3.25)

Taking BR(η → µ+µ−e+e−) = 2.3 × 10−6 [20], we find the SM background at REDTOP

at the 1σ level to be 5× 10−4. Consequently, we are sensitive to ε1 ∼ 10−3 and cO ∼ 40.

4 Bounds from neutron dipole moment

The interaction of a charged fermion with the electromagnetic current (jµ) can be expressed

as 〈`(p′)| jµ |`(p)〉 = Q`ūp′Γµ(q)up, where [21]13

Γµ = γµF1(q2) +
iσµνqν
2m`

F2(q2)− σµνqν
2m`

γ5FE(q2) + (q2γµ − /qqµ)γ5FA(q2), (4.1)

with q(l) = p′ ∓ p. At low energies, F2 and FE generate magnetic and electric dipole

moments, respectively. Particularly, in their non-relativistic limit14

eΓµAcl
µ

NR
= −µσ ·B − dσ ·E, µ =

e~
2m`

(F1(0) + F2(0)), d =
e~

2m`c
FE(0). (4.2)

Being suppressed in the SM, EDMs put severe constraints on CP -violating new physics

scenarios [6]. In addition, the dipole moments of heavy atoms and molecules put strong

constraints for contact CP -violating electron-quark D = 6 operators [22]. This is the reason

for which we did not consider the electronic, but the muonic case — see also in this respect

the implications of the recent ACME Coll. [2] results for the electron EDM in ref. [3]. In

13In general, F1(0) = 1, except for a neutral fermion, such the neutron, where we take Qn = 1 and

F1(0) ≡ 0.
14Usually µ is given in units of e~/2m` and F2(0) yields the anomalous magnetic moment.

The electric dipole moment commonly refers to d in units of e cm, such that it involves

(~c[GeV cm])/(2m`c
2[GeV])FE(0). Also, we take L = ψ̄(iγµDµ − m)ψ with Dµ = ∂µ − ieQ`Aµ so that

iM = ieūp′Γ
µupεµ. With these definitions, the dipole moments can be also obtained from the effective

Lagrangian L = Q` e2 ψ̄σ
µν(µ+ iγ5d)ψFµν .

– 7 –
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p p′

k + q k

p′ + k p p′

k k + q

p− k

q, µ q, µ

Figure 2. Contributions to the nucleon EDM via a CP -violating η coupling to γγ.

the sections below, it will be useful to employ projectors (in analogy to refs. [23] for the

magnetic moment) for FE which, in D = 4 dimensions read15

FE(q2) = tr
−imlµγ5

q2(q2 − 4m2)
(/p
′+m)Γµ(/p+m), FE(0) =

i

12m2
pµ tr(/p+m)γργ

5(/p+m)Γµρ.

(4.3)

In the following, we discuss the bounds that the nEDM puts on our new physics scenarios,

for which we employ the projector in the q → 0 limit, in which dipole moments are defined.

4.1 nEDM bounds on CPH scenario

As stated in section 2, there are a number of effective operators belonging to this case

— each of them contributing differently to the nEDM and posing an individual challenge.

However, for our purpose — as we shall see — it will suffice to account that the CP -violating

η TFF will generate a nEDM via the diagrams in figure 2, which amplitudes read16

iM1 = ie
−e2gηNN

2Fη

∫
d4k

(2π)4

ūp′Γν(−k)(/p′ + /k +mN )(/k + /q)γ5up

k2[(k + q)2 −m2
η][(p

′ + k)2 −m2
N ]

, (4.4)

iM2 = ie
−e2gηNN

2Fη

∫
d4k

(2π)4

ūp′(/k + /q)γ5(/p− /k +mN )Γν(−k)up

k2[(k + q)2 −m2
η][(p− k)2 −m2

N ]
. (4.5)

Regarding the Γν vertex, we take it to be given by the on-shell form factors F1,2 in eq. (4.1),

which closely follows the methodology in ref. [24]. Of course, this contribution is rather

model dependent and there will be additional ones, but should be enough to provide an

order-of-magnitude estimate. Using the projector technique, we obtain

FE(0) =
gηNN
6FP

α

π

16π2

i

∫
d4k

2π4
FCP1
ηγ∗γ∗(k

2, 0)

[
k2[2m2

N − 3(k · p)]− 2(k · p)2

k2(k2 −m2
η)((p+ k)2 −m2

N )
F1(k2)

+
4(k · p)3 + 2k2(k · p)[(k · p)− 2m2

N ] +m2
Nk

4

k2(k2 −m2
η)((p+ k)2 −m2

N )

F2(k2)

2m2
N

]
, (4.6)

= ε1Fηγγ
gηNN
6Fη

α

π

∫ ∞
0

dK2 K2

K2 +mη2
F̃CP1
ηγ∗γ∗(−K2, 0)(1− β)

×
(
F2(−K2)

3K2

16m2
N

(3− β)− F1(−K2)
[
1 + (1 + β)−1

])
, (4.7)

15Γµ = −qρΓµρ, where Γµρ ≡ limq→0 ∂qµΓρ.
16For the NNη coupling we take the results in ref. [24], where this was given by L ⊃ gηNN

2Fη
N̄γµγ5N∂µη

with gηNN = 0.673 and Fη = 1.37Fπ.
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Im{O(3)
ℓequ, 0}

+

Im{O(1)
ℓequ,Oℓedq} Im{O(1)

ℓequ,Oℓedq} Im{Ouγ,Odγ}

Figure 3. CPHL scenario contribution to the nEDM: first contribution at two loops (left) (additional

reversed diagrams appear). The O(1)
lequ operator requires the O(3)

lequ operator for renormalization at

the one loop level (center) — which requires a dipole counterterm at one-loop too (right). Dipole

operators also enter when renormalizing the Oledq operator at two loops.

where β = (1 +
4m2

N
K2 )1/2 and in the second line we have used the Gegenbauer polyno-

mials technique [25]. For the numerical evaluation, we employ the TFFs description

in section A and the eletromagnetic form factors parametrization in ref. [26], obtain-

ing dpE = 9.6 × 10−19ε1 and dnE = −6.2 × 10−20ε1, in units of e cm. Accounting that

d
p(n)
E = 2.1(0.30) × 10−25, this places bounds which are orders of magnitude beyond the

experimental sensitivities accessible at REDTOP. Of course, this offers no bounds on ε2
and an alternative would be to set FCP1,2

ηγγ (0, 0)→ 0 — this is, a vanishing coupling to real

photons. A tuning such that would be suspicious however without a dynamical origin and

we conclude that CP -violating physics in the context of CP -violating ηγ∗γ∗ interactions

are out of reach for any experiment so far.

4.2 nEDM bounds on CPHL scenario

Here, there is no mechanism inducing a dipole moment at one loop, which can be related

to the fact that the Green’s function 〈0|T{V µ(x)S(P )(0)} |0〉 vanishes in QED+QCD due

to charge conjugation. The first contribution appears at two-loops and requires renor-

malization, which is sketched at the quark level in figure 3. This involves the following

operators

O(3)
`equ = . . . → −i

Im c
(3)prst
`equ

2v2

[
(ēpσ

µνγ5er)(ūsσµνut) + (ēpσ
µνer)(ūsσµνγ

5ut)
]
, (4.8)

OqB(W ) = . . . → i
Im cstqγ
v

(
q̄sσ

µνγ5qt
)
Fµν cstu(d)γ =

cstu(d)Bcw ± cstu(d)W sw√
2

. (4.9)

For the nucleon, the CP -violating contribution to the electromagnetic vertex is

ūp′Γ
µup = e2

∑
i

∫
d4k

(2π)4

1

k2

[
1

i

∫
eik·z 〈Np′ |T{jν(z)(q̄Γiq)(0)} |Np〉

]
×
[

1

i

∫
e−i(q·x+k·y) 〈0|T{jµ(x)jν(y)(¯̀̃Γi`)(0)} |0〉

]
≡ e2

∑
i

∫
d4k

(2π)4

1

k2
Πρ
NNV Γi

(−k, k + q)Πµν

V V Γ̃i
(k, q)gνρ, (4.10)
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+

N(p) N(p′)

jµ

jν

Γ̃

Γ jν

N(p) N(p′)N(p′ + k) N(p) N(p′)N(p′ + k) N(p) N(p′)

≃ +

Figure 4. The generic contribution to a nucleon (N) EDM (additional counterterms need to be

included as well). We approximate it as a low-energy (finite) contribution saturated via an inter-

mediate nucleon (N) state (reversed diagrams implied) and a high-energy contribution (including

counterterms) that mimics a contact term resulting from the OPE of the two currents.

where, for O`equ(`edq), we have the combinations
∑

i{Γi, Γ̃i} = − c`equ(`edq)
2v2

[{iγ5, 1} ±
{iγ5, 1}].17 In the following, we will simplify the calculation to get an order-of-magnitude

estimate as follows: in the low-energy region (which we take below 2 GeV), we will as-

sume the hadronic blob to be dominated by an intermediate neutron state, as shown in

figure 4. Above, we employ the operator product expansion (OPE) for large (euclidean)

momentum k.

Concerning the low-energy part, we have two hadronic elements to be computed. For

Γ = iγ5, we approximate such an interaction via an intermediate pseudo-Goldstone boson

state (π0, η, η′) — similar to the CPH scenario. Regarding Γ = 1, we approximate it via

the scalar form factor (see appendix E). For the electromagnetic form factors we use again

ref. [26]. Regarding Πµν
V V S(P )(k, q), we provide them in the vanishing q → 0 limit

Πµν
V V P (0, k) = ενµqk

−8m`

K2β`
ln

(
β` + 1

β` − 1

)
, (4.11)

Πµν
V V S(0, k) = (gµν(k · q)− kµqν)

i

16π2

8m`

K2β`

[
1 + β2

`

2β`
ln

(
β` + 1

β` − 1

)
− 1

]
, (4.12)

up to O(q2) corrections, where β2
` = 1 + 4m2

`K
−2 and K2 = −k2. We obtain18

FN ;q
E (0) = Im c`equ(dq)

α

π

GFm`

6
√

2π2

∫ ∞
0

dK

[
mNHS ±

gPNNh
q
P

FP
HP

]
, (4.13)

17Note in particular that potential additional diagrams with a single photon attached to the lepton line

will be related again to 〈0|T{V µ(x)S(P )(0)} |0〉 = 0.
18From ref. [24], we have gπNN = gA = 1.27, gη(η′)NN = 0.67(1.17) and Fη(η′) = 1.37(1.16)Fπ with

Fπ = 92 MeV. Concerning the pseudoscalar matrix elements, and following ref. [11], huπ = −hdπ =

Fπm
2
π0m̂

−1 = 0.48 GeV2, hu,dη(η′) = F qη(η)′m
2
π0m̂

−1 = 0.40(0.35) GeV2 and hsη(η′) = F sη(η)′(2m
2
K −

m2
π0)m−1

s = −0.42(0.53) GeV2.
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with hqP = 〈0| q̄iγ5q |P 〉, q = {u, d, s} a flavor index, and the functions

HS(K) =
K

m2
Nβ`

(
2β2

N

1+βN
−1

)
ln

(
β`+1

β`+1

)
FN ;q
S (−K2)

[
FN1 (−K2)+FN2 (−K2)

]
, (4.14)

HP (K) =
Kβ−1

`

K2 +m2
P

(
1+β2

`

2β`
ln

(
β`+1

β`+1

)
−1

)[
FN1 (−K2)[1+(1+βN )−1]

+FN2 (−K2)
3K2

16m2
N

[3−βN ]

]
. (4.15)

Numerically we find19

dpE = Im(2.55c
(1)2211
`equ − 3.17c2211

`edq − 0.18c2222
`edq )× 10−23, (4.16)

dnE = Im(−0.75(26)c
(1)2211
`equ + 0.92(27)c2211

`edq + 0.08(1)c2222
`edq )× 10−23. (4.17)

For the high-energy region, the OPE calculation for the two-currents (to be included

in the final hadronic matrix element) parallels that at the quark level — the main differ-

ence being the scale. Assuming that the theory was renormalized at a scale close to the

electroweak one and assuming the quark dipole moment negligible at such scale, the result

can be estimated by the large logs. To find these, we opt to use a cutoff regularization (Λ)

for the quark diagram level leading to

F qE(0) =
α

π

GFm`mq

6
√

2π2
Qq
∫ ∞

0

dKK

m2
qβ`

[(
βq −

2

1 + βq

)[
1 + β2

`

2β`
ln

(
β` + 1

β` − 1

)
− 1

]
±
(

2β2
q

1 + βq
− 1

)
ln

(
β` + 1

β` − 1

)]
Im c`equ(dq) (4.18)

→ α

π

GFm`mq

6
√

2π2

{
Im c

(1)
`equ(ln2 Λ2 − ln Λ2), Im c`edq ln Λ

}
. (4.19)

As a check, the ln2 Λ terms reproduce the expectation from the one-loop RG equations.20

Moreover, we find good agreement for the ln Λ term (which represents the leading log for

O`edq) comparing to the recent results in ref. [7].21 From the neutron matrix elements

gqT ≡ 〈n| q̄σµνγ5q |n〉, obtained from lattice QCD at µ = 2 GeV [28], and using the renor-

malization scale µ0 = 100 GeV, we obtain for the high-energy contribution

dnE = Im(−0.59c
(1)2211
`equ + 0.15c2211

`edq + 0.001c2222
`edq )× 10−23, (4.20)

which is subleading compared to the low-energy contribution. Adding up eqs. (4.17)

and (4.20) and assuming uncorrelated Wilson coefficients, we find that the nEDM puts

the following constraints

Im c
(1)2211
`equ < 0.002, Im c2211

`edq < 0.003, Im c2222
`edq < 0.04. (4.21)

19We checked that the integral saturates at 2 GeV. The errors for the neutron are shown to illustrate the

impact on the scalar form factor model only — dominated by the σπN term.

20With our conventions,
dc

(3)
`equ

d lnµ
⊃ −QeQu α

2π
c
(1)
`equ and

dcuγ
d lnµ

⊃ −emµQe
2π2v

c
(3)
`equ — in agreement with ref. [27].

21In particular, with eq. (2.35) in [7] one takes e↔ d and Nc = 1. One also needs to take care of the sign

conventions — which are essentially related to our opposite choice for the covariant derivative.

– 11 –



J
H
E
P
0
1
(
2
0
1
9
)
0
3
1

Once more, we emphasize that large uncertainties are implied, thus these should be taken

as an order-of-magnitude estimate. As a conclusion, we find that η → µ+µ− decays are

the only ones that might show CP -violating signatures for c2222
`edq ' 10−2.

5 Conclusions and outlook

In this study, we have examined different imprints of CP violation arising from the SMEFT

in different η muonic decays, which are effectively encoded via CP -violating transition form

factors or contact η-lepton interactions. Having in mind the REDTOP experiment — a pro-

posed η factory with the ability to measure the polarization of muons — we have estimated

the sensitivities that can be reached in each case. After computing the implications of these

scenarios on the nEDM, we have found that only η-lepton interactions — particularly the

O2222
`edq operator — might leave an imprint via the muons polarization in the η → µ+µ−

decay.22 This is complementary to first generation (electron) bounds from the EDMs of

heavy atoms and molecules. Still, there would be possible ways to improve this study. They

are beyond the scope of the present work, but we briefly comment on them in the following.

Regarding the SMEFT operators, a possible extension would be an improved deter-

mination of nEDM bounds on O`equ,`edq operators. There are different lines that could be

pursued: considering non-vanishing O(3)
`equ and OuW,uB,dW,dB operators and employ the full

RG equations [6]; computing the full two-loop calculation; improving the hadronic model

(with a serious estimate of uncertainties). Also, one could estimate the impact on the same

operators for the ` = τ case. Here, the large-logs will become as important as hadronic

effects, as they are ∝ m`, and the hadronic model might have to be improved up to higher

scales. Very differently, it might be interesting to check the induced O11st
`equ(dq) operators

that might appear at two loops from O22st
`equ(dq) and to check whether these might allow to

improve the bounds derived here. Finally, one might wonder about the Ole operator. As

said, this does not produce an effect at LO in dilepton decays. In Dalitz decays, would

be analogous (up to i factor) to the Z-boson contribution, which we found negligible. For

double Dalitz decays it might appear as a loop contribution, so we expect this small, with

lepton EDMs presumably setting stronger bounds [7].

Regarding additional decays, we did not discuss here the η → µ+µ−π+π− decay,

especially in the CPH scenario. Yet the latter has a larger BR than the leptonic one, the

nEDM contribution would be very similar (for the CPH scenario) to that in section 4.1 up

to an α−1K2 factor,23 which would result in stronger bounds. For the CPHL scenario, on

turn, we expect too small asymmetries as it happens for the leptonic case. Overall, we do

not expect — in principle — any CP violation in these decays. Finally, we did not discuss

polarizations in the η → π0µ+µ− decay, that might be interesting to analyze [1], but are

beyond the scope of this study.

22Being this a potential channel to look for CP violation, one might wonder about its η′ counterpart. An

analogous computation shows ALL = − Im(1.4(c
(1)2211
`equ + c2211`edq ) + 2.9c2222`edq )× 10−2. Since BR(η′ → µ+µ−) '

1.4× 10−7 [15], this cannot place stronger bounds.
23The π+π− state is essentially the low-energy manifestation of the vector isovector current, which would

result in a similar diagram modulo photon propagator and form factors.
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A The form factors parametrization

Here we describe the parametrizations employed for the TFFs appearing in eq. (2.1). Re-

garding the standard — CP conserving — one, Fηγ∗γ∗(q
2
1, q

2
2), we employ the approach

described in refs. [16, 29] and stick to the simplest parametrization that implements pre-

cisely the low-energy behavior and respects the high-energy one [29]24

Fηγ∗γ∗(q
2
1, q

2
2) = Fηγγ

Λ2

Λ2 − q2
1 − q2

2

, (A.1)

where, Fηγγ = 0.2738 GeV−1 and Λ = 0.724 GeV [29, 30], except when imaginary parts are

relevant, which we postpone to the end of this section. For the CP -violating form factors

there is of course no theoretical knowledge as they are speculative and its microscopic origin

is unknown. In the following, we assume the high-energy behavior from ref. [31], implying

that FCP1
ηγ∗γ∗(−Q2

1,−Q2
2) and −Q̄2FCP2

ηγ∗γ∗(−Q2
1,−Q2

2) behave as Q̄−2, where 2Q̄2 = Q2
1 +Q2

2.

Thereby we choose

FCP1
ηγ∗γ∗(q

2
1, q

2
2) =

ε1Λ2Fηγγ
Λ2 − q2

1 − q2
2

, FCP2
ηγ∗γ∗(q

2
1, q

2
2) =

−2ε2Λ2Fηγγ
(Λ2 − q2

1 − q2
2)(Λ2

H − q2
1 − q2

2)
. (A.2)

We take the same value for Λ as before and introduce ΛH = 1.5 GeV inspired by heavier

resonances (results are rather stable upon varying these masses).

If only the imaginary parts are relevant for the asymmetry, we employ the TFF de-

scribed in ref. [15] instead. This reads FPγ∗γ(s) = FPγγ [cPρGρ(s) + cPωGω(s) + cPφGφ(s)],

with Gρ,φ(s) Breit-Wigner functions, and the intermediate ππ rescattering modeled as in

refs. [32, 33] through

Gρ(s) =
M2
ρ

M2
ρ − s+

sM2
ρ

96π2F 2
π

(
ln
(
m2
π

µ2

)
+ 8m2

π
s − 5

3 − σ(s)3 ln
(
σ(s)−1
σ(s)+1

)) (A.3)

and cη{ρ,ωφ} = {9, 1,−2}/8, which is — effectively — similar to the description in ref. [34].

24We checked that higher order approximants did not change significantly our results, so we stick to this

for simplicity.
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B Polarized muon decay

In the effective Fermi theory, and using polarized spinor sums, we find for the µ± →
e±(k)νµ(q1)νe(q2) decay amplitude∣∣M (

µ±, λn
) ∣∣2 = 64G2

Fkα(pβ ± λmµnβ)qα1 q
β
2 . (B.1)

Including phase-space and integrating over the neutrino spectra (we employ the muon rest

frame), the result above reads25

dΓ(µ±, λn)

dxdΩ
=
mµ

8π4
W 4
eµG

2
Fβx

2n(x, x0) [1∓ λb(x, x0)β · n] , (B.2)

dBR(µ±, λn) =
dΩ

4π

2x2β

1− 2ε
n(x, x0) [1∓ λb(x, x0)β · n] dx, (B.3)

with n(x, x0) = (3 − 2x − x2
0/x) and n(x, x0)b(x, x0) = 2 − 2x −

√
1− x2

0. Above, Weµ =

(m2
µ+m2

e)/2mµ is the maximum positron energy, x = Ee/Weµ the reduced positron energy,

x0 = me/Weµ the minimum reduced positron energy and β =
√

1− x2
0/x

2 has the usual

meaning. Typically, the approximation me/mµ → 0 is employed, that results in the simpler

expression

dBR(µ±, λn) =
dΩ

4π
n(x) [1∓ λb(x, x0)β · n] dx, (B.4)

with x = 2Ee/mµ, n(x) = 2x2(3− 2x) and b(x) = (1− 2x)/(3− 2x).

C Results in Dalitz decays

The resulting amplitudes for our CP -violating scenarios read

iMCPH = −ie3q−2FCP1
ηγγ∗(q

2)εµ∗ (gµν(k · q)− qµkν) (ūγνv), (C.1)

iMCPHL = −ieCε∗µ
[
ū(γµ/k + 2pµ−)v

2k · p−
+
ū(γµ/k − 2pµ+)v

2k · p+

]
. (C.2)

Their interference with the SM amplitude in eq. (3.7) (IntX = 2 ReMSMMX) yield

IntCPH
= −1

4
e62 ImFηγγ∗(s)F

CP1∗
ηγγ∗ (s)(m2

η − s)2s−1

×
[√

1− β2 sin θ(λny + λ̄n̄y)− cos θ(λnz + λ̄n̄z)
]
, (C.3)

IntCPLH
= −1

4

4e4C
s(1− y2)

[αR ReFηγγ∗(s)− αI ImFηγγ∗(s)] , (C.4)

25In the second line, the result for integration over dΩdx has been employed, that introduces ε =

m2
e

[
m2
e(m

2
µ −m2

e)
2 + 6m6

µ + 2m2
em

4
µ (1 + 6 ln(me/mµ))

]
(m2

e + m2
µ)−4. This is, modulo radiative correc-

tion effects, the SM result from chapter 58: “Muon decay parameters” of ref. [5] and implemented in

Geant4.
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where we introduced the following coefficients

αR = βµ sin θ
{
nx

[
(m2

η − s)
[√
sn̄z(βµ − cos θ) + 2mµ sin θn̄y

]
+ 2βµn̄zs

3/2
]

+n̄x

[
(m2

η − s)
[√
snz(βµ + cos θ)− 2mµ sin θny

]
+ 2βµnzs

3/2
]}

λλ̄, (C.5)

αI = 2mµ(m2
η − s)

[
−λnz(βµ sin2 θ + 2 cos θ) + λ̄n̄z(βµ sin2 θ − 2 cos θ)

]
− λ√s sin θny

[
(m2

η − s)(βµ cos θ − 2) + β2
µ(m2

η − 3s)
]

+ λ̄
√
s sin θn̄y

[
(m2

η − s)(βµ cos θ + 2)− β2
µ(m2

η − 3s)
]
. (C.6)

Finally, we give here the analytic results for the asymmetries in terms of the phase space

integral

AHLγ =− 1

N

∫
Im F̃ (s)P̃ ∗1 (s)

12s
(1−xµ)3βµ

√
1−β2

µ ds, (C.7)

AHLLγ =
C̃
N

∫ √
xµ(1−xµ)

3sβµ
ImFηγγ∗(s)

[
2(1−xµ)−β2

µ(1−3xµ)
](

1−
√

1−β2
µ

)
ds, (C.8)

AHLL =−2
C̃
N

∫
(1−xµ)2

3πs
mη
mµ

ImFηγγ∗(s)

[
2+(βµ−β−1

µ ) ln

(
1+β

1−β

)]
ds, (C.9)

AHLTL =
C̃
N

∫ √
xµ(1−x2

µ)

18s
ReFηγγ∗(s)βµ

(
1−
√

1−β2
µ

)
ds, (C.10)

AHLT =− C̃
N

∫
(1−xµ)2

18s
mη
mµ

ReFηγγ∗(s)

[
2+(βµ−β−1

µ ) ln

(
1+β

1−β

)]
ds, (C.11)

where we have introduced the common paremeter C̃ = C/(e2mηFηγγ)26 and

N =
1

3π

∫
1

s
|F̃ηγγ∗(s)|2(1− xµ)3βµ(3− β2

µ)ds. (C.12)

The latter is, up to an α factor, the dyde±-integrated version of eq. (3.9).

D Z boson contribution to Dalitz decay

In the SM, parity-violating contributions arise from an intermediate Z-boson state,

iMZ = −ieGF√
2
εµνρσk

νqσεµ∗(ūγρ[(1− 4 sin2 θw) + γ5]v)FηγZ∗(q
2), (D.1)

where
√

2GF = g2/(4m2
W ). The term without the γ5 is analogous to the QED result modulo

form factor details and the s−1 factor; the γ5 term induces a parity-violating interference

26From eq. (2.4), C̃ = (1.142(c
(1)2211
`equ + c2211`edq )− 1.726c2222`edq )× 10−4.
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with the QED contribution. Particularly,27

2ReMSMMZ,/P =
1

4

e4GF√
2

(m2
η−s2)2βµ

[{
(nz+ n̄z)(1+cos2 θ)

−(ny+ n̄y)sinθ cosθ
√

1−β2
µ

}
ReFPγγ∗F

∗
PγZ∗−sinθ

{
(nxn̄y+nyn̄x)sinθ

−(nxn̄z+nzn̄x)
√

1−β2
µ cosθ

}
sinθ ImFPγγ∗F

∗
PγZ∗

]
. (D.2)

Again, the full decay width can be obtained to be

dΓ

Γγγ
=

GF

8
√

2π2
(1− xµ)3βµdsdyde

±
[
αZR Re F̃Pγγ∗F̃

∗
PγZ∗ + αZI Im F̃Pγγ∗F̃

∗
PγZ∗

]
, (D.3)

αZR = (b̄β̄z − bβz)(1 + cos2 θ)− (b̄β̄y − bβy) sin θ cos θ
√

1− β2
µ, (D.4)

αZI = (βxβ̄y + β̄xβy) sin2 θ − (βxβ̄z + β̄xβz) sin θ cos θ
√

1− β2
µ. (D.5)

With these results at hand, one finds that the Z-boson parity-violating contribution results

in a non-vanishing asymmetry

AL = −ĀL =
1

Nα

GF

18
√

2π2

∫
ds(1− xµ)3β2

µ Re F̃Pγγ∗F̃
∗
PγZ∗ . (D.6)

Regarding the form factor, we take its normalization from χPT at NLO (see refs. [11, 12])28

FηγZ =
1

4π2
√

3

F 0
η′c

8
Z + 2

√
2F 8

η′c
0
Z

F 8
ηF

0
η′ − F 0

ηF
8
η′

, (D.7)

where c8
Z = 1

2(1+K8T3
2 − 4 sin2θwc

8
γ), c0

Z = (1+K0T3
2 +K1 − 2 sin2θwc

0
γ), K8T3

2 = K2(5m2
π −

4m2
K), and K0T3

2 = K2(m2
K+m2

π)/2 and the mixing parameters are taken from [12]. Finally,

for its q2-dependence, we take a TFF analogous to that in section A with Λ = 0.57(7) GeV

and 0.90(4) GeV for the η and η′. This results from averaging the values that would be

obtained from a BL-interpolation formula [36] and from a resonance saturation approach

with weights given by mixing parameters similar to refs. [11, 30, 37]. As a result, we find

AL = 6(1)× 10−7,29 which is irrelevant for the expected statistics at REDTOP, and would

require of the order of 1016 η mesons for its observation.

E The nucleon scalar form factors

In this section, we introduce the nucleon scalar form factors FN ;q
S (q2) ≡ 〈Np′ | q̄q |Np〉.

At q2 = 0, these are related to the σ-terms. In the following, we average theoretical (if

27Though at this step it cannot be compared to the results in ref. [35], that uses a different frame,

we compared intermediate steps against their result in eq. (9). We found agreement up to a minus sign

(we remark that they calculate the µ+ polarization, lacking the necessary terms to compare to our full

polarization amplitude).
28With this, we obtain FηγZ∗(0, 0) = 0.074(6) GeV−1 and Fη′γZ∗(0, 0) = 0.19(1) GeV−1.
29This might be compared to ref. [35] results. Checking intermediate steps, we confirmed their results

except for an overall sign. Still, we find 2 orders of magnitude supression. This is due to the relevant scale

in the problem (2mµ rather than mη) and the resolution power function b(x) < 1.
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Figure 5. Comparison of the half-width estimate for the — normalized — isovector form factor

(orange band) to that in ref. [46]. We also include the isovector (blue) and strange (purple).

available) and lattice results from ref. [38]30 (enlarging errors if necessary). Regarding the

theoretical input, for the isoscalar, σNud ≡ 〈Np| m̂(ūu + d̄d) |Np〉, we take those obtained31

in ref. [40] and the σπN result in [41]; for the isovector, σN3 ≡ 〈Np| m̂(ūu − d̄d) |Np〉, we

use both, those that can be obtained from ref. [40], and those appearing in ref. [42];32 for

the strange one, σs3 = 〈Np|mss̄s |Np〉, we restrict to the lattice results due to the large

theoretical uncertainties. This results in

σp,nud = 53(16), σp3 = 2.9(1.0), σn3 = −2.9(0.6), σp,ns = 54(5), (E.1)

in MeV units. Regarding the q2-dependency, we use the half-width rule [43], which proved

to provide excellent estimates for the form factors. Since at high energies FN ;q
S (−Q2) ∼

Q−6 [44, 45], we use three resonances. Following,33 we employ for the isoscalar channel

f0(500), f0(1370), f0(1500), for the isovector a0(980), a0(1450), a0(1950), and for the

strange one f0(980), f0(1500), f0(1710). In the following, we provide the central value for

the required form factors

F
p;u(d)
S =

7.57

(1 + q2

m2
f1

)(1 + q2

m2
f3

)(1 + q2

m2
f4

)
± 0.41

(1 + q2

m2
f2

)(1 + q2

m2
f4

)(1 + q2

m2
f5

)
, (E.2)

F
n;u(d)
S =

7.57

(1 + q2

m2
f1

)(1 + q2

m2
f3

)(1 + q2

m2
f4

)
∓ 0.41

(1 + q2

m2
f2

)(1 + q2

m2
f4

)(1 + q2

m2
f5

)
, (E.3)

FN ;s
S =

0.57

(1 + q2

m2
a1

)(1 + q2

m2
a2

)(1 + q2

m2
a3

)
, (E.4)

where f1,2,3,4,5 = f0(500, 980, 1370, 1500, 1710) and ai = a0(980, 450, 1950). For the sake

of illustration, we compare in figure 5 the prediction for the (normalized) isoscalar form

factor to that in ref. [46], obtaining an excellent agreement (note that ref. [46] provides a

reasonable estimate up to energies around 0.5 GeV).

30See also updates from Lattice 2018.
31The relation to this matrix element is outlined in ref. [39].
32In doing so, we use the value arising from a χPT-based analysis md/mu = 0.553(43) [5] rather than

lattice.
33See chapter 69: “Scalar mesons below 2 GeV”of ref. [5].
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