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Abstract: We update QCD calculations of B → π,K form factors at large hadronic

recoil by including the subleading-power corrections from the higher-twist B-meson light-

cone distribution amplitudes (LCDAs) up to the twist-six accuracy and the strange-quark

mass effects at leading-power in Λ/mb from the twist-two B-meson LCDA φ+
B(ω, µ). The

higher-twist corrections from both the two-particle and three-particle B-meson LCDAs are

computed from the light-cone QCD sum rules (LCSR) at tree level. In particular, we con-

struct the local duality model for the twist-five and -six B-meson LCDAs, in agreement with

the corresponding asymptotic behaviours at small quark and gluon momenta, employing

the method of QCD sum rules in heavy quark effective theory at leading order in αs. The

strange quark mass effects in semileptonic B → K form factors yield the leading-power

contribution in the heavy quark expansion, consistent with the power-counting analysis

in soft-collinear effective theory, and they are also computed from the LCSR approach

due to the appearance of the rapidity singularities. We demonstrate explicitly that the

SU(3)-flavour symmetry breaking effects between B → π and B → K form factors, free of

the power suppression in Λ/mb, are suppressed by a factor of αs(
√
mb Λ) in perturbative

expansion, and they also respect the large-recoil symmetry relations of the heavy-to-light

form factors at least at one-loop accuracy. An exploratory analysis of the obtained sum

rules for B → π,K form factors with two distinct models for the B-meson LCDAs indi-

cates that the dominant higher-twist corrections are from the Wandzura-Wilczek part of

the two-particle LCDA of twist five g−B(ω, µ) instead of the three-particle B-meson LCDAs.

The resulting SU(3)-flavour symmetry violation effects of B → π,K form factors turn out

to be insensitive to the non-perturbative models of B-meson LCDAs. We further explore

the phenomenological aspects of the semileptonic B → π`ν decays and the rare exclusive

processes B → Kνν, including the determination of the CKM matrix element |Vub|, the

normalized differential q2 distributions and precision observables defined by the ratios of

branching fractions for the above-mentioned two channels in the same intervals of q2.
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1 Introduction

Precision calculations of the semileptonic B → π,K form factors are of essential importance

for the determination of the CKM matrix element |Vub| exclusively and the theory descrip-

tion of the flavour-changing neutral current process B → K`` in QCD. At small hadronic

recoil the Lattice QCD calculations of these form factors have been performed in [1–3],

using the gauge-field ensembles with (2+1)-flavour lattice configurations. Diverse QCD

techniques for computing the heavy-to-light form factors at large hadronic recoil have been

developed with distinct theory assumptions and approximations. Factorization properties

of exclusive B → π,K form factors at large recoil have been extensively explored in the

framework of soft-collinear effective theory (SCET) [4–7], leading to the QCD factorization

formulae at leading power in the heavy quark expansion

f iB→M (E) = Ci(E) ξa(E) +

∫
dτ C

(B1)
i (E, τ) Ξa(τ, E) , (1.1)

Ξa(τ, E) =
1

4

∫ ∞
0

dω

∫ 1

0
dv Ja(τ ; v, ω) f̃B φ

+
B(ω) fM φM (v) . (1.2)

The perturbative matching coefficients Ci(E) and C
(B1)
i (E, τ) have been computed at

one loop [4, 8, 9], and at two loops (only for Ci(E)) [10–14]. The jet functions Ja from

matching the SCETI matrix elements of the B-type operators onto SCETII have been also

determined at the one-loop accuracy [9, 15, 16]. However, the soft-collinear factorization

for the SCETI matrix elements ξa(E) cannot be achieved due to the emergence of end-point
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divergences, whose regularizations will introduce an unwanted connection between the soft

functions and the collinear functions (see [17] for more discussions). In this respect, the

method of QCD sum rules on the light cone (LCSR) can be applied to evaluate the non-

perturbative form factors ξa(E) directly by introducing the parton-hadron duality ansatz,

and the rapidity divergences appearing in the soft-collinear factorization are effectively

regularized by the instinct sum rule parameters. As a matter of fact, the heavy-to-light B-

meson form factors f iB→M (E) themselves have been widely investigated in the context of the

LCSR approach with the light-meson light-cone distribution amplitudes (LCDAs) [18–20]

and with the B-meson LCDAs [21–27] (see [28–30] for further extensions to the heavy-

baryon decay form factors). An alternative approach to investigate the heavy-to-light form

factors is based upon the transverse-momentum dependent (TMD) factorization [31, 32]

with the assumption that the soft contribution does not contribute at leading power in

Λ/mb. Technically, the rapidity divergences appearing in SCET are regularized by the

intrinsic momenta of the partons participating the hard reactions [33–41]. However, a

rigorous proof of the TMD factorization for the hard exclusive processes is still not available

due to the absence of a definite power counting scheme for the intrinsic momenta [42, 43].

Inspired by the experimental advances for precision measurements of the semilep-

tonic B → π`ν decays as well as the electroweak penguin B-meson decays from Belle

II [44], we attempt to improve the theory predictions for B → π,K form factors from the

LCSR approach with the B-meson LCDAs presented in [24, 25], where the next-to-leading-

logarithmic (NLL) resummation improved sum rules for the leading-power contributions

were derived by applying QCD factorization for the corresponding vacuum-to-B-meson

correlation function and the dispersion relation technique. We summarize the main new

ingredients of the present paper in the following.

• We compute the subleading-power contributions to the semileptonic B → π,K form

factors from both the two-particle and three-particle higher-twist B-meson LCDAs

with the LCSR method at the twist-six accuracy. To this end, we adopt a complete

parametrization of the three-particle B-meson LCDAs proposed in [45], which intro-

duces eight independent invariant functions in the light-cone limit (see [46] for the

original incomplete parametrization).

• We construct the local duality model for the twist-five and -six B-meson LCDAs

Φ5(ω1, ω2, µ), Ψ5(ω1, ω2, µ), Ψ̃5(ω1, ω2, µ) and Φ6(ω1, ω2, µ) employing the method of

QCD sum rules at tree level. The local duality model for the two-particle twist-five B-

meson LCDA ĝ−B(ω, µ) will be further derived with QCD equations of motion (EOM).

We verify explicitly that the obtained model for the higher-twist B-meson LCDAs is

consistent with the corresponding asymptotic behaviours at small quark and gluon

momenta, which can be inferred from the renormalization group (RG) equations of

the corresponding light-ray operators at leading logarithmic (LL) accuracy.

• We derive the leading-power contribution to B → K form factors from the strange-

quark mass effect applying the LCSR approach at next-to-leading-order (NLO) in

αs. Our computation supports the early observation based upon the power-counting

– 2 –
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analysis in SCET [47] that the SU(3)-flavour symmetry violation between B → π and

B → K form factors is not suppressed in the heavy quark limit and the strange-quark

mass effect will not give rise to the large-recoil symmetry breaking of the heavy-to-

light B-meson form factors.

This paper is structured as follows. We present QCD factorization formulae of the

leading-twist contributions to the vacuum-to-B-meson correlation function with an inter-

polating current for the light pseudoscalar meson at one loop in section 2, where the new

jet function generated by the non-vanishing strange-quark mass is derived with the method

of regions [48] and the NLL resummation improved sum rules for B → π,K form factors

are further obtained at leading-twist approximation. A detailed calculation of the higher-

twist contributions to the semileptonic B-meson form factors from the LCSR method at

tree level is presented in section 3, where the power counting of both the two-particle and

three-particle subleading-power contributions is further discussed. Inspecting the correla-

tion functions of the light-ray operators defining the higher-twist B-meson LCDAs and the

suitable local currents in heavy-quark effective theory (HQET), we derive the QCD sum

rules for the twist-five and -six B-meson LCDAs at leading-order (LO) in αs in section 4,

where the local duality model for these distribution amplitudes is obtained by taking the

limit ωM → ∞. We explore the phenomenological implications of the new sum rules for

B → π,K form factors with distinct models of the B-meson LCDAs in section 5, including

the numerical impacts of the higher-twist corrections, the model dependence of the SU(3)-

flavour symmetry breaking effects, a comparison of the large-recoil symmetry violation with

that predicted from the QCD factorization approach [49], the determination of the CKM

matrix element |Vub|, and the differential q2 distributions of B → π`ν and B → Kνν. We

will conclude in section 6 with a summary of our main observations and perspectives on

the future developments.

2 The leading-twist contributions to the LCSR at O(αs)

Following the procedure presented in [25], the sum rules for B → π,K form factors can be

constructed from the following vacuum-to-B-meson correlation function

Πµ(n · p, n̄ · p) =

∫
d4x eip·x〈0|T

{
d̄(x)/n γ5 q(x), q̄(0) Γµ b(0)

}
|B̄(p+ q)〉

=


Π(n · p, n̄ · p)nµ + Π̃(n · p, n̄ · p) n̄µ , Γµ = γµ

ΠT (n · p, n̄ · p)
[
nµ − n·q

mB
n̄µ

]
, Γµ = σµν q

µ

(2.1)

for the two different b → q weak currents in QCD, where the light pseudoscalar meson is

interpolated by an axial-vector current carrying the four-momentum p and p + q ≡ mB v

indicates the four-momentum of the B meson. We further introduce two light-cone vectors

nµ and n̄µ satisfying n2 = n̄2 = 0 and n · n̄ = 2, and employ the following power counting

scheme

n · p ∼ O(mB) , n̄ · p ∼ ms ∼ O(Λ) . (2.2)

– 3 –
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Applying the method of regions one can establish QCD factorization formulae for the

correlation function (2.1) at leading power in Λ/mb

Π = f̃B(µ)mB

∑
k=±

C(k)(n · p, µ)

∫ ∞
0

dω

ω − n̄ · p
J (k)

(
µ2

n · pω
,
ω

n̄ · p

)
φkB(ω, µ) ,

Π̃ = f̃B(µ)mB

∑
k=±

C̃(k)(n · p, µ)

∫ ∞
0

dω

ω − n̄ · p
J̃ (k)

(
µ2

n · pω
,
ω

n̄ · p

)
φkB(ω, µ) , (2.3)

ΠT = − i
2
f̃B(µ)m2

B

∑
k=±

C
(k)
T (n · p, µ, ν)

∫ ∞
0

dω

ω − n̄ · p
J

(k)
T

(
µ2

n · pω
,
ω

n̄ · p

)
φkB(ω, µ) .

The B-meson LCDAs in coordinate space are defined by the renormalized matrix element

of the following light-cone operator in HQET [50]

〈0|
(
d̄ Ys

)
β

(τ n̄)
(
Y †s hv

)
α

(0)|B̄(v)〉 (2.4)

= − if̃B(µ)mB

4

{
1 + /v

2

[
2 φ̃+

B(τ, µ) +
(
φ̃−B(τ, µ)− φ̃+

B(τ, µ)
)
/n
]
γ5

}
αβ

,

where the soft Wilson line is given by

Ys(τ n̄) = P

{
Exp

[
i gs

∫ τ

−∞
dx n̄ ·As(x n̄)

]}
. (2.5)

The renormalization-scale dependent HQET decay constant f̃B(µ) can be expressed in

terms of the QCD decay constant fB

f̃B(µ) =

{
1− αs(µ)CF

4π

[
3 ln

µ

mb
+ 2

]}−1

fB . (2.6)

We can further determine the renormalized hard functions and jet functions entering the

factorization formulae (2.3) at the one-loop accuracy

C(+) = C̃(+) =C
(+)
T = 1 , C(−) =

αsCF
4π

1

r̄

[
1+

r

r̄
lnr
]
,

C̃(−) = 1− αsCF
4π

[
2 ln2 µ

n ·p
+5 ln

µ

mb
− ln2 r−2Li2

(
− r̄
r

)
+

2−r
r−1

lnr+
π2

12
+5

]
,

C
(−)
T = 1+

αsCF
4π

[
−2 ln

ν

mb
−2 ln2 µ

n ·p
−5 ln

µ

n ·p
−2Li2(1−r)− 3−r

1−r
lnr− π

2

12
−6

]
,

J (+) =
αsCF

4π

(
1− n̄ ·p

ω

)
ln

(
1− ω

n̄ ·p

)
,

J̃ (+) =
αsCF

4π

[
r
(

1− n̄ ·p
ω

)
+
mq

ω

]
ln

(
1− ω

n̄ ·p

)
,

J
(+)
T =

αsCF
4π

[
−
(

1− n̄ ·p
ω

)
+
mq

ω

]
ln

(
1− ω

n̄ ·p

)
,

J (−) = 1 ,

J̃ (−) = J
(−)
T = 1+

αsCF
4π

[
ln2 µ2

n ·p(ω− n̄ ·p)
−2ln

n̄ ·p−ω
n̄ ·p

ln
µ2

n ·p(ω− n̄ ·p)

− ln2 n̄ ·p−ω
n̄ ·p

−
(

1+
2n̄ ·p
ω

)
ln
n̄ ·p−ω
n̄ ·p

− π
2

6
−1

]
, (2.7)
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where ν refers to the renormalization scale of the QCD tensor current and we have also

introduced the conventions

r = n · p/mb , r̄ = 1− r. (2.8)

Several remarks on the resulting perturbative matching coefficients are in order.

• The hard matching coefficients appearing in the QCD factorization formulae for the

vacuum-to-B-meson correlation function (2.3) are apparently identical to the short-

distance functions from representing the corresponding QCD weak currents in SCETI.

Employing the perturbative matching for heavy-to-light currents displayed in [4]

q̄ γµ b → [C4 n̄µ + C5 vµ] ξ̄n̄Whc Y
†
s hv + . . . ,

q̄ σµν q
ν b → (−i)C11 (vµn̄ν − vν n̄µ) qν ξ̄n̄Whc Y

†
s hv + . . . , (2.9)

one can readily determine the following relations for the hard functions

C(−) =
1

2
C5 , C̃(−) = C4 +

1

2
C5 , C

(−)
T = C11 , (2.10)

which can be further verified by comparing the explicit expressions of C4, C5 and C11

obtained in [4] with the results presented in (2.7).

• The nonvanishing light-quark mass gives rise to the leading-power contribution to

the jet functions in the heavy quark expansion, which is independent of the Dirac

structures of the QCD weak currents. Our calculation supports the power counting

analysis for the light-quark mass effects in semileptonic B-meson decay form fac-

tors at large recoil in the framework of SCET [47]. Inspecting the diagrammatical

representation of the two-particle contributions to correlation function (2.1) at NLO

in QCD, we observe that the above-mentioned SU(3)-flavour symmetry breaking ef-

fect solely comes from the QCD correction to the light-pseudoscalar-meson vertex

diagram (see figure 2(b) of [25]). It immediately follows that the light-quark-mass

dependent jet function entering the factorization formulae (2.3) is universal for the

vacuum-to-B-meson correlation functions with different weak currents.

We will proceed to perform the summation of parametrically large logarithms appear-

ing in the factorization formulae (2.3) employing the RG equations in momentum space.

Taking the factorization scale µ as a hard-collinear scale µhc ∼
√

Λmb and solving the

evolution equations at the NLL accuracy leads to

C̃(−)(n · p, µ) = U1(n · p, µh1, µ) C̃(−)(n · p, µh1) ,

C
(−)
T (n · p, µ, ν) = U1(n · p, µh1, µ) U3(νh, ν) C

(−)
T (n · p, µh1, νh) ,

f̃B(µ) = U2(µh2, µ) f̃B(µh2) , (2.11)

– 5 –
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where the explicit expressions of the evolution functions U1 and U2 can be found in [51, 52]

and the QCD evolution factor U3(νh, ν) is given by

U3(νh, ν) = Exp

[ ∫ αs(ν)

αs(νh)
dαs

γT (αs)

β(αs)

]

= z
−
γ
(0)
T

2 β0

[
1 +

αs(νh)

4π

(
γ

(1)
T

2β0
−
γ

(0)
T β1

2β2
0

)
(1− z) +O(α2

s)

]
, (2.12)

with z = αs(ν)/αs(νh). The anomalous dimension γT (αs) for the tensor current at the

two-loop accuracy is [14]

γT (αs) =

∞∑
n=0

(
αs(µ)

4π

)n+1

γ
(n)
T , γ

(0)
T = −2CF ,

γ
(1)
T = CF

[
19CF −

257

9
CA +

52

9
nf TF

]
. (2.13)

Since the hard-collinear scale µhc is quite close to the soft scale µ0 of the B-meson LCDAs

numerically and the two-loop evolution equations of the two-particle B-meson distribution

amplitudes φ±B(ω, µ) are not available yet, we will not perform the NLL resummmation

for the logarithms of µ/µ0 due to the RG evolution of φ±B(ω, µ) (see also [51]). It is then

straightforward to write down the (partial) NLL resummation improved QCD factorization

formulae for the correlation function (2.1)

Π =
[
U2(µh2,µ) f̃B(µh2)

]
mB

{∫ ∞
0

dω

ω− n̄ ·p
J (+)

(
µ2

n ·pω
,
ω

n̄ ·p

)
φ+
B(ω,µ)

+C(−)(n ·p,µ)

∫ ∞
0

dω

ω− n̄ ·p
φ−B(ω,µ)

}
,

Π̃ =
[
U2(µh2,µ) f̃B(µh2)

]
mB

{∫ ∞
0

dω

ω− n̄ ·p
J̃ (+)

(
µ2

n ·pω
,
ω

n̄ ·p

)
φ+
B(ω,µ)

+
[
U1(n ·p,µh1,µ) C̃(−)(n ·p,µh1)

] ∫ ∞
0

dω

ω− n̄ ·p
J̃ (−)

(
µ2

n ·pω
,
ω

n̄ ·p

)
φ−B(ω,µ)

}
,

ΠT = − i
2

[
U2(µh2,µ) f̃B(µh2)

]
m2
B

{∫ ∞
0

dω

ω− n̄ ·p
J

(+)
T

(
µ2

n ·pω
,
ω

n̄ ·p

)
φ+
B(ω,µ)

+
[
U1(n ·p,µh1,µ) U3(νh,ν) C

(−)
T (n ·p,µh1,νh)

]
×
∫ ∞

0

dω

ω− n̄ ·p
J

(−)
T

(
µ2

n ·pω
,
ω

n̄ ·p

)
φ−B(ω,µ)

}
. (2.14)

Employing the standard definitions for B → P form factors (with P = π, K) and the

decay constant of the pseudoscalar meson

〈P (p)|q̄ γµ b|B̄(p+q)〉 = f+
B→P (q2)

[
2p+q−

m2
B−m2

P

q2
q

]
µ

+f0
B→P (q2)

m2
B−m2

P

q2
qµ ,

〈P (p)|q̄ σµν qν b|B̄(p+q)〉 = i
fTB→P (q2)

mB+mP

[
q2 (2p+q)µ −(m2

B−m2
P )qµ

]
,

〈0|d̄/nγ5 q|P (p)〉 = in ·pfP , (2.15)

– 6 –



J
H
E
P
0
1
(
2
0
1
9
)
0
2
4

we can readily derive the hadronic representations of the correlation function (2.1)

Πµ,V (n · p, n̄ · p) =
fP mB

2 (m2
P /n · p− n̄ · p)

{
n̄µ

[
n · p
mB

f+
B→P (q2) + f0

B→P (q2)

]
+nµ

mB

n · p−mB

[
n · p
mB

f+
B→P (q2)− f0

B→P (q2)

]}
+

∫ +∞

ωs

dω′

ω′ − n̄ · p− i0

[
ρhV,1(ω′, n · p)nµ + ρhV,2(ω′, n · p) n̄µ

]
,

Πµ,T (n · p, n̄ · p) = −i fP n · p
2 (m2

P /n · p− n̄ · p)
m2
B

mB +mP

[
nµ −

n · q
mB

n̄µ

]
fTB→P (q2)

+

∫ +∞

ωs

dω′

ω′ − n̄ · p− i0

[
nµ −

n · q
mB

n̄µ

]
ρhT (ω′, n · p) , (2.16)

where Πµ,V and Πµ,T correspond to Γµ = γµ and Γµ = σµν q
ν for the Dirac structure of the

weak current q̄(0) Γµ b(0) in the definition (2.1), respectively. Matching the hadronic dis-

persion relations (2.16) and the resummation improved factorization formulae (2.14) with

the aid of the parton-hadron duality ansatz and implementing the Borel transformation

with respect to the variable n̄ ·p→ ωM gives rise to the NLL LCSR for B → P form factors

at leading power in the heavy quark expansion

fP exp

[
−

m2
P

n · p ωM

] {
n · p
mB

f+, 2PNLL
B→P (q2) , f0, 2PNLL

B→P (q2)

}
=
[
U2(µh2, µ) f̃B(µh2)

] ∫ ωs

0
dω′ e−ω

′/ωM

×
{
φ̃+
B, eff(ω′, µ) +

[
U1(n · p, µh1, µ) C̃(−)(n · p, µh1)

]
φ̃−B, eff(ω′, µ)

± n · p−mB

mB

[
φ+
B, eff(ω′, µ) + C(−)(n · p, µh1)φ−B, eff(ω′, µ)

]}
,

fP exp

[
−

m2
P

n · p ωM

]
n · p

mB +mP
fT, 2PNLL
B→P (q2)

=
[
U2(µh2, µ) f̃B(µh2)

] ∫ ωs

0
dω′ e−ω

′/ωM (2.17)

×
{
φ̂+
B, eff(ω′, µ) +

[
U1(n · p, µh1, µ) U3(νh, ν) C

(−)
T (n · p, µh1, νh)

]
φ̃−B, eff(ω′, µ)

}
,

where we have defined the effective B-meson “distribution amplitudes” for brevity

φ̃+
B,eff(ω′,µ) =

αsCF
4π

[
r

∫ ∞
ω′

dω
φ+
B(ω,µ)

ω
−mq

∫ ∞
ω′

dω ln

(
ω−ω′

ω′

)
d

dω

φ+
B(ω,µ)

ω

]
,

φ̃−B,eff(ω′,µ) = φ−B(ω′,µ)+
αsCF

4π

{∫ ω′

0
dω

[
2

ω−ω′

(
ln

µ2

n ·pω′
−2 ln

ω′−ω
ω′

)]
⊕
φ−B(ω,µ)

−
∫ ∞
ω′

dω

[
ln2 µ2

n ·pω′
−
(

2 ln
µ2

n ·pω′
+3

)
ln
ω−ω′

ω′
+ 2 ln

ω

ω′
+
π2

6
−1

]
×
dφ−B(ω,µ)

dω

}
,
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Figure 1. Diagrammatical representation of the three-particle higher-twist corrections to the

vacuum-to-B-meson correlation function (2.1). The square box indicates the insertion of the weak

vertex q̄ Γµ b, and the waveline represents the interpolating current d̄/n γ5 q for the light-pseudoscalar

meson.

φ+
B,eff(ω′,µ) =

αsCF
4π

∫ ∞
ω′

dω
φ+
B(ω,µ)

ω
, φ−B,eff(ω′,µ) =φ−B(ω′,µ) ,

φ̂+
B,eff(ω′,µ) =

αsCF
4π

[
−
∫ ∞
ω′

dω
φ+
B(ω,µ)

ω
−mq

∫ ∞
ω′

dω ln

(
ω−ω′

ω′

)
d

dω

φ+
B(ω,µ)

ω

]
. (2.18)

The plus function entering (2.18) is further given by

∫ ∞
0

dω
[
f(ω, ω′)

]
⊕ g(ω) =

∫ ∞
0

dω f(ω, ω′)
[
g(ω)− g(ω′)

]
. (2.19)

It is evident that the light-quark-mass dependent effects respect the large-recoil symmetry

relations for the soft contribution to the heavy-to-light form factors.

3 The higher-twist contributions to the LCSR

We turn to compute the higher-twist corrections to B → π,K form factors from both the

two-particle and three-particle B-meson LCDAs employing a complete parametrization of

the corresponding three-particle light-cone matrix element and the EOM constraints of the

higher-twist LCDAs presented in [45]. To achieve this goal, we make use of the light-cone

expansion of the quark propagator in the background gluon field [53]

〈0|T {q̄(x), q(0)}|0〉 ⊃ i gs
∫ ∞

0

d4k

(2π)4
e−i k·x

∫ 1

0
du

[
uxµ γν
k2 −m2

q

− (/k +mq)σµν
2 (k2 −m2

q)
2

]
Gµν(ux) ,

(3.1)

where we only keep the one-gluon part without the covariant derivative of the Gµν terms.

Evaluating the tree-level diagram displayed in figure 1, it is straightforward to derive the
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three-particle higher-twist corrections to the vacuum-to-B-meson correlation function (2.1)

Π
(3P )
µ,V (n ·p, n̄ ·p) = − f̃B(µ)mB

n ·p

∫ ∞
0

dω1

∫ ∞
0

dω2

∫ 1

0
du

1

[n̄ ·p−ω1−uω2]2

×
{
n̄µ

[
ρ

(3P )
n̄,LP(u,ω1,ω2,µ)+

mq

n ·p
ρ

(3P )
n̄,NLP(u,ω1,ω2,µ)

]
+nµ

[
ρ

(3P )
n,LP(u,ω1,ω2,µ)+

mq

n ·p
ρ

(3P )
n,NLP(u,ω1,ω2,µ)

]}
,

Π
(3P )
µ,T (n ·p, n̄ ·p) =

i

2

f̃B(µ)m2
B

n ·p

[
nµ−

n ·q
mB

n̄µ

] ∫ ∞
0

dω1

∫ ∞
0

dω2

∫ 1

0
du

1

[n̄ ·p−ω1−uω2]2

×
{
ρ

(3P )
T,LP(u,ω1,ω2,µ)+

mq

n ·p
ρ

(3P )
T,NLP(u,ω1,ω2,µ)

}
, (3.2)

where we have taken into account the SU(3)-flavour symmetry breaking effect due to the

light-quark mass. In contrast to the two-particle contributions to the correlation func-

tion (2.1), the light-quark mass dependent terms of the three-particle corrections at LO

in αs are suppressed by one power of Λ/mb. The explicit expressions of ρ
(3P )
i,LP and ρ

(3P )
i,NLP

(i = n , n̄ , T ) are given by

ρ
(3P )
n̄,LP = (1− 2u) [XA −ΨA − 2YA]− X̃A −ΨV + 2 ỸA ,

ρ
(3P )
n̄,NLP = 2 [ΨA −ΨV ] + 4

[
W + YA + ỸA − 2Z

]
,

ρ
(3P )
n,LP = 2 (u− 1) (ΨA + ΨV ) ,

ρ
(3P )
n,NLP = (ΨA −ΨV )−

[
XA + X̃A − 2YA − 2 ỸA

]
,

ρ
(3P )
T,LP = (1− 2u) (ΨV +XA − 2YA) + ΨA − X̃A + 2 ỸA ,

ρ
(3P )
T,NLP =

(
ΨA −ΨV +XA + X̃A

)
+ 2

[
2W + YA + ỸA − 4Z

]
, (3.3)

where we have suppressed the arguments of the three-particle B-meson LCDAs for brevity.

To obtain such three-particle corrections to the correlation function (2.1), we have adopted

the following decomposition of the light-cone matrix element in HQET [45]

〈0|q̄α(z1 n̄)gsGµν(z2 n̄)hvβ(0)|B̄(v)〉

=
f̃B(µ)mB

4

[
(1+/v)

{
(vµγν−vνγµ) [ΨA(z1,z2,µ)−ΨV (z1,z2,µ)]− iσµν ΨV (z1,z2,µ)

−(n̄µ vν− n̄ν vµ)XA(z1,z2,µ)+(n̄µ γν− n̄ν γµ) [W (z1,z2,µ)+YA(z1,z2,µ)]

+ iεµναβ n̄
α vβ γ5 X̃A(z1,z2,µ)− iεµναβ n̄α γβ γ5 ỸA(z1,z2,µ) (3.4)

−(n̄µ vν− n̄ν vµ) /̄nW (z1,z2,µ)+ (n̄µ γν− n̄ν γµ) /̄nZ(z1,z2,µ)

}
γ5

]
βα

,

where we have neglected the soft Wilson lines to restore the gauge invariance of the light-

ray operator and our convention corresponds to ε0123 = −1. As emphasized in [45], the

higher-twist two-particle B-meson LCDAs due to nonvanishing quark transverse momen-

tum can be expressed in terms of the three-particle configurations with the exact EOM,
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and they must be taken into account simultaneously for consistency. Including the light-

cone correction terms up to the O(x2) accuracy, the two-particle renormalized light-cone

matrix element (2.4) can be parameterized as follows [45]

〈0|
(
d̄ Ys

)
β

(x)
(
Y †s hv

)
α

(0)|B̄(v)〉

= − if̃B(µ)mB

4

∫ ∞
0

dω e−i ω v·x
{

1 + /v

2

[
2
(
φ+
B(ω, µ) + x2 g+

B(ω, µ)
)

− 1

v · x
[(
φ+
B(ω, µ)− φ−B(ω, µ)

)
+ x2

(
g+
B(ω, µ)− g−B(ω, µ)

)]
/x

]
γ5

}
αβ

, (3.5)

where the two new distribution amplitudes g+
B and g−B are of twist-four and -five, respec-

tively. Applying the operator identities between the two-body and three-body light-cone

operators leads to the nontrivial relations of B-meson LCDAs in the momentum space

−ω d

dω
φ−B(ω, µ) = φ+

B(ω, µ)− 2

∫ ∞
0

dω2

ω2
2

Φ3(ω, ω2, µ) + 2

∫ ω

0

dω2

ω2
2

Φ3(ω − ω2, ω2, µ)

+ 2

∫ ω

0

dω2

ω2

d

dω
Φ3(ω − ω2, ω2, µ) , (3.6)

−2
d2

dω2
g+
B(ω, µ) =

[
3

2
+ (ω − Λ̄)

d

dω

]
φ+
B(ω, µ)− 1

2
φ−B(ω, µ) +

∫ ∞
0

dω2

ω2

d

dω
Ψ4(ω, ω2, µ)

−
∫ ∞

0

dω2

ω2
2

Ψ4(ω, ω2, µ) +

∫ ω

0

dω2

ω2
2

Ψ4(ω − ω2, ω2, µ) , (3.7)

−2
d2

dω2
g−B(ω, µ) =

[
3

2
+ (ω − Λ̄)

d

dω

]
φ−B(ω, µ)− 1

2
φ+
B(ω, µ) +

∫ ∞
0

dω2

ω2

d

dω
Ψ5(ω, ω2, µ)

−
∫ ∞

0

dω2

ω2
2

Ψ5(ω, ω2, µ) +

∫ ω

0

dω2

ω2
2

Ψ5(ω − ω2, ω2, µ) , (3.8)

φ−B(ω, µ) =
(
2 Λ̄− ω

) dφ+
B(ω, µ)

dω
− 2

∫ ∞
0

dω2

ω2
2

Φ4(ω, ω2, µ)

+ 2

∫ ω

0

dω2

ω2

(
d

dω2
+

d

dω

)
Φ4(ω − ω2, ω2, µ) (3.9)

+ 2

∫ ω

0

dω2

ω2

d

dω
Ψ4(ω − ω2, ω2, µ)− 2

∫ ∞
0

dω2

ω2

d

dω
Ψ4(ω, ω2, µ) ,

which can be obtained from the Fourier transformation of the coordinate-space representa-

tions obtained in [45]. Here, the HQET paremater Λ̄ corresponds to the mass of the light

degrees of freedom in the heavy meson [54]

Λ̄ = mB −mb . (3.10)

We mention in passing that the classical EOM (3.6)–(3.9) are not consistent with the

RG equations of light-cone operators in HQET and it remains interesting to derive the

above-mentioned EOM at one-loop accuracy for the precision calculations of higher-twist

corrections in the future. For the tree-level calculations of higher-twist contributions pre-

sented in this work, it is necessary to implement the classical EOM constraints for the
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construction of the twist-five and -six B-meson LCDAs for consistency. We have also

introduced the three-particle B-meson LCDAs of definite twist

Φ3(ω1, ω2, µ) = ΨA(ω1, ω2, µ)−ΨV (ω1, ω2, µ) ,

Φ4(ω1, ω2, µ) = ΨA(ω1, ω2, µ) + ΨV (ω1, ω2, µ) ,

Ψ4(ω1, ω2, µ) = ΨA(ω1, ω2, µ) +XA(ω1, ω2, µ) ,

Ψ̃4(ω1, ω2, µ) = ΨV (ω1, ω2, µ)− X̃A(ω1, ω2, µ) ,

Φ5(ω1, ω2, µ) = ΨA(ω1, ω2, µ) + ΨV (ω1, ω2, µ) + 2
[
YA − ỸA +W

]
(ω1, ω2, µ) ,

Ψ5(ω1, ω2, µ) = −ΨA(ω1, ω2, µ) +XA(ω1, ω2, µ)− 2YA(ω1, ω2, µ) ,

Ψ̃5(ω1, ω2, µ) = −ΨV (ω1, ω2, µ)− X̃A(ω1, ω2, µ) + 2 ỸA(ω1, ω2, µ) , (3.11)

Φ6(ω1, ω2, µ) = ΨA(ω1, ω2, µ)−ΨV (ω1, ω2, µ) + 2
[
YA + ỸA +W − 2Z

]
(ω1, ω2, µ) .

We are now ready to derive the two-particle higher-twist corrections to the vacuum-to-B-

meson correlation function (2.1) at tree level

Π2PHT
µ,V = −4

f̃B(µ)mB

n ·p
n̄µ

{
− 1

2

∫ ∞
0

dω1

∫ ∞
0

dω2

∫ 1

0
du

ūΨ5(ω1,ω2,µ)

(n̄ ·p−ω1−uω2)2

+

∫ ∞
0

dω

(n̄ ·p−ω)2
ĝ−B(ω,µ)

}
,

Π2PHT
µ,T = 2 i

f̃B(µ)m2
B

n ·p

[
nµ−

n ·q
mB

n̄µ

] {
− 1

2

∫ ∞
0

dω1

∫ ∞
0

dω2

∫ 1

0
du

ūΨ5(ω1,ω2,µ)

(n̄ ·p−ω1−uω2)2

+

∫ ∞
0

dω

(n̄ ·p−ω)2
ĝ−B(ω,µ)

}
, (3.12)

where we have introduced the convention

ĝ−B(ω, µ) =
1

4

∫ ∞
ω

dρ

{
(ρ− ω)

[
φ+
B(ρ)− φ−B(ρ)

]
− 2 (Λ̄− ρ)φ−B(ρ)

}
. (3.13)

Adding up the two-particle and three-particle higher-twist corrections at tree level

together and implementing the standard strategy to construct the sum rules for heavy-to-

light form factors gives rise to the following expressions

fP n · p
2

exp

[
−

m2
P

n · p ωM

] [
f+,HT
B→P (q2) +

mB

n · p
f0,HT
B→P (q2)

]
= − f̃B(µ)mB

n · p

{
e−ωs/ωM H2PHT

n̄,LP (ωs, µ) +

∫ ωs

0
dω′

1

ωM
e−ω

′/ωM H2PHT
n̄,LP (ω′, µ)

+

∫ ωs

0
dω1

∫ ∞
ωs−ω1

dω2

ω2
e−ωs/ωM

[
H3PHT
n̄,LP

(
ωs − ω1

ω2
, ω1, ω2, µ

)
+
mq

n · p
H3PHT
n̄,NLP

(
ωs − ω1

ω2
, ω1, ω2, µ

)]
+

∫ ωs

0
dω′

∫ ω′

0
dω1

∫ ∞
ω′−ω1

dω2

ω2

1

ωM
e−ω

′/ωM

[
H3PHT
n̄,LP

(
ω′ − ω1

ω2
, ω1, ω2, µ

)
+
mq

n · p
H3PHT
n̄,NLP

(
ω′ − ω1

ω2
, ω1, ω2, µ

)]}
, (3.14)

– 11 –



J
H
E
P
0
1
(
2
0
1
9
)
0
2
4

fP n · p
2

exp

[
−

m2
P

n · p ωM

]
mB

n · p−mB

[
f+,HT
B→P (q2)− mB

n · p
f0,HT
B→P (q2)

]
= − f̃B(µ)mB

n · p

{∫ ωs

0
dω1

∫ ∞
ωs−ω1

dω2

ω2
e−ωs/ωM

[
H3PHT
n,LP

(
ωs − ω1

ω2
, ω1, ω2, µ

)
+
mq

n · p
H3PHT
n,NLP

(
ωs − ω1

ω2
, ω1, ω2, µ

)]
+

∫ ωs

0
dω′

∫ ω′

0
dω1

∫ ∞
ω′−ω1

dω2

ω2

1

ωM
e−ω

′/ωM

[
H3PHT
n,LP

(
ω′ − ω1

ω2
, ω1, ω2, µ

)
+
mq

n · p
H3PHT
n,NLP

(
ω′ − ω1

ω2
, ω1, ω2, µ

)]}
, (3.15)

fP n · p exp

[
−

m2
P

n · p ωM

]
fT,HT
B→P (q2)

= − f̃B(µ) (mB +mP )

n · p

{
e−ωs/ωM H2PHT

T,LP (ωs, µ) +

∫ ωs

0
dω′

1

ωM
e−ω

′/ωM H2PHT
T,LP (ω′, µ)

+

∫ ωs

0
dω1

∫ ∞
ωs−ω1

dω2

ω2
e−ωs/ωM

[
H3PHT
T,LP

(
ωs − ω1

ω2
, ω1, ω2, µ

)
+
mq

n · p
H3PHT
T,NLP

(
ωs − ω1

ω2
, ω1, ω2, µ

)]
+

∫ ωs

0
dω′

∫ ω′

0
dω1

∫ ∞
ω′−ω1

dω2

ω2

1

ωM
e−ω

′/ωM

[
H3PHT
T,LP

(
ω′ − ω1

ω2
, ω1, ω2, µ

)
+
mq

n · p
H3PHT
T,NLP

(
ω′ − ω1

ω2
, ω1, ω2, µ

)]}
, (3.16)

where the nonvanishing spectral functions H2PHT
i,LP and H3PHT

i,(N)LP (i = n, n̄, T ) are given by

H2PHT
n̄,LP (ω, µ) = H2PHT

T,LP (ω, µ) = 4 ĝ−B(ω, µ) ,

H3PHT
n,LP (u, ω1, ω2, µ) = 2 (u− 1) Φ4(ω1, ω2, µ) ,

H3PHT
n,NLP(u, ω1, ω2, µ) = Ψ̃5(ω1, ω2, µ)−Ψ5(ω1, ω2, µ) ,

H3PHT
n̄,LP (u, ω1, ω2, µ) = Ψ̃5(ω1, ω2, µ)−Ψ5(ω1, ω2, µ) ,

H3PHT
n̄,NLP(u, ω1, ω2, µ) = 2 Φ6(ω1, ω2, µ) ,

H3PHT
T,LP (u, ω1, ω2, µ) = 2 (1− u) Φ4(ω1, ω2, µ)−Ψ5(ω1, ω2, µ) + Ψ̃5(ω1, ω2, µ) ,

H3PHT
T,NLP(u, ω1, ω2, µ) = Ψ5(ω1, ω2, µ)− Ψ̃5(ω1, ω2, µ) + 2 Φ6(ω1, ω2, µ) . (3.17)

It is evident that the two-particle higher-twist corrections preserve the large-recoil sym-

metry relations of B → P form factors and the three-particle higher-twist contributions

violate such relations already at tree level (see [55] for a similar observation in the context

of the B → γ`ν decays). Employing the power counting scheme for the Borel mass ωM
and the threshold parameter ωs [25]

ωs ∼ ωM ∼ O(Λ2/mb) , (3.18)

we can identify the scaling behaviours of the higher-twist corrections to B → π,K form
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LCDAs Γ1 Γ2

Φ5(ω1, ω2, µ) nβ /̄n γα⊥ γ5 σρλ γ5

Ψ5(ω1, ω2, µ) nα n̄β /n γ5 σρλ γ5

Ψ̃5(ω1, ω2, µ) − i
2 ε

µναβ nµ n̄ν /n σρλ γ5

Φ6(ω1, ω2, µ) nβ /n γα⊥ γ5 nλ /n γ
ρ
⊥ γ5

Table 1. The Dirac structures of the interpolating currents entering the correlation function (4.1)

and the corresponding three-particle B-meson LCDAs.

factors

f+,HT
B→P (q2) ∼ f0,HT

B→P (q2) ∼ fT,HT
B→P (q2) ∼ O

(
Λ

mb

)5/2

(3.19)

in the heavy quark limit, which is suppressed by one power of Λ/mb compared with the

leading-twist contribution in (2.17).

Collecting different pieces together, the final expressions for the LCSR of B → π,K

form factors at large hadronic recoil can be written as

f+
B→P (q2) = f+,2PNLL

B→P (q2) + f+, 2PHT
B→P (q2) + f+, 3PHT

B→P (q2) ,

f0
B→P (q2) = f0,2PNLL

B→P (q2) + f0, 2PHT
B→P (q2) + f0, 3PHT

B→P (q2) ,

fTB→P (q2) = fT,2PNLL
B→P (q2) + fT, 2PHT

B→P (q2) + fT, 3PHT
B→P (q2) , (3.20)

where the manifest expressions of f i,2PNLL
B→P (q2) (i = +, 0, T ) including the light-quark mass

effect can be found in (2.17), and the higher-twist corrections f i, 2PHT
B→P (q2) and f i, 3PHT

B→P (q2)

can be extracted from (3.14), (3.15) and (3.16).

4 QCD sum rules for the higher-twist B-meson LCDAs

The objective of this section is to construct a realistic model for the twist-five and -six

B-meson LCDAs consistent with the corresponding asymptotic behaviour at small quark

and gluon momenta, employing the method of QCD sum rules [50, 56]. We introduce the

correlation function with two HQET currents

F (ω, z1, z2) = i

∫
d4y e−i ω y 〈0|T{q̄(z1n̄)Ys(z1n̄, z2n̄) gsGαβ(z2n̄)Ys(z2n̄, 0) Γ1 hv(0) ,

h̄v(yn̄) gsGρλ(yn̄) Γ2 q(yn̄)}|0〉 , (4.1)

where the Dirac matrices Γ1 and Γ2 of the interpolating currents are specified in table 1.

Employing the HQET parametrization for the local matrix element with the EOM

constraints for both the heavy and light quarks [50]

〈0|q̄ gsGµν Γhv|B̄(v)〉 = − f̃B(µ)mB

6

{
i λ2

HTr

[
γ5 Γ

1 + /v

2
σµν

]
(4.2)

+ (λ2
H − λ2

E) Tr

[
γ5 Γ

1 + /v

2
(vµ γν − vν γµ)

]}
,
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Figure 2. The leading-power contribution to the correlation function (4.1) with two HQET currents

at LO in αs.

and comparing (4.2) with the definitions of the three-particle B-meson LCDAs (3.4) with

the aid of (3.11) leads to the normalization conditions

Φ5(z1 = z2 = 0, µ) =

∫ ∞
0

dω1

∫ ∞
0

dω2 Φ5(ω1, ω2, µ) =
λ2
E + λ2

H

3
,

Ψ5(z1 = z2 = 0, µ) =

∫ ∞
0

dω1

∫ ∞
0

dω2 Ψ5(ω1, ω2, µ) = −
λ2
E

3
,

Ψ̃5(z1 = z2 = 0, µ) =

∫ ∞
0

dω1

∫ ∞
0

dω2 Ψ̃5(ω1, ω2, µ) = −
λ2
H

3
,

Φ6(z1 = z2 = 0, µ) =

∫ ∞
0

dω1

∫ ∞
0

dω2 Φ6(ω1, ω2, µ) =
λ2
E − λ2

H

3
. (4.3)

Here, we have implicitly assumed that the integrations of three-particle B-meson LCDAs

over quark and gluon momenta at a low renormalization scale are finite. This assumption

cannot hold true generally after taking into account perturbative QCD corrections. The

hadronic representation of the HQET correlation function (4.1) can be written as

F (ω, z1, z2) =
1

2 (Λ̄− ω)mB
〈0|q̄(z1n̄)Ys(z1n̄, z2n̄) gsGαβ(z2n̄)Ys(z2n̄, 0) Γ1 hv(0)|B̄(v)〉

× 〈B̄(v)|h̄v(0) gsGρλ(0) Γ2 q(0)|0〉+ . . . , (4.4)

where the ellipses indicate the contributions from the higher resonances and continuum

states.

Evaluating the perturbative diagram displayed in figure 2 and applying the HQET

Feynman rules, we can readily derive the leading-power contribution to the correlation

function (4.1) at tree level

F (ω, z1, z2) = g2
s CF Nc

∫
d4k1

(2π)4

∫
d4k3

(2π)4
ei n̄·k1 z1 ei n̄·k3 z2 Tr

[
/k1 Γ1

1 + /v

2
Γ2

]
× 1

[k2
1 + i0][v · (k1 + k3) + ω + i0][k2

3 + i0]

× [k3α k3 ρ gβλ − k3α k3λ gβρ − k3β k3 ρ gαλ + k3β k3λ gαρ] . (4.5)
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Performing the loop momentum integration in (4.5) and matching the two different rep-

resentations of the correlation function (4.1) with the parton-hadron duality ansatz, we

obtain the QCD sum rules for the three-particle higher-twist B-meson LCDAs

[f̃B(µ)]2mB (λ2
H + λ2

E) Φ5(ω1, ω2, µ)

= −g
2
s CF Nc

96π4

∫ ω0

ω1+ω2
2

ds exp

[
Λ̄− s
ωM

]
ω1 (ω1 + ω2 − 2 s)3 θ(2 s− ω1 − ω2) ,

[f̃B(µ)]2mB (λ2
H + λ2

E) Ψ5(ω1, ω2, µ)

=
g2
s CF Nc

192π4

∫ ω0

ω1+ω2
2

ds exp

[
Λ̄− s
ωM

]
ω2 (ω1 + ω2 − 2 s)3 θ(2 s− ω1 − ω2) ,

[f̃B(µ)]2mB (λ2
H + λ2

E) Ψ̃5(ω1, ω2, µ)

=
g2
s CF Nc

192π4

∫ ω0

ω1+ω2
2

ds exp

[
Λ̄− s
ωM

]
ω2 (ω1 + ω2 − 2 s)3 θ(2 s− ω1 − ω2) ,

[f̃B(µ)]2mB (λ2
E − λ2

H) Φ6(ω1, ω2, µ)

=
g2
s CF Nc

128π4

∫ ω0

ω1+ω2
2

ds exp

[
Λ̄− s
ωM

]
(ω1 + ω2 − 2 s)4 θ(2 s− ω1 − ω2) , (4.6)

where the Borel transformation with respect to the variable ω have been implemented to

suppress the higher-order nonperturbative corrections and minimize the model dependence

on the continuum contributions. For the phenomenological applications, we first suggest

the local duality model for the three-particle B-meson LCDAs by taking the limit ωM →∞
of the obtained QCD sum rules (4.6)

ΦLD
5 (ω1, ω2, µ) =

35

64
(λ2
E + λ2

H)
ω1

ω7
0

(2ω0 − ω1 − ω2)4 θ(2ω0 − ω1 − ω2) ,

ΨLD
5 (ω1, ω2, µ) = −35

64
λ2
E

ω2

ω7
0

(2ω0 − ω1 − ω2)4 θ(2ω0 − ω1 − ω2) ,

Ψ̃LD
5 (ω1, ω2, µ) = −35

64
λ2
H

ω2

ω7
0

(2ω0 − ω1 − ω2)4 θ(2ω0 − ω1 − ω2) ,

ΦLD
6 (ω1, ω2, µ) =

7

64
(λ2
E − λ2

H)
1

ω7
0

(2ω0 − ω1 − ω2)5 θ(2ω0 − ω1 − ω2) . (4.7)

It is then straightforward to verify that the asymptotic behaviour of the twist-five and -six

B-meson LCDAs from the local duality model (4.7)

Φ5(ω1, ω2, µ) ∼ ω1 , Ψ5(ω1, ω2, µ) ∼ Ψ̃5(ω1, ω2, µ) ∼ ω2 , Φ6(ω1, ω2, µ) ∼ 1 , (4.8)

in agreement with predictions from the RG equations at one loop [57]. We further present

the local duality model for the remaining two-particle and three-particle B-meson LCDAs
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constructed in [45]

φ+,LD
B (ω, µ) =

5

8ω5
0

ω(2ω0 − ω)3 θ(2ω0 − ω) ,

φ−,LD
B (ω, µ) =

5(2ω0 − ω)2

192ω5
0

{
6 (2ω0 − ω)2 −

7 (λ2
E − λ2

H)

ω2
0

(15ω2 − 20ω ω0 + 4ω2
0)

}
× θ(2ω0 − ω) ,

ΦLD
3 (ω1, ω2, µ) =

105 (λ2
E − λ2

H)

8ω7
0

ω1 ω
2
2

(
ω0 −

ω1 + ω2

2

)2

θ(2ω0 − ω1 − ω2) ,

ΦLD
4 (ω1, ω2, µ) =

35 (λ2
E + λ2

H)

4ω7
0

ω2
2

(
ω0 −

ω1 + ω2

2

)3

θ(2ω0 − ω1 − ω2) ,

ΨLD
4 (ω1, ω2, µ) =

35λ2
E

2ω7
0

ω1 ω2

(
ω0 −

ω1 + ω2

2

)3

θ(2ω0 − ω1 − ω2) ,

Ψ̃LD
4 (ω1, ω2, µ) =

35λ2
H

2ω7
0

ω1 ω2

(
ω0 −

ω1 + ω2

2

)3

θ(2ω0 − ω1 − ω2) , (4.9)

from which we can further derive the corresponding model for the “effective” distribution

amplitude defined in (3.13)

ĝ−,LD
B (ω,µ) =

ω (2ω0−ω)3

ω5
0

{
5

256
(2ω0−ω)2−

35(λ2
E−λ2

H)

1536

[
4−12

(
ω

ω0

)
+11

(
ω

ω0

)2
]}

×θ(2ω0−ω) . (4.10)

Applying the EOM constraint between the leading-twist and the higher-twist B-meson

LCDAs (3.9), the HQET parameters entering the local duality model for the B-meson

LCDAs must satisfy the following relations [45]

ω0 =
5

2
λB = 2 Λ̄ , 3ω2

0 = 14 (2λ2
E + λ2

H) . (4.11)

An alternative model for the twist-five and -six B-meson LCDAs consistent with the

asymptotic behaviours (4.8) and the normalization conditions (4.3) can be constructed by

implementing an exponential falloff at large quark and gluon momenta

Φexp
5 (ω1, ω2, µ) =

λ2
E + λ2

H

3ω3
0

ω1 e
−(ω1+ω2)/ω0 ,

Ψexp
5 (ω1, ω2, µ) = −

λ2
E

3ω3
0

ω2 e
−(ω1+ω2)/ω0 ,

Ψ̃exp
5 (ω1, ω2, µ) = −

λ2
H

3ω3
0

ω2 e
−(ω1+ω2)/ω0 ,

Φexp
6 (ω1, ω2, µ) =

λ2
E − λ2

H

3ω2
0

e−(ω1+ω2)/ω0 . (4.12)
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We further collect the exponential model for the remaining LCDAs obtained in [45]

φ+, exp
B (ω, µ) =

ω

ω2
0

e−ω/ω0 ,

φ−, exp
B (ω, µ) =

1

ω0
e−ω/ω0 −

λ2
E − λ2

H

9ω3
0

[
1− 2

(
ω

ω0

)
+

1

2

(
ω

ω0

)2
]
e−ω/ω0 ,

Φexp
3 (ω1, ω2, µ) =

λ2
E − λ2

H

6ω5
0

ω1 ω
2
2 e
−(ω1+ω2)/ω0 ,

Φexp
4 (ω1, ω2, µ) =

λ2
E + λ2

H

6ω4
0

ω2
2 e
−(ω1+ω2)/ω0 ,

Ψexp
4 (ω1, ω2, µ) =

λ2
E

3ω4
0

ω1 ω2 e
−(ω1+ω2)/ω0 ,

Ψ̃exp
4 (ω1, ω2, µ) =

λ2
H

3ω4
0

ω1 ω2 e
−(ω1+ω2)/ω0 , (4.13)

which imply the following expression for the two-particle twist-five LCDA

ĝ−, exp
B (ω, µ) = ω

{
3

4
−
λ2
E − λ2

H

12ω2
0

[
1−

(
ω

ω0

)
+

1

3

(
ω

ω0

)2
]}

e−ω/ω0 . (4.14)

Implementing the EOM constraint (3.9) for the exponential model leads to

ω0 = λB =
2

3
Λ̄ , 2 Λ̄2 = 2λ2

E + λ2
H . (4.15)

It is worthwhile to point that the HQET relations (4.11) and (4.15) are derived from

the classical EOM with the assumption that the first two moments of the leading-twist

B-meson LCDA φ+
B(ω, µ) are finite. Apparently, perturbative QCD corrections to the B-

meson LCDAs will violate such tree-level relations in a nontrivial way (see [58] for further

discussion).

5 Numerical analysis

The purpose of this section is to explore phenomenological implications of the newly derived

sum rules (3.20) for B → π,K form factors with the subleading-twist corrections. We will

place particular attention to the normalized differential q2 distributions of B → π`ν` (` =

µ , τ), the determination of the CKM matrix element |Vub| and the differential branching

fractions of the rare exclusive B → Kνν decays.

5.1 Theory inputs

We will proceed by specifying the theory inputs entering the LCSR for B → π,K form fac-

tors, including the shape parameters of B-meson LCDAs, the intrinsic sum rule parameters

and the decay constants of the B-meson and the light pseudoscalar mesons. Due to the

EOM constraints (4.11) and (4.15), only two of the three HQET parameters λB(µ), λ2
E(µ)

and λ2
H(µ) appearing in the B-meson LCDAs are independent of each other. As observed
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in [45], the ratio R(µ) = λ2
E(µ)/λ2

H(µ) estimated from the QCD sum rule approach [50, 59]

is insensitive to the perturbative QCD corrections and the higher-order nonperturbative

QCD corrections. We will therefore take λB(µ) and R(µ) as free parameters in the numer-

ical analysis. The renormalization scale dependence of the inverse moment λB(µ)

λB(µ) = λB(µ0)

{
1 +

αs(µ0)CF
4π

ln
µ

µ0

[
2− 2 ln

µ

µ0
− 4σ1(µ0)

]
+O(α2

s)

}−1

(5.1)

can be obtained from the Lange-Neubert evolution equation of φ+
B(ω, µ) [60]. We employ

the definition of the inverse-logarithmic moment

σ1(µ) = λB(µ)

∫ ∞
0

dω

ω
ln
µ

ω
φ+
B(ω, µ) (5.2)

and adopt the interval σ1(µ0) = 1.4 ± 0.4 from the QCD sum rule calculation for µ0 =

1 GeV [56]. The ratio R(µ0) = 0.5 ± 0.1 based upon the nonperturbative QCD computa-

tions [50, 59] will be taken in the subsequent calculations.

Implementing the standard procedure for the determinations of the internal sum rule

parameters as discussed in [25] gives rise to

M2 = n · pωM = (1.25± 0.25) GeV2 , sπ0 = n · pωπs = (0.70± 0.05) GeV2 ,

sK0 = n · pωKs = (1.05± 0.05) GeV2 , (5.3)

in agreement with the values used for the LCSR of the pion-photon form factor [61] and

for the two-point QCD sum rules of the kaon decay constant [62].

By virtue of the matching relation (2.6), the HQET decay constant f̃B(µ) will be

related to the QCD decay constant fB, for which we will take the averaged Lattice results

fB = (192.0± 4.3) MeV [63] with Nf = 2 + 1. In addition, the QCD decay constants of the

light pseudoscalar mesons

fπ = (130.2± 1.7) MeV , fK = (155.6± 0.4) MeV (5.4)

are borrowed from the Particle Data Group (PDG) [64], which differ slightly from the

Flavour Lattice Averaging Group (FLAG) values [63] mainly due to the different treatments

of theory uncertainties and correlations.

The masses of the light quarks in the MS scheme summarized in PDG [64]

mu(2 GeV) = (2.15± 0.15) MeV , md(2 GeV) = (4.70± 0.20) MeV ,

ms(2 GeV) = (93.8± 1.5± 1.9) MeV , (5.5)

will be employed in the following. We further take the numerical values of the MS bot-

tom quark mass determined from non-relativistic sum rules [65] (see [66] for independent

determinations from relativistic sum rules with similar results)

mb(mb) = (4.193+0.022
−0.035) GeV . (5.6)

Following the discussion presented in [25], the factorization scale entering the leading-

twist LCSR for B → π,K form factors at NLL will be varied in the interval 1 GeV ≤ µ ≤
2 GeV around the default value µ = 1.5 GeV. The hard scales µh1 and µh2 as well as the

QCD renormalization scale for the tensor current νh will be taken as µh1 = µh2 = νh = mb

with the variation in the range [mb/2, 2mb].
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5.2 Predictions for B → π,K form factors

We will proceed to investigate the numerical impacts of the higher-twist corrections and

the SU(3)-flavour symmetry breaking effects computed from the method of LCSR. Prior to

presenting the breakdown of the distinct terms contributing to the semileptonic B → π,K

decay form factors, we need to determine the inverse moment λB(µ0) of the leading-twist

B-meson LCDA φ+
B(ω, µ). Despite of the numerous studies of λB(µ0) with the direct

nonperturbative calculations [56] and the indirect determinations from measurements of

the partial branching fractions of B → γ`ν [52, 55, 67–69], the current constraints of

λB(µ0) are still far from satisfactory due to the systematic uncertainty of the direct QCD

approach and the sensitivity of the B → γ form factors to the shape of φ+
B(ω, µ) at small

ω. Following the strategy displayed in [25], we will match our calculations for the vector

B → π form factor at q2 = 0 from the LCSR with B-meson LCDAs with the independent

predictions f+
B→π(q2 = 0) = 0.28 ± 0.03 from the LCSR with pion LCDAs including the

higher-twist corrections up to twist-four accuracy [70] (see [71, 72] for slightly different

values). Performing such matching procedure we obtain

λB(µ0) =


285+27
−23 MeV , (Exponential Model)

286+26
−22 MeV , (Local Duality Model)

(5.7)

which correspond to the following intervals of the HQET parameter Λ̄

Λ̄ =


428+41
−35 MeV , (Exponential Model)

358+33
−28 MeV . (Local Duality Model)

(5.8)

It is apparent that the determined values of λB(µ0) for the considered two models of B-

meson LCDAs are practically identical, which can be understood from the fact that the

small ω behaviours of the above-mentioned two models are very similar to each other (albeit

with the rather different high-energy behaviours) as observed in [45]. The determined values

of λB(µ0) (5.7) differ from the previous interval presented in [25], where only the leading-

power two-particle contributions to the sum rules were taken into account at NLL. It is

interesting to point out that the determined values of Λ̄ displayed in (5.8) are comparable

to the expected intervals Λ̄ = (480± 100) MeV with the pole mass scheme for the bottom

quark. For the illustration purpose, we will adopt the exponential model for B-meson

LCDAs as our default choice and the theory uncertainty due to the model dependence of

these distribution amplitudes will be included in the final predictions for B → π,K form

factors.

We first display the breakdown of distinct pieces contributing to the LCSR of the

vector B → π form factor at 0 ≤ q2 ≤ 8 GeV2 in figure 3. It is evident that higher-

twist corrections to the B → π form factor f+
B→π(q2) are dominated by the two-particle
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Figure 3. The momentum-transfer dependence of the vector B → π form factor from the leading-

power contribution at LL (f+, 2PLL
B→π , black), the leading-power contribution at NLL (f+, 2PNLL

B→π ,

blue), the two-particle higher-twist correction (f+, 2PHT
B→π , green), and the three-particle higher-twist

correction (f+, 3PHT
B→π , yellow).

twist-five contribution from ĝ−B(ω, µ), which can shift the leading-power prediction by an

amount of approximately (20 ∼ 30)%. The three-particle higher-twist contribution only

generates a minor impact on the theory prediction of f+
B→π(q2) and numerically O(2%).

We further observe that the NLL QCD correction to the leading-power contribution can

yield approximately O(20%) reduction of the corresponding LL QCD prediction. We have

also verified that such observations also hold true for the momentum-transfer dependence

of the scalar and tensor B → π form factors at large hadronic recoil. The SU(3)-flavour

symmetry breaking effects between the B → π and B → K form factors

RiSU(3)(q
2) =

f iB→K(q2)

f iB→π(q2)
, (with i = +, 0, T ) (5.9)

which originate from the nonvanishing strange-quark mass, from the discrepancy between

the threshold parameters for the pion and kaon channels and from the difference between

the decay constants fπ and fK are presented in figure 4. It can be observed that our

predictions for the SU(3)-flavour symmetry breaking effects are in good agreement with

that obtained from the LCSR with the light-meson LCDAs [72], but are somewhat smaller

than the previous calculations [73].

We are now in a position to discuss the large-recoil symmetry breaking effects of

B → P form factors due to both the perturbative QCD corrections at leading power in

1/mb and the subleading power soft contributions from the three-particle higher-twist B-

meson LCDAs. To compare our predictions with the perturbative calculations from the
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Figure 4. The SU(3)-flavour symmetry breaking effects between B → π and B → K form factors

predicted from the LCSR with B-meson LCDAs. The momentum-transfer dependence of the ratio

R0
SU(3)(q

2) behaves in a similar way to R+
SU(3)(q

2) at 0 ≤ q2 ≤ 8 GeV2 and we will therefore not

display this ratio for brevity.

QCD factorization approach, we collect the factorization formulae for the heavy-to-light

B-meson form factors in the heavy quark limit at one loop [49] (see [14, 16] for further

improvement)

f0
B→P (q2) =

n ·p
mB

f+
B→P (q2)

[
1+

αsCF
2π

(
1− n ·p

n ·p−mB
ln
n ·p
mB

)]
+
mB−n ·p
n ·p

αsCF
4π

8π2 fB fP
NcmB

∫ 1

0
du

φP (u,µ)

ū

∫ ∞
0

dω
φ+
B(ω,µ)

ω
, (5.10)

fTB→P (q2) =
mB+mP

mB
f+
B→P (q2)

[
1+

αsCF
4π

(
ln
m2
b

µ2
+2

n ·p
n ·p−mB

ln
n ·p
mB

)]
−mB+mP

n ·p
αsCF

4π

8π2 fB fP
NcmB

∫ 1

0
du

φP (u,µ)

ū

∫ ∞
0

dω
φ+
B(ω,µ)

ω
, (5.11)

where φP (u, µ) is the twist-two pseudoscalar-meson LCDA.

Introducing the form-factor ratios for the semileptonic B → π decays

R0 +
B→π(q2) =

mB

n · p
f0
B→π(q2)

f+
B→π(q2)

, RT +
B→π(q2) =

mB

mB +mπ

fTB→π(q2)

f+
B→π(q2)

, (5.12)

we present the theory predictions for these ratios from both our calculations and the QCD

factorization results in figure 5. It is evident that both the magnitude and sign of the

symmetry-breaking corrections computed from the two QCD methods are consistent with

each other and our predictions for the large-recoil symmetry violations are generally larger

than the previous LCSR computations with pion LCDAs [74].

To understand the model dependence of our predictions on the B-meson LCDAs, we

display in figure 6 the obtained B → π,K form factors from both the exponential and
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Figure 5. The large-recoil symmetry breaking effects of B → π form factors computed from the

LCSR approach at LL accuracy (Ri+,2PLL
B→π , black), at NLL accuracy (Ri+,2PNLL

B→π , blue), and from

the QCD factorization approach (Ri+,QCDF
B→π , yellow). The complete LCSR predictions for Ri+B→π

(i = 0, T ) with the higher-twist B-meson LCDA corrections at tree level are represented by the red

curves.

Figure 6. Dependence of the B → π,K form factors on the nonperturbative models of B-meson

LCDAs at 0 ≤ q2 ≤ 8 GeV2. The observed pattern for the scalar form factors f0B→π(q2) and

f0B→K(q2), in analogy to the corresponding behaviours for the vector form factors, are not presented

here for brevity.

the local duality models as a function of the momentum transfer q2. Taking into account

the fact that the vector B → π form factor at q2 = 0 has been adjusted to reproduce the

values from the pion LCSR, our main prediction is the momentum-transfer dependence of

B → π,K form factors, which turns out to be insensitive to the specific models of B-meson

LCDAs (see also [25] for a similar observation).
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Figure 7. The momentum-transfer dependence of B → π,K form factors predicted from the B-

meson LCSR are displayed with the pink bands. For a comparison, we also present the Lattice

QCD calculations from Fermilab/MILC Collaborations [1–3] with an extrapolation to small q2 in

terms of the z-series expansion (5.15) as indicated by the blue bands.
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Parameters Central value λB σ1 µ ν M2 s0 φ±B(ω)

f+,0
B→π(0) 0.280 −0.030

+0.031
−0.012
+0.013

+0.000
−0.032 - +0.012

−0.017
+0.014
−0.014 -

b+1,π −2.77 +0.05
−0.02

+0.02
−0.01

+0.09
−0.16 - +0.02

−0.03
+0.07
−0.07

+0.00
−0.64

b01,π −4.88 −0.10
+0.11

−0.04
+0.04

+0.17
−0.61 - +0.04

−0.06
+0.11
−0.11

+0.00
−0.37

fTB→π(0) 0.260 −0.031
+0.031

−0.013
+0.013

+0.000
−0.044

−0.017
+0.025

+0.011
−0.016

+0.013
−0.014

+0.009
−0.000

bT1,π −3.14 +0.05
−0.02

+0.02
−0.01

+0.21
−0.57

+0.05
−0.06

+0.02
−0.03

+0.07
−0.07

+0.00
−0.67

f+,0
B→K(0) 0.364 −0.035

+0.034
−0.014
+0.014

+0.000
−0.032 - +0.010

−0.014
+0.008
−0.009

+0.010
−0.000

b+1,K −3.04 +0.02
−0.00

+0.00
−0.00

+0.04
−0.06 - +0.05

−0.07
+0.05
−0.06

+0.00
−0.76

b01,K −4.56 −0.13
+0.14

−0.06
+0.06

+0.08
−0.41 - +0.07

−0.10
+0.07
−0.08

+0.00
−0.42

fTB→K(0) 0.363 −0.038
+0.038

−0.016
+0.016

+0.000
−0.048

−0.022
+0.033

+0.011
−0.014

+0.009
−0.009

+0.023
−0.000

bT1,K −3.47 +0.02
−0.00

−0.00
+0.01

+0.16
−0.46

+0.05
−0.06

+0.05
−0.07

+0.05
−0.06

+0.00
−0.79

Table 2. Theory predictions for the shape parameters and the normalizations of B → π,K form

factors at q2 = 0 entering the z expansion (5.15) with the dominant uncertainties from variations

of different input parameters.
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As already discussed in [22, 25], the light-cone operator product expansion (OPE) of

the vacuum-to-B-meson correlation function (2.1) can be verified only at large hadronic

recoil. We will extrapolate the LCSR predictions of B → π,K form factors at q2 ≤ 8 GeV2

to the full kinematic region by applying the z-series expansion, where the entire cut q2-plane

is mapped onto the unit disk |z(q2, t0)| ≤ 1 with the conformal transformation

z(q2, t0) =

√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

. (5.13)

Here, t+ = (mB + mP )2 is determined by the threshold of the lowest continuum state

which can be generated by the weak transition currents in QCD. The auxiliary parameter

t0 determining the q2 point to be mapped onto the origin of the complex z plane will be

further taken as [72]

t0 = (mB +mP ) (
√
mB +

√
mP )2 . (5.14)

For concreteness, we will adopt the simplified series expansion for B → P form factors

originally proposed in [75] (see [76] for an alternative parametrization)

f+,T
B→P (q2) =

f+,T
B→P (0)

1− q2/m2
B∗

(s)

{
1 +

N−1∑
k=1

b+,Tk,P

(
z(q2, t0)k − z(0, t0)k

− (−1)N−k
k

N

[
z(q2, t0)N − z(0, t0)N

])}
,

f0
B→P (q2) = f0

B→P (0)

{
1 +

N∑
k=1

b0k,P

(
z(q2, t0)k − z(0, t0)k

)}
, (5.15)

where the threshold behaviour at q2 = t+ has been implemented and we will truncate the

z-series at N = 2 for the vector (tensor) form factors and at N = 1 for the scalar form

factors.

Matching the B-meson LCSR calculations in the kinematic region −6 GeV2 ≤ q2 ≤
8 GeV2 with the z-series expansion (5.15) leads to our main predictions for the q2 depen-

dence of B → π,K form factors displayed in figure 7, where the theory uncertainties due

to varying different input parameters discussed in section 5.1 are also included. We fur-

ther display the low q2-extrapolation of the Lattice QCD predictions from Fermilab/MILC

Collaborations [1–3] in the same figure for a comparison. While we find a fair agreement

of the two calculations, our predictions for the three B → π form factors are more precise

than the corresponding Lattice QCD results. The resulting shape parameters and the nor-

malizations of B → π,K form factors at q2 = 0 entering the z-series (5.15) are collected

in table 2 with the numerically important uncertainties. We can readily observe that the

dominant theory uncertainties for the form factors at q2 = 0 originate from the variations

of the inverse moment λB(µ0), while the model dependence of the B-meson LCDAs leads

to the most significant errors for the shape parameters bi1,P (i = +, 0, T ). In particular,

the tensor B → π,K form factors appear to suffer from larger uncertainties compared with

the corresponding vector and scalar form factors, due to the sizeable errors from variations

of the QCD renormalization scale of the tensor current.
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5.3 Phenomenological aspects of B → πlν

Having at our disposal the theory predictions for B → π form factors, we proceed to explore

phenomenological aspects of the semileptonic B → π`ν decays, which serves as the golden

channel for the determination of the CKM matrix element |Vub| exclusively (see [44] for the

future advances of precision measurements of Belle II). It is straightforward to write down

the differential decay rate for B → π`ν

dΓ(B → π`ν)

dq2
=

G2
F |Vub|2

192π3m3
B

λ3/2(m2
B,m

2
π, q

2)

(
1−

m2
l

q2

)2 (
1 +

m2
l

2 q2

) [
|f+
B→π(q2)|2

+
3m2

l (m2
B −m2

π)2

λ(m2
B,m

2
π, q

2) (m2
l + 2 q2)

|f0
B→π(q2)|2

]
, (5.16)

where λ(a, b, c) = a2 + b2 + c2 − 2 ab− 2 ac− 2 bc.

Following the strategy presented in [70], the extraction of |Vub| can be achieved by

introducing the following quantity

∆ζ`(q
2
1, q

2
2) =

1

|Vub|2

∫ q22

q21

dq2 dΓ(B → π`ν)

dq2
. (5.17)

Employing the predicted B → π form factor f+
B→π(q2) from the B-meson LCSR with an

extrapolation toward large q2, we obtain

∆ζµ(0, 12 GeV2) =
(

5.17 +1.23
−1.07

∣∣
λB

+0.50
−0.44

∣∣
σ1

+0.44
−0.59

∣∣
M2

+0.49
−0.47

∣∣
s0

+0.38
−0.00

∣∣
φ±B

)
ps−1

= 5.17+1.65
−1.85 ps−1 , (5.18)

where the negligibly small uncertainties due to variations of the remaining parameters

(not explicitly displayed here) are also taken into account in the total uncertainty. Tak-

ing advantage of the experimental measurements of B → πµνµ from BaBar and Belle

Collaborations [77, 78], the CKM matrix element |Vub| is determined as

|Vub| =
(

3.23 +0.66
−0.48

∣∣
th.

+0.11
−0.11

∣∣
exp.

)
× 10−3 , (5.19)

which are in agreement with the averaged exclusive determinations presented in PDG [64]

and the previous LCSR calculations [25, 70], but are significantly lower than the averaged

inclusive determinations reported in [64]

|Vub|inc. =

(
4.49± 0.15 +0.16

−0.17 ± 0.17

)
× 10−3 . (5.20)

We further display in figure 8 our predictions for the normalized differential q2 distri-

butions of B → π`ν (` = µ , τ) in the whole kinematical region, where the experimental

measurements from BaBar and Belle Collaborations are also displayed for a comparison.

On account of the substantial cancellation of theory uncertainties between the differential

and the total decay rates of B → π`ν , the momentum-transfer dependence of the nor-

malized differential distributions suffers from much less uncertainty than the semileptonic

B → π form factors shown in figure 7. The future precision measurements of B → π`ν

from Belle II (with remarkably high accuracy of O(1.4 %) [44]) will be helpful to distinguish

the theory predictions based upon the distinct LCSR methods presented in figure 8.
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Figure 8. The normalized differential q2 distributions of the semileptonic B → π`ν` (` = µ , τ)

decays with the form factors computed from the B-meson LCSR with an extrapolation to the whole

kinematical region (pink bands) and from the pion LCSR with the z-series expansion (blue bands).

We also present the experimental data points B → πµνµ from [79] (purple squares), [80] (orange

triangles), [77] (brown hexahedrons), [81] (magenta circles) and [78] (green parallelograms).
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Figure 9. The normalized differential q2 distribution of B → Kνν computed with the form factors

from the B-meson LCSR (pink band) and the Lattice QCD simulations [3] (blue band).

5.4 Phenomenological aspects of B → Kνν

The information of B → K form factors enables us to investigate the rare exclusive B →
Kνν decays induced by the flavour-changing neutral current b → sνν. An important

advantage of such process over the more complicated B → K(∗)`` decays [82–86] lies in

the fact that the strong interaction dynamics of B → Kνν is completely encoded in the

semileptonic B-meson form factors. It is straightforward to write down the differential

decay rate for B → Kνν

dΓ(B → Kνν)

dq2
=
G2
F α

2
em

256π5

λ3/2(m2
B,m

2
K , q

2)

m2
B sin4 θW

|Vtb V ∗ts|2
[
Xt

(
m2
t

m2
W

,
m2
H

m2
t

, sin θW , µ

)]2

× |f+
B→K(q2)|2 , (5.21)

where the short-distance Wilson coefficient Xt has been computed at NLO in QCD [87–89]

and at two loops in the electroweak Standard Model (SM) [90]. For the numerical analysis,

the intervals of various electroweak parameters entering (5.21) will be taken from [90].

Our prediction for the normalized differential q2 distribution of B → Kνν with the vector

B → K form factor computed from the B-meson LCSR is presented in figure 9, where the

theory results with the Lattice QCD form factor [3] are also displayed.
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[q2
1, q

2
2] (in GeV2) 106 ×∆BR(q2

1, q
2
2) 102 ×RKπ(q2

1, q
2
2)

[0.0, 1.0] 0.34+0.09
−0.10 5.33+0.60

−0.39

[1.0, 2.5] 0.52+0.13
−0.15 5.27+0.59

−0.39

[2.5, 4.0] 0.52+0.14
−0.15 5.18+0.57

−0.38

[4.0, 6.0] 0.69+0.19
−0.20 5.06+0.55

−0.38

[6.0, 8.0] 0.68+0.19
−0.20 4.90+0.53

−0.37

[0.0, 8.0] 2.75+0.64
−0.81 5.11+0.56

−0.38

[0, (mB −mK)2] 6.02+1.68
−1.76 4.06+0.39

−0.30

Table 3. Theory predictions for the partial branching fractions of B → Kνν and the binned

distributions of the precision observable RKπ(q21 , q
2
2) with B → π,K form factors computed from

the B-meson LCSR and the z-series expansion.

To facilitate the comparison with the future Belle II data, we further introduce the

partial branching fraction of B → Kνν

∆BR(q2
1, q

2
2) = τB0

∫ q22

q21

dq2 dΓ(B → Kνν)

dq2
, (5.22)

whose predictions for the selected q2 bins are collected in table 3. Our results for the

integrated branching fraction ∆BR(0, (mB −mK)2) =
(
6.02+1.68

−1.76

)
× 10−6 are larger than

the previous calculations [91], where the authors employed the rather small numbers of

f+
BK(q2 = 0) = 0.304 ± 0.042, but they are still far below the experimental upper bound

from BaBar Collaboration [92]. Given the sizeable uncertainties for the predicted partial

branching fractions of B → Kνν, we suggest to consider the ratio of the partial branching

fractions for B → Kνν and B → πµνµ

RKπ(q2
1, q

2
2) =

∫ q22
q21

dq2 dΓ(B → Kνν)/dq2∫ q22
q21

dq2 dΓ(B → πµνµ)/dq2
, (5.23)
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where the theory uncertainties due to the model-dependence of the B-meson LCDAs are

expected to be reduced significantly. Our predictions for this ratio collected in table 3

imply that the theory precision of RKπ is approximately improved by a factor of three,

when compared with that of the partial branching fraction of B → Kνν.

6 Summary

In this paper we have computed the SU(3)-flavour symmetry breaking effects between

B → π and B → K form factors at large recoil from the LCSR with B-meson LCDAs.

It has been explicitly shown that the strange-quark-mass induced corrections are not sup-

pressed by Λ/mb in the heavy quark expansion and they also preserve the large-recoil sym-

metry relations of B → P form factors. We further evaluated the higher-twist corrections

to the semileptonic B-meson decay form factors from both the two-particle and three-

particle B-meson LCDAs with a complete parametrization of the corresponding light-cone

matrix elements. In particular, we constructed an alternative model for the three-particle

twist-five and twist-six B-meson LCDAs employing the method of QCD sum rules. The

asymptotic behaviours of these higher-twist LCDAs in HQET at small quark and gluon

momenta from the resulting local duality model are consistent with that determined from

the conformal spins of the relevant fields. It is interesting to observe that the two-particle

higher-twist corrections from the twist-five LCDA ĝ−B(ω, µ) satisfy the symmetry relations

of the soft form factors, while the three-particle higher-twist contributions violate such

relations already at tree level.

Inspecting the obtained sum rules for B → π,K form factors numerically, we observed

that the dominant higher-twist corrections come from the two-particle B-meson LCDA

effects instead of the three-particle contributions. Our predictions for the SU(3)-flavour

symmetry violations are in nice agreement with that obtained from the recent calcula-

tions with the light-meson LCSR approach. Applying the z-series parametrization, the

improved LCSR results of B → π,K form factors were extrapolated to the whole kine-

matical region and compared with the Lattice QCD determinations. Having in our hands

the theory predictions for these form factors, we computed the quantity ∆ζµ(0, 12 GeV2)

for the semileptonic B → πµνµ decay in (5.18), from which the CKM matrix element

|Vub| =
(
3.23 +0.66

−0.48

∣∣
th.

+0.11
−0.11

∣∣
exp.

)
× 10−3 was determined at the accuracy of O (20 %). The

most significant theory uncertainty was identified to be generated by the variations of

the inverse moment λB(µ0). Employing our results for the vector B → K form factor,

we proceeded to compute the normalized differential q2 distributions of the rare exclusive

B → Kνν decays, which are expected to be well measured (approximately 9 % accuracy) at

SuperKEKB with the design luminosity forty times larger than that of KEKB. In order to

reduce the theory uncertainties, we constructed precision observables defined by the ratio

of the partial branching fractions of B → Kνν and B → π`ν.

Further improvements of the theory predictions for the heavy-to-light B-meson form

factors can be made in distinct directions. First, it would be interesting to improve the

considered models for the higher-twist B-meson LCDAs by taking into account the large-

momentum behaviours from perturbative QCD analysis. To this end, the classical EOM
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relations between the leading-twist and higher-twist LCDAs displayed in (3.6)–(3.9) also

need to be extended to the one-loop level. Second, computing perturbative corrections to

the higher-twist contributions in B → π,K form factors is of both technical and concep-

tual importance for understanding factorization properties of the exclusive semileptonic

B-meson decays. The one-loop evolution equations of the higher-twist B-meson LCDAs at

twist-six accuracy will be essential to such analysis. Third, improving the unitary bounds

for the z-series parametrizations of B → π,K form factors will be helpful to constrain the

momentum-transfer dependence of these form factors (see [93] for further discussions on

B → D form factors).
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