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1 Introduction

Multi-loop scattering amplitudes in the planar limit of N = 4 supersymmetric Yang-Mills

(sYM) theory exhibit a great deal of intriguing mathematical structure. Much of this

structure, at least at low loops and particle multiplicity, seems to be intimately tied to the

cluster algebras associated with the Grassmannian Gr(4,n) [1–3]. This is especially true

in the maximally-helicity-violating (MHV) sector, where amplitudes have been computed

at high loop orders in six- and seven-particle kinematics [4–8], and algorithms exist for
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calculating two loop amplitudes for any number of particles [9, 10]. Remarkably, each of

the branch cuts in these amplitudes ends at the vanishing locus of some cluster coordinate

on Gr(4,n) [2, 11–13], and — even more strikingly — their iterated discontinuities vanishes

unless sequentially taken in coordinates that appear together in a cluster of Gr(4,n) [14].

All six- and seven-particle next-to-MHV (NMHV) amplitudes that have currently been

computed in this theory share these remarkable properties [6–8, 15–19], as do certain

classes of Feynman integrals [14, 20–22], some of which have been computed to all loop

orders [23]. While this collection of amplitudes and integrals represents the simplest this

theory has to offer, it remains suggestive that cluster algebras combinatorially realize these

salient aspects of their analytic structure, thereby encoding locality in a non-obvious way.

The fact that cluster algebras appear in this context is not totally surprising, given that

the plabic graphs that describe the integrands of this theory to all loop orders are themselves

dual to cluster algebras. In particular, the boundaries of the positive Grassmannian, where

it is known that these integrands can develop physical singularities, all lie on the vanishing

loci of cluster coordinates on Gr(4,n) [1]. Despite this, it’s far from obvious that the

location of all physical singularities will be picked out by cluster coordinates in this way

— and indeed, even at one loop, N2MHV amplitudes have singularities at points involving

square roots when expressed in terms of cluster coordinates [24]. This obfuscates the

general connection between cluster algebras and the amplitudes of this theory, as does the

eventual appearance of functions beyond polylogarithms [25–31]. Both complications point

to the need for more general objects than cluster algebras to describe the analytic structure

of this theory at higher loops and particle multiplicities.

There is reason, however, to be optimistic that an analogously simple characterization

of this (more complicated) analytic structure might be found. This optimism stems from

the observation that the infinite class of amplitudes we currently have access to — the two-

loop MHV amplitudes — have properties beyond branch cuts that seem to be indelibly

tied to cluster algebras. In particular, the ‘nonclassical’ part of each of these amplitudes

(that is, the part that cannot be expressed in terms of classical polylogarithms) is uniquely

determined by a small set of physical and cluster-algebraic properties [13]. Seemingly un-

related, a pair of functions can be associated with the simplest cluster algebras, related to

the Dynkin diagrams A2 and A3, in terms of which these nonclassical components can be

decomposed into a sum over the A2 or A3 subalgebras of Gr(4,n) [12]. Furthermore, the

remaining ‘classical’ part of these amplitudes can always be written as products of classical

polylogarithms involving only negative cluster coordinates as arguments [10]. It can be

hoped that the pervasiveness of such cluster-algebraic structure points to the existence of a

deeper and more general combinatorial structure that extends to all particle multiplicities

and helicity configurations. If so, better understanding the many ways in which cluster al-

gebras appear in these amplitudes can help us identify the features this structure must have.

The motivation for this work is to review the connections already mentioned between

cluster algebras, as well as to further mine the two-loop MHV amplitudes for additional

cluster-algebraic structure. The review portion of this paper, comprising most of sections 2

and 3, aims to be a self-contained pedagogical introduction to cluster algebras and their ap-

pearance in loop-level amplitudes in N = 4 sYM. These sections in particular focus on the
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subalgebra structure of cluster algebras, as these subalgebras will be used in the second half

of the paper to build progressively more complicated polylogarithmic functions. A central

ingredient in this story is the set of automorphisms respected by a given cluster algebra, as

these automorphisms constrain the space of polylogarithms that can be defined on them.

We will in particular be interested in the space of ‘cluster polylogarithms’ — poly-

logarithms defined on (both finite and infinite) cluster algebras that exhibit interesting

forms of cluster-algebraic structure at both the level of their symbol and their Lie cobracket.

Such functions naturally arise in the study of the two-loop MHV amplitudes in planar

N = 4 sYM theory [12], but also constitute an interesting class of functions in their own

right. In the case of finite cluster algebras these functions can be studied systematically,

and in the second half of this paper we describe an efficient method for constructing all

nonclassical cluster polylogarithms on a given finite cluster algebra. This procedure is

based on what we call the ‘cluster subalgebra constructibility’ of these functions, and in

particular on the conjecture that all nonclassical cluster polylogarithms (on both finite and

infinite cluster algebras) can be decomposed into sum over their A2 subalgebras [12]. We

illustrate this method by constructing all (nonclassical) cluster polylogarithms on Gr(4, 7)

and its subalgebras (this space was also explored in [32], using a slightly different approach).

While the (nonclassical part of the) two-loop MHV amplitudes in planar N = 4

sYM [12] are already known to be A2- and A3- constructible, it is interesting to ask

whether they can be constructed in terms of cluster polylogarithms on larger algebras.

In particular, using the construction described above, we can ask this question of the

two-loop seven-point MHV amplitude — itself a cluster polylogarithm associated with the

Grassmannian Gr(4, 7). We show that such decompositions not only exist over the D5, A5,

and A4 subalgebras of Gr(4, 7), but that these decompositions take an especially canon-

ical form, uniquely dictated (up to an overall scale) by the interplay of the subalgebra

and automorphism structures of Gr(4, 7). Specifically, we will find that the seven-particle

remainder function can be decomposed as

R
(2)
7 = − 1

20

∑
D5⊂Gr(4,7)

∑
A4⊂D5

f+−
A4

(x1 → x2 → x3 → x4) + . . .

= − 1

20

∑
A5⊂Gr(4,7)

∑
A4⊂A5

f+−
A4

(x1 → x2 → x3 → x4) + . . . ,

in terms of a single function f+−
A4

defined in section 5, where the trailing dots indicate a

contribution consisting of purely classical polylogarithms.

In a forthcoming companion paper, we also use this technology to construct the full

eight-point remainder function in terms of cluster polylogarithms. That is, we describe

methods for searching for decompositions of the nonclassical part of R
(2)
n even when Gr(4, n)

is infinite, and then — using such a decomposition — systematically construct the classical

and beyond-the-symbol components of R
(2)
8 using the techniques described in [10]. We also

show that there exists a ‘generalized BDS-like ansatz’ that preserves all Steinmann and

cluster adjacency relations in eight-particle kinematics (and for all multiplicities that are a
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mutliple of 4), despite the nonexistence of the standard BDS-like ansatz for these numbers

of particles (this normalization is also discussed in section 3.2 of the present work).

This paper is organized as follows. In section 2 we provide a self-contained introduction

to cluster algebras and why they appear in N = 4 sYM theory. While this section will

largely constitute review for those familiar with recent developments at the intersection of

these topics, the discussion of automorphisms in section 2.6 will likely be new to even those

familiar with the physics literature. In section 3 we discuss some of the tools relevant for

working with polylogarithms, particularly their associated coaction and Lie cobracket. We

then recap the ways in which the coproduct and cobracket of the two-loop MHV amplitudes

in planar N = 4 sYM theory have been found to exhibit curious cluster-algebraic structure.

In section 4 we turn to the more general space of cluster polylogarithms, and initiate a

systematic exploration of the nonclassical functions in this space, showing (in the case

of finite cluster algebras) that there are surprisingly few such functions. Finally, as an

application of this technology, we explore the ways in which these functions can be used to

express the two-loop seven-point MHV amplitude in section 5. In particular, we show that

this amplitude admits a (nested) decomposition in terms of cluster polylogarithms defined

on cluster algebras of every rank smaller than that of Gr(4, 7), and thereby identy cluster

polylogarithms of physical interest on the D5, A5, and A4 cluster algebras, supplementing

the two that are already known to be of interest on A2 and A3.

We also include two appendices. Appendix A tabulates all the (nested) subalgebras

of Gr(4, 7), while appendix B tabulates the number of independent functions that have a

nonzero Lie cobracket on each of these finite cluster algebras.

2 A brief introduction to cluster algebras

Cluster algebras were first introduced by Fomin and Zelevinsky [33] as a tool for identifying

which algebraic varieties come equipped with a natural notion of positivity, and what

quantities determine this positivity. As a consequence, they naturally appear in the study

of the positive Grassmannian Gr+(k, n), i.e. the space of k×n matrices modulo the action

of GL(k) where all ordered k× k minors are positive. They correspondingly also appear in

the study of planar N = 4 sYM theory, since the integrands in this theory are encoded to

all orders by Gr+(4, n) [1].

A simple example of the type of questions cluster algebras help address is: if one

were to check just the positivity of a set of matrix minors (not their actual value), what

are the minimal sets of minors that suffice to determine whether a point is in Gr+(k, n)?

These minors are not all independent; they satisfy identities known as Plücker relations,

for example

〈abI〉〈cdI〉 = 〈acI〉〈bdI〉 − 〈adI〉〈bcI〉, (2.1)

where each Plücker coordinate 〈i1, . . . , ik〉 corresponds to the minor of columns i1, . . . , ik,

and I is a multi-index object with k − 2 entries.

To gain some intuition for this problem, let us explore the case of Gr+(2, 5). The five

cyclically adjacent minors 〈12〉, 〈23〉, 〈34〉, 〈45〉, and 〈15〉 cannot be eliminated in terms of
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each other by Plücker relations, so each gives rise to an independent positivity constraint.

However, making use of the Plücker relations

〈24〉 = (〈12〉〈34〉+ 〈23〉〈14〉)/〈13〉,
〈25〉 = (〈12〉〈45〉+ 〈24〉〈15〉)/〈14〉,
〈35〉 = (〈25〉〈34〉+ 〈23〉〈45〉)/〈24〉,

(2.2)

we can eliminate three of the nonadjacent minors — for instance, 〈24〉, 〈25〉, and 〈35〉 —

in terms of the remaining
(

5
2

)
− 3 = 7 adjacent and nonadjacent ones. It can be checked

that all further Plücker relations are implied by those in (2.2), telling us that seven minors

must be computed to determine if a matrix is in Gr+(2, 5). However, as should be clear, it

is not sufficient to check the positivity of any seven (ordered) minors; only certain triples

of minors can be eliminated. It would therefore be advantageous to have a method for

generating all sets of minors that are sufficient to answer this question.

To motivate how cluster algebras address this problem, consider the following trian-

gulation of the pentagon:

1

2

34

5
. (2.3)

We can associate the line connecting points i and j with the Plücker coordinate 〈ij〉; if we

further assign these lines length 〈ij〉, the resulting pentagon is cyclic (in the sense that all

its vertices reside on a common circle) due to Ptolemy’s theorem. Conversely, all cyclic

n-gons represent a point in Gr+(2, n) [34]. Note that the length of the three diagonals that

are not present in this triangulation are determined by the length of the seven lines that

are present (including edges); the problem has been reduced to geometry. This makes clear

why these three diagonals — the three eliminated above — are redundant for the purpose

of determining whether a matrix is in Gr+(2, 5).

From the first relation in (2.2) we see that we could have instead chosen to check the

positivity of 〈24〉 rather than 〈13〉. This corresponds to choosing a different triangulation,

which we get by trading the latter diagonal for the former:

1

2

34

5 ⇒

1

2

34

5
. (2.4)

We have highlighted in blue the fact that both diagonals are framed by the same quadri-

lateral face. More generally, we can pick any quadrilateral face and flip the diagonal it

contains to generate a different triangulation. Repeatedly performing these flips generates

all possible triangulations of the pentagon, as can be seen in figure 1. Each triangulation

provides a set of edges/minors whose positivity ensures that a matrix is in Gr+(2, 5).
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1

2

34

5

1

2

34

5

1

2

34

5

1

2

34

5

1

2

34

5

Figure 1. All possible triangulations of the pentagon. Mutating on the red chord moves you

clockwise around the figure.

In an analogous way, cluster algebras answer questions about positivity for a larger

class of algebraic varieties (and in particular for all Gr+(k, n)) by considering ‘clusters’

that can all be generated by an operation called ‘mutation’ just as all triangulations of

the pentagon are generated by flipping the diagonals of quadrilateral faces. We now turn

to the definition of these objects, considering first how the example of Gr+(2, 5) can be

rephrased in this language.

2.1 Clusters, mutations, and cluster A-coordinates

Clusters can be defined to be quiver diagrams — namely, oriented graphs equipped with

arrows connecting different nodes — in which each node is assigned a cluster coordinate.1

We can form one of the clusters of Gr(2, 5) out of our original triangulation (2.3) by

assigning an orientation to the pentagon and all subtriangles such as

1

2

34

5 			

. (2.5)

The nodes of our cluster are then given by the lines of this triangulation (making the minors

〈ab〉 our cluster coordinates), where an arrow is assigned from 〈ab〉 to 〈cd〉 if the triangle

orientations in (2.5) have segment (ab) flowing into segment (cd) and these segments border

1Here and throughout, we are implicitly restricting ourselves to skew-symmetric cluster algebras of

geometric type.
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a common triangle. This gives us the quiver

〈13〉 〈14〉 〈15〉

〈45〉〈34〉〈23〉

〈12〉

//
bb

��

��
//

bb

��

, (2.6)

where the boxes around the 〈ii+ 1〉 indicate that they are frozen — they can never change

because they aren’t in the interior of a quadrilateral face. One can also draw arrows (with

partial weight) connecting these frozen nodes (see, for instance, [1]), but we will not keep

track of them in the present work.

We have now drawn our first cluster (also sometimes called a seed). The Plücker

coordinates in this cluster are referred to as cluster A-coordinates, and they come in two

flavors: mutable (for example, 〈13〉 and 〈14〉 above) and frozen (〈ii + 1〉 above). In any

quiver, the information encoded by the arrows can also be represented in terms of a skew-

symmetric matrix

bij = (# of arrows i→ j)− (# of arrows j → i) (2.7)

called the exchange matrix (or the signed adjacency matrix).

The process of mutation, which we have described geometrically in terms of flipping

diagonals, has a simple interpretation at the level of quivers. Given a quiver such as (2.6),

we can choose any mutable node k to mutate on (this is equivalent to picking which diagonal

to flip). Mutation gives us back a new quiver in which the A-coordinate ak has been sent

to a′k, where

aka
′
k =

∏
i|bik>0

abiki +
∏

i|bik<0

a−biki , (2.8)

(with the understanding that an empty product is set to one), while all other cluster A-

coordinates remain unchanged. The arrows connecting the nodes in this new quiver are

also modified by carrying out the following sequence of operations:

• for each path i→ k → j, add an arrow i→ j,

• reverse all arrows on the edges incident with k,

• remove any two-cycles (oppositely-oriented arrows) that may have formed.

This creates a new adjacency matrix b′ij via

b′ij =


−bij , if k ∈ {i, j},
bij , if bikbkj ≤ 0,

bij + bikbkj , if bik, bkj > 0,

bij − bikbkj , if bik, bkj < 0.

(2.9)

Mutation is an involution, so mutating on a′k will take you back to the original cluster (just

as flipping the same diagonal twice will take you back to where you started).
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In terms of these ingredients, a cluster algebra can be defined to be a set of clusters

that is closed under mutation. Thus, mutating on any non-frozen node of any cluster will

generate a different cluster in the same cluster algebra. In practice, one therefore constructs

cluster algebras by starting from a seed such as (2.6), and iteratively mutating on all avail-

able nodes until the set of clusters closes (or it becomes clear the cluster algebra is infinite).

It is common to refer to certain cluster algebras by particularly nice representative

clusters, when the mutable notes of the corresponding quiver form an oriented Dynkin dia-

gram. For instance, the Gr(2,5) cluster algebra is often referred to as A2, since the mutable

part of the seed (2.6) is given by 〈13〉 → 〈14〉. Thus, we will often speak interchangeably of

the cluster algebras for Gr(2, 5) and A2. This is a slight abuse of notation, as the Gr(2, 5)

cluster algebra corresponds specifically to the cluster algebra generated by the collection

of frozen and mutable nodes in eq. (2.6), whereas an A2 cluster algebra can in principle be

dressed with any number of frozen nodes. We will see why this language is useful in the

next section.

2.2 Cluster X -coordinates

Cluster algebras can also be formulated in terms of a different set of cluster coordinates,

called Fock-Goncharov coordinates or X -coordinates [35]. As we will see in future sections,

cluster X -coordinates play a crucial role in connecting cluster algebras to polylogarithms

and scattering amplitudes. While it is always possible to phrase results involving cluster

algebras directly in terms of A-coordinates, X -coordinates often allow for cluster-algebraic

structure to be made more manifest.

Clusters formed out of X -coordinates can be directly constructed out of clusters in-

volving A-coordinates. Given a quiver equipped with A-coordinates and described by the

exchange matrix bij , we can compute an X -coordinate to assign to each mutable node by

xi =
∏
j

a
bji
j . (2.10)

For example, the X -coordinate cluster associated with (2.6) is formed by associating cluster

X -coordinates with all its mutable nodes, where these X -coordinates are constructed by

putting all Plücker coordinates that point to that node in the numerator, and all Plücker

coordinates that are pointed to by that node in the denominator. That is, we get

〈12〉〈34〉
〈14〉〈23〉

→ 〈13〉〈45〉
〈15〉〈34〉

, (2.11)

which again takes the form of the generic A2 quiver x1 → x2. In the pentagon-triangulation

picture, these X -coordinates describe overlapping quadrilaterals, for instance

1

2

34

5 ∼ 〈12〉〈34〉
〈14〉〈23〉

,

1

2

34

5 ∼ 〈13〉〈45〉
〈15〉〈34〉

, (2.12)
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which come in one-to-one correspondence with the diagonals in a (single) triangulation.

Mutation rules for X -coordinates are different than for A-coordinates, and are given by

x′i =

{
x−1
k , i = k,

xi(1 + xsgn bik
k )bik , i 6= k

, (2.13)

where mutation has been carried out on node k. Mutation still changes the arrows in the

quiver diagram as it did in the case of A-coordinates. Given just a quiver diagram, it can

sometimes be unclear whether a given quiver should be mutated using the A-coordinate or

X -coordinate rules (2.8) or (2.13). We adopt the convention in this work that if a quiver

is given with no frozen nodes, it should be thought of as equipped with X -coordinates.

Just as with A-coordinate clusters, we can generate all X -coordinate clusters by mu-

tation. Mutating on alternating nodes of our A2 cluster (starting with x2), we generate

the following sequence of clusters:

x1 → x2

x1(1 + x2)← 1

x2

1

x1(1 + x2)
→ 1 + x1 + x1x2

x2
(2.14)

1 + x1

x1x2
← x2

1 + x1 + x1x2

x1x2

1 + x1
→ 1

x1

x2 ← x1

...

The series then repeats, with all arrows reversed. Note that (specifically in the case of A2),

if we label these X -coordinates by

X1 = 1/x1, X2 = x2, X3 = x1(1 + x2), (2.15)

X4 =
1 + x1 + x1x2

x2
, X5 =

1 + x1

x1x2
,

the mutation rule in (2.13) takes the simple form

1 + Xi = Xi−1Xi+1, (2.16)

while all the clusters take the form 1/Xi → Xi+1. Eq. (2.16) is commonly referred to as the

A2 exchange relation. Putting this all together, we will generically refer to an A2 cluster

algebra as any set of clusters 1/Xi−1 → Xi for i = 1 . . . 5 where the Xi satisfy eq. (2.16).

We believe it is useful at this point to emphasize that one can take as input any x1 and

x2, and generate an associated A2.

A very useful feature of cluster X -coordinates is that they come equipped with a

natural Poisson bracket structure, making the Grassmannian Gr(k, n) a cluster Poisson

– 9 –
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1

2

3

4

5

6

m

〈13〉 〈14〉 〈15〉

〈12〉

〈23〉 〈34〉 〈45〉 〈56〉

〈16〉// //
��

��

bb

��

bb

��

bb
//

m

〈12〉〈34〉
〈14〉〈23〉

〈13〉〈45〉
〈15〉〈34〉

〈14〉〈56〉
〈16〉〈45〉

// //

Figure 2. A triangulation of the hexagon along with its assocated A-coordinate and X -coordinate

seed quivers.

variety [36]. Namely, when two X -coordinates appear together in a cluster of Gr(k, n),

there exists a Poisson bracket that evaluates to

{xi, xj} = bijxixj . (2.17)

This structure respects mutation, implying that the entry bij (which counts the number of

arrows from xi to xj in a given cluster’s quiver) will be the same in all clusters containing

both xi and xj . The Poisson bracket (and associated Sklyanin bracket) will play a larger

role in forthcoming work [37], so we defer further discussion of this structure (for existing

discussions in the literature, see [36, 38]).

2.3 Subalgebras and cluster polytopes

Cluster algebras contain a rich and intricate subalgebra structure, which will play a central

role in our analysis. It is simple to illustrate how these subalgebras arise by considering

Gr(2, 6), which triangulates the hexagon. In figure 2 we give the seed cluster for Gr(2, 6)

in the triangulation, A-coordinate, and X -coordinate representations. Since the mutable

nodes take the form of an A3 Dynkin diagram, we often speak of Gr(2, 6) and A3 inter-

changeably, just as we did with Gr(2, 5) ' A2.

The Gr(2, 6) cluster algebra features 14 clusters, which can be grouped into multiple

(overlapping) subalgebras. A simple example is the collection of all triangulations which

involve the chord 〈15〉. This set contains 5 clusters and is itself a cluster algebra, which

can be generated by treating 〈15〉 as a frozen node (or in X -coordinates, freezing the node

– 10 –
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〈14〉〈56〉
〈16〉〈45〉). This of course is the cluster algebra corresponding to the triangulations of the

pentagon formed by points 1, . . . , 5, outlined here in blue:

, , , , . (2.18)

We therefore refer to the collection of clusters that involve this pentagon as an A2 subal-

gebra of Gr(2, 6).

It should be clear, upon referring back to the mutation rules (2.8) and (2.13), that

this A2 subaglebra is truly identical to what we have been calling Gr(2, 5). That is, nei-

ther the A- or X -coordinate mutation rule (or the rule for constructing the X -coordinate

cluster out of the A-coordinate one) depends on nodes further than a single arrow away

from the node on which one is mutating. Correspondingly, this subalgebra doesn’t know

about the existence of nodes involving point/column 6. (In the X -coordinate case, the

coordinate associated with the newly frozen node will change when one mutates on the

node it is connected to, but the presence of this frozen node does not effect the coordinates

appearing in the A2 subalgebra itself.) We consider two subalgebras to be identical when

the clusters they appear in only differ by nodes that have no effect on the mutable nodes

of the subalgebra.

What if we instead disallow mutation on the chord 〈13〉 (and the corresponding X -

coordinate node 〈12〉〈34〉
〈14〉〈23〉)? Dropping the nodes that play no role in any of the mutations

that remain gives rise to the effective quiver

〈14〉 〈15〉 〈16〉

〈56〉〈45〉〈34〉

〈13〉 //
bb

��

// //
bb

�� , (2.19)

where we have put a box around 〈13〉 to make clear we are now treating it as frozen. We have

also dropped the arrow from 〈34〉 to 〈13〉 since we are ignoring arrows between frozen nodes.

The comparison to (2.6) should be clear; this just represents a re-labeled version of Gr(2, 5).

Similarly, if we disallow mutation on the chord 〈14〉 (and 〈13〉〈45〉
〈15〉〈34〉), we generate an

A1 × A1 subalgebra, since the chord 〈14〉 divides the hexagon in to two non-overlapping

squares, each of which are triangulated by A1 (or really Gr(2, 4)):

, , , . (2.20)

In appendix A we have tabulated the number of such A2 and A1 × A1 subalgebras in A3,

as well as the subalgebras of other cluster algebras that appear in Gr(4, 7). There it will

be found that there are in fact six A2 subalgebras and three A1 ×A1 subalgebras of A3.

– 11 –
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Figure 3. The cluster polytope of A3 ' Gr(2, 6), in which each cluster is represented by a

triangulation of the hexagon.

This subalgebra structure can be nicely visualized by constructing an object known

as the cluster polytope of a given cluster algebra. The vertices of this polytope each

represent a cluster, while its edges represent the mutations that map these clusters into

each other. For instance, figure 1 corresponds to the Gr(2, 5) ' A2 cluster polytope, which

also coincidentally takes the form of a pentagon. Note that every node has valency two

since each cluster has two mutable vertices.

Similarly, the cluster polytope of Gr(2, 6) ' A3 is given in figure 3. It has 14 vertices,

corresponding to the 14 clusters of Gr(2, 6), each with valency three. These vertices assem-

ble into three square faces and six pentagonal faces — corresponding exactly to the three

A1 × A1 subalgebras and the six A2 subalgebras of A3. This makes it easy to read off the

subalgebra structure of A3 directly.

In A3, it turns out that each of the faces corresponds to a distinct subalgebra. Cluster

polytopes of larger cluster algebras become quite complicated, and it is often the case that

distinct faces (or higher-dimensional polytopes) correspond to identical subalgebras. As

an example, the cluster polytope of Gr(4, 7), which will be the focus of much of the rest of

this paper, is shown in figure 4. It has 833 vertices, each of valence 6, and 1071 pentagons

corresponding to A2 subalgebras; however, only 504 of these A2 subalgebras are distinct.

While cluster polytopes give us a nice pictorial way to think about the relations between

different clusters in a cluster algebra, their interiors can also be identified with the ‘positive

region’ where all (cyclically ordered) A-coordinates (and consequently X -coordinates) are

positive [1, 19]. Thus, in the case of Grassmannian cluster algebras, the positive Grassman-

nian Gr+(k, n) (restricted to real values) consists of all points in the interior of the cluster

polytope. Each cluster, moreover, can be thought of as providing a coordinate system in

which the full positive region is spanned by allowing each X -coordinate to range from 0 to

∞. For a more in-depth discussion of this way of thinking about cluster polytopes, see [19].

– 12 –
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Figure 5: The exchange graph for E6.

Figure 4. The cluster polytope of Gr(4, 7) ' E6.

2.4 Grassmannian cluster algebras and planar N = 4 sYM theory

So far we have leaned heavily on the correspondence between the triangulations of an n-gon

and the cluster algebra for Gr(2, n). Based on the examples of Gr(2, 5) and Gr(2, 6), it is

not hard to write down a generic seed cluster for Gr(2, n) corresponding to the triangulation

consisting of all chords 〈13〉, . . . , 〈1n−1〉:

1

2

3n− 1

n ⇔ 〈13〉 〈14〉 〈1 n− 1〉

〈12〉

〈23〉 〈34〉 〈n− 2 n− 1〉 〈n− 1 n〉

〈1n〉. . .

. . .

// //
��

��

bb

��

bb

��

ee
//

. (2.21)

Here one sees that Gr(2, n) ' An−3.

For Gr(k > 2, n), there is no longer a simple connection with triangulations or Dynkin

diagrams. However, there exists a generalization of eq. (2.21) valid for all Gr(k, n) [39]:

〈1, . . . , k〉f1lf00f13f12f11

f2lf00f23f22f21

f00f00f00f00f00

fklf00fk3fk2fk1

· · ·

· · ·

...
. . .

...
...

...

· · ·

oooo

��

??
oooo

��

??
oo

��

??

oooooooo
??

���� ��

??

����

?? ??

��

?? ??
oo oo oo oo

??

????

��

��

��

, (2.22)
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where l = n− k and

fij =

{
〈i+ 1, . . . , k, k + j, . . . , i+ j + k − 1〉, i ≤ l − j + 1,

〈1, . . . , i+ j − l − 1, i+ 1, . . . , k, k + j, . . . , n〉, i > l − j + 1.
(2.23)

(Note that evaluating the above expression for k = 2 will not directly give (2.21); the two

are equivalent after cyclically rotating the indices in (2.21) and flipping the direction of

the arrows.) The cluster algebra on Gr(k, n) is therefore of rank (n− k− 1)(k− 1), i.e. the

number of mutable nodes in (2.22).

The cluster algebra on Gr(4, n) naturally appears in planar N = 4 sYM theory, where

it parametrizes the space of n-particle kinematics. To make this connection, one first

decomposes the external momenta pi (which are endowed with a natural ordering in the

planar limit) into a set of spinors λi, λ̃i or into a set of dual coordinates xi as

pµi σ
αα̇
µ = λαi λ̃

α̇
i = xαα̇i − xαα̇i+1 , (2.24)

where xαα̇n+1 ≡ xαα̇1 (for more background on these spinors and dual coordinates, see for

example [40, 41]). The dual coordinates describe the cusps of a light-like Wilson loop dual

to the amplitude; as a result, the original amplitude respects an additional superconformal

symmetry that is associated with these dual coordinates (up to an anomaly associated with

the cusps of the Wilson loop, which is accounted for by the BDS ansatz) [42–50]. In terms

of the quantities in (2.24), we can define momentum twistors

ZRi = (λαi , x
βα̇
i λiβ) , (2.25)

where R = (α, α̇) is an SU(2, 2) index. Momentum twistors are invariant under the little

group, which acts as an overall rescaling ZRi → tiZ
R
i , and as such represent points in CP3.

If we assemble these momentum twistors into a 4 × n matrix in which the ith column

corresponds to the four SU(2, 2) components of ZRi , invariance under the dual conformal

group becomes invariance under SL(4). The overall rescaling symmetry of one of the

momentum twistors can be combined with this SL(4) invariance to identify this matrix

as a point in the (not necessarily positive) Grassmannian Gr(4, n), modulo the rescaling

invariance of the remaining n−1 columns. Thus, the kinematic data of an n-point scattering

process is encoded in a momentum twistor matrix

Z ∈ Gr(4, n)/GL(1)n−1. (2.26)

For more details regarding this correspondence, see [1, 2].

To relate the dual-conformal invariants encoded in Zn to more familiar kinematic

quantities, we can translate the (cyclically ordered) Mandelstam invariants into squared

differences of dual coordinates,

si,...,j−1 ≡ (pi + . . . pj−1)2 = det(xαα̇i − xαα̇j ) ≡ x2
ij . (2.27)

Dual conformal invariants can be constructed out of these objects by putting together

combinations that are invariant under the dual conformal inversion generator, which acts
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(b)

Figure 5. The A-coordinate seed quiver (a) and X -coordinate seed quiver (b) for Gr(4, 6).

on these coordinates as

I(xαα̇i ) =
xαα̇i
x2
i

, I(x2
ij) =

x2
ij

x2
ix

2
j

. (2.28)

Thus, (regulated) amplitudes in this theory depend only on ratios of squared differences

in which the same dual indices appear in both the numerator and denominator. The

quantities x2
ij can be translated into momentum twistors using the relation

x2
ij =

det(Zi−1ZiZj−1Zj)

(εαβλ
α
i−1λ

β
i )(εγδλ

γ
j−1λ

δ
j)
, (2.29)

where εαβ is the Levi-Civita tensor. In dual-conformally invariant quantities, the spinor

products εαβλ
α
i−1λ

β
i all cancel, leaving only determinants of four-tuples of momentum

twistors. These are just minors of the momentum twistor matrix (2.26), which we rec-

ognize as the cluster A-coordinates

〈ijkl〉 = det(ZiZjZkZl). (2.30)

Note that the two-particle Mandelstams si,i+1 correspond to the frozen nodes of (2.22),

while higher-particle Mandelstams and more general (polynomials of) Plücker coordinates

can appear as mutable nodes.

By construction, the X -coordinates on Gr(4, n) derived from the seed (2.22) respect

dual-conformal invariance. Both mutation rules (2.8) and (2.13) preserve this property (and

commute with the translation (2.10)), ensuring that all X -coordinates are dual conformal

invariants. Such invariants cannot be formed in four- or five-particle kinematics, due to an

insufficient number of non-lightlike separated points (since we are in massless kinematics,

x2
ii+1 = 0 for all i). This fact shows up in the seed (2.22) as Gr(4, n < 6) having no mutable

nodes (and therefore no X -coordinates). For n > 5, there are 3(n − 5) mutable nodes in

Gr(4, n), matching the number of algebraically independent dual conformal invariants that

can be formed out of n massless particles.

The A-coordinate and X -coordinate seed clusters of the first nontrivial example,

Gr(4, 6), are shown in figure 5. As discussed above, the three X -coordinates in this cluster
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furnish us with a chart that covers the space of (dual-conformally invariant) six-particle

kinematics. Moreover, we can generate new charts by mutation — every X -coordinate

cluster of Gr(4, n) provides a valid chart for n-particle kinematics. As explored in great

depth in [1], these charts are especially well suited to describing the boundaries of the pos-

itive Grassmannian Gr+(4, n), where the integrands of n-particle amplitudes can develop

physical singularities. In particular, every such boundary occurs at the vanishing locus of

an A-coordinate of Gr(4, n), which implies it also occurs at the vanishing locus of some set

of X -coordinates.

This fact is especially propitious for loop-level amplitudes (and integrals) that only

have branch points on the boundaries of the positive Grassmannian. In such cases, the

symbol alphabet encoding the polylogarithmic part of these amplitudes is naturally given

in terms of cluster coordinates. We defer discussion of the coaction and symbol alphabets

to section 3.1, but here note that it is multiplicative independence, rather than algebraic

independence, that is relevant in the context of symbol alphabets. Thus, while it is not

possible to realize all boundaries of the positive Grassmannian as the vanishing loci of

either type of cluster coordinate in a single chart [1], all boundaries are exposed as the

vanishing of some symbol letter if cluster A-coordinates or X -coordinates on Gr(4, n) are

adopted as a symbol alphabet.

While amplitudes in planar N = 4 are not generically expected to have this property

(and indeed, certain Feynman integrals have been computed that do not [21, 22]), an

infinite class of amplitudes do — namely, all two-loop MHV amplitudes [9], and all six-

and seven-particle amplitudes computed to date [6–8, 15–17]. The significance of this

property is illustrated by the two-loop, six-particle remainder function, which encodes the

MHV amplitude. Namely, this function can be put in the form

R
(2)
6 = −

∑
cyclic

[
Li4

(
−〈1234〉〈3456〉
〈2345〉〈1346〉

)
− 1

4
Li4

(
−〈1234〉〈1456〉
〈1246〉〈1345〉

)]
+ . . . , (2.31)

where the cyclic sum is over all rotations of the four-bracket indices i→ i+j for 0 ≤ j < 6,

and the dots indicate this equality only holds up to products of lower-weight polylogarithms.

This projection is well-defined and will be introduced, along with the n-particle remainder

function, in section 3. Here we just emphasize the simplicity of this expression, which

takes the form of classical polylogarithms with negative X -coordinate arguments. (In

particular, the argument of the first polylogarithm is the top node in figure 5b, while

the argument of the second polylogarithm appears in the cluster generated by mutating

on that node.) Moreover, the part of the expression we have dropped in (2.31) can also

be expressed entirely in terms of products of classical polylogarithms with negative X -

coordinate arguments [10].

This surprising property — of being expressible as polylogarithms with negative X -

coordinate arguments — is enjoyed by the two-loop MHV amplitude at all n. However, for

n > 6 these amplitudes have a nonclassical component, so generalized polylogarithms with

negative X -coordinate arguments also appear [2]. Although this component represents the

mathematically most complicated part of the remainder function, it was shown in [12] that

it is decomposable into building blocks related to the A2 and A3 subalgebras of Gr(4, n).
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(b)

Figure 6. The A-coordinate seed quiver (a) and X -coordinate seed quiver (b) for Gr(4, 7).

This allows the all-n symbol computed in [9] to be systematically upgraded to a function, as

was done for seven particles in [10]. In the later sections of this paper, we demonstrate the

existence of further subalgebra structure in the nonclassical part of the seven-particle MHV

amplitude (leaving higher-point kinematics to future work [37]). The A-coordinate and X -

coordinate seeds for the cluster algebra relevant to seven-particle scattering, Gr(4, 7), are

presented in figure 6.

Before turning to the remaining aspects of cluster algebras that we wish to develop, we

note that plabic graphs — which are dual to the clusters we’ve been describing — encode

a great deal more about planar N = 4 than we have had reason to touch on. We refer

interested readers to the exposition of this rich structure given in [1].

2.5 Finite cluster algebras

The procedure of writing down an oriented quiver, dressing it with coordinates, and it-

eratively mutating on all non-frozen nodes using either the A-coordinate or X -coordinate

mutation rule will always produce a cluster algebra. However, generic quivers give rise to

exceedingly complicated cluster algebras — in fact, for a wide class of seeds, mutation will

generate an infinite numbers of clusters. For the remainder of this paper we will mostly

restrict our attention to finite cluster algebras, leaving the consideration of infinite algebras

to future work.

Fortunately, all finite cluster algebras were classified in [51]. In particular, it was shown

that a cluster algebra is of finite type if and only if the mutable part of at least one of its

clusters takes the form of an oriented, simply-laced Dynkin diagram: An, Dn, or En≤8. As

we will primarily be interested in subalgebras of the cluster algebra on Gr(4, 7), we here

focus on the cases where n < 6 (and on the case of E6 ' Gr(4, 7) itself).

As mentioned above, cluster algebras of type An can be generated by the seed

x1 → x2 → . . .→ xn , (2.32)
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which corresponds to the cluster algebra on Gr(2, n+3). Each of the clusters in these al-

gebras can be though as triangulating an (n+ 3)-gon, where the A-coordinates correspond

to chords and the X -coordinates to quadrilateral faces. This makes the counting easy:

the number of clusters for An is given by the Catalan number C(n + 1), the number of

distinct (mutable) A-coordinates is
(
n+3

2

)
− n, and the number of distinct X -coordinates

is 2
(
n+3

4

)
. Any smaller polygon embedded into the (n+ 3)-gon gives rise to a subalgebra;

for example, there are 56 =
(

8
5

)
pentagonal embeddings in an octagon, so there are 56 A2

subalgebras in A5.

Of particular interest is the cluster algebra generated by A3 ' Gr(4, 6), which describes

six-particle scattering. By comparison with figure 5b, we see that the X -coordinates in the

quiver (2.32) act as coordinates on the space of momentum twistors, where they correspond

to the functions

x1 =
〈1234〉〈3456〉
〈2345〉〈1346〉

, x2 =
〈2346〉〈1456〉
〈3456〉〈1246〉

, x3 =
〈1346〉〈1256〉
〈1456〉〈1236〉

. (2.33)

More generally, any X -coordinate in Gr(4, 6) can be expressed in terms of the variables x1,

x2, and x3 by evaluating its four-brackets on the momentum twistor matrix

ZA3 =


1 0 0 0 −1 −1

1 1 0 0 x1 0

0 1 1 0 −x1x2 0

0 0 1 1 x1x2x3 0

 . (2.34)

The chief advantage of working directly in terms of cluster X -coordinates such as x1, x2, and

x3 is that they trivialize all Plücker relations. Furthermore, cluster coordinates rationalize

many of the square roots that appear when amplitudes and integrals are expressed in

terms of dual-conformally-invariant cross ratios [21]. For instance, in this chart the dual

conformal cross ratios commonly used to express the six-particle amplitude evaluate to

u =
〈6123〉〈3456〉
〈6134〉〈2356〉

=
1

1 + x2 + x2x3
, (2.35)

v =
〈1234〉〈4561〉
〈1245〉〈3461〉

=
x1x2

1 + x1 + x1x2
, (2.36)

w =
〈2345〉〈5612〉
〈2356〉〈4512〉

=
x2x3

(1 + x1 + x1x2)(1 + x2 + x2x3)
, (2.37)

which rationalizes the well-known square root that appears in these cross ratios

√
(1− u− v − w)2 − 4uvw =

x2 (1− x1x3)

(1 + x1 + x1x2) (1 + x2 + x2x3)
. (2.38)

Note that the cluster coordinate expressions (2.35) are rotated compared to those given else-

where in the literature (for example, [2, 52]) even though both arise from an X -coordinate

seed of the form (2.32); this reflects a differing convention for the seed of Gr(k, n).
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The first nondegenerate Dynkin diagram of type Dn is D4, corresponding to the seed

quiver

x1 x2

x3

x4

//

::

$$
. (2.39)

(Note here that the variables x1, x2, and x3 are not the same as those defined by (2.33);

we apologize for using the variables xi ubiquitously, but hope their meaning is always clear

from context.) This seed turns out to generate the same cluster algebra as Gr(3, 6); in

particular, starting from the seed in (2.22) and mutating on the nodes initially labeled by

f13 and then f23, one arrives at the X -coordinate quiver (2.39), where

x1 =
〈123〉〈345〉
〈234〉〈135〉

, x2 =
〈156〉〈235〉
〈125〉〈356〉

, x3 =
〈135〉〈456〉
〈156〉〈345〉

, x4 =
〈126〉〈135〉
〈123〉〈156〉

. (2.40)

The corresponding momentum twistor matrix is given by

ZD4 =

1 0 0 x2 x2 1 + x2 + x2x4

0 1 0 −(1 + x1) −1 −(1 + x4)

0 0 1 1 + x1 + x1x2 + x1x2x3 1 x4

 . (2.41)

Conversely, the cluster algebra generated by D5,

x1 x2 x3

x4

x5

// //

::

$$
, (2.42)

is not equivalent to the cluster algebra on (the top cell of) any Grassmannian. However, it

appears as a subalgebra of any Gr(k, n) with rank greater than five. The D4 cluster algebra

consists of 50 clusters, 16 A-coordinates, and 104 X -coordinates, while D5 has 182 clusters,

25 A-coordinates, and 260 X -coordinates. More generally, there are n
3 (n− 1)(n2 + 4n− 6)

X -coordinates in cluster algebras of type Dn [53].

Finally, the cluster algebra E6 is generated by the quiver

x1 x2 x3

x4

x5 x6// //

OO

oo oo
. (2.43)

This cluster algebra is equivalent to Gr(4, 7), as can be seen by mutating the seed (2.22)

on nodes f12, f13, f23, f12, f22, and then f32. By comparison with (2.43), we then have

x1 =
〈1234〉〈1267〉
〈1237〉〈1246〉

, x2 = − 〈1247〉〈3456〉
〈4(12)(35)(67)〉

,

x3 =
〈1246〉〈5(12)(34)(67)〉
〈1245〉〈1267〉〈3456〉

, x4 = −〈4(12)(35)(67)〉
〈1234〉〈4567〉

, (2.44)

x5 = − 〈1267〉〈1345〉〈4567〉
〈1567〉〈4(12)(35)(67)〉

, x6 =
〈1567〉〈2345〉
〈5(12)(34)(67)〉

,
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where we have made use of the notation

〈a(bc)(de)(fg)〉 ≡ 〈abde〉〈acfg〉 − 〈abfg〉〈acde〉. (2.45)

Any X -coordinate on Gr(4, 7) can be expressed in terms of these X -coordinates using the

momentum twistor matrix

ZE6 =


x3x5 x3x5x6 x1 0 1 0 −1

1 + x5 1 + x6 + x5x6 −x1 0 −1 + x4 x4 x2x4

0 0 x1 0 1 1 x2

0 0 −1 1 1 + x2 + x2x3 1 0

 . (2.46)

The cluster polytope of Gr(4, 7) ' E6 was displayed in figure 4; it contains 833 clusters,

42 A-coordinates, and 770 X -coordinates. The subalgebras of E6, as well as those of its

subalgebras, are tabulated in appendix A.

2.6 Cluster automorphisms

Cluster algebras come equipped with an automorphism group that maps the set of cluster

coordinates (but not necessarily the set of clusters) back to itself. We introduce here

only what we need to elucidate the automorphisms of the cluster algebras introduced in

the last section, and refer the interested reader to [54] for a more thorough mathematical

introduction. Note that we describe automorphisms in terms of X -coordinates, whereas [54]

works in the A-coordinate language.

The simplest example of a cluster automorphism is what we call a direct automorphism.

Let A be a cluster algebra equipped with a mutation rule µ(xi,X) that mutates the cluster

X on node xi. Then, we can define:

Direct automorphism. The map f :A→A is a direct automorphism of A if

(i) for every cluster X of A, f(X) is also a cluster of A,

(ii) f respects mutations, i.e. f(µ(xi,X)) = µ(f(xi), f(X)).

An example of a direct automorphism on A2 is given by

σA2 : Xi → Xi+1, (2.47)

where we are using the coordinates introduced in (2.15). This automorphism cycles the

five clusters 1/Xi → Xi+1 amongst themselves. The action of this automorphism can also

be recast as

σA2 : x1 →
1

x2
, x2 → x1(1 + x2), (2.48)

using the X -coordinates x1 and x2 that appear in (2.32). This is of course equivalent to

the cyclic symmetry of the pentagon.

Cluster algebras are also endowed with what we call indirect automorphisms, which

respect mutations but do not map the set of clusters back to itself. Instead, indirect

automorphisms map the clusters in A to clusters in A′, where A′ is constructed from A by

multiplicatively inverting all cluster X -coordinates and reversing the direction of all quiver

arrows. Then we have:
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Indirect automorphism. The map f :A→A′ is an indirect automorphism if

(i) for every cluster X of A, f(X) is a cluster of A′

(ii) f respects mutations, i.e. f(µ(xi,X)) = µ(f(xi), f(X)).

A2 is also equipped with an indirect automorphism generated by

τA2 : Xi → X6−i, (2.49)

where indices are understood to be mod 5. This can be recast in term of x1 and x2 as

τA2 : x1 →
x1x2

1 + x1
, x2 →

1 + x1 + x1x2

x2
. (2.50)

To see that this is an indirect automorphism, consider τA2(1/X1 → X2) = 1/X5 → X4.

Inverting the cluster coordinates on the right hand side and reversing the arrow, we get

back to X5 ← 1/X4, which was one of the original clusters of A2. The operation generated

by τA2 can be interpreted as the dihedral flip of the pentagon.

It is useful to think of indirect automorphisms as generating a “mirror” or “flipped”

version of the original cluster algebra, where the total collection of X -coordinates is the

same, but their Poisson bracket has flipped sign. The existence of this flip then can be

seen as resulting from the arbitrary choice of overall sign for the exchange matrix bij ;

picking the other sign would have generated the same cluster-algebraic structure, but with

different labels for the nodes. Indirect automorphisms capture the superficiality of this

notation change.

The automorphisms σA2 and τA2 generate the complete automorphism group for A2,

namely the dihedral group D5 (we denote the dihedral group in this font throughout so as

not to confuse with the Dynkin diagram Dn). More generally, cluster algebras of type An
have as their automorphism group the dihedral group Dn+3, which is generated by a cyclic

generator

σAn : xk<n →
xk+1(1 + x1,...,k−1)

1 + x1,...,k+1
, xn →

1 + x1,...,n−1∏n
i=1 xi

, (2.51)

of length n+ 3 and a flip generator

τAn : x1 →
1

xn
, x2 →

1

xn−1
, . . . , xn →

1

x1
(2.52)

of length 2. (Note that these definitions don’t exactly match (2.48) or (2.50) when n is 2,

but produce a pair of equally valid generators.) In σAn we have introduced the notation

xi1,...,ik ≡
k∑
a=1

a∏
b=1

xib = xi1 + xi1xi2 + . . .+ xi1 · · ·xik , (2.53)

which we will also use below. The operator σAn generates a direct automorphism while

τAn generates an indirect automorphism.
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The cluster algebra D4 has automorphism group D4×S3. Both D4 and S3 come with

a cyclic (direct automorphism) generator,

σ
(D4)
D4

: x1 →
x2

1 + x1,2
, x2 →

(1 + x1)x1x2x3x4

(1 + x1,2,3) (1 + x1,2,4)
,

x3 →
1 + x1,2

x1x2x3
, x4 →

1 + x1,2

x1x2x4
, (2.54)

σ
(S3)
D4

: x1 →
1

x3
, x2 →

x1x2 (1 + x3)

1 + x1
, x3 → x4, x4 →

1

x1
,

where σ
(D4)
D4

has length four, and σ
(S3)
D4

has length three. Then there are two flip generators

τ
(D4)
D4

: x2 →
1 + x1

x1x2 (1 + x3) (1 + x4)
,

τ
(S3)
D4

: x3 → x4, x4 → x3,

(2.55)

where τ
(D4)
D4

generates an indirect automorphism, and τ
(S3)
D4

generates a direct

automorphism.

The cluster algebras on Dn>4 with defining quiver

x1 x2 . . . xn−2

xn−1

xn

// // //
::

$$
, (2.56)

have the automorphism group Dn×Z2, with generators σDn (length n, direct), τDn (length

2, indirect), and Z2,Dn (length 2, direct). In the case of D5, these generators can be chosen

to be

σD5 : x1→
x2

1+x1,2
, x2→

(1+x1)x3

1+x1,2,3
, x3→

x1x2x3x4x5(1+x1,2)

(1+x1,2,3,4)(1+x1,2,3,5)
,

x4→
1+x1,2,3

x1x2x3x4
, x5→

1+x1,2,3

x1x2x3x5
,

τD5 : x2→
1+x1

x1x2(1+x3x5+x3,4,5)
, x3→

x3x4x5

(1+x3,4)(1+x3,5)
, (2.57)

x4→
1+x3x5+x3,4,5

x4
, x5→

1+x3x5+x3,4,5

x5
,

Z2,Dn : x4→x5, x5→x4.

More generally, for Dn cluster algebras, the action of Z2 is always realized by the exchange

xn−1 ↔ xn.

Finally, the automorphism group of E6 ' Gr(4, 7) is the dihedral group D14. This

group has generators σE6 (length 7, direct), τE6 (length 2, indirect), and Z2,E6 (length 2,
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direct). In the coordinates of the quiver (2.43), these can be chosen to be

σE6 : x1 →
1

x6(1 + x5,3,4)
, x2 →

1 + x6,5,3,4

x5(1 + x3,4)
, x3 →

(1 + x2,3,4)(1 + x5,3,4)

x3(1 + x4)
,

x4 →
1 + x3,4

x4
, x5 →

1 + x1,2,3,4

x2(1 + x3,4)
, x6 →

1

x1(1 + x2,3,4)
,

τE6 : x1 →
x5

1 + x6,5
, x2 → (1 + x5)x6, x3 →

(1 + x1,2)(1 + x6,5)

x1x2x3x5x6(1 + x4)
, (2.58)

x5 → x1(1 + x2), x6 →
x2

1 + x1,2
,

Z2,E6 : x1 → x6, x2 → x5, x5 → x2, x6 → x1.

In the language of Gr(4, 7), these generators correspond to cycling momentum twistor

indices Zi → Zi+1, flipping momentum twistor indices Zi → Z8−i, and parity conjugation.

The polylogarithmic part of the n-particle MHV amplitude is invariant under parity

transformations, as well as the dihedral group that represents Bose symmetry. These sym-

metries directly translate to automorphisms of the cluster algebra on Gr(4, n). However, it

turns out the nonclassical part of these amplitudes can also be decomposed into building

blocks that respect the automorphism group of certain subalgebras of Gr(4, n). Making

this statement precise will be the focus of much of the remainder of this paper.

3 Cluster polylogarithms and MHV amplitudes

The BDS ansatz captures the infrared structure of planar N = 4 sYM to all orders in

the coupling [42]. In four- and five-particle kinematics it also furnishes the complete finite

part of the amplitude, while for six or more particles it must be corrected by a finite dual-

conformally invariant function [43–45]. In the case of the MHV amplitude, this correction

is often computed in the form of the n-particle remainder function Rn, defined by

AMHV
n = ABDS

n × exp(Rn) , (3.1)

where ABDS
n is the BDS ansatz for n particles [42]. Like the amplitude, the remainder

function can be expanded in the coupling

Rn = g4R(2)
n + g6R(3)

n + g8R(4)
n + . . . , (3.2)

where g2 =
g2YMNc

16π2 . In this expansion we have used the fact that R
(1)
n = 0, since the BDS

ansatz encodes the complete one loop MHV amplitude at all n.

The remaining L-loop contributions to the remainder function are expected to be

expressible in terms of generalized polylogarithms [55–57] of uniform transcendental weight

2L. This space is spanned by (products of) the functions

G(a1, . . . , ak; z) ≡
∫ z

0

dt

t− a1
G(a2, . . . , ak; t), G(0, . . . , 0︸ ︷︷ ︸

k

; z) ≡ logk z

k!
, (3.3)
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where G(; z) ≡ 1, and the transcendental weight of each function corresponds to its number

of indices k. In particular, the remainder function is expected to be a pure function of this

type, meaning that its kinematic dependence appears in the indices and arguments ai and

z, but not in the rational prefactors multiplying these functions. This is known to be true

at two loops, due to an impressive all-n computation that leveraged the superconformal

symmetry of this theory [9], as well as through six loops in six-particle kinematics [4, 5, 7, 58]

and through four loops in seven-particle kinematics [6, 8].

In addition to being generalized polylogarithms, loop-level contributions to the re-

mainder function exhibit a great deal of cluster-algebraic structure. In particular, they

are members of the space of ‘cluster polylogarithms’ studied in [12], indicating that their

symbol is naturally expressible in terms of cluster A-coordinates, while their Lie cobracket

is naturally expressible in terms of cluster X -coordinates (in a way that will be made pre-

cise below). Their cobracket, moreover, has been shown to be decomposable into simple

functions associated with their A2 and A3 subalgebras [12]. As will be shown in the next

section, these functions (the ‘A2 function’ and the ‘A3 function’) are invariant under the

automorphism group of the algebras on which they are defined, up to an overall sign. This

encodes the fact that these functions are well-defined under coordinate relabelings (or, are

well-defined functions of oriented graphs). We correspondingly propose that the space of

cluster polylogarithms be refined to include only functions that respect the automorphism

group of the cluster algebra on which they are defined. In addition to this subalgebra

structure, the symbols of these amplitudes have been found to satisfy a ‘cluster adjacency’

principle [14], and their cobracket takes a similarly restricted form [10]. The rest of this

section is devoted to making these properties precise, for which purpose we first describe

the motivic structure of polylogarithms.

3.1 The symbol and cobracket

The space of generalized polylogarithms defined by (3.3) is colossally overcomplete. This

is because ai and z are allowed to be arbitrarily complicated algebraic functions, and

because these polylogarithms satisfy a shuffle and stuffle algebra. The shuffle algebra

represents the fact that unordered integrations can be triangulated into a sum over iterated

integrals [59, 60]. In general, this means that when two polylogarithms share an argument

z, their product can be re-expressed as the sum of functions

G(a1, . . . , ak1 ; z) G(ak1+1, . . . , ak1+k2 ; z) =
∑

σ∈Σ(k1,k2)

G(aσ(1), . . . , aσ(k1+k2); z), (3.4)

where Σ(k1, k2) denotes the set of all shuffles between the sets of integers {1, . . . , k1} and

{k1 + 1, . . . , k1 + k2} (that is, all ways of interleaving these two sets such that the ordering

of the elements within each of the original sets is maintained). The stuffle algebra naturally

arises when generalized polylogarithms are re-expressed as infinite sums,

Lin1,...,nd
(z1, . . . , zd) ≡

∑
0<m1<···<md

zm1
1 · · · zmd

d

mn1
1 · · ·m

nd
d

(3.5)

= (−1)dG

0, . . . , 0︸ ︷︷ ︸
nd−1

,
1

zd
, . . . , 0, . . . , 0︸ ︷︷ ︸

n1−1

,
1

z1 · · · zd
; 1
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where d is called the depth of the polylogarithm. Stuffle identities represent the freedom

to split up unordered summation indices (arising from products of polylogarithms) into

nested sums where these indices are ordered, as in (3.5).

This overcompleteness gives rise to a rich space of identities. This can already be seen

at the level of classical polylogarithms, which correspond to the instances of (3.5) with

depth one,

Lik(z) = −G(0, . . . , 0︸ ︷︷ ︸
k−1

, 1; z). (3.6)

For instance, classical polylogarithms satisfy Abel’s identity, which itself can be expressed

in the language of the A2 cluster algebra. Using the definition of the X -coordinates Xi
given in eq. (2.16), we have

5∑
i=1

Li2(−Xi) + logXi logXi+1 = −π
2

2
. (3.7)

Additional cluster-algebraic identities, including an identity involving Li3 evaluated on the

cluster X -coordinates of D4, are discussed in [2, 61].

Fortunately, all identities between polylogarithms are (conjecturally) generated by

shuffle and stuffle relations [62, 63]. These relations are trivialized (up to logarithmic

identities) by the symbol map, which can be defined in terms of total derivatives. For

instance, taking the total derivative of (3.3), we have

dG(a1, . . . , ak; z) =

k∑
i=1

G(a1, . . . , âi, . . . , ak; z) d log

(
ak−i+1 − ak−i
ak−i+1 − ak−i+2

)
, (3.8)

where a0 ≡ z and ak+1 ≡ 0, and the notation âi indicates this index should be omitted [64].

The symbol map is then defined recursively by [65]

S
(
G(a1, . . . , ak; z)

)
≡

k∑
i=1

S
(
G(a1, . . . , âi, . . . , ak; z)

)
⊗
(

ak−i+1 − ak−i
ak−i+1 − ak−i+2

)
. (3.9)

The entries of the resulting k-fold tensor product are referred to as symbol letters. These

symbol letters inherit the distributive properties of (arguments of) logarithms, and can

therefore be expanded into a multiplicatively independent basis of symbol letters (the

‘symbol alphabet’). Complicated polylogarithmic identities are thereby reduced to identi-

ties between logarithms, at the cost of losing information about the boundary of integra-

tion in (3.3).

The symbol also captures the analytic structure of polylogarithms, insofar as it encodes

their (iterated) discontinuity structure. Namely, for generic indices ai and argument z,

these functions have nonzero monodromy only where the letters in the first entry of their

symbol vanish or become infinite. These monodromies can themselves have branch cuts

that the original function did not have, when new symbol letters appear in the second entry

of the symbol (and similarly for iterated monodromies, when new symbol letters appear

at higher weights). For special values of ai and z, some of this information is lost due to
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the fact that higher-weight transcendental constants (such as Riemann ζ values) are in the

kernel of the symbol [57]. However, this information is retained by the coaction [66, 67],

and can be recovered by specifying an integration constant at each weight. We defer further

consideration of these transcendental constants to a follow-up paper [37].

In addition to the symbol, polylogarithms come equipped with a Lie cobracket struc-

ture [2]. The cobracket δ can be calculated using the symbol projection operator

ρ(s1 ⊗ · · · ⊗ sk) =
k − 1

k

(
ρ(s1 ⊗ · · · ⊗ sk−1)⊗ sk − ρ(s2 ⊗ · · · ⊗ sk)⊗ s1

)
, (3.10)

where ρ(s1) ≡ s1. This projects onto the component of a symbol that cannot be written

as a product of lower-weight polylogarithms (for instance, via the shuffle relations (3.4)).

The action of ρ can be lifted to a projection on functions, up to terms proportional to

transcendental constants; since we will not be concerned with these terms in what follows,

we will abuse notation by applying ρ to functions directly. The cobracket δ of a weight k

polylogarithm f can then be calculated as

δ(f) ≡
k−1∑
i=1

(ρi ∧ ρk−i)ρ(f). (3.11)

This notation indicates that the projection operator ρ is first applied to f , after which

each term in the resulting sum is partitioned into a wedge product of weight i and weight

k− i functions (either by splitting up the symbol into its first i and last k− i entries, or by

taking the ‘i, k − i component’ of the coproduct); the projection operator is then applied

to the entries in this wedge product separately. In general, the wedge product in (3.11)

involves spaces of different weight. Without loss of generality, we can put the cobracket of

any function into a form where the first factor of the wedge product has weight equal to or

higher than that of the second factor (exchanging the order of factors when needed, at the

cost of a minus sign). We denote by δi,j(f) the component of the cobracket of f that involves

a wedge product of weight i and j functions, in that order — but we emphasize that this

includes contributions from all terms in (3.11) that involve these weights in either order.

In the context of two-loop amplitudes, the salient property of the cobracket is that

it isolates the component of weight four polylogarithms that cannot be written in terms

of classical polylogarithms. Under the action of ρ, classical polylogarithms are mapped

to elements of the Bloch group Bk [68, 69], namely the algebra of polylogarithms modulo

identities between classical polylogarithms. Following [2], we denote these elements by

{z}k ≡ ρ(−Lik(−z)) ∈ Bk, k > 1, (3.12)

{z}1 ≡ ρ(log(z)) ∈ B1. (3.13)

For instance, Abel’s identity, eq. (3.7), can be expressed (and easily checked) when written

in terms of Bloch group elements:

5∑
i=1

{Xi}2 = 0. (3.14)
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In this language, the action of the cobracket on classical polylogarithms is given by

δ
(
Lik(−z)

)
= −{z}k−1 ∧ {z}1, k > 2, (3.15)

δ
(
Li2(−z)

)
= −{1 + z}1 ∧ {z}1. (3.16)

Note that, for the first time at weight four, there exists a component of the cobracket

that is not mapped to by classical polylogarithms — namely, δ2,2(Li4(−z)) = 0. This is

not true of weight four polylogarithms in general, and in particular δ2,2

(
R

(2)
n

)
is nonzero

for n ≥ 7. However, it has been shown that any weight four function that is annihilated

by δ2,2 can be written in terms of classical polylogarithms (with potentially complicated

arguments) [61, 70–73]. The converse is worth stating as well: any function with non-zero

δ2,2 must involve a nonclassical polylogarithm of weight 4.

Lastly, it is often quite useful to employ the fact that the trivial cohomology of δ gives

us an integrability condition,

δ2
(
f
)

= 0, (3.17)

for any polylogarithm f . This condition implies an intricate relationship between the

arguments of the Bloch group elements appearing in δ(f). For example, at weight 4 the

relation (3.17) translates to

δ
(
δ2,2

(
f
))

+ δ
(
δ3,1

(
f
))

= 0, (3.18)

where

δ
(
{x}3 ∧ {y}1

)
= {x}2 ∧ {x}1 ∧ {y}1 (3.19)

δ
(
{x}2 ∧ {y}2

)
= {y}2 ∧ {1 + x}1 ∧ {x}1 (3.20)

− {x}2 ∧ {1 + y}1 ∧ {y}1.

So, while the δ2,2 component alone captures the nonclassical contribution to a function, this

nonclassical contribution is linked to the classical contribution through its relation with

the δ3,1 component. Cobracket integrability is discussed in much greater detail in [12].

The symbol and cobracket naturally stratify the study of two-loop amplitudes and in-

tegrals that can be expressed as polylogarithms. The operator δ2,2 isolates the nonclassical

component of these functions, while the symbol captures their analytic structure up to

terms proportional to transcendental constants. In the case of MHV amplitudes in planar

N = 4 sYM theory, both objects turn out to distill intriguing cluster-algebraic structure

that would otherwise be hard to see at the level of full functions. It is to this structure

that we now turn.

3.2 Cluster-algebraic structure at two loops

As outlined in the introduction, the two-loop MHV amplitudes of this theory exhibit dif-

ferent forms of cluster-algebraic structure at the level of their cobracket, their symbol, and

as full functions [2, 10, 12, 13]. The first facet of this structure concerns the building blocks

that appear at each level, which are found to lie within restricted classes:
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• The cobracket of R
(2)
n can be written in terms of elements of the Bloch group taking

the form {xi}k, where xi is an X -coordinate on Gr(4, n)

• The symbol of R
(2)
n can be expressed in terms of symbol letters drawn from the set

of A-coordinates on Gr(4, n)

• The function R
(2)
n can expressed entirely in terms of (products of) polylogarithms

taking the form Lin1,...,nd
(−xi, . . . ,−xj), where each xp is again an X -coordinate on

Gr(4, n)

The physical meaning of the symbol alphabet restriction is clear, if unilluminating — the

kinematic configurations in which these amplitudes are singular (due to internal propaga-

tors going on-shell in the Feynman diagram expansion) coincide with the vanishing loci

of certain cluster A-coordinates. Even so, it is not clear how (or if) this restriction fol-

lows from physical principles. In this respect, the positive Grassmannian formulation of

this theory is suggestive, insofar as the integrands of these amplitudes are seen to develop

physical singularities where certain A-coordinates vanish or become infinite [1]. However,

this does not preclude the emergence of new singularities during integration that are not

rationally expressible in terms of A-coordinates, as has already been explicitly observed in

Feynman integrals contributing to non-MHV amplitudes in this theory [21, 22, 24]. The

physical meaning of the restricted functional form and cobracket structure exhibited by

these amplitudes remains even more obscure.

In the polylogarithmic amplitudes where cluster coordinates do prove sufficient as a

symbol alphabet (in particular, in all two-loop MHV amplitudes), cluster algebras also seem

to play a role in how these building blocks are assembled. In particular, it was recently

observed that — when these amplitudes are normalized appropriately — the only cluster A-

coordinates that appear in adjacent entries of their symbol are those that appear together

in at least one cluster of Gr(4, n) [14]. This ‘cluster adjacency’ principle is not enjoyed

by the remainder function (3.1), but by BDS-like normalized amplitudes En [7, 8, 74, 75].

These are defined by

AMHV
n = ABDS−like

n × En, (3.21)

where ABDS−like
n is related to ABDS

n by the cusp anomalous dimension [76]

Γcusp = 4g2 − 8ζ2g
4 +O(g6) (3.22)

and a simple weight two polylogarithm Yn via

ABDS−like
n = ABDS

n × exp

(
Γcusp

4
Yn

)
. (3.23)

The function Yn corresponds to the part of the one-loop MHV amplitude that depends on

three- and higher-particle Mandelstam invariants, where these invariants have been assem-

bled into dual-conformally-invariant cross ratios (with the help of two-particle invariants).

The BDS-like ansatz that remains only depends on two-particle invariants, yet accounts

for the full infrared structure of these amplitudes.
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The motivation for switching to the BDS-like normalization is precisely this restricted

kinematic dependence. Since the BDS-like ansatz depends only on two-particle invariants,

the functions En directly inherit the Steinmann relations between three- and higher-particle

invariants that are obeyed by the full amplitude [7, 8, 77–79]. These relations tell us that

Discsj,...,j+p+q

[
Discsi,...,i+p

(
En
)]

= 0,

Discsi,...,i+p

[
Discsj,...,j+p+q

(
En
)]

= 0,

}
0 < j−i ≤ p or q < i−j ≤ p+q, (3.24)

for positive p and nonnegative q. Formulated in terms of symbol entries, this implies that

the cluster A-coordinates 〈j − 1, j, j + p + q − 1, j + p + q〉 and 〈i − 1, i, i + p − 1, i + p〉
never appear next to each other in the first two entries of the symbol (when the conditions

in (3.24) are met). In fact, it is believed that these constraints can be applied at all depths

in the symbol, as these letters are never seen to appear next to each other [7, 8, 23, 58].

These generalized constraints have been termed the extended Steinmann relations, as they

amount to applying the relations (3.24) to all discontinuities of the amplitude in addition

to the amplitude itself.

The fact that the functions En also obey the cluster adjacency principle in all known

cases is far more surprising. The constraints that follow from this principle take a form

similar to the extended Steinmann relations (insofar as they restrict which symbol letters

can appear in adjacent entries), and in fact turn out to be equivalent in six-particle kine-

matics when applied to functions with physical branch cuts. It is therefore tempting to

believe cluster adjacency follows from some set of physical principles that includes the ex-

tended Steinmann relations. However, it is not yet known whether these two conditions are

equivalent at all n, even in polylogarithmic cases where algebraic roots are absent. (Once

functions more complicated than polylogarithms (such as elliptic polylogarithms [80, 81])

start to appear, it is not even known whether anything resembling cluster adjacency can

be formulated.)

Seeming to complicate this question of equivalence is the fact that the BDS-like

ansatz (3.23) only exists when n is not a multiple of four. This is because no function

satisfying the above description of Yn exists for these particle multiplicities [8, 82]. (Such

a function not only exists for all other n, but is uniquely picked out by this description.)

Stated another way, when n is a multiple of four, any normalization that absorbs the

infrared-divergent part of the amplitude either depends on some set of three- or higher-

particle Mandelstam invariants, or spoils the dual conformal invariance of the resulting

normalized amplitude. However, this shows this complication is superficial — for the pur-

pose of understanding the relationship between the extended Steinmann relations and the

cluster adjacency principle, we need merely choose the latter horn of this dilemma, and

give up dual conformal invariance.

This issue first arises in eight-particle kinematics. There it can be seen — by direct

computation — that both the extended Steinmann and cluster adjacency conditions are

obeyed when the amplitude is normalized by a ‘generalized BDS-like ansatz’ whose kine-

matic dependence is restricted to two-particle Mandelstam invariants [37]. (It is always

possible to formulate such a normalization, as only two-particle Mandelstams appear in
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the infrared-divergent terms of the one-loop amplitude [83].) This provides further evi-

dence that the cluster adjacency principle and the extended Steinmann relations (when

combined with physical branch cuts) are equivalent, in the cases where cluster adjacency

can be unambiguously applied.

While cluster adjacency was first observed in A-coordinates, it can also be formulated

in terms of X -coordinates. Unlike A-coordinates, which are multiplicatively independent,

X -coordinates satisfy numerous multiplicative identities. Thus, there will exist many rep-

resentations of the same symbol in terms of X -coordinates, whereas its representation in

terms of A-coordinates is unique. In general, only a subset of these X -coordinate rep-

resentations will satisfy cluster adjacency (even if the A-coordinate representation does).

Moreover, while X -coordinate adjacency trivially implies A-coordinate adjacency by the

relation (2.10), the converse can not be true in general. This is because A-coordinates

can express a larger class of functions than X -coordinates, insofar as the latter necessarily

respect dual conformal symmetry while the former do not. However, it is easy to check

in simple symbol alphabets, for example Gr(4, 6), that dual conformal invariance and A-

coordinate adjacency together imply the existence of at least one X -coordinate adjacent

representation. We conjecture that this remains true for all dual-conformally-invariant

symbols constructed on Gr(k, n), for general k and n.

The cobracket δ
(
R

(2)
n

)
also satisfies its own form of cluster adjacency [13]. Namely,

δ
(
R

(2)
n

)
can be expressed as a linear combination of terms {xi}2 ∧ {xj}2 and {xk}3 ∧ {xl}1

where xi and xj appear together in a cluster of Gr(4, n), and similarly for xk and xl. For

example, δ2,2

(
R

(2)
n

)
can be expressed as a sum of terms of the form {vijk}2∧{z±pqr}2, where

(using the notation defined in (2.45))

vijk = − 〈i+1(i, i+2)(j, j+1)(k, k+1)〉
〈i, i+1, k, k+1〉〈i+1, i+2, j, j+1〉

, (3.25)

and

z+
ijk =

〈i, j−1, j, j+1〉〈i+1, k−1, k, k+1〉 − 〈i+1, j−1, j, j+1〉〈i, k−1, k, k+1〉
〈i, k−1, k, k+1〉〈i+1, j−1, j, j+1〉

,

z−ijk =
〈i, i+1, j, k〉〈i−1, i, i+1, i+2〉
〈i−1, i, i+1, k〉〈i, i+1, i+2, j〉

. (3.26)

As long as i < j < k (considered mod n), the quantities vijk, z
+
ijk, and z−ijk each constitute

X -coordinates, where z+
ijk and z−ijk are also parity conjugate to each other. The coordinates

vijk were originally motivated by consideration of the location of physical branch cuts,

while the z±ijk were motivated by consideration of the final symbol entry of the remainder

function, which is constrained to take the form 〈i − 1, i, i + 1, j〉 by dual superconformal

symmetry [15]. However, for the present discussion, the pertinent point is that δ2,2

(
R

(2)
n

)
can be expressed as a sum of terms {vijk}2 ∧ {z±pqr}2 in which vijk and z±pqr also occur

together in a cluster. Importantly, this ‘cobracket-level cluster adjacency’ isn’t implied

by the cluster A-coordinate adjacency observed in [14], as can be seen in the A2 function

we will define in the next subsection — the symbol of this function satisfies cluster A-

coordinate adjacency, but the X -coordinates appearing in its δ2,2 cobracket component

cannot be chosen to satisfy cobracket-level cluster adjacency.

– 30 –



J
H
E
P
0
1
(
2
0
1
9
)
0
1
7

While this cobracket-level structure was originally observed in the remainder function,

the same characterization carries over to the BDS-like normalized amplitude. This can be

seen by combining equations (3.1), (3.21), and (3.23) to express En in terms of Rn:

En = exp

(
Rn −

Γcusp

4
Yn

)
(3.27)

= 1− Yng2 +

(
R(2)
n + 2ζ2Yn +

1

2
Y 2
n

)
g4 +O(g6).

Thus, ρ
(
E(2)
n

)
= ρ

(
R

(2)
n

)
, since these two functions differ only by products and terms in-

volving transcendental constants, and the remainder function and the BDS-like normalized

amplitude have identical cobrackets. At both the level of its cobracket and symbol, E(2)
n

can therefore be expressed in terms of the same restricted building blocks as R
(2)
n . But in

the case of E(2)
n we can now add:

• The cobracket δ
(
E(2)
n

)
can be expressed as a linear combination of terms {xi}2∧{xj}2

and {xk}3 ∧ {xl}1 where xi and xj appear together in a cluster of Gr(4, n), and

similarly for xk and xl.

• Pairs of A-coordinates only appear in adjacent entries of the symbol S
(
E(2)
n

)
when

they also appear together in at least one cluster of Gr(4, n).

As discussed above, the last statement can also be applied at n that are multiples of four by

going to a generalized BDS-like normalization in which only two-particle invariants appear

in the normalizing function.

As it turns out, there exists yet more structure in δ2,2

(
R

(2)
n

)
= δ2,2

(
E(2)
n

)
. In particular,

it was shown in [12] that this cobracket component can be decomposed into a sum over

various A2 subalgebras of Gr(4, n), by defining an A2 function that can be evaluated on each

of these subalgebras. Moreover, this A2 function can be assembled into an A3 function, in

terms of which this cobracket component can similarly be decomposed. As this subalgebra

decomposability will play a central role in what follows, we devote the next subsection to

its description.

3.3 Subalgebra structure and cluster polylogarithms

As we saw in section 2.3, cluster algebras are endowed with subalgebras that can be gener-

ated by mutating on restricted sets of nodes. This motivates looking for physically relevant

cluster polylogarithms on algebras other than Gr(4, n), when these algebras appear as sub-

algebras of the latter. Before we do so, let us return to the definition of these objects, which

we are now in a position to make precise. Following [12], we define cluster polylogarithms

(at least through weight four) to have the following properties:

Cluster polylogarithm. A generalized polylogarithm f is a cluster polylog-

arithm on a cluster algebra A if

(i) the symbol alphabet of f is composed of only A-coordinates on A,

(ii) the cobracket of f can be expressed in terms of Bloch group elements

{xi}k, where xi is an X -coordinate of A,

(iii) the function f is invariant under the automorphisms of A, up to a sign.
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Property (iii) can be thought of as the requirement that cluster polylogarithms be well-

defined functions on the cluster algebra, or more specifically of the oriented graph repre-

senting that cluster algebra. For instance, if we wish to define a function on the A2 cluster

algebra, as we shall do shortly, it should satisfy the property that fA2(1/X1 → X2) =

±fA2(1/X2 → X3), and similarly when the function is evaluated on the other automorphic

images of this cluster. The ambiguity in the overall sign, which will be discussed below,

reflects the fact that some automorphisms flip the orientation of cluster algebras while

others do not.

The first nontrivial cluster polylogarithm is found on the rank-two cluster algebra

associated with A2. Given that A2 subalgebras are generated by any pair of connected

nodes, they appear ubiquitously in Gr(4, n). A central fact about the ‘A2 function’ is

that it is uniquely determined by the cluster polylogarithm conditions, up to products of

classical polylogarithms with weight ≤ 3 (see [12] for an in-depth discussion of the A2

function). However, its analytic properties can be tuned by adding and subtracting these

products of lower-weight polylogarithms (which should only be done in a way that respects

the automorphisms of A2). We choose to define the A2 function (which can be thought of

as a ‘function on an oriented graph’) as

fA2(x1 → x2) =
∑

skew-dihedral

[
Li2,2

(
− 1

Xi−1
,− 1

Xi+1

)
− Li1,3

(
− 1

Xi−1
,− 1

Xi+1

)
(3.28)

− 6 Li3 (−Xi−1) log (Xi+1)− 1

2
log (Xi−2) log2(Xi) log (Xi+1)

∣∣∣∣
+ Li2(−Xi−1)

(
3 log(Xi−1) log(Xi+1) + log

(
Xi−2/Xi+2

)
log(Xi+2)

)]
,

where the Xi are defined in terms of x1 and x2 as in eq. (2.15), and the skew-dihedral sum

indicates subtracting the dihedral flip Xi → X6−i and summing over i from 1 to 5.

The function defined in (3.28) necessarily has the same cobracket as the A2 function

considered in [12],

δ
(
fA2

)
= −

∑
skew-dihedral

[
{Xi−1}2 ∧ {Xi+1}2 + 3{Xi}2 ∧ {Xi+1}2 (3.29)

+ 10{Xi}3 ∧ {Xi+1}1
]
,

but differs from the function considered there in some salient respects. Recalling that the

clusters of A2 all take the form 1/Xi → Xi+1, it is easy to see that the symbol

S(fA2) =
∑

skew-dihedral

[
2 Xi ⊗Xi+1 ⊗Xi ⊗Xi+1 + 2 Xi ⊗Xi+1 ⊗Xi+2 ⊗Xi+1

+ Xi+1 ⊗Xi ⊗Xi+1 ⊗Xi+2 −Xi ⊗Xi ⊗Xi+1 ⊗Xi+1 (3.30)

− 2 Xi ⊗Xi+1 ⊗Xi+1 ⊗Xi+2 −Xi ⊗Xi+1 ⊗Xi+1 ⊗Xi
]
,

satisfies cluster X -coordinate adjacency, and therefore also A-coordinate adjacency (recall

that Xi and 1/Xi can always be exchanged in the symbol at the cost of a minus sign). As

a function, fA2 is also smooth and real-valued in the positive domain x1, x2 > 0. The A2
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cluster algebra plays a crucial role in endowing fA2 with this analytic behavior, as Li2,2(x, y)

and Li1,3(x, y) have branch cuts in three locations, namely x = 1, y = 1, and xy = 1. The

first two branch cuts are trivially avoided as −1/Xi < 0 for x1, x2 > 0. However, the last

branch cut is also avoided because of the A2 exchange relation:

0 <

(
− 1

Xi−1

)(
− 1

Xi+1

)
=

1

1 + Xi
< 1. (3.31)

Note that any sum of A2 functions evaluated on the subalgebras of some larger cluster

algebra will also inherit these cluster adjacency and smoothness properties.

Remarkably, it was shown in [12] that all of the information contained in δ2,2

(
R

(2)
n

)
is

encoded in the A2 function, when this function is evaluated on some collection of the A2

subalgebras of Gr(4, n). That is,

δ2,2

(
R(2)
n

)
=

∑
(xi→xj)⊂Gr(4,n)

cij δ2,2

(
fA2(xi → xj)

)
(3.32)

for some rational coefficients cij . Moreover, the terms in this sum can themselves be

arranged into A3 subalgebras, giving rise to a natural A3 function of the form

fA3(x1 → x2 → x3) ∼
∑

(xi→xj)⊂A3

dij fA2(xi → xj), (3.33)

where the dij are some rational coefficients that we treat in full detail in the next section.

For now, we merely highlight the fact that these coefficients can be chosen in such a way

that δ2,2

(
fA3

)
contains only terms {xi}2 ⊗ {xj}2 in which xi and xj appear together in at

least one cluster of A3. That is, there exists a decomposition

δ2,2

(
R(2)
n

)
=

∑
(xi→xj→xk)⊂Gr(4,n)

cijk δ2,2

(
fA3(xi → xj → xk)

)
(3.34)

that makes the cobracket-level cluster adjacency enjoyed by these amplitudes manifest

term-by-term.

In the following sections we analyze these types decompositions systematically, and

find they can be extended to much larger subalgebras. As in the A3 decomposition, the

A2 function will continue to play a privileged role.

4 Nonclassical cluster polylogarithms

We now turn to a more systematic exploration of the space of weight-four nonclassical

cluster polylogarithms. We restrict our attention to functions that can be defined on

Gr(4, 7) ' E6 and its subalgebras, as this space is complex enough to give rise to an

interesting collection of functions, yet can be explored exhaustively (this space was also

explored in [32], using a slightly different approach). The techniques we utilize can also be

applied to infinite cluster algebras (see for instance [12]), but we leave further exploration

of this kind to future work [37]. Before exploring the properties of this space of functions

on Gr(4, 7), we describe an efficient method for its generation using the A2 function (3.28).
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We then describe how this method can be extended to more restricted spaces of functions

— those that are constructible out of cluster polylogarithms associated with the higher-

rank subalgebras of a given cluster algebra. It is hoped that these subalgebra-constructible

functions will prove to be of interest to physicists and mathematicians beyond the role they

play in MHV amplitudes in planar N = 4 sYM theory.

4.1 A2 functions as a basis

A remarkable (conjectured) property of fA2 is that it forms a complete basis for the δ2,2

component of any weight-four cluster polylogarithm [12]. (This property can be construc-

tively realized for all cluster polylogarithms defined on E6 or its subalgebras, but has

not been proven beyond these cases.2) That is, given a nonclassical weight-four cluster

polylogarithm F defined on a cluster algebra A, there always exists some decomposition

δ2,2

(
F
)

=
∑

(xi→xj)⊂A

cij δ2,2

(
fA2(xi → xj)

)
(4.1)

involving rational coefficients cij , where the sum ranges over all the A2 subalgebras of A.

Given the symbol (or cobracket) of F , this decomposition is simple to compute (but may

not be unique). This decomposition can also be phrased as

F =
∑

(xi→xj)⊂A

cijfA2(xi → xj) + . . . , (4.2)

where the dots indicate a residual, purely classical contribution to this function (also ex-

pressible in terms of cluster coordinates on A). Since the fA2 function is smooth, real-

valued, and satisfies cluster adjacency, this classical contribution will inherit these prop-

erties whenever they are also respected by F . In other words, this fA2 decomposition

cleanly separates the nonclassical from the classical components without disrupting any of

the other salient properties of F .

We can glean some intuition for the meaning of this decomposition from the cobracket

integrability condition (3.17). This condition implies specific algebraic relationships be-

tween the arguments of the δ2,2 and δ3,1 cobracket components. In particular, the A2

exchange relation

1 + Xi = Xi−1Xi+1 (4.3)

is sufficient to generate one solution to integrability, namely fA2 . The decomposition (4.1)

thus tells us that all solutions to the cobracket integrability relation can be interpreted

as linear combinations of exchange relations on A2 subalgebras. This hardly comes as a

surprise, given that the only algebraic relations between cluster coordinates are generated

by mutation (assuming that the seed cluster is composed of algebraically independent

coordinates), and that an A2 subalgebra can be generated on any pair of connected nodes.

In practice, then, the existence (and uniqueness) of fA2 solves the problem of writing

down weight-four cluster polylogarithms. To illustrate this, let us consider the space of

nonclassical A3 cluster polylogarithms. This space could be computed by forming an ansatz

2This was first checked in E6 by Daniel Parker and Adam Scherlis.
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out of all possible cobracket components constructed from cluster X -coordinates, and then

imposing the integrability condition (3.17). However, the decomposability conjecture (4.1)

reduces this computation to the simpler question: how many cluster polylogarithms can

be constructed out of the A2 subalgebras of A3?

Recall from section 2.3 that there are six A2 subalgebras in A3. To label these subalge-

bras, we choose a representative cluster from each one; in terms of A3 coordinates (defined

by the initial seed x1 → x2 → x3), we take the set

x1 → x2, x2 → x3,
x2

1 + x1,2
→ (1 + x1)x3

1 + x1,2,3
, (4.4)

x1x2

1 + x1
→ x3, x1 (1 + x2)→ x2x3

1 + x2
, x1 → x2 (1 + x3) . (4.5)

We then construct an ansatz for the space of nonclassical A3 functions by considering the

span of fA2 evaluated on each of these subalgebras:

fA3

(
x1 → x2 → x3

)
= c1fA2

(
x1 → x2

)
+ . . . + c6fA2

(
x1 → x2 (1 + x3)

)
. (4.6)

All that remains is to find values for the coefficients ci such that fA3 is invariant (up to

an overall sign) under the automorphisms of A3. In this case, there are two automorphism

group generators, σA3 and τA3 , which were defined in (2.51) and (2.52).

We first consider the case where fA3 is invariant under both A3 automorphism gener-

ators, namely

σA3

(
fA3(x1 → x2 → x3)

)
= fA3(x1 → x2 → x3),

τA3

(
fA3(x1 → x2 → x3)

)
= fA3(x1 → x2 → x3).

(4.7)

In practice, this means we take the ansatz for fA3 in eq. (4.6) and solve the constraints

fA3

(
x2

1 + x1,2
→ x3(1 + x1)

1 + x1,2,3
→ 1 + x1,2

x1x2x3

)
= fA3(x1 → x2 → x3),

fA3

(
1

x3
→ 1

x2
→ 1

x1

)
= fA3(x1 → x2 → x3).

(4.8)

It turns out there is no nontrivial solution to this set of constraints. Conversely, allowing

fA3 to pick up an overall minus sign when acted upon by τA3 , we solve the constraints

σA3

(
fA3(x1 → x2 → x3)

)
= fA3

(
x1 → x2 → x3

)
,

τA3

(
fA3(x1 → x2 → x3)

)
= −fA3

(
x1 → x2 → x3

)
,

(4.9)

and find the solution

ci = 1 (4.10)

(which can always be rescaled by an overall constant). We label this particular solution

f+−
A3

(x1 → x2 → x3) = fA2(x1 → x2) + . . .+ fA2(x1 → x2 (1 + x3))

=

6∑
i=1

σiA3

(
fA2(x1 → x2)

)
, (4.11)
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Nonclassical An Polylogarithms

σ+τ+ σ+τ− σ−τ+ σ−τ−

A2 0 1 (0) 0 0

A3 0 1 (0) 0 1 (1)

A4 0 3 (0) 0 0

A5 2 (1) 5 (1) 2 (0) 5 (3)

Table 1. The number of nonclassical weight-four cluster polylogarithms on the An≤5 cluster

algebra, for each of the four possible automorphism signatures. The number of functions that

additionally respect cobracket-level cluster adjacency is given in parentheses.

where the superscripts on f+−
A3

label its behavior under σ and τ , respectively. (The super-

script on σiA3
indicates how many times the operator σA3 should be applied.) There are

two remaining sign choices to check: σ−A3
τ+
A3

and σ−A3
τ−A3

. We find only the trivial solution

in the first case, while

f−−A3
(x1 → x2 → x3) =

6∑
i=1

(−1)iσiA3

(
fA2(x1 → x2)

)
(4.12)

turns out to be the unique A3 function that picks up a minus sign under the action of both

A3 automorphism generators.

Therefore, unlike the case of A2, there are two functions one can associate with the

A3 cluster algebra: f+−
A3

and f−−A3
. These functions arise purely from the interplay between

the overall symmetries of the A3 cluster algebra and the structure of the A2 subalgebras in

A3, i.e. there has been no physics input so far. However, motivated by the properties of the

two-loop MHV amplitudes, we can check one further aspect of these functions — whether

or not they respect cobracket-level cluster adjacency. Recall that the function fA2 does not

satisfy cobracket-level cluster adjacency, while it was stated around equation (3.33) that

there exists an fA3 that does have this property — in fact, it was pointed out in [12] that

there exists only one such function. It is easy to check that only f−−A3
can be expressed in

terms of cluster-adjacent cobrackets, and that it matches the function reported in [12].

4.2 Constructing all cluster polylogarithms in Gr(4, 7)

It is a straightforward exercise to extend the construction outlined in the last subsection to

any finite algebra (as well as to infinite algebras by specifying a set of A2 subalgebras). In

the case of An, there are just the two automorphism generators σn and τn, which were given

in (2.51) and (2.52). The results are summarized in table 1, where each entry denotes the

number of nonclassical weight-four cluster polylogarithms with a given automorphism sig-

nature, and the numbers in parentheses indicate how many of these functions additionally

satisfy cobracket-level cluster adjacency. It is interesting to note that the automorphism

signature σ+τ− admits at least one solution for each of these An, and in particular that it

gives rise to the only nontrivial solutions in both A2 and A4.

– 36 –



J
H
E
P
0
1
(
2
0
1
9
)
0
1
7

Nonclassical D4 Polylogarithms

σ+
D4
τ+
D4

σ+
S3

σ−S3

τ+
S3

0 0

τ−S3
1 (0) 0

σ+
D4
τ−D4

σ+
S3

σ−S3

τ+
S3

2 (0) 0

τ−S3
0 0

σ−D4
τ+
D4

σ+
S3

σ−S3

τ+
S3

1 (0) 0

τ−S3
1 (1) 0

σ−D4
τ−D4

σ+
S3

σ−S3

τ+
S3

1 (0) 0

τ−S3
0 0

Nonclassical D5 Polylogarithms

σ+
D5
τ+
D5

Z+
2 Z−2

5 (2) 0

σ+
D5
τ−D5

Z+
2 Z−2

9 (2) 0

σ−D5
τ+
D5

Z+
2 Z−2
0 3 (1)

σ−D5
τ−D5

Z+
2 Z−2
0 7 (5)

Table 2. The number of nonclassical weight-four cluster polylogarithms on the D4 and D5 cluster

algebras, with each possible automorphism signature. The number of functions that additionally

respect cobracket-level cluster adjacency is given in parentheses.

This procedure gets only slightly more complicated in the Dn algebras, due to their

larger automorphism groups. As discussed in section 2.6, the automorphism group of D4 is

a product of dihedral and symmetric groups, D4 × S3. The dihedral group D4 is generated

by a pair of operators σ
(D4)
D4

and τ
(D4)
D4

, while the symmetric group is generated by a pair of

operators σ
(S3)
D4

and τ
(S3)
D4

. This gives rise to 16 possible automorphism signatures, which we

impose on a general ansatz of A2 functions; the results are presented in table 2. In the same

table we give the results for D5, which has only the three automorphism generators σD5 ,

τD5 , and Z2,D5 , corresponding to the automorphism group D5×Z2. In both D4 and D5, we

again see that the space of functions respecting automorphisms is remarkably constrained.

There are no functions with odd signature under σ
(D4)
D4

, and only a single D4 automorphism

signature gives rise to more than one solution. In D5, there are no functions that have

opposite signature in σD5 and Z2,D5 .

Finally, we turn to E6, which has the automorphism group D14. This group has three

generators — σE6 , τE6 , and Z2,E6 . E6 is much larger than any of the cluster algebras

considered above, with 504 distinct A2 subalgebras. Even so, the spaces of automorphic

functions on it remains surprisingly small, as shown in table 3. It is especially surprising

here that there are no odd solutions in σE6 . Of primary interest is the space with auto-

morphism signature σ+
E6
τ+
E6
Z+

2,E6
, as this space contains R

(2)
7 , which will be our primary

object of interest in section 5. In particular, R
(2)
7 must be a linear combination of the 6

cluster polylogarithms in this space that respect cobracket-level cluster adjacency.

We pause at this point to emphasize that the A2 constructibility of all nonclassical

cluster polylogarithms has been verified on each of the finite cluster algebras considered

above, and its completeness only becomes conjectural on infinite cluster algebras. While
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Nonclassical E6 Polylogarithms

σ+
D14

τ+
D14

Z+
2 Z−2

12 (6) 14 (6)

σ+
D14

τ−D14

Z+
2 Z−2

21 (6) 17 (9)

σ−D14
τ+
D14

Z+
2 Z−2
0 0

σ−D14
τ−D14

Z+
2 Z−2
0 0

Table 3. The number of nonclassical weight-four cluster polylogarithms on the E6 cluster algebra,

with each of eight possible automorphism signatures. The number of functions that additionally

respect cobracket-level cluster adjacency is given in parentheses.

it is clearly not possible to form an ansatz out of all A2 subalgebras in an infinite cluster

algebra such as Gr(4, 8), this method can still be used to generate all nonclassical polylog-

arithms that are constructible out of (the automorphic completion of) any finite set of A2

subalgebras. This proves sufficient in the case of the two-loop remainder function to all

n [12], and may prove sufficient in other cases of physical interest.

4.3 Nested cluster polylogarithms

Given that the space of nonclassical cluster polylogarithms coincides with the space of

A2-constructible functions, it is natural to ask whether other (even more special) spaces

of functions are constructible out of other cluster polylogarithms. In fact, this has already

been shown to be the case, since the nonclassical part of all two-loop MHV amplitudes can

be constructed out of f−−A3
as defined in (4.12) [12]. This gives rise to an interesting nested

structure, since f−−A3
is itself constructible out of fA2 . More generally, in the functions

constructed in section 4.2 there will be many instances of A2 subalgebras assembling into

larger subalgebras, and it remains an open question how intrinsically interesting such nested

constructibility might be.

The procedure for constructing such spaces clearly proceeds just as in the case of

A2 constructibility. There are many spaces one can consider constructing on each cluster

algebra, corresponding to the inclusion of different sets of functions defined on (possibly)

different subalgebras. We leave the exploration of compositely-constructible spaces to

future work. For now, we just consider the example of functions constructible out of f−−A3
,

since all R
(2)
n are believed to be in this class. We tabulate the space of f−−A3

-constructible

functions in table 4.

Since f−−A3
satisfies cobracket-level cluster adjacency, all functions constructed out of

it also have this property. As can be seen by comparing table 4 to tables 1–3, the converse

is also true — all cluster polylogarithms that satisfy cobracket-level cluster adjacency are

f−−A3
-constructible. While we have checked this explicitly on E6 and all its subalgebras, it

has been conjectured to hold more generally [12].

It is worth highlighting that the dimensions we have tabulated in this (and the previ-

ous) section have taken into account polylogarithmic identities that reduce the difference

between two nonclassical functions to something purely classical. For instance, in E6 there
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A−−3 -constructible An Polylogarithms

σ+τ+ σ+τ− σ−τ+ σ−τ−

fA4 ∈ span
(
f−−A3

)
0 0 0 0

fA5 ∈ span
(
f−−A3

)
1 1 0 3

A−−3 -constructible D4 Polylogarithms

σ+
D4
τ+
D4

σ+
S3

σ−S3

τ+
S3

0 0

τ−S3
0 0

σ+
D4
τ−D4

σ+
S3

σ−S3

τ+
S3

0 0

τ−S3
0 0

σ−D4
τ+
D4

σ+
S3

σ−S3

τ+
S3

0 0

τ−S3
1 0

σ−D4
τ−D4

σ+
S3

σ−S3

τ+
S3

0 0

τ−S3
0 0

A−−3 -constructible D5 Polylogarithms

σ+
D5
τ+
D5

Z+
2 Z−2
2 0

σ+
D5
τ−D5

Z+
2 Z−2
2 0

σ−D5
τ+
D5

Z+
2 Z−2
0 1

σ−D5
τ−D5

Z+
2 Z−2
0 5

A−−3 -constructible E6 Polylogarithms

σ+
D14

τ+
D14

Z+
2 Z−2
6 6

σ+
D14

τ−D14

Z+
2 Z−2
6 9

σ−D14
τ+
D14

Z+
2 Z−2
0 0

σ−D14
τ−D14

Z+
2 Z−2
0 0

Table 4. The number of f−−
A3

-constructible cluster polylogarithms on the E6 cluster algebra and

its subalgebras, with each possible automorphism signature.

are identities relating different instances of fA2 and f−−A3
such as∑

E+++
6

[
δ2,2

(
2f−−A3

(
x1 → x2(1 + x3)→ x3x4x5

1 + x5,3

)
(4.13)

− f−−A3

(
x1 → x2(1 + x3)→ x3x4x5x6

1 + x6,5,3

)
− f−−A3

(
x1 →

x2(1 + x6,5,3,4)

1 + x6,5
→ x3x5

(1 + x5)(1 + x6,5,3)

))]
= 0,

where we have introduced the notation∑
E+++

6

f =

6∑
i=0

1∑
j=0

1∑
k=0

τkE6
◦ Zj2,E6

◦ σiE6

(
f
)
. (4.14)
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Although we won’t discuss these spaces of identities further, it would be interesting to

study them (and their geometry on cluster polytopes) systematically.

5 Subalgebra constructibility and R
(2)
7

Having seen the extent to which the E6 cluster algebra admits nontrivial functional em-

beddings, we turn to the study of R
(2)
7 . Specifically, we explore the ways in which the

nonclassical part of this function is subalgebra-constructible, thus probing the extent to

which N = 4 sYM theory “knows” about the rich subalgebra structure of E6. It is already

known that R
(2)
7 is A2- and A3-constructible in terms of the functions defined in (3.28)

and (4.12) [12]. Using the techniques of section 4, we can ask this question systematically

for any set of cluster polylogarithms defined on a subalgebra of E6.

We will in particular be interested in the corank-one subalgebras of E6 — namely, D5

and A5 — as D5- and A5-constructible functions are not subject to the same amount of

representational ambiguity as functions that are constructible out of smaller subalgebras.

For instance, while there are 1071 subpolytopes of the E6 cluster polytope that correspond

to A2 subalgebras, only 504 of these give rise to distinct cluster algebras. Moreover, there

exist 56 identities between the instances of fA2 evaluated on these 504 subalgebras [12].

Similarly, out of 476 distinct A3 subpolytopes, only 364 give rise to distinct cluster algebras,

and there are 169 identities between the instances of f−−A3
evaluated on these subalgebras.

These redundancies make the representation of δ2,2

(
R

(2)
7

)
in terms of either fA2 or f−−A3

far from unique. Correspondingly, it is hard to assign a clear geometric interpretation

to these decompositions on the E6 cluster polytope, since the A2 function associated with

any specific subpolytope can be traded for A2 functions associated with other subpolytopes

(and similarly for f−−A3
).

On the other hand, there are only 14 D5 subpolytopes and 7 A5 subpolytopes of the

E6 cluster polytope, each of which gives rise to a distinct subalgebra. These collections

of subalgebras respectively form complete orbits under the automorphism group of E6,

implying that all D5- and A5-constructible functions in E6 take the form

∑
D5⊂E6

fD5(xi → . . .) =

6∑
i=0

1∑
j=0

(±1)i(±1)j Zj2,E6
◦ σiE6

(
fD5(xi → . . .)

)
(5.1)

and ∑
A5⊂E6

fA5(xi → . . .) =

6∑
i=0

(±1)i σiE6

(
fA5(xi → . . .)

)
, (5.2)

where each sign choice determines the signature of the resulting E6 polylogarithm under

the associated automorphism generator. In the case of R
(2)
7 , the positive sign should be

chosen in each case. Thus, D5 and A5 functions can only be embedded in E6 with the

right automorphism signature a single way — making D5 and A5 decompositions of R
(2)
7

(if they exist) canonical in a way that decompositions into smaller subalgebras are not.

We pause to note that the sum notation used in (5.1) and (5.2) differs from the no-

tation used in (4.14). The two notations are in practice equivalent, since — as we require
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cluster polylogarithms to respect automorphisms (up to a sign) — summing over indirect

automorphisms (with the appropriate sign) only rescales these functions by a multiplica-

tive factor. We will adopt notation such as in (5.1) and (5.2) when it is useful to think of

summing over all subalgebras corresponding to subpolytopes of a given type in the cluster

polytope. The downside of this representation is that it obfuscates the behavior of the

resulting object under the indirect automorphisms of the parent algebra. We will thus

make use of notation similar to (4.14) when we deem it more important to make the be-

havior under all automorphisms explicit. Adding such a sum over indirect automorphisms

amounts to summing over subalgebras that appear in the “flipped” cluster polytope as well

as the original.

5.1 The D5 constructibility of R
(2)
7

We begin with D5, the largest subalgebra of E6 in terms of its number of clusters. For

each of the automorphism signatures in D5 that admits a nontrivial space of (nonclassical)

cluster polylogarithms, we insert a general ansatz of such functions into the sum (5.1)

with positive signs chosen for both direct automorphism generators. Referring back to

table 2, we see there are four nontrivial cases to consider. Note that we do not restrict

our ansätze to D5 functions that respect cobracket-level cluster adjacency, because it is

possible for functions that don’t have this property to assemble into linear combinations

that do when evaluated on the subalgebras of E6 (as happens when f−−A3
is constructed out

of A2 functions). We then check to see if the nonclassical part of R
(2)
7 is in the span of any

of these ansatz sums.

Amazingly, there exists precisely one D5 automorphism signature in terms of which

R
(2)
7 can be decomposed — the totally odd signature σ−D5

τ−D5
Z−2,D5

. Two free parameters

remain in this decomposition, corresponding to two degrees of freedom that cancel in the

sum (5.1). More concretely, we can decompose

δ2,2

(
R

(2)
7

)
=

1

20

∑
D5⊂Gr(4,7)

δ2,2

f−−−D5

 x1 x2 xxxxxxx

x

x

x3x5

1 + x5

x4

1

x5

// //

88

&&


 , (5.3)

where the sum over all D5 subalgebras is taken according to (5.1), and we define

f−−−D5

 x1 x2 x3

xi

xi

x4

x5

// //
88

&&

 ≡ ∑
D−−−

5

[
1

2
c1fA2

(
x1 → x2 (1 + x34)

)
−
(

1

2
− c1

2

)
fA2

(
x1x2

1 + x1
→ x3 (1 + x4)

)
+

1

4
c2fA2

(
x1x2x3

1 + x12
→ x4

)
+ (c1 − c2) fA2

(
x2x3

1 + x2
→ x4

)
+ (1− c1) fA2

(
x2 → x3 (1 + x4)

)
(5.4)

+

(
1

2
− c1 +

3c2

4

)
fA2

(
x2 (1 + x3)→ x3x4

1 + x3

)
+

1

2
c2fA2

(
x3 → x4

)]
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using the notation ∑
D−−−

5

f =

4∑
i=0

1∑
j=0

1∑
k=0

(−1)i+j+k σiD5
◦ τ jD5

◦ Zk2,D5

(
f
)
. (5.5)

Unlike in the sums (5.1) and (5.2) — where the sum was over all subalgebras of a given type

in E6 (but not its flipped twin) — we now include a sum over the indirect automorphism

τD5 so as to make explicit the totally odd automorphism signature. The X -coordinates

in (5.3) should be understood to be the E6 coordinates defined in (2.44), while the X -

coordinates in (5.4) should be thought of as D5 coordinates that take different values when

evaluated on the D5 subalgebras of E6. (It is easy to see that the E6 seed (2.43) doesn’t

contain any D5 sub-quivers of the form (2.42), but that mutating on the x5 node will give

rise to a quiver containing the D5 quiver seen in (5.3).) The coefficients c1 and c2 represent

the two remaining degrees of freedom in our ansatz, which drop out of the sum (5.3).

It is natural to ask whether the parameters c1 and c2 can be chosen in such a way

that f−−−D5
is endowed with additional nice properties. For instance, f−−−D5

does not satisfy

cobracket-level cluster adjacency for generic values of c1 and c2, but it can be given this

property by choosing c2 = −6
5 + 8

5c1. As discussed in section 4.3, this necessarily makes

f−−−D5
itself an A3-constructible function:

f−−−A3⊂D5
= − 1

10

∑
D−−−

5

[
(6− 3c1) f−−A3

(
x1 → x2 (1 + x3)→ x3x4

1 + x3

)
+ (−3 + 4c1) f−−A3

(
x1 → x2 → x3 (1 + x4)

)
+ (2− c1) f−−A3

(
x2 → x3 (1 + x4)→ x5

)
(5.6)

+

(
1

2
− 3c1

2

)
f−−A3

(
1

x4
→ x3 (1 + x4)→ x5

)
+
(
−1 +

c1

2

)
f−−A3

(
1

x4
→ x2x3 (1 + x4)

1 + x2
→ x5

)]
.

As in the (more general) fA2 representation (5.4), we have made the full automorphism

signature of the D5 function manifest at the level of the sum.

It turns out there is one additional way f−−−D5
can be decomposed. An A4 decom-

position is obtainable if we choose c1 = 3
5 and c2 = 0. Moreover, although there exists

no canonical decomposition such as (5.1) or (5.2) for A4-constructible E6 polylogarithms,

there does exist such a decomposition for A4-constructible D5 polylogarithms. That is, all

10 A4 subpolytopes of the D5 cluster polytope are in the same orbit of the automorphism

group of D5. Thus, such a decomposition must take the form∑
A4⊂D5

fA4(xi → . . .) =

4∑
i=0

1∑
j=0

(±1)i(±1)j Zj2,D5
◦ σiD5

(
fA4(xi → . . .)

)
. (5.7)

Choosing both signs to be negative to match the automorphism signature of f−−−D5
, we find

the decomposition

f−−−A4⊂D5
=

∑
A4⊂D5

f+−
A4

(x1 → x2 → x3 → x4) (5.8)
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in terms of a new A4 function

f+−
A4

=
1

10

∑
A+−

4

(
3fA2

(
x1 → x2(1 + x3)

)
− fA2

(
x2 → x3(1 + x4)

))
, (5.9)

where we have made use of the notation∑
A+−

4

f =

6∑
i=0

1∑
j=0

(−1)j τ jA4
◦ σiA4

(
f
)
. (5.10)

The function f+−
A4

itself is not A3-constructible, as it does not satisfy cobracket-level adja-

cency. However, the f−−−A4⊂D5
representation of R

(2)
7 ,

δ2,2

(
R

(2)
7

)
=

1

20

∑
D5⊂Gr(4,7)

∑
A4⊂D5

δ2,2

(
f+−
A4

(x1 → x2 → x3 → x4)
)
, (5.11)

is still quite remarkable — by evaluating the simple function (5.9) on all A4 subalgebras

of Gr(4, 7) and arranging these functions into D5 polylogarithms (as uniquely dictated by

the choice of a totally odd D5 automorphism signature), δ2,2

(
R

(2)
7

)
is recovered by simply

summing over these D5 polylogarithms. Note that every A4 subalgebra in Gr(4, 7) appears

at least once in this sum, however some instances of f+−
A4

appear multiple times and with

different sign, leaving only 56 A4 subalgebras which contribute.

Having considered some cluster-algebraic motivations for choosing certain values of c1

and c2, we now investigate whether collinear limits provide us with a natural choice for

these parameters. In particular, we know that the nonclassical portion of R
(2)
7 must vanish

under the 7 → 6 collinear limit, as R
(2)
6 is purely classical. We can therefore ask whether

the 14 instances of f−−−D5
in E6 can be made to separately vanish in the collinear limit. It

turns out this is not possible — at best, by choosing c1 = 0 and c2 = −6
5 , one can get 10

of the 14 f−−−D5
functions to separately vanish (at the nonclassical level). The nonclassical

part of the remaining 4 f−−−D5
functions then cancel off pairwise.

5.2 The A5 constructibility of R
(2)
7

We now turn our attention to A5 decompositions of R
(2)
7 , using the ansatz sum (5.2).

Intriguingly, there is (again) precisely one automorphism signature in terms of which

δ2,2

(
R

(2)
7

)
can be decomposed — and it is (again) the totally antisymmetric signature

σ−A5
τ−A5

. This time there is a single internal degree of freedom that cancels in the sum (5.2).

This decomposition can be written explicitly as

δ2,2

(
R

(2)
7

)
=

1

20

∑
A5⊂E6

δ2,2

(
f−−A5

(
x1→x2→

x3x5x6

1+x6,5
→ 1

x6(1+x5)
→ 1+x6,5

x5

))
, (5.12)

where the A5 sum (5.2) is taken over the function

f−−A5

(
x1 → x2 → x3 → x4 → x5

)
≡
∑
A−−

5

[
1

2
c1fA2

(
x2 → x3 (1 + x4)

)
(5.13)

− (1 + c1) fA2

(
x2 → x3 (1 + x4,5)

)
−
(

1

2
+ c1

)
fA2

(
x1x2

1 + x1
→ x3 (1 + x4)

)]
,
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which makes use of the notation

∑
A−−

5

f =

7∑
i=0

1∑
j=0

(−1)i+j σiA5
◦ τ jA5

(
f
)
. (5.14)

As in the last subsection, the X -coordinates in (5.12) are the E6 coordinates defined

in (2.44), while the X -coordinates in (5.13) are A5 coordinates that take different val-

ues when evaluated on different A5 subalgebras of E6. The initial A5 quiver in (5.12) can

be generated by mutating on the nodes associated with x5 and then x6 in (2.43), and then

freezing the node associated with x4.

Let us first address f−−A5
’s collinear limits. In this case, the nonclassical part of all 7

instances of f−−A5
on E6 separately vanish in each 7 → 6 collinear limit, for all values of

c1. This makes the collinear behavior of R
(2)
7 considerably cleaner in the A5 decomposition

than in the D5 decomposition. However, it also gives us no hints for how to choose c1.

Luckily, we can find preferred values for c1 by requiring f−−A5
to be either A3- or A4-

constructible. It becomes A3-constructible if we choose c1 = −1
2 , but this time in terms of

the function f+−
A3

. Specifically, we find the decomposition

f−−A3⊂A5
= −1

8

∑
A−−

5

f+−
A3

(
x2 → x3(1 + x4)→ x4x5

1 + x4

)
. (5.15)

If we instead choose c1 = −1, f−−A5
becomes A4-constructible. Analogous to the D5 case,

there is only a single orbit of A4 subalgebras in A5, implying that this decomposition must

take the form

∑
A4⊂A5

fA4(xi → . . .) =
7∑
i=0

(±1)i σiA5

(
fA4(xi → . . .)

)
. (5.16)

Choosing the minus sign in this sum, we find the unique decomposition

f−−A4⊂A5
= −

∑
A4⊂A5

f+−
A4

(x1 → x2 → x3 → x4), (5.17)

where f+−
A4

is the same function that appeared in the A4 decomposition of f−−−D5
. Therefore

we find an A4 ⊂ A5 representation of R
(2)
7 that bears a striking resemblance to the A4 ⊂ D5

representation found in (5.11):

δ2,2

(
R

(2)
7

)
= − 1

20

∑
A5⊂Gr(4,7)

∑
A4⊂A5

δ2,2

(
f+−
A4

(x1 → x2 → x3 → x4)
)
. (5.18)

In fact, the two sums are identical. Each of the seven A5 subalgebras contains eight A4

subalgebras, resulting in 56 instances of f+−
A4

. These are the same 56 instances of f+−
A4

that contributed in (5.11) (the overall sign difference between these two decompositions

results from the orientations of the initial D5 and A5 subalgebras chosen in (5.3) and (5.12),

respectively). We now turn to a discussion of these overlapping decompositions of R
(2)
7 .
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Figure 7. The various pathways along which R
(2)
7 can be decomposed.

5.3 The many facets of R
(2)
7

The results of the previous sections are summarized in figure 7. The fact that the two

most canonical decompositions of R
(2)
7 involve functions that are themselves canonically

decomposable in terms of the same A4 function is highly unexpected. In equation form,

this interlinked structure can be summarized as

R
(2)
7 = − 1

20

∑
D5⊂Gr(4,7)

∑
A4⊂D5

f+−
A4

(x1 → x2 → x3 → x4) + . . . (5.19)

= − 1

20

∑
A5⊂Gr(4,7)

∑
A4⊂A5

f+−
A4

(x1 → x2 → x3 → x4) + . . . (5.20)

where the trailing dots indicate that this equality holds up to the contribution of purely

classical polylogarithms, and we have left the signs in these sums implicit. As emphasized

previously, the required classical contribution is the same in both lines, as strict equality

holds between the two nested sums over f+−
A4

(including the minus sign in the second line,

for the orientations chosen above). This equality does not stem from any complicated

polylogarithm identities, but is rather a direct consequence of the arrangement of these

subalgebras within Gr(4, 7). It is perhaps suggestive to interpret the equivalence of these

two decompositions as coming from the fact that they are different subalgebraic “coverings”

of the same object, namely Gr(4, 7).

In addition to this tightly interlinked pair of decompositions, both f−−−D5
and f−−A5

admit A3 decompositions. As discussed above, each of these decompositions makes some

property of the remainder function manifest at the expense of others — for instance, the

f−−A5
representation makes the vanishing of the nonclassical component of this amplitude

in collinear limits manifest term-by-term, whereas the A2 ⊂ A3 ⊂ D5 ⊂ Gr(4, 7) represen-

tation manifestly satisfies cobracket-level cluster adjacency when phrased in terms of f−−A3

or f−−−A3⊂D5
. While it might have been hoped that a single decomposition would exhibit all

the nice mathematical features of the remainder function at once, it is perhaps better that
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R
(2)
7 “requires” nearly the full breadth of the subalgebra structure of Gr(4, 7) in order to

express all of its intricate behavior.

The only subalgebra of Gr(4, 7) we have not had reason to touch on yet is D4. In-

terestingly, there exists exactly one D4-constructible function in E6 that has signature

σ+
E6
τ+
E6
Z+

2,E6
and respects cobracket-level cluster adjacency. However, this function fails to

vanish (or be well-defined) in the 7→ 6 collinear limit, and so cannot be directly related to

R
(2)
7 . Still, the uniqueness of this function is itself intriguing and may merit further study.

While the mathematical features of each nonclassical decomposition are easy to check,

their physical meaning remains more obscure. It would be interesting to find kinematic

limits that cleanly isolate individual instances of the cluster polylogarithms these decompo-

sitions make use of, but — as the number of subalgebras in every decomposition is greater

than the dimension of seven-particle kinematics — this would require intricate cancella-

tions between the remaining cluster polylogarithms, making such limits hard to engineer.

Soft and collinear limits are of particularly little use here, as the nonclassical part of the

six-particle amplitude is zero. Moreover, while it is in principle no problem to consider

singular limits, only the finite term will survive, as large logs will get projected out by

the cobracket. (While we could also study these cluster polylogarithms as full functions,

this doesn’t seem particularly meaningful since all the expressions presented in this paper

only hold up to undetermined classical contributions.) We correspondingly defer the con-

sideration of further kinematic limits to future work involving the full analytic form of the

eight-particle amplitude [37].

6 Conclusion

We have explored the space of nonclassical cluster polylogarithms on Gr(4, 7) and its sub-

algebras, and have shown that — while this space is relatively small — it admits a natural

geometric construction that gives rise to interesting sequences of nested functional em-

beddings. The seven-particle two-loop MHV amplitude seems almost specially engineered

to take advantage of this subalgebra structure, insofar as its nonclassical component can

be decomposed into cluster polylogarithms defined on almost every type of subalgebra ap-

pearing in Gr(4, 7), excluding only D4. The decompositions associated with the corank-one

subalgebras D5 and A5 are especially canonical, as are the further decompositions of the

associated D5 and A5 cluster polylogarithms into their A4 subalgebras, as the form of each

of these decompositions is uniquely dictated by the automorphism group of the parent alge-

bra. These decompositions identify new cluster polylogarithms that are of special physical

interest, supplementing the A2 and A3 cluster polylogarithms previously identified in [12].

It is natural to ask whether higher-point MHV amplitudes can also be decomposed into

these new cluster polylogarithms, as is known to be the case for the A2 and A3 functions;

we will take one step towards addressing this question in a forthcoming paper [37].

It would be interesting to try and extend this type of construction to the NMHV sec-

tor, where R-invariants also appear in the amplitude. There is a natural way to associate a

subalgebra of Gr(4, n) to each R-invariant [19], allowing these subalgebras to (potentially)

enter the decomposition of the polylogarithms these R-invariants multiply. More generally,
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although we have not attempted to explore (or even define) the space of cluster polyloga-

rithms beyond weight four, it is hoped that some form of subalgebra constructibility can

be extended to higher weight (and higher loops).

While we have almost entirely worked at the level of the nonclassical component of the

cobracket, it can also be asked whether these amplitudes are decomposable into functions

defined on their subalgebras before applying this projection. It is not hard to show that

the symbol of R
(2)
6 (as well as that of E(2)

6 ) is not subalgebra-constructible in this way —

the six-particle two-loop MHV amplitude is intrinsically an A3 polylogarithm. While it is

possible that the A2 and A1 × A1 subalgebras of Gr(4, 6) are too simple to permit such a

decomposition while larger subalgebras in Gr(4, n > 6) would prove sufficiently complex,

it seems more likely that the cobracket projection is essential to distilling the part of the

amplitude that can be decomposed in this way. The fact that it is the mathematically

most complicated component of these amplitudes that is easiest to compute to all n (as

was done in [13]) still calls out for some physical explanation.

More speculatively, it can be hoped that the pervasiveness of cluster-algebraic struc-

ture exhibited by polylogarithmic amplitudes in planar N = 4 sYM theory points to the

existence of some more general combinatorial structure underlying all amplitudes in this

theory, including those that involve algebraic roots and/or functions beyond polyloga-

rithms. Much of the cluster-algebraic structure seen in the polylogarithmic case is exposed

by the coaction, which (especially in the guise of the symbol) distills these functions down

to information about their integration kernels. Notably then, it is possible to formulate

coactions on more general periods that appear in quantum field theory, such as elliptic

polylogarithms [23, 80, 81, 84–87]. While much of the loop integration technology required

for dealing with generic Feynman integrals remains to be developed, we can already begin

to study the higher-genus and higher-dimensional varieties that appear in the integration

contours contributing to planar N = 4 sYM theory (see for example [29–31, 88]). Hopefully,

understanding these (seemingly always Calabi-Yau) geometries will provide salient hints

for how the geometric and algebraic picture provided by cluster algebras can be generalized

beyond the case of polylogarithms.
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A Counting subalgebras of finite cluster algebras

In this appendix we catalog the subalgebra structure of Gr(4, 7) ' E6 and all its finite con-

nected subalgebras, namely A2, A3, A4, D4, A5, and D5. We include both the number of

subalgebras and subpolytopes (of the cluster polytope) that occur in each algebra. We only

consider subalgebras to be distinct when they differ in at least one of their mutable nodes,

but count identical subalgebras as distinct subpolytopes when they are connected to differ-

ent frozen nodes. Note also that we consider the X -coordinates x and 1/x to be distinct.

A2

Clusters: 5 — A-coordinates: 5 — X -coordinates: 10

A3

Clusters: 14 — A-coordinates: 9 — X -coordinates: 30

Type Subpolytopes Subalgebras

A2 6 6

A1 ×A1 3 3

A4

Clusters: 42 — A-coordinates: 14 — X -coordinates: 70

Type Subpolytopes Subalgebras

A2 28 21

A1 ×A1 28 28

A3 7 7

A2 ×A1 7 7

A1 ×A1 ×A1 0 0

D4

Clusters: 50 — A-coordinates: 16 — X -coordinates: 104

Type Subpolytopes Subalgebras

A2 36 36

A1 ×A1 30 18

A3 12 12

A2 ×A1 0 0

A1 ×A1 ×A1 4 4
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A5

Clusters: 132 — A-coordinates: 20 — X -coordinates: 140

Type Subpolytopes Subalgebras

A2 120 56

A1 ×A1 180 144

A3 36 28

A2 ×A1 72 72

A1 ×A1 ×A1 12 12

D4 0 0

A4 8 8

A3 ×A1 8 8

A2 ×A2 4 4

A2 ×A1 ×A1 0 0

A1 ×A1 ×A1 ×A1 0 0

D5

Clusters: 182 — A-coordinates: 25 — X -coordinates: 260

Type Subpolytopes Subalgebras

A2 180 125

A1 ×A1 230 145

A3 70 65

A2 ×A1 60 50

A1 ×A1 ×A1 30 30

D4 5 5

A4 10 10

A3 ×A1 5 5

A2 ×A2 0 0

A2 ×A1 ×A1 5 5

A1 ×A1 ×A1 ×A1 0 0
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E6

Clusters: 833 — A-coordinates: 42 — X -coordinates: 770

Type Subpolytopes Subalgebras

A2 1071 504

A1 ×A1 1785 833

A3 476 364

A2 ×A1 714 490

A1 ×A1 ×A1 357 357

D4 35 35

A4 112 98

A3 ×A1 112 112

A2 ×A2 21 14

A2 ×A1 ×A1 119 119

A1 ×A1 ×A1 ×A1 0 0

D5 14 14

A5 7 7

D4 ×A1 0 0

A4 ×A1 14 14

A3 ×A2 0 0

A3 ×A1 ×A1 0 0

A2 ×A2 ×A1 7 7

A2 ×A1 ×A1 ×A1 0 0

A1 ×A1 ×A1 ×A1 ×A1 0 0

B Cobracket spaces in finite cluster algebras

In this appendix we tabulate the number of independent weight-four cluster polylogarithms

that have a nonzero Lie cobracket on Gr(4, 7) ' E6 and its suablagebras. In table 5 we first

record the number of cluster polylogarithms that have a nonzero δ2,2 cobracket component,

as considered in section 4. We tabulate the number of functions on each cluster algebra

both before and after requiring a specific automorphism signature, and include the number

of functions that also respect cobracket-level cluster adjacency in parentheses. (Some of

these numbers can also be found in [32].) In table 6 we record the same information, but

for all weight-four cluster polylogarithms that have any nonzero cobracket component.
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Type Nonclassical Cobrackets
Automorphism Signature

σ+τ+ σ+τ− σ−τ+ σ−τ−

A2 1 (0) 0 1 (0) 0 0

A3 6 (1) 0 1 (0) 0 1 (1)

A4 21 (6) 0 3 (0) 0 0

D4 34 (9)

A5 56 (21) 2 (1) 5 (1) 2 (0) 5 (3)

D5 116 (42)

E6 448 (195)

D4 Automorphism Signatures
σ+
D4
τ+D4

σ+
S3

σ−
S3

τ+S3
0 0

τ−S3
1 (0) 0

σ+
D4
τ−D4

σ+
S3

σ−
S3

τ+S3
2 (0) 0

τ−S3
0 0

σ−
D4
τ+D4

σ+
S3

σ−
S3

τ+S3
1 (0) 0

τ−S3
1 (1) 0

σ−
D4
τ−D4

σ+
S3

σ−
S3

τ+S3
1 (0) 0

τ−S3
0 0

D5 Automorphism Signatures
σ+
D5
τ+D5

Z+
2 Z−

2

5 (2) 0

σ+
D5
τ−D5

Z+
2 Z−

2

9 (2) 0

σ−
D5
τ+D5

Z+
2 Z−

2

0 3 (1)

σ−
D5
τ−D5

Z+
2 Z−

2

0 7 (5)

E6 Automorphism Signatures
σ+
D14

τ+D14

Z+
2 Z−

2

12 (6) 14 (6)

σ+
D14

τ−D14

Z+
2 Z−

2

21 (6) 17 (9)

σ−
D14

τ+D14

Z+
2 Z−

2

0 0

σ−
D14

τ−D14

Z+
2 Z−

2

0 0

Table 5. The number of nonclassical weight-four cluster polylogarithms on various finite cluster

algebras, prior to consideration of their automorphism group and after requiring specific automor-

phism signatures. The number of polylogarithms that can also be made to satisfy cobracket-level

cluster adjacency is given in parentheses.
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Type Integrable Cobrackets
Automorphism Signature

σ+τ+ σ+τ− σ−τ+ σ−τ−

A2 6 (5) 1 (1) 1 (0) 0 0

A3 21 (16) 2 (2) 2 (1) 0 3 (3)

A4 56 (41) 4 (4) 4 (1) 0 0

D4 86 (61)

A5 126 (91) 8 (7) 8 (4) 5 (3) 11 (9)

D5 246 (172)

E6 833 (580)

D4 Automorphism Signatures
σ+
D4
τ+D4

σ+
S3

σ−
S3

τ+S3
3 (3) 0

τ−S3
1 (0) 0

σ+
D4
τ−D4

σ+
S3

σ−
S3

τ+S3
3 (1) 0

τ−S3
1 (1) 0

σ−
D4
τ+D4

σ+
S3

σ−
S3

τ+S3
3 (2) 0

τ−S3
2 (2) 0

σ−
D4
τ−D4

σ+
S3

σ−
S3

τ+S3
3 (2) 0

τ−S3
0 0

D5 Automorphism Signatures
σ+
D5
τ+D5

Z+
2 Z−

2

16 (13) 0

σ+
D5
τ−D5

Z+
2 Z−

2

16 (9) 0

σ−
D5
τ+D5

Z+
2 Z−

2

0 5 (3)

σ−
D5
τ−D5

Z+
2 Z−

2

0 13 (11)

E6 Automorphism Signatures
σ+
D14

τ+D14

Z+
2 Z−

2

32 (26) 25 (17)

σ+
D14

τ−D14

Z+
2 Z−

2

32 (17) 30 (22)

σ−
D14

τ+D14

Z+
2 Z−

2

0 0

σ−
D14

τ−D14

Z+
2 Z−

2

0 0

Table 6. The number of weight-four cluster polylogarithms on various finite cluster algebras that

have nonzero cobrackets, prior to consideration of their automorphism group and after requiring

specific automorphism signatures. The number of polylogarithms that can also be made to satisfy

cobracket-level cluster adjacency is given in parentheses.
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