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1 Introduction and summary of results

The resurgence of interest in the conformal bootstrap since the work of [1] has seen several

nontrivial numerical results in the last few years. The most accurate estimates for the 3d

Ising model critical exponents [2–4] arises from this formalism (see [5–56] for a sampling

of recent work discussing many applications of bootstrap).

In the last few years, there has been progress in extracting analytic results using

conformal field theory techniques. There have been two different developments. First,

certain analytic results are possible for the so-called double trace operators with large spin.
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In a series of nice papers [57–64], building on the work of [65, 66], a systematic approach in

position space has been advocated which enables one to get the asymptotic expansion in

inverse spin, at least in principle — for a related approach see [67]. In certain situations, the

inverse spin series can be resummed and a finite support piece can be added yielding results

for all spins, not just large spins. For instance, the leading anomalous dimensions in the

epsilon expansion (d = 4− ε) can be obtained, using this approach and a set of resummed

blocks called “twist conformal blocks”, in terms of an undetermined parameter.1 While

in principle, this method can be pushed to obtain results at higher orders in epsilon, this

has not been achieved as yet. In [69–72], an alternative formulation of the bootstrap was

given following a 1974 work by Polyakov [73] — the success of this approach is not tied

to large spin. Specifically, in [70–72], the power of this formalism was demonstrated in

Mellin space. This approach uses manifestly crossing symmetric blocks which turn out to

be tree level exchange Witten diagrams. Thus, while crossing symmetry is guaranteed,

consistency with the operator product expansion (OPE) needs to be checked which gives

an infinite set of consistency conditions. Using this, it was shown how to systematically

extract information upto ε3 order for anomalous dimensions (which are in agreement with

Feynman diagram techniques) and OPE coefficients (which are typically unknown from the

Feynman diagram approach but indirect arguments [72, 74] exist to show consistency with

the bootstrap calculations).

A question naturally emerges: what is the relation between the two different approaches

— are they the same? It is our goal in this paper to shed some light on this. Of course,

in order to answer this question we need an analytic handle on both sides — thus enters

large spin. We will develop Mellin space techniques which turn out to simplify many of

the existing calculations that follow from and build on [59]. In particular, the algebraic

bootstrap approach of [59] gives the anomalous dimension of “double trace” large spin

operators as an asymptotic expansion in inverse conformal spin (to be defined below).

The reason inverse conformal spin is a more suitable expansion parameter rather than

inverse spin can be explained transparently in Mellin space. Furthermore, for arbitrary

spin and twist, the approach of [59] enabled one to obtain the coefficients in the large

spin series through a recursion relation. While in principle, this could be automated, the

question arises if these coefficients can be given an all order expression in terms of known

mathematical functions. This exercise will turn out to be quite simple in Mellin space.

We will find that the answers for the anomalous dimensions and OPE coefficients can be

written in terms of generalized Bernoulli polynomials and the Mack polynomials.

To distinguish the usual position space approach from the one advocated in [70–72],

we will refer to the former as the “usual approach” and the latter2 as the “new approach”.

Let us begin introducing some notation (unfortunately there will be a lot of them!). We

will focus on the four point function of identical scalars having conformal dimensions ∆φ.

1Certain leading anomalous dimensions can be nicely obtained by exploiting three point functions [68].
2Since it is based on Polyakov’s 1974 idea [73], more appropriately it is a new take on an old idea but

for economy of nomenclature, we will continue referring to it as the “new approach”! Another suggested

terminology is to refer to the usual formalism as the “Associativity-bootstrap” or A-bootstrap and the one

in [70, 71, 73] as the “crossing symmetry-bootstrap” or C-bootstrap.
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We will write the conformal dimension ∆ of the double trace operator with spin ` as

∆ = 2∆φ + `+ γ` where γ` is the anomalous dimension. The conformal spin J2
γ`

is defined

through J2
γ`

= (∆φ+`+γ`/2)(∆φ+`+γ`/2−1). For large spin γ` is small. In studying the

equations carefully in Mellin space, we will be able to show that the usual approach and

the new approach are in fact equivalent in the leading order in γ`. In fact, when there is an

explicit small parameter — let us generically call3 this 1/N — that sits in front of γ`, one

can get all the terms in the asymptotic expansion in inverse J0 to leading order in 1/N .

The equivalence between the two approaches are at the level of the equations to all orders

in 1/J0 to leading order in 1/N . This is transparent in Mellin space. Thus we can claim

that the large spin sector of the bootstrap equations effectively use the tree level exchange

Witten diagrams as the basis at leading order in 1/N . At the next order in γ`, namely γ2
` ,

there is a mismatch between the two sets of equations. This mismatch is not unexpected.

There are polynomial ambiguities in Mellin amplitudes. This mismatch is reflecting this

fact. Turning this around, we can say that the polynomial pieces of the Mellin amplitude

basis must be constrained in order to agree with the usual conformal block expansion. We

will work out this constraint.

There are several key differences and features in the starting point of the two ap-

proaches. Let us begin by highlighting the main ones.

• In both approaches we will be focusing on u∆φ+k and u∆φ+k log u terms in the boot-

strap equation. In the usual approach these arise due to expanding u(∆−`)/2 =

u∆φ+γ`/2 in small γ`. Thus one generates not only log u but all powers of log u. In

the new approach, the Witten diagram basis has double poles through Γ2(∆φ − s).
Thus one gets only log u’s not powers of log u — to emphasise, we do not expand in

small powers to generate logs in this approach. The consistency with OPE demands

that these are spurious and hence must cancel. This gives rise to consistency condi-

tions. When we say that we compare at the level of the equations, this is what we

mean — we compare the crossing symmetry condition from the usual approach with

the OPE consistency condition in the new approach.

• The usual approach crossing symmetry condition looks like an equality between the

direct channel (sometimes referred to as the s-channel) and the crossed channel (some-

times referred to as the t-channel). Schematically, we have

susual = tusual .

The OPE consistency condition in the new approach involves writing the correlator

as the sum of all 3 channels and isolating the spurious poles. At the level of the

equations for a four point function involving identical scalars, the t and u channels

give the same contribution. Schematically we have here

(snew + 2tnew)|spurious = 0 .

3To be clear, this can also be the ε in the epsilon expansion. A further comment is that since the OPE

corrections and the polynomial ambiguity contribution in the new approach set in at O(γ2
` ), if the series∑

cn/J
2τm+n and

∑
dp/J

τm+p did not have any terms in common, even then the calculations would hold

to all orders in 1/J without such an explicit small factor.
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These two schematic forms of the equations appear quite different! There is not only

a sign but also a factor of 2 that are different. In the large spin case that is of interest

to us, we have to explain how the usual form metamorphoses into the new form. Both

these issues will explained in due course.

• In both formulations we sum over all physical operators. This is just to emphasise

that this is unlike what happens in AdS/CFT where the leading order effect of the

double trace operators is captured by a measure factor and we only sum over single

trace operators.

• In the usual approach in the small u, v limit, the direct channel has log v as the lead-

ing singularity while the crossed channel has a power law singularity. After summing

over large spin operators of the form discussed above, the log v gets converted into the

power law singularity. In the new approach, in principle, there is no resummation

needed in writing down the OPE consistency conditions. The large spin approxi-

mation is needed in order to compare the two approaches. The fact that the new

approach gives the correct epsilon expansion (up to O(ε3)) provides some a posteriori

justification for this.

Since the calculations are somewhat technical in nature, let us summarize the key

ingredients here. The four point function for four identical scalar operators O having

conformal dimension ∆φ is written as

A(x1, x2, x3, x4) = 〈O(x1)O(x2)O(x3)O(x4)〉

=
1

(x2
12x

2
34)∆φ

A(u, v).
(1.1)

Here we have pulled out the factors appropriate for an s-channel decomposition and defined

xij = xi − xj . The cross ratios (u, v) are defined in the conventional way

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (1.2)

The s, t variables in Mellin space are introduced via

A(u, v) =

∫ i∞

−i∞

ds

2πi

dt

2πi
usvtΓ2(∆φ − s) Γ2(s+ t) Γ2(−t)M(s, t). (1.3)

M is frequently referred to as the “Mellin amplitude” [75–79]. This can be expanded in

terms of the Mellin transform of the usual conformal blocks [80–82] or in terms of the tree

level exchange Witten diagram basis. The Mellin transform of the direct channel conformal

block has an explicit inverse factor Γ2(∆φ− s) which gets rid of the potential double poles

at s = ∆φ + n. After using a projection operator [83] to eliminate the shadow poles

s = d−∆− `+ q ≡ 2h−∆− `+ q, only the physical s poles contribute to the amplitude.

The only way to generate log u’s in the direct channel therefore, is to expand powers of

u. In this sense, log u terms in the usual approach are not unphysical. In the Witten

diagram basis, the diagrams are typically defined through the s physical poles upto some

– 4 –
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polynomials in t. There is some ambiguity in this definition since one could multiply the

physical pole answer by a suitable polynomial in s which leaves the residue at the physical

poles unchanged.4 Furthermore, for a spin-` exchange there is also an apparent freedom

to add a spin-(` − 1) polynomial in s, t. It is this that we will refer to as the polynomial

ambiguity. An important role of this polynomial ambiguity will become clear in this paper.

In the new approach, the double poles from Γ2(∆φ−s) are there. These are in conflict with

the OPE as in general (barring isolated examples involving protected operators) there are

no physical operators having dimensions precisely ∆ = 2∆φ + `+ 2n. This is distinct from

how we handle these double poles in the AdS/CFT literature — there, the double poles are

relate to double trace operators and we do not include them in the sum over the spectrum;

however, here we include all primary operators in the spectrum and the s = ∆φ + n poles

are spurious.

Now in Mellin space there are a set of “natural” orthonormal polynomials using which

we can expand the t dependence. These are called continuous Hahn polynomials (to make

life simpler we will refer to these as the “Q”-polynomials in the rest of the paper) and involve

a 3F2 hypergeometric function. The measure with respect to which these are orthonormal

is proportional to Γ2(−t). Now let us consider what happens to the t channel. In the

usual approach the inverse factor Γ2(∆φ − s) in the s channel becomes Γ2(−t). Hence

there are no contributions from the double poles arising from the Γ2(−t) in the measure

factor. However, in the new approach these poles contribute since such an inverse factor is

absent. Here is where the large spin story enters. We will derive the necessary large spin

asymptotics in this paper. The large spin approximation of the relevant 3F2 eq. (A.23)

3F2

[
−`, 2σ+`−1, σ+t

σ , σ
;1

]
∼

∞∑
n,k1,k2=0

(−1)n

n!

Γ2(σ)(σ+t)n
Γ2(−t−n)

bk1(σ)bk2,n(t)J−2k1−2k2−2n−2σ−2t

+

∞∑
n,k1,k2=0

(−1)n

n!

Γ2(σ)(−t)n
Γ2(σ+t−n)

bk1(σ)bk2,n(−σ−t)J−2k1−2k2−2n+2t

(1.4)

where the b’s are defined via eqs. (A.17), (A.18), (A.19) in terms of the generalized Bernoulli

polynomials. Here ` is the spin of the exchange operator. J on the r.h.s. is defined through

J2 = (σ + `)(σ + ` − 1). We will frequently choose σ = s in our calculations. When

s = ∆φ + γ`/2, J is the conformal spin Jγ` . Since we will be interested in leading order

results in γ`, we will frequently not differentiate Jγ` from J0 and refer to both as J . To

distinguish what we are using we will use the notation Q2σ+`
`,0 (t) for explicit reference. In

the t channel we pick up contributions from the first line. As we see there is an inverse

Γ2(−t−n) factor which will cancel the contribution from the Γ2(−t) factor in the measure

alluded to above. This is the main reason why in the large spin approximation, in terms

of residues, the two approaches have the same contributions in the crossed channel. This

large spin form of the 3F2 is the key player in our story.

The direct channel in the two approaches have the following structures. In the usual

approach, if we focus on the u∆φ , u∆φ log u terms, then the v dependence is such that in

4Cf. Mittag-Leffler theorem.
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Mellin space (t dependent part) we have the schematic expansion∑
∆,`

u(∆−`)/2C̃∆,`Q
∆
`,0(t) ,

in other words σ = (∆ − `)/2. We have absorbed some ∆, `,∆φ dependence into the

C̃∆,` which is related to the OPE coefficient (squared) to avoid cluttering the expressions.

We can explicitly separate out the contribution from the double trace operators having

dimensions ∆ = 2∆φ+`+2n+γ` from the other operators in the sum and assume that the

contribution from the other operators is suppressed through their OPE coefficients — i.e.,

their contributions are at least O(γ2
` ) in the above equation.5 Then this piece in the above

sum is an expansion in terms of Q
2∆φ+`+2n+γ`
`,0 . Now the explicit γ` dependence does not

make this a suitable basis to expand in as γ` depends on which operator we are considering.

We can easily find the connection coefficients relating Q2∆φ+`+2n+γ` to Q2∆φ+`+2n and use

the latter as the basis. The extra contribution due to this is proportional to γ` as an

explicit calculation shows. Thus we have schematically for the log term∑
`

C̃n,`
γ`
2
u∆φ+n log u Q

2∆φ+`+2n
`,0 (t) +O(γ2

` ) .

For u∆φ log u, we set n = 0. Now in the new approach, we already know from [70, 71] that

the direct channel u∆φ log u in the consistency equation is in fact in terms of Q
2∆φ+`
`,0 (t)!

Thus it should not come as too much of a surprise that at the level of the equations the

usual and new approaches are in fact equivalent at least to O(γ2
` ) — of course there was

apriori no guarantee that the explicit outside factors would agree to all orders in inverse

spin. An explicit calculation confirms this fact. As we mentioned above, the equivalence

is to all orders in inverse spin. Quite strikingly, the difference at O(γ2
` ) can be attributed

only to the direct channel since the crossed channels are the same in the large spin limit to

all orders in O(γ`). This difference at O(γ2
` ) can be attributed to the polynomial ambiguity

in the Witten diagram basis and demanding the equivalence between the two approaches

at this order will serve as a constraint for this polynomial ambiguity. In other words, to

have a Witten diagram basis we cannot have an arbitrary polynomial ambiguity. Once we

add such a polynomial to the Witten diagram basis in a crossing symmetric manner, the

crossed channel large spin answer will not change since there only the physical poles are

picked up. In the epsilon expansion the ambiguity is at O(γ2
` ) = O(ε4). In [70–72] we got

the correct O(ε3) results not only because other unknown operators started contributing

at the next order but also because the polynomial ambiguity kicks in at the next order.6

Except for these peripheral observations, we will not have any further insights to offer in

this paper for the ambiguity.

5When we claim a difference at this order, a logical possibility is that the contributions from these

suppressed operators could in fact make the equations equivalent. However, it seems highly unlikely that

these contributions would miraculously cancel the difference to all orders in 1/J . A more reasonable

possibility is that fixing the polynomial ambiguity is what would resolve the difference.
6Further evidence for this exists from explicit calculations using known expressions [84, 85] for conserved

higher spin currents [86].
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The expansion in terms of the Q-polynomials leads to explicit all order expressions for

the anomalous dimensions and OPE coefficients of the large spin double trace operators.

Schematically these operators are

On,` ≈ φ∂µ1 · · · ∂µ`∂
2nφ .

The asymptotic expansion for the anomalous dimension of a large spin double trace opera-

tor O0,` due to an exchange of twist τm and spin `m operator in the crossed channel works

out to be

γ0,` ∼
∞∑
i=0

γ
(i)
0,`

J2i
(1.5)

with the γ
(i)
0,` given explicitly in eq. (3.17), while the asymptotic expansion for the correction

to the OPE coefficient can be expressed as,

δC0,` ∼
∞∑
i=0

δC
(i)
0,`

J2i
(1.6)

where δC
(i)
0,` is given in eq. (3.30). Our expressions are in exact agreement with [59] where

comparison is possible.7 The explicit expressions have the generalized Bernoulli polyno-

mials that enter the 3F2 asymptotics as well as the Mack polynomials which contain the

information of the exchanged operator. We will investigate some applications of these

explicit expressions.

As we mentioned above, Witten diagrams as defined in Mellin space have polynomial

ambiguities related to contact terms [79]. The equations for the anomalous dimension

and OPE coefficients for the double trace operators differ at O(γ2
` ) between the usual

and new approaches. Thus, the inequivalence between the equations at the O(γ2
` ) order

can potentially be cured by introducing suitable contact terms. The differences between

the usual and new bootstraps lead to the constraints in eq. (4.11) and eq. (4.12). It

remains to be seen if the systematic approach of [85, 87–92] can be made use of to solve

these constraints.

This paper is organized as follows. In section 2 we begin by recasting the conventional

bootstrap equations in Mellin space and rederive some of the results in [59]. In section 3

we derive an all order expression for the anomalous dimension and OPE coefficient of the

double trace operators at large spin. In section 4, we review the approach introduced

in [70, 71] based on tree level exchange Witten diagrams. We show that the leading

order equations in the usual approach and the new approach are the same. We derive the

difference at the next order and the constraint on the polynomial ambiguity in the Witten

diagram basis. We discuss some applications of the all order expressions in section 5

and conclude with a discussion of future directions in section 6. There are a number of

appendices which include useful calculational details needed in the paper. In particular, in

appendix A we derive the asymptotic expansion of the 3F2 entering the definition of the

7We can also compare with [67] where explicit expressions are given by retaining contributions from

primary operators.
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continuous Hahn polynomial in terms of the inverse conformal spin. As is the convention

in many papers, the dimensionality d of the CFT is frequently written as 2h.

2 Usual bootstrap in Mellin space

We begin by re-doing the analysis of [59] using Mellin space techniques. As will be clear

this already leads to some simplifications. In the following section, we will use the Q-

basis to simplify the equations which will enable us to get an all order expression for

the asymptotic expansion of the anomalous dimension. For simplicity and to make the

comparison with [59] explicit, in this section we will focus on extracting the anomalous

dimension of O0,` — in the next section we will work out the all order expressions for both

the anomalous dimensions and OPE coefficients. The bootstrap equation, for identical

scalar external operators of conformal dimension ∆φ, in position space reads,

G(s)(u, v) ≡
∑
∆,`

C∆,`G∆,`(u, v) =
(u
v

)∆φ ∑
∆,`

C∆,`G∆,`(v, u) ≡ G(t)(u, v) (2.1)

where C∆,` is the square of the OPE coefficient of the exchange operator with spin `,

dimension ∆ and G∆,` is the conformal block.

We will work in the limit v � u� 1 following [59]. In this limit the bootstrap equation

reduces to,∑
∆,`

C∆,` u
∆−`

2 (f∆,`(v) +O(u)) =
(u
v

)∆φ ∑
∆,`

C∆,` v
∆−`

2 (f∆,`(v, u) +O(v)) . (2.2)

We denote the left and right side of eq. (2.2) by lhs and rhs respectively in what

follows. In the lhs the O(u) terms stand for descendant contributions which get mapped

to the O(v) terms in the crossed channel.

Following the analysis of [65, 66] one can show that there must exist large spin “double

trace” operators On,` ∼ φ∂µ1∂µ2 · · · ∂µ`�nφ (` � 1) on the lhs to reproduce the leading

behaviour on the rhs. Let us denote the conformal dimensions and the OPE coefficients

of these large spin operators by,

∆ = 2∆φ + 2n+ `+ γn,`

C∆,` = Cn,`(1 + δCn,`) (2.3)

where Cn,` is the leading order and δCn,` is the correction to the OPE coefficient. In this

section, for simplicity, we will focus on the operators with n = 0. However, this method

can be easily generalised to non-zero n. Plugging (2.3) in eq. (2.2) the lhs reduces to

the following, ∑
`

C0,`(1 + δC0,`)u
∆φ+

γ0,`
2 (f`(v) +O(u)) , (2.4)

where,

f`(v) = (1− v)` 2F1(∆φ + `+ γ0,`/2,∆φ + `+ γ0,`/2, 2∆φ + 2`+ γ0,`; 1− v) . (2.5)

– 8 –



J
H
E
P
0
1
(
2
0
1
8
)
1
5
2

To compute the anomalous dimension γ0,` we need to focus on the coefficient of u∆φ log u

on the lhs. To leading order in γ0,` we have,

lhs|log u =
∑
`

C0,`
γ0,`

2
f0
` (v) (2.6)

where,

f0
` (v) = (1− v)` 2F1(∆φ + `,∆φ + `, 2∆φ + 2`; 1− v) . (2.7)

We take C0,` to be the mean field OPE coefficients (which can be derived from demanding

that the disconnected piece in the crossed channel is reproduced by the direct channel in

the bootstrap equation)

CMFT
0,` =

2 Γ2(∆φ + `) Γ(2∆φ + `− 1)

`! Γ2(∆φ) Γ(2∆φ + 2`− 1)
(2.8)

and migrate to Mellin space. The Mellin transform of eq. (2.6) with respect to the Mellin

variable t is given by,

lhs|log u =
∑
`

γ0,`
Γ(2∆φ + `− 1)

`! Γ4(∆φ)
(2∆φ + 2`− 1)

∫ i∞

−i∞

dt

2πi
vt Γ2(∆φ + t) Γ2(−t)

× 3F2

[
−`, 2∆φ + `− 1, ∆φ + t

∆φ , ∆φ
; 1

]
. (2.9)

Note that we have explicitly pulled out the Gamma functions for convenience. Now we

will take the large spin `� 1 limit of the above expression. We will use the approximation

eq. (A.23) for the 3F2 hypergeometric function in the variable J0 where J2
0 = (`+ ∆φ)(`+

∆φ−1). At this stage we make a change of variable from the usual spin ` to the conformal

spin J0. The ` dependent piece other than the 3F2 can be approximated as,

(2`+ 2∆φ − 1)
Γ(2∆φ + `− 1)

Γ(`+ 1)
∼ J0

2∆φ−1
∞∑

r,k0=0

(1
2

r

)
4−rbk0(2−∆φ) J0

−2k0−2r , (2.10)

where we have used eq. (A.16) and b is defined in eq. (A.19) in terms of the generalized

Bernoulli polynomials. This shows that the choice of C0,` in eq. (2.8) naturally gives an

expansion in terms of even powers of 1/J0.

We can in fact do something better. Let us write the Mellin transform of the coefficient

of log u term in eq. (2.4) exactly as,

lhs|log u =
∑
`

1

2
γ0,`C0,`

∫ i∞

−i∞

dt

2πi
vt Γ2(

∆− `
2

+ t) Γ2(−t) Γ(∆ + `)

Γ2(∆+`
2 ) Γ2(∆−`

2 )

× 3F2

[
−`, ∆− 1, ∆−`

2 + t
∆−`

2 , ∆−`
2

; 1

]
. (2.11)

If we use C0,` to be

C0,` =
2 Γ2(∆φ + `+

γ0,`

2 ) Γ(2∆φ + `+
γ0,`

2 − 1)

Γ(`+ 1 +
γ0,`

2 ) Γ2(∆φ) Γ(2∆φ + 2`+ γ0,` − 1)
c(j)(`) (2.12)
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where c(j)(`) is an ` dependent factor we will determine shortly, and substitute ∆ =

2∆φ + `+ γ0,` in eq. (2.11) we obtain the following,

lhs|logu =
∑
`

c(j)(`)γ0,`

∫ i∞

−i∞

dt

2πi
vt

Γ2(∆φ+
γ0,`

2 +t)

Γ2(∆φ+
γ0,`

2 )
Γ2(−t)

×
Γ(2∆φ+`+

γ0,`

2 −1)(2∆φ+2`+γ0,`−1)

Γ(`+1+
γ0,`

2 )Γ2(∆φ)
3F2

[
−`,∆−1, ∆−`

2 +t
∆−`

2 , ∆−`
2

;1

]
. (2.13)

Quite nicely, if we take the large spin limit of the factors outside 3F2 in eq. (2.13) using

eq. (A.16), we get,

(2∆φ + 2`+ γ0,` − 1)
Γ(2∆φ + `+

γ0,`

2 − 1)

Γ(`+ 1 +
γ0,`

2 )
∼ J2∆φ−1

∞∑
r,k0=0

(1
2

r

)
4−r bk0(2−∆φ) J−2k0−2r

(2.14)

where J2 = (∆φ + ` + γ0,`/2)(∆φ + ` + γ0,`/2 − 1) and b is defined in eq. (A.19). We see

that the redefinition of C0,` in eq. (2.12) allows us to write the lhs in terms of J .

At this point, we assume that γ0,` has the following expansion in J ,

γ0,` ∼
∞∑
i=0

γ
(i)
0,`

Jτm+2i
. (2.15)

Here τm is the twist τ = ∆− ` of an operator in the crossed channel. While usually this is

the minimal twist operator, we can consider any operator in the crossed channel and ask

how its contribution is reproduced by the double trace operators in the direct channel. If

there are twist degeneracies, i.e., τ1 + k1 6= τ2 + k2 for any two (or more) operators with

twists τ1 and τ2 with k1, k2 ∈ Z, then their contributions to the relevant power of 1/J have

to be added. For a finite number of such contributions, we can simply add up the effects but

if infinite number of operators contribute, for instance the large spin double trace operators

themselves have τ ≈ 2∆φ, then summing up their effects may require more work.

Keeping the above issues in mind, we will take the large J limit of eq. (2.13). The J

sum can be done using the steps below.

∞∑
`=`0

c(j)(`)

((`+ a+
γ0,`

2 )(`+ a+
γ0,`

2 − 1))
α =

∞∑
k=0

(−1)k
(
−α
k

) ∞∑
`=`0

c(j)(`)

(`+ a+
γ0,`

2 )
2α+k

. (2.16)

This sum can be converted to an integral using the standard Euler-Maclaurin summation

formula. Since we are summing over only even spins ` we have to include a factor of 1
2

when we replace the sum by an integral,

∞∑
`=`0

c(j)(`)

(`+ a+
γ0,`

2 )
2α+k

=
1

2

∫ ∞
`0

d`
c(j)(`)

(`+ a+
γ0,`

2 )
2α+k

+ · · · (2.17)

where · · · represent remainder terms which will not produce a t pole. Now we make a

change of variable from ` to ˜̀= `+
γ0,`

2 and choose

c(j)(`)

(
1 +

1

2

∂

∂`
γ0,`

)−1

= 1 , (2.18)
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then eq. (2.17) reads,

1

2

∫ ∞
`0+

γ0,`
2

d˜̀

(˜̀+ a)
2α+k

=
1

2 (2α− 1 + k)
+ regular in t . (2.19)

Hence we are left with,8

∞∑
`=`0

1

((`+ a+
γ0,`

2 )(`+ a+
γ0,`

2 − 1))
α = 22α−3 Γ(1− α) Γ(α− 1

2)
√
π

+ regular . (2.20)

This justifies the normalisation in eq. (2.12) with eq. (2.18) and is exactly the same as

in [59]. This will introduce poles at specific values of t. The t integral in eq. (2.13) can

be evaluated using the residue theorem. Finally, for the large J approximation we get

the following,

lhs|log u = −
∑̂

v−∆φ+k̂+ τm
2 γ

(q)
0,` Γs (2.21)

where
∑̂

and Γs are defined in eq. (B.5).

Now let us focus on the piece proportional to log u on the rhs of the bootstrap equation

eq. (2.2) in the small u limit. We assume that there exists a minimal twist operator in the

spectrum [65, 66] and consider (for explicitness) the exchange of minimal twist scalar of

dimension ∆m in the t channel. The coefficient of log u on the rhs is given by,

rhs = −Cmv
τm
2
−∆φ log u

Γ(∆m)

Γ2(∆m
2 )

2F1

(
∆m

2
,

∆m

2
, 1− d

2
+ ∆m, ; v

)

= −Cm
Γ(∆m)

Γ2(∆m
2 )

∞∑
α=0

1

α!

(
∆m

2

)2
α

(1− d
2 + ∆m)α

v
τm
2
−∆φ+α log u (2.22)

where Cm is the OPE coefficient of the minimal twist scalar.

Now we are in a position to compare the powers of v from both side of the bootstrap

equation. Matching the powers of v
τm
2
−∆φ+k̂ from eq. (2.21) and eq. (2.22) we get the

following relation,∑
new

γ
(q)
0,`

(−1)n+p 4−p−r

2
√
πn!p!Γ2 (∆φ) Γ2

(
−n+k̂+ τm

2

)(1
2

r

)
Γ
(

1

2
+p
)

Γ
(
−k̂+∆φ−

τm
2

)
Γ
(
n−k̂+∆φ−

τm
2

)
×bk1 (∆φ) bk0 (2−∆φ) bk̂−k0−k1−n−p−q−r,n

(
−k̂− τm

2

)
Γ2
(
k̂+

τm
2

)
=−Cm

Γ(∆m)

Γ2
(

∆m
2

) 1

k̂!

(
∆m

2

)2
k̂(

1− d
2

+∆m

)
k̂

. (2.23)

where the sum is defined in eq. (B.7). This gives a recursion relation for γ
(q)
0,` . This recursion

relation can be solved iteratively for any q. The first few values of γ
(q)
0,` for q = 0, 1, 2 are

listed in [59] and exactly match with the values we get from (2.23). The generalisation of

8It is easy to see that to generate higher order poles at 2α−1+k = 0 we would need to introduce powers

of log(˜̀+ a) in the integrand in eq. (2.19).
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this recursion relation for general spin exchange is straightforward. In the next section we

will present the explicit formulae. The Mellin space translation (in the direct manner as

in this section) yields at least one algebraic simplification compared to [59]. In [59] there

are two main steps to compute the anomalous dimension in the large spin limit. There

are two recursion relations that one needs to solve in order to get the coefficients γ
(q)
0,` . In

the first recursion relation, an all order solution is not known, as a result of which an all

order expression for γ
(q)
0,` cannot be obtained this way (recently in [63] progress has been

made for integer external operator dimension). This makes the computation a bit more

involved although it can be automated on a computer. In d = 4 the twist conformal block

approach leads to some simplification [64] for certain exchanges. However, in Mellin space

the calculation is simpler and doable in any dimensions for any exchange. In the next

section, we will expand the equations in the Q-basis and get an all order expression for the

anomalous dimensions and OPE coefficients straightaway.

3 Explicit expressions

In this section, we will expand the t-dependence in the bootstrap condition in the previous

section in terms of the Q-basis. This will lead to an all order expression for the anomalous

dimension and OPE coefficient in terms of known mathematical functions which include

the generalized Bernoulli polynomials and the Mack polynomials.

3.1 Anomalous dimensions

We begin with the derivation of the anomalous dimension for O0,`.

3.1.1 s channel

Let us start with the Mellin transform of the s channel conformal block w.r.t. the Mellin

variable t which reads,

G(s)(u, v) =
∑
∆,`

C0,` u
∆−`

2

∫ i∞

−i∞

dt

2πi
vt Γ2

(
∆− `

2
+ t

)
Γ2 (−t) Γ (∆ + `)

Γ2
(

∆+`
2

)
Γ2(∆−`

2 )

× 3F2

[
−`, ∆− 1, ∆−`

2 + t
∆−`

2 , ∆−`
2

; 1

]
. (3.1)

We introduce the Mellin variable s conjugate to u and write eq. (3.1) as follows,

G(s)(u, v) = −
∑
∆,`

C0,`

∫ i∞

−i∞

ds

2πi

dt

2πi
us vt Γ2(s+ t) Γ2(−t) 1

s− ∆−`
2

Γ(∆ + `)

Γ2(∆+`
2 )Γ2(∆−`

2 )

× (2s+ `− 1)`
2` ((s)`)2

Q2s+`
`,0 (t) (3.2)

where we have replaced the 3F2 in eq. (3.1) by the continuous Hahn polynomial using

eq. (A.6). Note that eq. (3.2) evaluated at the pole s = ∆−`
2 (which comes from Γ(∆−`

2 −s))
exactly reproduces eq. (3.1). Now we write the pole piece in eq. (3.2) as follows,

1

s− ∆−`
2

→ Γ2(∆φ − s)
(

1

2
γ0,` + (∆φ − s) (γ0,` γE − 1)

)
+O(γ2

0,`) (3.3)
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where we have replaced ∆ by 2∆φ + ` + γ0,` and expanded in small γ0,`. Using eq. (3.3)

exactly reproduces u∆φ and u∆φ log u term which arise from eq. (3.2). The form of the rhs

of eq. (3.3) will facilitate a comparison with the new approach in the next section — the

additonal poles that we introduce through the form of the r.h.s. will not play any role as

we will only be interested in s = ∆φ. We obtain the following expession for the s channel,

G(s)(u, v) = −
∑
`

∫ i∞

−i∞

ds

2πi

dt

2πi
us vt Γ2(s+ t) Γ2(−t) Γ2(∆φ − s) q

(s)
0,`(s)Q

2s+`
`,0 (t) (3.4)

where,

q
(s)
0,`(s) = C0,`

2−`Γ2(s)Γ(2s+ 2`− 1)Γ(`+ ∆)

Γ2(s+ `)Γ(2s+ `− 1)Γ2
(

∆−`
2

)
Γ2
(
`+∆

2

)(γ0,`

2
+ (γ0,`γE − 1) (∆φ − s)

)
.

(3.5)

Since we are interested in the coefficient of log u from eq. (3.4) we have to evaluate the

residue at s = ∆φ from the double pole of Γ2(∆φ− s). The residue at s = ∆φ is given by,9

G(s)(u, v) = −
∑
`

u∆φ log u

∫
dt

2πi
vt Γ2(∆φ + t) Γ2(−t) q(s)

0,`(∆φ)Q
2∆φ+`
`,0 (t)

−
∑
`

u∆φ

∫
dt

2πi
vt Γ2(∆φ + t) Γ2(−t) q′(s)0,`(∆φ)Q

2∆φ+`
`,0 (t) . (3.6)

3.1.2 t channel

Let us now expand the t channel in Q-basis. We begin with the Mellin transform of the

∆m, `m operator contribution to the t channel,

G
(t)
∆m,`m

(u,v) = c∆m,`m

∫ i∞

−i∞

ds

2πi

dt

2πi
us vtΓ2(s+t)Γ2(∆φ−s)Γ2(−t)B∆m,`m(t+∆φ,s−∆φ)

(3.7)

where,

B∆,`(t+∆φ, s−∆φ) =
Γ(∆−`

2 −∆φ − t) Γ(2h−∆−`
2 −∆φ − t)

Γ2(−t)
P∆−h,`(t+∆φ, s−∆φ) , (3.8)

and where c∆m,`m = C∆m,`mN∆m,`m withN∆,` given in eq. (E.6). We will use the shorthand

Cm = C∆m,`m . As in the direct channel, we suppress the projection factor. Since we are

interested in the coefficient of log u we have to consider the double pole at s = ∆φ. The

residue at this pole is given by,

G
(t)
∆m,`m

(u, v) = c∆m,`m u
∆φ log u

∫ i∞

−i∞

dt

2πi
vt Γ2 (∆φ + t) Γ

(
∆m − `m

2
−∆φ − t

)
× Γ

(
2h−∆m − `m

2
−∆φ − t

)
P∆m−h,`m (t+ ∆φ, 0) . (3.9)

9We throw away derivatives acting on Γ2(s+t)Q2s+`
`,0 (t) in calculating the residue as in the final equation

after including the crossed channel, the coefficient in front will be q
(s)
0,`+2 q

(t)
0,` which is zero. This is identical

to what happens in the new approach [70, 71].
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In terms of the Q-basis, this becomes

∞∑
`=0

u∆φ log u

∫ i∞

−i∞

dt

2πi
vt Γ2(∆φ + t) Γ2(−t) q(t)

0,`|`m Q
2∆φ+`
`,0 (t) (3.10)

such that,

q
(t)
0,`|`m =

∫ i∞

−i∞

dt

2πi
Γ2(∆φ+t)κ`(∆φ)−1Q

2∆φ+`
`,0 (t) (3.11)

×c∆m,`m Γ

(
∆m−`m

2
−∆φ−t

)
Γ

(
2h−∆m−`m

2
−∆φ−t

)
P∆m−h,`m (t+∆φ,0) .

An important point to note at this stage is that each t-channel block, as written above,

on its own does not have the symmetry t → −s − t which exists in the s-channel. Thus,

for a specific exchange in the t-channel, before summing over the spectrum in eq. (3.11),

we could have odd spin elements in the basis (which naively get equated to zero as there

are no odd spin elements in the direct channel10) but this conclusion is incorrect as the

full t-channel does have the t→ −s− t symmetry which precludes odd spin elements. Put

differently, the sum over spectrum in the s-channel should know about the crossed channel

physical poles; this involves both t and u channel poles as is evident from eq. (1.4). In

position space we pick up one or the other depending on how we are closing the contour

(see e.g. appendix C). However, in Mellin space the existence of both sets of poles gives a

factor of 2 when decomposing in the Q-basis as in the new approach. Hence, in the final

step there will be an extra factor of 2 in the crossed channel — that this conclusion must

be correct can also be verified by comparing the expressions for anomalous dimensions

obtained from position space in section 2,11 — giving

q
(s)
0,` + 2 q

(t)
0,`|`m + · · · = 0 , (3.12)

where · · · denote contribution from other operators in the crossed channel and where

q
(t)
0,`|`m is obtained from eq. (3.11) by calculating the residue at t = ∆m−`m

2 − ∆φ + q for

q = 0, 1, 2, · · · :

q
(t)
0,`|`m =

∞∑
q=0

(
β`

(−1)q

q!
Γ2(∆φ + t) 3F2

[
−`, 2∆φ + `− 1, ∆φ + t

∆φ , ∆φ
; 1

]
(3.13)

× c∆m,`m Γ

(
2h−∆m − `m

2
−∆φ − t

)
P∆m−h,`m(t+ ∆φ, 0)

)
t= ∆m−`m

2
−∆φ+q

where,

β` =

(
κ−1
` (∆φ)

2` ((∆φ)`)
2

(2∆φ + `− 1)`

)
(3.14)

and we have used eq. (A.6). As in [70, 71], we will use the notation q
(t)
0,`|`m to denote

a particular ∆m, `m exchange in the crossed channel which contributes to the Q
2∆φ+`
`,0 (t)

10This would definitely be inconsistent!.
11There the origin of this factor of 2 was due to

∑
` → 1/2

∫
d`.
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basis element. From here on we will focus on this single contribution of spin `m and twist

τm ≡ ∆m − `m in the crossed channel so that the effective equation we are solving is

q
(s)
0,` + 2 q

(t)
0,`|`m = 0 . (3.15)

We now multiply both sides of eq. (3.15) with β−1
` so that we are left with only γ0,` in the

s channel whereas the ` dependence in the t channel can only come from the 3F2 hyperge-

ometric function in eq. (3.13). This can be expanded in the large J limit using eq. (A.23)

which involves only even powers of J through the J−2s−2t series whose contribution is

picked up as we are closing the contour on the right. This makes it evident that γ0,` in

the large spin limit can be expanded in a series involving only even powers of conformal

spin [57]. We assume that γ0,` admits the following expansion in J ,

γ0,` ∼
∞∑
i=0

γ
(i)
0,`

J2i
, (3.16)

where γ
(i)
0,`-s are the unknowns we want to solve for. In order to extract the coefficient of a

particular power J−2i in the t channel, we will denote k1 + k2 + q + n = i and replace k2

by i − k1 − n − q. We are now in a position to compare the coefficient of J−2i from both

sides of the bootstrap equation eq. (3.15). This results in the following expression for γ
(i)
0,`,

γ
(i)
0,` =− 1

Jτm
Cm

i∑
q=0

i−q∑
n=0

i−q−n∑
k1=0

(−1)n 21+`m bk1 (∆φ) bi−k1−n−q,n (3.17)

×
(τm

2
−∆φ+q

)
P̂τm+`m−h,`m (q+τm/2,0)

×
(τm+2`m−1) Γ(−h+`m+τm+1) Γ2 (2`m+τm−1) Γ2 (∆φ) Γ

(
q+ τm

2

)
Γ
(
n+q+ τm

2

)
n!q!Γ(1−h+q+`m+τm)Γ4

(
`m+ τm

2

)
Γ(`m+τm−1)Γ2

(
−n−q+∆φ− τm

2

)
where P̂ is defined in eq. (D.1). The b’s are defined in eq. (A.19). This completes the

derivation of the all order expression for the anomalous dimension to all orders in inverse

conformal spin. The first few values are in agreement with [59].

3.2 OPE coefficients

In this section, we will derive an all order expression for the (corrections to) OPE coefficients

of the double trace operators eq. (2.3) as an asymptotic expansion. In order to compute

the OPE coefficient we have to focus on the coefficient of the power law term u∆φ from

both sides of the bootstrap equation eq. (2.1). We will expand the t-dependence in the

Q-basis following the analysis of the previous section.

We start with the s channel expression eq. (2.4). Expanding this in γ0,` we extract the

coefficient of u∆φ to leading order in γ0,` and δC0,`,

G(s)(u, v) =
∑
`

(
−
γ0,`

2
C0,` f`(v) log(1− v) + C0,` δC0,` f`(v)

)
(3.18)
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where C0,` is defined in eq. (2.12). The log(1 − v) term arises from the factor (1 − v)` on

re-expressing ` in terms of J and expanding in γ0,` [59]. Now eq. (3.18) can be written as,

G(s)(u,v)|
u

∆φ =
∑
`

∫ i∞

−i∞

dt

2πi
vtΓ2(∆φ+t)Γ2(−t) q̃(s)

1,`Q
2∆φ+`
`,0 (t)

(
δC0,`−

γ0,`

2
log(1−v)

)
(3.19)

where,

q̃
(s)
1,` = C0,`N2∆φ+`,` 4−` Γ(h− 2∆φ − `) (2∆φ + `− 1)` (2h− 2∆φ − `− 1)` . (3.20)

Note that we have already expanded the first term in Q-basis following eq. (3.6). For the

second term we will use the expression which comes from matching the coefficients of the

u∆φ log u term eq. (3.15). For simplicity let us first assume the case of scalar (dimension

∆m) exchange in the t channel i.e. `′ = 0. Expanding log(1 − v) in eq. (3.19) the second

term simplifies to the following:∑
`

∫ i∞

−i∞

dt

2πi
vt Γ2(∆φ + t) Γ2(−t) q̃(s)

2,` Q
2∆φ+`
`,0 (t) (3.21)

where,

q̃
(s)
2,` =−2β`

∞∑
n,k1,k2,r=0

c∆m,0

∫ i∞

−i∞

dt

2πi
Γ2 (∆φ+t−1−r) Γ

(
∆m

2
−∆φ−t+1+r

)
(3.22)

×Γ
(

2h−∆m

2
−∆φ−t+1+r

)
(−1)nΓ2(∆φ)(∆φ+t)n
n! (r+1)Γ2(−t−n)

bk1(∆φ)bk2,n(t)J−2k1−2k2−2n−2∆φ−2t .

The t integral can be done using residue theorem. The residue at t = ∆m
2 −∆φ + 1 + r+ q

(q = 0, 1, · · · ) reads,

q̃
(s)
2,` =−β`

( ∑
n,q,r,k1,k2

2c∆m,0 Γ2(∆φ+t−1−r)Γ
(

2h−∆m

2
−∆φ−t+1+r

)
(3.23)

× (−1)n+q+1 Γ2(∆φ)(∆φ+t)n
n!q! (r+1)Γ2(−t−n)

bk1(∆φ)bk2,n(t)J−2k1−2k2−2n−2∆φ−2t

)
t=

∆m

2
−∆φ+1+r+q

where β` is defined in eq. (3.14).

Now let us consider the t channel. The non-log term from the residue at s = ∆φ is

given by,

G
(t)
∆m,0

(u, v) = u∆φ

∫ i∞

−i∞

dt

2πi
vt Γ2(∆φ + t) Γ2(−t) q̃(t)

1,`|0Q
2∆φ+`
`,0 (t) (3.24)

where,

q̃
(t)
1,`|0 = β`

∑
n,q,k1,k2

(
2c∆m,0

(−1)n+q+1

n!q!
Γ2(∆φ+t)Γ(

2h−∆m

2
−∆φ−t)

Γ2(∆φ)(∆φ+t)n
Γ2(−t−n)

×(2γE+2ψ(t+∆φ))bk1(∆φ)bk2,n(t)J−2k1−2k2−2n−2∆φ−2t

)
t= ∆m

2
−∆φ+q

. (3.25)
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Then the bootstrap condition for the u∆φ term is given by,

q̃
(s)
1,` = −q̃(s)

2,` + q̃
(t)
1,`|0 . (3.26)

If we take the overall β` to the left we are left with 2 δC0,` and the right hand side contains

only even powers of J from the asymptotic expansion of 3F2 eq. (A.23). This makes

it evident that the correction to the OPE coefficient in the large spin limit is also an

expansion containing only even powers of J . We assume the following expansion for the

OPE coefficient in the large spin limit,

δC0,` ∼
∞∑
i=0

δC
(i)
0,`

J2i
. (3.27)

Matching the powers of J−2i from both sides of eq. (3.26) we derive the following expression

for the OPE coefficient,

δC
(i)
0,` =

1

J∆m
Cm

i∑
n+q+k1=0

2(−1)n+q+1

n!q!Γ2(−n−q+∆φ−∆m/2)
N∆m,0 (q+∆m/2)n bk1(∆φ)

×bi−k1−n−q,n

(
∆m

2
−∆φ+q

)
Γ2(∆φ)Γ(h−q−∆m)Γ2(q+∆m/2)Hq+∆m/2−1

+
1

J∆m
Cm

i∑
n+q+r+k1=0

(−1)n+qΓ2(∆φ)Γ(h−q−∆m)Γ2(q+∆m/2)

(1+r)n!q!Γ2(−1−r−n−q+∆φ−∆m/2)

×N∆m,0 (1+r+q+∆m/2)n bk1(∆φ)bi−1−r−k1−n−q,n

(
∆m

2
−∆φ+q+r+1

)
(3.28)

where the b’s are defined in (A.19). The first two terms for i = 0, 1 exactly12 match with

the results given in [59]. We also give the expression for a general spin `m and twist τm
exchange in the t channel,

δC0,` ∼
∞∑
i=0

δC
(i)
0,`

J2i
(3.29)

with

δC
(i)
0,` =

1

Jτm

(
η

(i)
1 + η

(i)
2 + η

(i)
3

)
(3.30)

where the η’s are given in appendix F.

4 Mellin space bootstrap in the new approach

In this section, we will consider the problem of extracting anomalous dimensions of the

double trace operators using the recently introduced reformulation of the conformal boot-

strap in terms of tree level exchange Witten diagrams [70, 71]. This approach efficiently

reproduces anomalous dimensions and OPE coefficients of the Wilson-Fisher theory in

12There is a small typo in [59] in the bracketting for δC
(1)
0,` .
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d = 4− ε up to O(ε3). Up to this order, in the crossed channel, only the φ2 operator con-

tributes which is the reason for the huge simplification in the equations. At the next order

the equations become complicated as new operators start contributing. As will become

evident, at the next order, the polynomial ambiguity in the Witten diagram basis will also

play a role. We begin with a quick review of [70, 71] to set the notation.

4.1 A quick review

The Mellin transform of four point function for identical scalars defined through eq. (1.3)

gives the Mellin Amplitude M(s, t) which in the spectral representation has the following

form,

M(s, t) =
∑
∆,`

c∆,`(M
(s)
∆,`(s, t) +M

(t)
∆,`(s, t) +M

(u)
∆,`(s, t))

=
∑
∆,`

c∆,`

∫ i∞

−i∞
dνµ∆,`(ν)

(
Ω

(s)
ν,`(s)P

(s)
ν,` (s, t)

+ Ω
(t)
ν,`(t)P

(t)
ν,` (s−∆φ, t+ ∆φ) + Ω

(u)
ν,` (s+ t)P

(u)
ν,` (s−∆φ, t)

)
.

(4.1)

The spectral function is

µ∆,`(ν) =
Γ2(

2∆φ−h+`+ν
2 )Γ2(

2∆φ−h+`−ν
2 )

2πi((∆− h)2 − ν2)Γ(ν)Γ(−ν)(h+ ν − 1)`(h− ν − 1)`
(4.2)

and

Ω
(s)
ν,`(s) =

Γ(h+ν−`
2 − s)Γ(h−ν−`2 − s)

Γ2(∆φ − s)
. (4.3)

Ω
(t)
ν,`(t) and Ω

(u)
ν,` (s + t) are obtained from eq. (4.3) by the replacements s → t + ∆φ and

s→ ∆φ − s− t respectively.

For the s channel we have from [70, 71],

M
(s)
∆,`(s, t) =

∑
`

q
(s)
∆,`(s)Q

2s+`
`,0 , (4.4)

with,

q
(s)
∆,`(s) = −

C0,`N∆,`4
1−`Γ2(∆φ + s+ `− h)

(`−∆ + 2s) (`+ ∆ + 2s− 2h) Γ(2s+ `− h)
. (4.5)

The t-channel is given by,

M
(t)
∆,`′(s, t) =

∑
`

q
(t)
∆,`|`′(s)Q

2s+`
`,0 (4.6)

with,

q
(t)
∆,`|`′ (s) =κ` (s)−1

∫ i∞

−i∞

dt

2πi
dνΓ2 (s+t)Γ

(
h+ν−`

2
−t−∆φ

)
Γ

(
h−ν−`

2
−t−∆φ

)
µt∆,`′ (ν)P

(t)
ν,`′ (s−∆φ, t+∆φ)Q2s+`

`,0 (t) .

(4.7)
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For identical scalars the u-channel is related to the t-channel via,

q
(t)
∆,`|`′(s) = (−1)`q

(u)
∆,`|`′(s) . (4.8)

Now demanding that the spurious pole at s = ∆φ cancels we will get the following consis-

tency conditions,

q
(s)
∆,`(∆φ) + 2 q

(t)
∆,`|`′(∆φ) = 0 ,

q′
(s)
∆,`(∆φ) + 2 q′

(t)
∆,`|`′(∆φ) + qdisc = 0 . (4.9)

qdisc is the disconnected contribution which is added separately. Further we are focusing

on a single operator in the crossed channel. The t channel at s = ∆φ can be explicitly

worked out following the steps in [70, 71]. It is convenient to make a change of variable

from the usual spin ` to the conformal spin J . In terms of J it reads,

1

β`
q

(t)
∆,`|`′ =−

∞∑
n,k1,k2,q=0

C∆,`′N∆,`′
(−1)n+q

n!q!
bk1 (∆φ) bk2,n

×
(

∆−`′

2
−∆φ+q

)
J−2k1−2k2−2n−2q−∆+`′

×
Γ(2h−∆−1)Γ(h−q−∆)Γ

(
q+ ∆

2
− `′

2

)
Γ
(
n+q+ ∆

2
− `′

2

)
πΓ(`′+∆−1)Γ(2h+`′−∆−1)Γ

(
−n−q+ `′−∆

2
+∆φ

)2 P∆−h,`′
(

∆−`′

2
+q,0

)
×Γ(∆−1)Γ2 (∆φ) Γ2

(
`′−∆

2
+∆φ

)
Γ2
(
−h+

`′+∆

2
+∆φ

)
sin(π (h−∆)) . (4.10)

4.2 Equivalence of the two bootstraps

In this section we will show that the s channel expressions from both the bootstraps are

exactly the same at O(γ). We will also show that the t channel expressions identical in the

large spin limit. The latter is to be expected since in the large spin limit only the physical

pole contributions are picked up in both approaches.

4.2.1 s channel

First let us consider the s channel. We will show that the s channels are identical at O(γ0,`)

and the difference arises only at O(γ2
0,`). The details are given in appendix G. Comparing

eq. (G.1) and eq. (G.3) it is easy to verify that,

q
(s)
∆,`(∆φ)−q(s)

0,`(∆φ) =C0,`
2−`−2Γ(2(`+∆φ))Γ(2`+2∆φ−1)

Γ4 (`+∆φ)Γ(`+2∆φ−1)

×
(

2H∆φ−1−2γE+
1

2∆φ−h+`
−2H`+∆φ−1+2H2(`+∆φ−1)−2H`+2∆φ−2

)
γ2

0,`

+O(γ3
0,`) (4.11)

and we find,

q′
(s)
∆,`(∆φ)− q′

(s)
0,`(∆φ) = f(∆φ, `) (4.12)

where f(∆φ, `) is defined in (G.4).
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4.2.2 t channel

The t channel expression from the coefficient of u∆φ log u in the new and usual bootstraps

are given in eq. (4.10) and eq. (3.13) respectively. In the large spin limit we can use

eq. (A.23) for the Hahn polynomial which results in the following,

q
(t)
∆,`|`m = q

(t)
0,`|`m . (4.13)

This shows that in the large spin limit the coefficient of u∆φ log u from t channels are

exactly the same.

Now we will show that the coefficient of u∆φ from both the bootstraps are also related.

We have the coefficient of u∆φ from (3.7) and the expression for the Mellin bootstrap

can be read off from [70, 71]. Comparing both the terms by using the reflection identity

judiciously, we find,

q′
(t)
∆,`|`m = q′

(t)
0,`|`m . (4.14)

Thus the O(γ2
` ) difference between the two approaches at large spin is contained only in

the s-channel expressions. A word of caution: while the above discussion certainly holds

for large spin, we cannot blindly set ` = 0 e.g., in eq. (4.11) as there are finite support

pieces in both formalisms that need to be added before we compare the expressions.

4.3 Comments on finite support

In [62, 64] it was pointed out that there can be contribution to the anomalous dimension

which have finite support in spin, i.e.,

γ` = γasymp
` + γfin

`

where the last piece is an extra contribution and contributes only to ` < s where s is some

finite spin. In the new bootstrap, it is easy to see where such an extra contribution comes

from. In the large spin limit there is a Γ(−n − t)2 inverse factor for the crossed channels

that kills the contribution from the Γ(−t)2 poles in the measure. For finite spin, e.g., ` = 0

clearly these poles will contribute (for instance in the epsilon expansion these poles are

crucial to give the right answer [70–72]). Hence there will be an extra contribution from

these poles for low spins in the crossed channel. When we set up the difference equation

for low lying spins, it will be important to take into account these contributions in both

the approaches as these pieces will be different in the two formalisms from O(γ2).

4.4 Polynomial ambiguity of Witten diagram

In this section we will show how the polynomial ambiguity in the Witten diagrams are

needed for the equivalence of the two bootstraps at O(γ2). Since the t channels are the

same in both the bootstraps we focus only on the s channel which reads eq. (3.5) eq. (4.5),

susual =

∞∑
`=0

q
(s)
0,`(s)Q

2∆φ+`
` (t) , sMellin =

∞∑
`=0

q
(s)
∆,`(s)Q

2∆φ+`
` (t) . (4.15)
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In the Witten diagram basis, for a spin ` exchange, we can add a `− 1 polynomial piece in

t [79]. For the double trace operators, we can write the combination of these terms as,

q
(s)
amb =

∞∑
`=0

`−1∑
`′=0

d`′,`(s)Q
2∆φ+`′

`′,0 (t) , (4.16)

where d`′,`-s are the unknowns and need to be fixed. The upper limit of the sum makes

it evident that the polynomial ambiguity of Witten diagram for spin ` is a polynomial of

degree `− 1.

Now the s channel in Mellin bootstrap reads,

snow
Mellin =

∞∑
`=0

(
q

(s)
∆,`(s)Q

2∆φ+`
` (t) +

`−1∑
`′=0

d`′,`(s)Q
2∆φ+`′

`′,0 (t)

)
. (4.17)

Now we demand the equality of eq. (4.17) and eq. (4.15),

∞∑
`=0

q
(s)
∆,`(s)Q

2∆φ+`
` (t) +

∞∑
`=0

`−1∑
`′=0

d`′,`(s)Q
2∆φ+`′

`′,0 (t) =
∞∑
`=0

q
(s)
0,`(s)Q

2∆φ+`
` (t) . (4.18)

We multiply both side by Q
2∆φ+˜̀

˜̀,0
(t) and use the orthonormality of the continuous Hahn

polynomials. Comparing the coefficients of Q
2∆φ+˜̀

˜̀,0
(t) we obtain,

∞∑
`=˜̀+1

d˜̀,`(∆φ) = q
(s)

0,˜̀
(∆φ)− q(s)

∆,˜̀
(∆φ) for even ˜̀,

∞∑
`=˜̀+1

d˜̀,`(∆φ) = 0 for odd ˜̀. (4.19)

Similarly we have an analogous constraint from the derivative expression,

∞∑
`=˜̀+1

d′˜̀,`(∆φ) = q′
(s)

0,˜̀
(∆φ)− q′(s)

∆,˜̀
(∆φ) for even ˜̀,

∞∑
`=˜̀+1

d′˜̀,`(∆φ) = 0 for odd ˜̀. (4.20)

The difference can be read off from eq. (4.11) and eq. (4.12) respectively. It will be inter-

esting to see if the results of [85, 87–92] can be used to solve these constraints (at least for

the large spin operators).

5 Universal asymptotics and analyticity in spin

Let us discuss a very interesting consequence of the formulae in eq. (3.17) and eq. (3.30).

First, following [59] let us plot rγ =

√
|γ

(k+1)
0,`

γ
(k)
0,`

| (see figure 1). As is evident from the
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Figure 1. Plots of log rγ vs log k for various twists and spins. The solid black line is rγ = k/π.

The dashed lines are for d = 3,∆φ = 0.518, the dotted lines are for d = 4,∆φ = 1.28 and the

dot-dashed lines for d = 5,∆φ = 1.88.

log-log plot below, for large k, rγ asymptotes to k/π. This is exactly what was found

analytically in [59] for certain integer dimension scalar exchange and numerically for the

ε exchange in the 3d Ising case. Remarkably, this behaviour seems to be universal for

any exchange, not just scalars. Using the explicit equation (eq. (3.17)) we can explain

this finding. By explicitly checking the expression,13 the large k limit is dominated by

k1 = k, q = n = k2 = 0 with the ensuing sum over generalized Bernoulli polynomials

in eq. (A.17) being dominated by the top term. Using the asymptotic behaviour of the

generalized Bernoulli polynomial [96]

B(µ)
n (z) =

2n!nµ−1

(2π)n Γ (µ)

(
cosπ

(
2z + µ− 1

2
n

)
+O (1/n)

)
, (5.1)

we find that

rγ ∼
k

π
+

1

4π
+O(1/k) . (5.2)

Here the O(1/k) correction in eq. (5.2) and ∆φ enter only at the O(1/k) order. An im-

mediate feature of this is that it is the same ratio for any spin or any dimension exchange

for any ∆φ. Furthermore, the straight line behaviour is approached from above accord-

ing to this formula. γ
(k)
0,` ’s in the large k limit are alternating in sign. The OPE ratio

rOPE =

√
| δC

(k+1)
0,`

δC
(k)
0,`

| asymptotic behaviour is the same (see figure 2).

So what does one gain by knowing this? In [59] it was pointed out that the series can

be Borel resummed. We will point out another feature of these asymptotics. A series of

the sort
∞∑
n=0

(−1)n
an
J2n

,

13While this can presumably be established more rigorously, our claim is based on explicit checks and the

numerical results in the plots. A further comment is that for twist 2 exchange, the behaviour is completely

different and the graph flattens out — this appears to be an exception and is consistent with the claims

in [64].
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Figure 2. Plots of log rOPE vs log k for various twists and spins. The solid black line is rOPE = k/π.

The dashed lines are for d = 3,∆φ = 0.518, the dotted lines are for d = 4,∆φ = 1.28 and the dot-

dashed lines for d = 5,∆φ = 1.88. The OPE for the τ = 1.41, d = 3 exhibits an interesting feature

which needed us to go to a higher number of points to see the asymptotic behaviour.

is called a Stieltjes series [97] if

an =

∫ ∞
0

W (y)yndy ,

where W (y) is a positive weight function (i.e., W (y) > 0 for y > 0). An example where

an+1/an → n2/π2 + n/(2π2) as in the anomalous dimensions above for large n (for the

choice we make this is for any n) is obtained by choosing W (y) = exp(−2π
√
y − log y).

From here one can construct an analytic function f(j)

f(j) =

∫ ∞
0

W (y)

1 + jy
dy ,

which is analytic except on the negative real axis in the j complex plane, goes to zero as

j → 0, admits the asymptotic expansion f(j) ∼
∑∞

n=0(−1)nanj
n so that we can identify

j = 1/J2 in our case. −f(j) also satisfies and important property called the Herglotz

property which means that −Im f has the same sign as −Im j in complex j plane. This

essentially implies that the function f(j) must have singularities in the complex plane.

From here, it can be shown that defining

A(j) =
1

2i
lim
ε→0

(f [j + iε]− f [j − iε]) , (5.3)

then one can get a dispersion relation (where the cut is on the negative real axis in j) for

the coefficients an:

an =
1

π

∫ 0

−∞
dj
A(j)

jn+1
. (5.4)

Another nice property of the above Stieltjes series is that since the an’s satisfy the Car-

leman condition,14 namely an’s do not grow faster than (2n)!αn with α = 1/(2π)2 in this

case, then the 1/J series can be Padé resummed (to a unique value). Further when the

Carleman condition is met, the weight function W (y) is unique — one may idly wonder

14In our example, this condition is saturated whereas for the energy for an anharmonic oscillator with x4

perturbation, the an’s grow like n!3n [97] while for x6 it grows like (2n)!.
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if the uniqueness is telling us of an (unique?) effective theory for the large spin sector.

These comments are tied in with the analyticity in spin observations of Caron-Huot’s [98].

It should be possible to find the weight function for the actual series for the anomalous

dimensions and OPE coefficients rather than the related example above and hence obtain

A(j). The uniqueness property of W (y) suggests that it should be possible to dress this

function to obtain the weight function for the actual series such that the leading asymp-

totics for an’s remain the same. This would be a direct way of calculating an much like

the inversion formula that [98] has for the OPE coefficients. Our all orders formula is of

course doing precisely this but we have not used the powerful analyticity properties — it

is very likely many of the steps may simplify further if we were to do this and it will be

desirable to establish the relevant Mellin space techniques for the same.

6 Discussion

In this paper we have worked out explicit expressions for the anomalous dimensions and

OPE coefficients of large spin double trace operators ∆ = 2∆φ + ` + γ` to all orders in

inverse conformal spin by exploiting Mellin space techniques. We also demonstrated the

equivalence of the usual approach and new approach in terms of Witten diagrams to O(γ`)

and worked out the constraint on the polynomial ambiguity piece at O(γ2
` ). The main

formula that we derived in this paper which made a systematic exploration of this possible

was the large parameter asymptotics for the continuous Hahn polynomials. There are

several future directions to pursue:

• It should be possible to develop our methods for other twist operators On,` and

extend the holographic reconstruction calculations of [64, 95] to arbitrary dimensions

(see [93, 94, 99–101] for related earlier work on this). We believe that Mellin space

techniques are the best suited to address this issue and our methods will prove useful

in this venture.

• The connection between the usual approach and the new approach for ` = 0 operators

rather than large spin operators should be studied. The efficiency of the expansion in

the Witten diagram basis that was found in our earlier work [70–72] in the context of

the epsilon expansion is still not properly understood and it will be gratifying to find

a way to incorporate the same efficiency in the standard formulation of bootstrap.

This paper shows that the polynomial ambiguity in the Witten diagram basis will not

change the results in [70–72] but will be relevant to go to the next order compared

to these papers. Hence, developing the systematics of the epsilon expansion from

bootstrap will need an understanding of these polynomial terms. Our findings in this

paper will now make it possible [102] to extract the results for anomalous dimensions

for the double trace operators at order ε5

`2
using the usual approach since this term only

needs the ε3 OPE coefficient and anomalous dimension of lower operators which can

be calculated using the new approach. This will be a new prediction since Feynman

diagram results at five loop order for higher spin operators are not available as of now.
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• So far as the Witten diagram basis is concerned, it will be very important to un-

derstand how to fix the polynomial ambiguity so that it is consistent with the usual

formulation. As of now, an independent governing principle for these terms is lacking.

Our analysis in this paper suggests that in order to have a Witten diagram basis,

we do not have freedom to adjust the polynomial ambiguity. It will be important

to understand this issue more clearly [86]. Without understanding this point, it will

be futile to attempt to do numerics using the Witten diagram basis. It will be in-

teresting and important to derive the explicit expressions in this paper by exploiting

the analyticity in spin [98]. We believe there will be further simplifications in the

intermediate steps to be had and it is very likely that nontrivial constraints on the

polynomial ambiguity will be found.

• Our asymptotic formula for 3F2 will likely find use in the analysis of external oper-

ators carrying spin [103, 104]. It should be possible to find asymptotic anomalous

dimensions and OPE coefficients for the relevant double trace operators appearing,

for example, in the bootstrap constraints on 〈JJφφ〉 where J is an external con-

served current.

• Recently Tauberian theorems were proved in [105] which puts the lightcone limit of

the bootstrap equations on firmer footing. These theorems were proved making use

of position space. It will be interesting to see if any simplifications are to be had by

making use of Mellin space.
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A Asymptotics of continuous Hahn polynomial

In the Mellin space approach considered in this paper, the key ingredient is the large

spin asymptotics of the continuous Hahn polynomials. Unfortunately, a suitable form

does not exist in the literature. However, we can piece together several existing results in

the literature and come up with a very convenient form. This form will use the inverse

conformal spin as the expansion parameter which will enable us to derive simple all order

expressions for the asymptotic expansions in the large conformal spin limit considered in

the paper. These expressions will be in terms of generalized Bernoulli polynomials which

are known and studied in the literature. We will outline the derivation in this appendix —

the main formula is eq. (A.23).
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The continuous Hahn polynomials can be derived as a limit from Wilson polynomials

(see e.g., [106]). Wilson polynomials are defined as

Wn(x2; a, b, c, d) = (a+b)n(a+c)n(a+d)n 4F3

[
−n, n+ a+ b+ c+ d− 1, a+ ix, a− ix

a+ b , a+ c a+ d
; 1

]
.

(A.1)

The continuous Hahn polynomials are obtained through a limit15

lim
t→∞

Wn((x+ t)2; a− it, b− it, c+ it, d+ it)

(−2t)nn!

= in
(a+ c)n(a+ d)n

n!
3F2

[
−n, n+ a+ b+ c+ d− 1, a+ ix

a+ c , a+ d
; 1

]
. (A.2)

Now thankfully, Wilson in 1991 [108] worked out the large argument (n→∞) asymp-

totics of the Wilson polynomials.

Wn(x2) = n!
r−1∑
k=0

uk(ix)un−k(−ix)
2ix− n+ 2k

2ix
+ πr(ix)A(−ix)CnO(n−2ix−2r) + c.c. ,

(A.3)

where

πk(x) = (a+ x)k(b+ x)k(c+ x)k(d+ x)k , (A.4)

and

uk(x) =
πk(x)

k!(1 + 2x)k
, A(x) =

Γ(2x)

Γ(a+ x)Γ(b+ x)Γ(c+ x)Γ(d+ x)
. (A.5)

We are interested in finding the asymptotics of the 3F2 that appears in the definition

of the continuous Hahn polynomials:

Q2s+`
`,0 (t) =

2` ((s)`)
2

(2s+ `− 1)`
3F2

[
−`, 2s+ `− 1, s+ t

s , s
; 1

]
. (A.6)

These polynomials satisfy the orthogonality property [106],

1

2πi

∫ i∞

−i∞
dt Γ2(s+ t)Γ2(−t)Q2s+`

`,0 (t)Q2s+`′

`′,0 (t) = (−1)`κ`(s)δ`,`′ , (A.7)

where,

κ`(s) =
4``!

(2s+ `− 1)2
`

Γ4(`+ s)

(2s+ 2`− 1)Γ(2s+ `− 1)
. (A.8)

Comparing with eq. (A.2) we find a = b = s, c = d = 0, n = `. Then using eq. (A.3) we find

3F2

[
−`, 2s+ `− 1, s+ t

s , s
; 1

]
∼
∑
k

`Ck(−1)k
(−t)2

`−k(s+ t)2
k

(s)2
`

+ (t→ −s− t) (A.9)

15There is an important typo in [106] as it misses the tn factor in the denominator! The correct expression

is what we use from [107].
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Now it can be verified that the asymptotic expansion for `→∞ satisfies16

∑
k

`Ck(−1)k
(−t)2

`−k(s+t)2
k

(s)2
`

∼
∑
n

(−1)n`!Γ2(s)Γ(`−n+1+s−t)Γ(n+s+t)

n!Γ(2s+`−1)Γ2(−n−t)Γ(s+t)Γ(1+`+n+s+t)
.

(A.10)

The reason we prefer this second, seemingly more complicated, form will become clear

in a bit. The way we reached this second form was to begin with the inverse Mellin

transform formula

3F2

[
−`, a+ `, b

c , d
; z

]
=

1

2πi

∫ i∞

−i∞
dξ z−ξ F (ξ) (A.11)

where,

F (ξ) =
Γ(c) Γ(d) Γ(b− ξ) Γ(−`− ξ) Γ(a+ `− ξ) Γ(ξ)

Γ(b) Γ(−`) Γ(a+ `) Γ(c− ξ) Γ(d− ξ)

= (−1)ξ `!
Γ(c) Γ(d) Γ(b− ξ) Γ(a+ `− ξ) Γ(ξ)

Γ(b) Γ(1 + `+ ξ) Γ(a+ `) Γ(c− ξ) Γ(d− ξ)
(A.12)

This 3F2 can be mapped to the continuous Hahn polynomial eq. (A.6) with the fol-

lowing mapping: a = 2s− 1, b = s+ t, c = s, d = s and z = 1. The r.h.s. of eq. (A.10) are

the residues at ξ = b+ n given by

Rn1 =
(−1)n Γ(`+ 1) Γ(c) Γ(d) Γ(a− b+ `− n) Γ(b+ n)

n! Γ(a+ `) Γ(c− b− n) Γ(d− b− n) Γ(b) Γ(b+ 1 + `+ n)
. (A.13)

Now let us focus on the `- dependent terms in eq. (A.13),

Γ(`+ 1)

Γ(a+ `)
× Γ(a− b+ `− n)

Γ(b+ 1 + `+ n)
. (A.14)

The trick we will use now is to use the following identity [109],

Γ (λ+ α)

Γ (λ+ β)
∼
∞∑
j=0

Γ (β − α+ 2j)

Γ (β − α) (2j)!
B1+α−β

2j

(
1 + α− β

2

) (
λ+

α+ β − 1

2

)−2j

(A.15)

where B-s are the generalised Bernoulli polynomial. These are also known as the Nørlund

polynomials and are inbuilt in Mathematica. Explicit expressions in terms of 2F1 are known

through the work of [110]. By shifting the variable, λ→ J where J =
√
λ (λ+ α+ β − 1)

we can write,

Γ(λ+ α)

Γ(λ+ β)
∼
∞∑
k=0

dα,β,k J
α−β−2k (A.16)

where,

dα,β,k =

k∑
j=0

cj

(α−β−2j
2

k − j

)(
−1 + α+ β

2

)2k−2j

(A.17)

16This can be verified on Mathematica. A word of warning: there appears to be a bug in Mathematica

when it comes to expanding the inbuilt Pochhammer symbol of the sort (a + n)n for large n as it gives

identically 1! It is safer to rewrite the Pochhammers in terms of gamma functions and then do the expansion.
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and

cj =
Γ(β − α+ 2j)

Γ(β − α) (2j)!
B1+α−β

2j

(
1 + α− β

2

)
. (A.18)

To shorten the notation, we will henceforth denote,

bk1(s) = dα1,β1,k1 , bk2,n(t) = dα2,β2,k2 (A.19)

where,

α1 = 1− s = −β1, α2 = −t− 1− n = −β2 . (A.20)

Now if we use the identity eq. (A.15) we get an asymptotic expansion for the two ratios of

the Gamma functions in eq. (A.14),

Γ(`+ 1)

Γ(a+ `)
∼

∞∑
k1=0

bk1(s) Jα1−β1−2k1

Γ(a− b+ `− n)

Γ(b+ 1 + `+ n)
∼

∞∑
k2=0

bk2,n(t) Jα2−β2−2k2 (A.21)

where λ = `+ s and J2 = (`+ s)(`+ s− 1). Note that this J is nothing but the conformal

spin. Using the above in eq. (A.14) we get the following from eq. (A.13),

Rn1 ∼
(−1)n

n!

Γ2(s) Γ(s+ t+ n)

Γ2(−t− n) Γ(s+ t)

∞∑
k1,k2=0

bk1(s) bk2,n(t) J−2k1−2k2−2s−2t−2n . (A.22)

From the above expression it is evident that only even powers of J will appear in the

expansion after pulling out J−2s−2t. Note that for this to happen it was important for

α1 + β1 = α2 + β2 = 0 to hold. Plugging it in eq. (A.6) we get the large ` approximation

of the 3F2 hypergeometric function,

3F2

[
−`, 2s+`−1, s+t

s , s
;1

]
∼

∞∑
n,k1,k2=0

(−1)n

n!

Γ2(s)(s+t)n
Γ(−t−n)2 bk1(s)bk2,n(t)J−2k1−2k2−2n−2s−2t

+
∞∑

n,k1,k2=0

(−1)n

n!

Γ2(s)(−t)n
Γ(s+t−n)2 bk1(s)bk2,n(−s−t)J−2k1−2k2−2n+2t .

(A.23)

The presence of the second term makes it evident that the 3F2 is symmetric under the

exchange t → −s − t. Eq. (A.23) then is our primary formula with b’s defined via

eqs. (A.17), (A.18), (A.19). Note that in explicit calculations in position space we pick

up either of the series but not both, depending on how we choose to close the contour.
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B Calculation details for section 2

We will give some algebraic details of section 2. The large spin behavior of eq. (2.9) in

terms of J reads,

lhs|log u =
2

Γ(∆φ)2

∑
J

∑̃∫
dt

2πi
vt γ

(q)
0,`

(−1)n

4rn!

(1
2

r

)
bk1(∆φ) bk0(2−∆φ) bk2,n(−∆φ − t)

×
Γ2(∆φ + t) Γ2(−t) (−t)n

Γ2(∆φ + t− n)
Jλ (B.1)

where b’s are defined in eq. (A.19),

∑̃
=

∞∑
k0,k1,k2,r,q,n=0

, (B.2)

and λ = −τm − 2q − 2k1 − 2k2 − 2n+ 2t+ 2∆φ − 1− 2k0 − 2r. Note that there is a vt J2t

dependence in the integrand. Since we will be working in the limit J2 v � 1 we will close

the t-contour on the left side of the complex t plane. The J sum can be done using the

formula given in eq. (2.20),

lhs|log u =
2

Γ(∆φ)2

∑̃∫
dt

2πi
vt γ

(q)
0,`

(−1)n

4rn!

(1
2

r

)
Γ2(∆φ + t) Γ2(−t) (−t)n

Γ2(∆φ + t− n)

× bk1(∆φ) bk0(2−∆φ) bk2,n(−∆φ − t)
(

22α−3 Γ(1− α) Γ(α− 1
2)

√
π

)
(B.3)

where α = −λ
2 . In the above integral the Γ(α− 1

2) has poles at α = 1
2−p (for p = 0, 1, 2, · · · ).

This will in turn introduce poles at t = −∆φ+k0 + r+ τm
2 + q+n+k1 +k2 +p . We choose

the contour such that the poles of Γ(1−α) will always lie outside the contour. Evaluating

the residue at this pole we get,

lhs|log u = −
∑̂

v−∆φ+k̂+ τm
2 γ

(q)
0,` Γs (B.4)

where,

k̂= k0+k1+k2+n+p+q+r,
∑̂

=
∞∑
p=0

∑̃
Γs = (−1)1+n+p 4−p−r

(1
2

r

)
bk1 (∆φ) bk0 (2−∆φ)bk2,n

(
−k0−r−q−n−k1−k2−p−

τm
2

)
×Γ2

(
k0+r+q+n+k1+k2+p+

τm
2

)
× Γ

(
p+ 1

2

)
Γ
(
−k0−k1−k2−p−q−r+∆φ− τm

2

)
Γ
(
−k0−k1−k2−n−p−q−r+∆φ− τm

2

)
2
√
πn!p!Γ2 (∆φ) Γ2

(
k0+k1+k2+p+q+r+ τm

2

) . (B.5)
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We want to extract the coefficient of v−∆φ+k̂+ τm
2 from eq. (B.4). In order to do that we

will replace the k2 in eq. (B.4) by k̂ − k0 − k1 − n− p− q − r which is given by,

∑
new

γ
(q)
0,`

(−1)n+p 4−p−r

2
√
πn!p!Γ2 (∆φ) Γ2

(
−n+k̂+ τm

2

)(1
2

r

)
Γ
(

1

2
+p
)

Γ
(
−k̂+∆φ−

τm
2

)
Γ
(
n−k̂+∆φ−

τm
2

)
×bk1 (∆φ) bk0 (2−∆φ)bk̂−k0−k1−n−p−q−r,n

(
−k0−r−q−n−k1−k2−p−

τm
2

)
Γ2
(
k̂+

τm
2

)
(B.6)

where,

∑
new

=
k̂∑

k0+k1+n+p+q+r=0

(B.7)

∑
new

γ
(q)
0,`

(−1)n+p 4−p−r

2
√
πn!p!Γ2 (∆φ) Γ2

(
−n+k̂+ τm

2

)(1
2

r

)
Γ
(

1

2
+p
)

Γ
(
−k̂+∆φ−

τm
2

)
Γ
(
n−k̂+∆φ−

τm
2

)
×bk1 (∆φ) bk0 (2−∆φ) bk̂−k0−k1−n−p−q−r,n

(
−k̂− τm

2

)
Γ2
(
k̂+

τm
2

)
=−Cm

Γ(∆m)

Γ
(

∆m
2

)2 1

k̂!

(
∆m

2

)2
k̂(

1− d
2

+∆m

)
k̂

. (B.8)

C Recovering the u channel

In this section we will point out how to obtain the u-channel expression from the s-channel.

This will in turn satisfy the bootstrap equation which demands the equality of s and

u channel, ∑
∆,`

C∆,`G∆,`(u, v) = u∆φ
∑
∆,`

C∆,`G∆,`

(
1

u
,
v

u

)
(C.1)

The Mellin transform of the term associated with the log u term in the s channel is given

by eq. (2.9),

lhs|log u =
∑
`

γ0,`

2

∫
dt

2πi
vt Γ2(∆φ + t) Γ2(−t)

2 Γ(−1 + `+ 2∆φ)

`! Γ4(∆φ)
(2`+ 2∆φ − 1)

× 3F2

[
−`, 2∆φ + `− 1, ∆φ + t

∆φ , ∆φ
; 1

]
. (C.2)

Now we take the large spin limit of 3F2 given in eq. (A.23). In order to reproduce the

u-channel we have to consider the first series in J and we will be working in the regime
J2

v � 1. This will allow us to close the contour of the t integral on the right side. Translated
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in terms of the conformal spin J this reads,

lhs|log u ∼ −
2

Γ(∆φ)2

∑
J

∑̃∫
dt

2πi
vt γ

(q)
0,`

(−1)n

4rn!

(1
2

r

)
bk1(∆φ) bk0(2−∆φ) bk2,n(t)

×
Γ2(∆φ + t) Γ2(−t) (∆φ + t)n

Γ2(−t− n)
J−2k−2r−1−τm−2q−2t−2n−2k1−2k2

= − 2

Γ2(∆φ)

∑̃∫
dt

2πi
vt γ

(q)
0,`

(−1)n

4rn!

(1
2

r

)
bk1(∆φ) bk0(2−∆φ) bk2,n(t)

×
Γ2(∆φ + t) Γ2(−t) (∆φ + t)n

Γ2(−t− n)
22α−3 Γ(1− α) Γ(α− 1

2)
√
π

(C.3)

where α = k0 + r + 1/2 + τm/2 + q + t+ n+ k1 + k2. Here the t poles from the Γ(α− 1
2)

function will lie inside the contour which will in turn give rise to poles at t = −k − r −
τm/2− q − n− k1 − k2 − p.

D Mack polynomials

Our conventions for the Mack polynomials [75, 79, 82] are,

Pν,`(s, t) = (h+ ν − 1)` (h− ν − 1)` P̂ν,`(s, t) (D.1)

where,

P̂ν,`(s, t) =
∑̀
m=0

`−m∑
n=0

µ(`)
m,n

(
h+ ν − `

2
− s
)
m

(−t)n . (D.2)

Here

µ(`)
m,n = 2−`

(−1)m+n `!

m!n! (`−m−n)!

(
∆+`

2
−m

)
m

(
τ

2
+n
)
`−n

(
τ

2
+m+n

)
`−m−n

×(`+h−1)−m (`+∆−1)n−`

×4F3

[
−m,1−h+

τ

2
,1−h+

τ

2
,n−1+∆;2−2h+τ,

∆+`

2
−m, τ

2
+n;1

]
(D.3)

and h+ ν = ∆. The last 4F3 is a well-balanced one and here τ = ∆− ` as usual. Further

these have the symmetry that under t → −s − t they are invariant upto a (−1)` factor.

Hence when we consider the relevant Mack polynomial for the t-channel (which is obtained

via s→ t+ ∆φ, t→ s−∆φ from the s-channel one),

P̂∆−h,` (t+ ∆φ, s−∆φ) =
∑̀
m=0

`−m∑
n=0

µ(`)
m,n

(
∆− `

2
−∆φ − t

)
m

(∆φ − s)n . (D.4)

At s = ∆φ, t = ∆−`
2 −∆φ + q the above sum reduces to the following,

P̂∆,`

(
∆− `

2
+ q, 0

)
=

q∑
m=0

µ(`)
m,n (−q)m . (D.5)

We again note,

P∆−h,`

(
s =

∆− `
2

, t

)
= 4−`(∆− 1)` (2h−∆− 1)`Q

∆
`,0(t) . (D.6)
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E Normalisation in usual bootstrap

In this section we derive the normalisation of the conformal blocks following [70, 71]. We

choose the normalistion of the conformal blocks such that in the limit u ∼ 0, v ∼ 1 we have,

c∆,`G∆,`(u, v) ∼ C∆,`u
∆−`

2 (1− v)` + · · · . (E.1)

We take the Mellin transform of the conformal block in the s channel and compute the

residue at the physical pole s = ∆−`
2 ,

c∆,`G∆,`(u, v) = c∆,` u
∆−`

2

∫
dt

2πi
vt Γ2

(
∆− `

2
+ t

)
Γ2(−t) Γ(h−∆)

× (∆− 1)` (2h−∆− 1)`
4`

Q∆
`,0(t) . (E.2)

Now we expand vt in powers of 1− v,

vt =
∑
m

(−1)m
(
t

m

)
(1− v)m =

∑
m

(−1)m
Γ(t+ 1)

m! Γ(t−m+ 1)
(1− v)m . (E.3)

Note that the coefficient is a polynomial in t of degree m. Theerefore we can write it as

a sum over continuous Hahn polynomial Q∆
`′,0(t) for 0 ≤ `′ ≤ m. We have the following

normalisation for Q∆
`,0(t),

Q∆
`,0(t) = 2` t` +O(t`−1) . (E.4)

Then we have (−1)m
(
t
m

)
= (−1)m 2−m

m! Q∆
m,0(t)+· · · . We now use the orthogonality of Q∆

`,0(t)

polynomials eq. (A.7) such that only m = ` survives in the expansion eq. (E.3). Doing the

t integral we obtain the following,

c∆,`G∆,` (u,v) =u
∆−`

2 (1−v)` c∆,`

(
(−1)` 2−`κ`

(
∆−`

2

)
Γ(h−∆) (∆−1)` (2h−∆−1)`

`!4`

)
(E.5)

where κ` (s) is defined in eq. (A.8). We thus find that c∆,` = N∆,`C∆,`,

(N∆,`)
−1 =

(−1)` 2−` κ`
(

∆−`
2

)
Γ (h−∆) (∆− 1)` (2h−∆− 1)`

`! 4`
. (E.6)

F OPE coefficients

Here we define the η’s given in (3.30).

η
(i)
1 =Cm

i∑
n+q+k1=0

2(−1)n+q+1Γ2(∆φ)Γ2
(
q+ τm

2

)
Γ(h−q−`m−τm)

n!q!Γ2
(
−n−q+∆φ− τm

2

) (`m+τm−1)`mHq+τm/2−1

×Nτm+`m,`m (2h−1−`m−τm)`m (q+τm/2)n bk1(∆φ)bi−k1−n−q,n

(
τm
2
−∆φ+q

)
×P̂τm+`m−h,`m(q+τm/2,0), (F.1)
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η
(i)
2 = Cm

i∑
n+q+k1=0

(−1)n+q+1Γ2(∆φ) Γ2
(
q + τm

2

)
Γ (h− q − `m − τm)

n! q! Γ2
(
−n− q + ∆φ − τm

2

) (`m + τm − 1)`m

×Nτm+`m,`m (2h− 1− `m − τm)`m (q + τm/2)n bk1(∆φ) bi−k1−n−q,n

(τm
2
−∆φ + q

)
× ∂

∂s
P̂τm+`m−h,`m(q + τm/2,∆φ − s)|s=∆φ

,

η
(i)
3 = Cm

i∑
m+n+q+k1=0

(−1)n+q Γ2 (∆φ) Γ2
(
q + τm

2

)
Γ (h− q − `m − τm)

(m+ 1)n! q! Γ2
(
−m− n− q + ∆φ − τm

2 − 1
) (`m + τm − 1)`m

×Nτm+`m,`m (2h− 1− `m − τm)`m(1 +m+ q + τm/2)n bk1(∆φ)

× bi−n−q−m−k1−1,n

(τm
2
−∆φ + q + 1 +m

)
P̂τm+`m−h,`m(q + τm/2, 0) (F.2)

and the b’s are defined in eq. (A.19).

G Calculational details for section 4.2

In this section we present the calculational details for section 4.2. Substituting ∆ =

2∆φ + `+ γ0,` in eq. (4.5) and expanding in γ0,` we obtain the following,

q
(s)
∆,`(∆φ) =C0,`

2−`−1Γ(2(`+∆φ))Γ(2`+2∆φ−1)

Γ4 (`+∆φ)Γ(`+2∆φ−1)
γ0,`

+C0,`
2−`−2Γ2 (2`+2∆φ−1)

(2∆φ−h+`)Γ4 (`+∆φ) Γ(`+2∆φ−1)

×
(

6∆φ−2(2∆φ+2`−1)(2∆φ−h+`)
(

2H`+∆φ−1−2H2(`+∆φ−1)+H`+2∆φ−2

)
−2h+4`−1

)
γ2

0,`+O(γ3
0,`) , (G.1)

q′
(s)
∆,`(∆φ) =C0,`

24∆φ+3`−4 (2∆φ+2`−1)Γ2
(
`+∆φ− 1

2

)
πΓ2 (`+∆φ) Γ(`+2∆φ−1)

+C0,`
24∆φ+3`−4Γ2

(
`+∆φ− 1

2

)
πΓ2 (`+∆φ) Γ(`+2∆φ−1)

×
(

1−(2∆φ+2`−1)
(

2H`+∆φ−1−2H2(`+∆φ−1)+H`+2∆φ−2

))
γ0,`

+b1 γ
2
0,`+O(γ3

0,`) . (G.2)

The expression for b1 is too big to show here.

Let us now turn to the s channel expression in usual bootstrap in Mellin space. In

order to make the comparison easy we will proceed as follows. We expand eq. (3.5) in

∆ = 2∆φ + `+ γ0,`,

q
(s)
0,`(∆φ) =C0,`

2−`−1Γ(2(`+∆φ))Γ(2`+2∆φ−1)

Γ4 (`+∆φ)Γ(`+2∆φ−1)
γ0,` (G.3)

−C0,`
2−`−1Γ(2(`+∆φ))Γ(2`+2∆φ−1)

Γ4 (`+∆φ) Γ(`+2∆φ−1)

(
H∆φ−1+H`+∆φ−1−H2`+2∆φ−1−γE

)
γ2

0,`

+O(γ3
0,`) ,

q′
(s)
0,`(∆φ) =C0,`

2−`Γ(2(`+∆φ))Γ(2`+2∆φ−1)

Γ4 (`+∆φ) Γ(`+2∆φ−1)
+C0,`

2−`Γ(2(`+∆φ))Γ(2`+2∆φ−1)

Γ(`+∆φ)4Γ(`+2∆φ−1)

×
(
H2(`+∆φ−1)−H`+2∆φ−2−2H`+∆φ−1+H2`+2∆φ−1

)
γ0,`+b2 γ

2
0,`+O(γ3

0,`) .
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We will denote q′
(s)
∆,`(∆φ)− q′

(s)
0,`(∆φ) by f(∆φ, `) with,

f(∆φ, `) =C0,`
24∆φ+3`−6Γ

(
`+∆φ− 1

2

)
Γ
(
`+∆φ+ 1

2

)
3πΓ2 (`+∆φ) Γ(`+2∆φ−1)

×
(

60γ2
E−π2+24

(
H2(`+∆φ−1)

)2
−24H2(`+∆φ−1)

(
−H∆φ−1+H`+∆φ−1+H`+2∆φ−2+2γE

)
+12(H∆φ−1−γE)2−24(H∆φ−1−γE)

(
H`+∆φ−1+H`+2∆φ−2

)
−12(H2`+2∆φ−1−γE)2

+12
(
H`+2∆φ−2+H`+∆φ−1+2γE

)(
H`+∆φ−1+H`+2∆φ−2−2γE

)
+6ψ(1) (∆φ)−6ψ(1) (`+∆φ)

+6ψ(1) (−h+`+2∆φ)−12ψ(1) (`+2∆φ−1)+12ψ(1) (2`+2∆φ−1)− 6

(2∆φ−h+`)2

+
24(H2`+2∆φ−1−γE)

2∆φ+2`−1
− 12

(2∆φ+2`−1)2

)
γ2

0,`+O(γ3
0,`) (G.4)

where ψ(1)(x) is the polygamma function.
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