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2
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Inspired by this observation, by analyzing the anisotropic IR scaling geometry carefully,

we find the concrete expressions for Ei in terms of the critical dynamical exponents zi in

each direction, Ei = zi/2(zi − 1). Furthermore, we find the lower bound of Ei is always

1/2, which is not affected by anisotropy, contrary to the η/s case. However, there may be

an upper bound determined by given fixed anisotropy.
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1 Introduction

Strongly correlated electron systems are characterized by exotic (‘strange’) properties in

contrast to weakly interacting systems. Interestingly enough, some exotic properties show

a remarkable degree of universality [1]. For example, resistivity (ρ) is observed to be linear

in temperature (T ), ρ ∼ T , universally in various strange metals such as cuprates, pnictides

and heavy fermions. It is in contrast to ρ ∼ T 2 which can be explained by the Fermi liquid

theory for metals with weakly interacting electrons. The strange metal state may undergo

a phase transition to the high temperature superconducting state, where another universal

property, Home’s law [2–4], has been observed. It is a relation between three quantities:

the superfluid density at zero temperature ρs(T = 0), the critical temperature (Tc), and

the DC electric conductivity right above the critical temperature (σDC(Tc)). The Homes’
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law states that ρs(T = 0)/(σDC(Tc)Tc) is universal, which means it is independent of the

components and structures of superconducting materials.

While such interesting properties in strongly correlated systems are difficult to ana-

lyze theoretically, the holographic methods (or the gauge/gravity duality) [1, 5, 6] have

provided novel and effective tools to investigate them. It maps strongly correlated sys-

tems to corresponding classical gravitational systems in higher dimensional spacetime, so

‘holographic’. For example, for linear-T -resistivity, a lot of achievements including method-

ologies are reviewed in [1]. For the Homes’ law, see [4, 7–9]. In general, universality in

holography is related to the universal nature of the black hole horizon, which may shed

light on universality in strongly correlated systems. Conversely, investigating as many uni-

versal properties in strongly correlated systems as possible may be helpful in understanding

the black hole physics better. This will again back-react to our understanding of strongly

correlated systems.

In this paper, we investigate another universal property regarding the thermal diffu-

sivity and two quantum chaotic properties, butterfly velocity and Lyapunov time, from the

holographic perspective. The thermal diffusivity (DT ) is defined by

DT :=
κ

cρ
, (1.1)

where cρ is the specific heat at finite density and κ is the thermal conductivity in the open

circuit condition, i.e. at zero electric current. It was proposed that the thermal diffusivity

has an interesting connection to the quantum chaos property as follows:1

DT = E v2
BτL , (1.2)

where vB is the butterfly velocity which describes the speed at which chaos propagates in

space [11, 12, 17–25], and τL is the Lyapunov time which measures the rate at which chaos

grows in time. E is constant of order one. It was shown [20] that there is a universal lower

bound for τL:

τL ≥
1

2π

~
kBT

=:
1

2π
τP , (1.3)

where the timescale (τP ) was introduced in [3, 26] as the ‘Planckian’ dissipation time scale,

which is the shortest possible time scale for dissipation. This time scale was observed

in the scattering rates of materials having a linear T resistivity [27] and in the thermal

diffusivity [28]. The Lyapunov time saturates the bound in holographic theories with

Einstein gravity. While the connection (1.2) between transport properties and chaos was

first proposed in the holographic models, it has been also observed in condensed matter

theories [28–31].

The relation (1.2) is shown to be universal in several cases. It was shown that, in a class

of holographic model with a scaling infra-red (IR) geometry characterized by critical expo-

nents such as dynamical critical exponent (z), hyperscaling violating exponent (θ) or charge

1This kind of relation was first motivated by the charge diffusivity and its relation to the linear-T -

resistivity [10–12]. However, it turned out the relation (1.2) for charge diffusivity does not hold in many

models, for example, striped holographic matter [13], the SYK model [14], higher derivative models [15]

and the Gubser-Rocha model [16].
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anomalous parameter (ζ) [32], E is a function only of a dynamical critical exponent z 6= 1

E =
1

2

z

z − 1
, (1.4)

at zero density in the low temperature limit, independently of other critical exponents,

momentum relaxation strength and UV data [12].2 Recently this analysis was extended to

finite density or magnetic field case and E is shown to be independent of charge density

and magnetic field too [34]. More evidences for (1.2) have been reported in holographic

models that flow to AdS2 × Rd fixed points in the IR [33] and in the higher derivative

model [15, 35, 36]. At finite density, the thermal diffusivity is not an eigenvalue of the

diffusivity matrix because of its mixing with the charge diffusivity. However, it was shown

in [16] that the mixing effect becomes negligible in the incoherent regime (i.e. the regime

of strong momentum relaxation) and E becomes universal in that regime even at finite

density. More interestingly, while the relation (1.2) was first proposed in the holographic

models, it has been also observed in condensed matter theories [28–31, 37, 38] including

the Sachdev-Ye-Kitaev (SYK) models [14, 39, 40].

In this paper, we want to study the effect of spatial anisotropy3 on the universality of

E, more precisely, two E’s, one for the x-direction (Ex) and one for the y-direction (Ey).
This question was already addressed in [34], where it was shown that both Ex and Ey are

determined only by some scaling parameters (u1, v1, v2) near horizon:

Ex =
u1 − 1

u1 − 2v1
, Ey =

u1 − 1

u1 − 2v2
. (1.5)

Our goal here is to extend these results in three aspects. i) to understand Ex and Ey in

terms of scaling exponents z and the anisotropic parameter ξ and ii) to identify the allowed

range of Ex and Ey and see if there is any universal lower or upper bound. iii) to extend

the formalism in [34] to the case where gtt 6= g−1
rr . To achieve our goals, we first have

performed the complete analysis of the IR geometry of the anisotropic Q-lattice models.

Note that this study itself is a useful investigation on its own apart from the application

to diffusion and butterfly velocity because the Q-lattice models are widely used in various

aspects of AdS/CMT applications. In this respect, our work amounts to the anisotropic

extension of the isotropic Q-lattice models in [32].

We find the concrete expression for Ei in terms of the dynamical exponents zi for

i-direction (i = x, y):

Ex =
1

2

zx
zx − 1

, Ey =
1

2

zy
zy − 1

, (1.6)

which clearly show universality in terms of physical parameters and the effect of anisotropy.

Ex and Ey do not depend on other critical exponents (θ, ζ) and charge density ρ. This

2In this work, it is assumed that either the charge density or the axion fields are marginally relevant

(of which meaning will be explained below (2.23)), which amounts to z 6= 1. It is also assumed that the

dilaton field ϕ(r) behaves as log r at IR so does not approach to a constant value, which means that the IR

geometry is not AdS2 ×Rp−1. For more discussions for the IR geometry of z = 1 and/or AdS2 ×Rp−1 we

refer to [33, 34].
3For the effect of spatial anisotropy on shear viscosity, see [41].
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universality is due to nontrivial cancellations between three quantities {κ, cρ, vB}, all of

which depend on many other parameters including UV data.

So far we discussed the universality of Ei in the sense that Ei is independent of many

IR parameters as well as UV data. However, it is also interesting to see if there is any

universal lower or upper4 bound of Ei. For example, in the case of (1.4) and (1.6) it

amounts to asking if there is any universal bound of dynamical critical exponents zi. For

the isotropic IR scaling geometry it was shown that z > 1 [32], which implies5

1

2
≤ E , (1.7)

where E saturates its minimum value E = 1/2 as z → ∞. For the theories that flow to

AdS2×Rd IR fixed points, E depends only on the leading irrelevant mode and 1/2 < E ≤ 1

where E = 1 if the leading deformation is a dilatonic mode [33]. It matches the value in

extended SYK models [14, 39]. However, it was reported that E may not have a univer-

sal lower bound in an inhomogeneous SYK model [42] or in a higher derivative gravity

theory [45].

Here we investigate if the range (1.7) for the isotropic scaling geometry can be affected

by anisotropy. It was motivated by a series of works regarding the universal bound of

sheer viscosity to entropy density ratio (η/s) so called the KSS(Kovtun, Starinets and

Son) bound, 1/4π [46]. It can be lowered further by the higher derivative gravity [47, 48].

However, it can even vanish by anisotropy at zero temperature6 [53–56]. In our anisotropic

model, we find that the lower bound of Ei is always 1/2 regardless of anisotropy but the

upper bound of Ei may depend on anisotropy. In other words, zi depends on anisotropy.

This paper is organized as follows. In section 2, we introduce the ‘Q-lattice model’

or the Einstein-Maxwell-Dilaton theory coupled to ‘axion’ fields. By assuming specific

couplings in the IR region, we obtain the IR scaling solutions described by four scaling

parameters, and classify the solutions according to the IR relevance of gauge field and

axion field. We also analyze the allowed parameter region of the solutions by requiring

some physical conditions. In section 3 we study the thermal diffusivity, butterfly velocity,

and their universality based on the results obtained in section 2. In section 4, we conclude.

2 IR analysis for anisotropic Q-lattice models

Let us consider the ‘Q-lattice action’

S =

∫
dp+1x

√
−g (R+ Lm) ,

Lm ≡ −
1

2
(∂ϕ)2 + V (ϕ)− 1

4
Z(ϕ)F 2 − 1

2
W1(ϕ)

p−2∑
i=1

(∂χi)
2 − 1

2
W2(ϕ)(∂χp−1)2 ,

(2.1)

which is the Einstein-Maxwell-Dilaton theory coupled to ‘Axion’ fields χi (i = 1, . . . , p−1).

This model is also called the EMD-Axion action. We introduce the axions as many as

4The existence of the upper bound was proposed in [42, 43].
5Mathematically z < 0 is allowed, but we do not consider it here: it is not physical because ω ∼ kz [44].
6Momentum relaxation gives similar results at zero temperature [49–52].
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spatial dimensions and every axion may have different coupling in general, say Wi(ϕ).

However, for simplicity we introduce anisotropy minimally by two couplings W1 and W2.

We will further assume the axion fields have the form

χi = k1xi (i = 1, . . . , p− 2) , χp−1 = k2y , (2.2)

to break translational symmetry. Here we introduced another anisotropy by k1 and k2. In

summary, we introduced two kinds of anisotropy: i) in the action, W1 and W2 ii) in the

solution k1 and k2.

The action yields the following Einstein equations:

Rµν = Tµν −
1

p− 1
gµνT

=
1

2
∂µϕ∂νϕ+

W1(ϕ)

2

p−2∑
i=1

∂µχi∂νχi +
W2(ϕ)

2
∂µχp−1∂νχp−1 +

Z(ϕ)

2
Fµ

ρFνρ

− Z(ϕ)F 2

4(p− 1)
gµν −

V (ϕ)

p− 1
gµν ,

(2.3)

where Tµν = − 1√
−g

δ(
√
−gLm)
δgµν and T = gµνTµν . The Maxwell equation, scalar equation,

and axion equation read

∇µ(Z(ϕ)Fµν) = 0 ,

�ϕ+ V ′(ϕ)− 1

4
Z ′(ϕ)F 2 − 1

2
W ′1(ϕ)

p−2∑
i=1

(∂χi)
2 − 1

2
W ′2(ϕ)(∂χp−1)2 = 0 ,

∇µ(W1(ϕ)∇µχi) = 0 , ∇µ(W2(ϕ)∇µχp−1) = 0 .

(2.4)

By considering the following homogeneous (all functions are only functions of r) ansatz

ds2 = −D(r)dt2 +B(r)dr2 + C1(r)

p−2∑
i=1

dx2
i + C2(r)dy2 ,

ϕ = ϕ(r) , A = At(r)dt , χi = k1xi , χp−1 = k2y ,

(2.5)

we obtain the Einstein equations

0 =
Z(p−2)A′2t

(p−1)D
+

2BV

p−1
+
B′D′

2BD
− (p−2)D′C ′1

2DC1
− D′C ′2

2DC2
+
D′2

2D2
−D

′′

D
, (2.6)

0 =ϕ′2− (p−2)C ′21
2C2

1

− C ′22
2C2

2

− D′

2D

(
(p−2)C ′1

C1
+
C ′2
C2

)
− B′

2B

(
(p−2)C ′1

C1
+
C ′2
C2

)
+

(p−2)C ′′1
C1

+
C ′′2
C2

, (2.7)

0 =
W1k

2
1B

C1
− 2BV

p−1
+

ZA′2t
(p−1)D

+
C ′1
2C1

(
D′

D
−B

′

B

)
+

(p−4)C ′21
2C2

1

+
C ′1C

′
2

2C1C2
+
C ′′1
C1

, (2.8)

0 =
W2k

2
2B

C2
− 2BV

p−1
+

ZA′2t
(p−1)D

+
C ′2
2C2

(
D′

D
−B

′

B

)
− C ′22

2C2
2

+
(p−2)C ′1C

′
2

2C1C2
+
C ′′2
C2

, (2.9)
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which come from the equations corresponding to Rtt, Rrr, Rxx, and Ryy in (2.3) respectively.

The prime ′ denotes the derivative with respect to r. The Maxwell equation and scalar

equation are reduced to

0 =

ZC p−2
2

1 C
1
2
2√

BD
A′t

′ , (2.10)

0 = −W1,ϕk
2
1(p− 2)B

2C1
− W2,ϕk

2
2B

2C2
+
Z,ϕA

′2
t

2D
+BV,ϕ −

B′ϕ′

2B

+

(
(p− 2)C ′1

2C1
+

C ′2
2C2

)
ϕ′ +

D′ϕ′

2D
+ ϕ′′ , (2.11)

and the axion equations are satisfied trivially.

2.1 General structure of the IR solutions

In this paper, we are mainly interested in the scaling geometry at IR, where ϕ runs loga-

rithmically and the dilaton couplings are approximated as

Z(ϕ) ∼ eγϕ , V (ϕ) ∼ V0e
−δϕ , W1(ϕ) ∼ eλ1ϕ , W2(ϕ) ∼ eλ2ϕ . (2.12)

Here we introduce parameters (γ, δ, λ1, λ2, V0), which we call ‘action-parameters’. For

Z,W1,W2 we do not introduce the coefficients because they can be absorbed into the

gauge field and axions. To analyze the IR solution, we will plug the IR couplings (2.12)

into (2.6)–(2.11) and assume that the IR solutions are written as

ds2 = r
2θ
p−1

−dt2

r2z
+
L2
rdr

2

r2
+

L2
1

p−2∑
i=1

dx2
i

r2ξx
+
L2

2 dy2

r2ξy

 ,
ϕ = ϕ0 log r , A = a0 r

ζ−z dt , χi = k1xi , χp−1 = k2y ,

(2.13)

in terms of ‘exponents’ (z, θ, ξx, ξy, ζ) and ‘coefficients’ (ϕ0, a0, Lr, L1, L2, k1, k2). We will

call all of them ‘solution-parameters’, to explain their relations to the ‘action-parameters’

which are the parameters in the action. For example, by the equations of motion, the

exponent-solution-parameters (z, θ, ξx, ξy, ζ) will be related to the action parameters (γ, δ,

λ1, λ2). Notice that this kind of scaling solutions (2.13) are possible since the scalar is of

the form (eϕ = rϕ0).

Some of solution-parameters are redundant and can be set to unity by coordinate

transformations. Depending on our purpose and perspective we may choose independent

parameters without loss of generality. In this paper, we will choose the representation with

ξx = 1 , ξy = ξ , (2.14)

for an easy comparison with the isotropic results obtained in [32].7 We will mostly fix

L1 = L2 = 1 but sometimes we find it more convenient to keep L1 and L2 unfixed.

7We may have chosen the convention ξx = ξy = ξ for the isotropic case. However, without loss of

generality we can choose (2.14), where the isotropic case corresponds to ξ = 1. With this choice, we can

easily compare all of our formulas with the isotropic cases in [32].
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The metric is parameterized in a way to identify four critical exponents. There are

two dynamical critical exponents

zx :=
z

ξx
= z , zy :=

z

ξy
=
z

ξ
. (2.15)

They describe the anisotropy between time and space xi, and time and space y respectively,

where ξ quantifies the anisotropy between xi-space and y-space. A hyperscaling violating

exponent θ measures how much the scale invariance of the metric is violated and has some-

thing to do with the anomalous dimension of the field theory energy density. ζ describing

the anomalous scaling of the bulk Maxwell field is related to the anomalous dimension of

the field theory charge density.

Furthermore, it turns out that the emblackening factor f(r)

f(r) = 1−
(
r

rh

)z+p−2−θ+ξ
, (2.16)

can be turned on (dt2 → fdt2 and dr2 → dr2/f in (2.13)) in all cases we consider in

this paper.

Some of the solutions parameters are fixed by the action parameters by the equations

of motion but some of them are not fixed and remain free. However, the range of all

parameters should be restricted by the following conditions. First, for the IR geometry to

be well-defined, we require

θ > (p− 1)z , θ > p− 1 , θ > (p− 1)ξ , θ > z + p− 2 + ξ , (2.17)

if the IR is located at r → 0 or

θ < (p− 1)z , θ < p− 1 , θ < (p− 1)ξ , θ < z + p− 2 + ξ , (2.18)

if the IR is located at r → ∞. The first three inequalities of (2.17) and (2.18) come from

the condition that all metric components should vanish at the IR at zero T . The last

inequalities come from the condition that the emblackening factor (2.16) should vanish at

the UV. We also require8

L2
r > 0 , L2

1 > 0 , L2
2 > 0 , (2.19)

and the specific heat should be positive:

−2θ + (p− 1)(ξ + 1)

(p− 1)z
> 0 , (2.20)

which can be read from the scaling of entropy, S ∼ T
−2θ+(p−1)(ξ+1)

(p−1)z . If all of the above

conditions are satisfied we have confirmed that the following null energy condition (NEC)

is also satisfied:

((p− 1)− θ)((p− 1)(z − 1)− θ)− (ξ − 1)(2(ξ − 1) + (2− z)(p− 1)) ≥ 0 , (2.21)

(z − 1)(−θ + ξ + p+ z − 2) ≥ 0 , (2.22)

(z − 1)(−ξ + z) ≥ 0 . (2.23)

8If we choose the representation L1 = L2 = 1, we need to consider other reality conditions equivalent

to them.
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We categorize the solutions according to the ‘relevance’ of the axion and/or charge,

following [32] for the easy comparison with the isotropic case therein.9 By ‘marginally

relevant axion’ we mean the axion parameter k1, k2 appear explicitly in the leading solutions

and by ‘marginally relevant charge’ we mean a0 appears explicitly in the leading solutions.

By ‘irrelevant axion (charge)’ we mean k1, k2 (a0) do not appear explicitly in the leading

solutions but they can appear in the sub-leading solutions. Therefore, we will consider

eight classes as follows.

• class I: marginally relevant axions & charge (k1 6= 0, k2 6= 0, a0 6= 0)

• class II: marginally relevant axions & irrelevant charge (k1 6= 0, k2 6= 0, a0 = 0)

• class III: irrelevant axions & marginally relevant charge (k1 = 0, k2 = 0, a0 6= 0)

• class IV: irrelevant axions & charge (k1 = 0, k2 = 0, a0 = 0)

• class I-i: mixed axions & marginally relevant charge (k1 6= 0, k2 = 0, a0 6= 0)

• class I-ii: mixed axions & marginally relevant charge (k1 = 0, k2 6= 0, a0 6= 0)

• class II-i: mixed axions & irrelevant charge (k1 6= 0, k2 = 0, a0 = 0)

• class II-ii: mixed axions & irrelevant charge (k1 = 0, k2 6= 0, a0 = 0)

Here, ‘mixed axions’ means the axion in one direction is marginally relevant and the axion

in the other direction is irrelevant. They reduce to four classes in [32] in the isotropic limit.

Notice that the classification is based on the property of the leading solutions. We also

should consider the deformation by the sub-leading solutions:

Φi → Φi + εir
βi + · · · , (2.24)

where Φi denotes every leading order solution collectively and εi is a small parameter.

Therefore, a0 = 0 does not mean zero density and ki = 0 does not mean no momentum

relaxation in the i-direction because these parameters can appear in the sub-leading solu-

tions. If the axion is relevant, we may expect the momentum relaxation affects IR physics

more strongly than the irrelevant axion cases.

2.2 Marginally relevant axion

2.2.1 Class I: marginally relevant charge

We assume that the classical solutions are written as

ds2 = r
2θ
p−1

−dt2

r2z
+
L2
rdr

2

r2
+

L2
1

p−2∑
i=1

dx2
i

r2
+
L2

2 dy2

r2ξ

 ,
ϕ = ϕ0 log r , A = a0 r

ζ−z dt , χi = k1xi , χp−1 = k2y ,

(2.25)

9Compared to [32], we change the name from ‘current’ to ‘charge’ to be more specific to the charge

density J t among the current operator Jµ.
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where ϕ0, a0, k1, and k2 are nonzero and ζ 6= z. Or, we may choose the following equivalent

ansatz

ds2 = r
2θ
p−1

−dt2

r2z
+
L2
rdr

2

r2
+

p−2∑
i=1

dx̃2
i

r2
+

dỹ2

r2ξ

 ,
ϕ = ϕ0 log r , A = a0 r

ζ−z dt , χi = k̃1x̃i , χp−1 = k̃2ỹ ,

(2.26)

where

x̃i ≡ L1xi , ỹ ≡ L2y , k̃1 ≡
k1

L1
, k̃2 ≡

k2

L2
. (2.27)

By the equations of motion, the ‘exponent’ solution-parameters (z, ξ, θ, ζ) may be

expressed in terms of action-parameters (δ, λ1, λ2, γ) as

z =
2− (p− 1)δ2 + (p− 2)λ2

1 + λ2
2

λ1((p− 1)δ + (p− 2)λ1 + λ2)
,

θ = −(p− 1)δ

λ1
, ξ =

λ2

λ1
, ζ =

γ − δ
λ1

.

(2.28)

They are not all independent and there is a constraint between solution-parameters (θ, ζ, ξ)

ζ = −(p− 2− θ)− ξ ≡ −(dθ − 1)− ξ ≡ ζI , (2.29)

which amounts to a relation between action-parameters:

γ = (2− p)δ + (2− p)λ1 − λ2 . (2.30)

The four ‘coefficient’ parameters are solved as

ϕ0 = − 2

λ1
, (2.31)

and

a2
0 =

2
(
k̃2

1(p−1)
(
δλ2+λ2

2+λ1(p−2)(δ+λ1)+2
)
+2V0

(
−λ2

2+λ1λ2+δ(p−1)(δ+λ1)−2
))(

k̃2
1(p−2)−2V0

)(
2λ2

2+(p−2)(p−1)(δ+λ1)2+2λ2 (δ(p−1)+λ1(p−2))+2
) ,

L2
r =−

2
(
λ2

2+(p−2)(p−1)(δ+λ1)2+λ2 (δ(p−1)+λ1(p−2))+2
)

λ2
1

(
k̃2

1(p−2)−2V0

)
(λ2+δ(p−1)+λ1(p−2))2

×
(
2λ2

2+(p−2)(p−1)(δ+λ1)2+2λ2 (δ(p−1)+λ1(p−2))+2
)
,

(2.32)

k̃2
2 = k̃2

1−
(λ1−λ2)

(
k̃2

1(p−2)−2V0

)
(λ2+δ(p−1)+λ1(p−2))

λ2
2+(p−2)(p−1)(δ+λ1)2+λ2 (δ(p−1)+λ1(p−2))+2

.

The action-parameters (δ, λ1, λ2, γ) may be written in terms of solution-parameters

(z, θ, ξ):

δ =
2θ

(p− 1)ϕ0
, λ1 =

−2

ϕ0
, λ2 =

−2ξ

ϕ0
, γ =

−2ζ + 2
p−1θ

ϕ0
, (2.33)
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where

ϕ2
0 = 2

(
θ2

p− 1
− zζ + 2− p− ξ2

)
=

2(p− 1− θ) (1 + p(z − 1)− z − θ)
p− 1

− 2(ξ − 1)(ξ − z + 1) ,

(2.34)

where ζ can be replaced by (2.29). Using the relations (2.33), the equations (2.32) can be

simplified as

L2
r =

2(p− 2 + z − θ)(p− 2 + z − θ + ξ)

2V0 − (p− 2)k̃2
1

, (2.35)

a2
0 =

2(2V0(1− z) + (z(p− 1)− θ)k̃2
1)

(2− p− z + θ − ξ)(2V0 − (p− 2)k̃2
1)
, (2.36)

k̃2
2 = k̃2

1 + (ξ − 1)
k̃2

1(p− 2)− 2V0

p− 2 + z − θ
, (2.37)

where we choose k̃1 as a free parameter. Note that the last equation can be written as

L2
2 = k2

2

[
k̃2

1 + (ξ − 1)
k̃2

1(p− 2)− 2V0

p− 2 + z − θ

]−1

, (2.38)

where L2 is determined by k̃1 and k2 for an ansatz (2.25).

For given action parameters (δ, λ1, λ2, γ(δ, λ1, λ2), V0) and the solution parameter k̃1,

all the other solution parameters (z, θ, ξ, ζ(θ, ξ), ϕ0, Lr, a0, k̃2) are fixed. Thus the total

number of free parameters in the solution are four, which may be taken as (z, θ, ξ, k̃1).

Considering all the conditions (2.17)–(2.20), we classify the allowed parameter space in

table 1. For given z and θ, k̃1 should be chosen to satisfy the inequality in the last column.

To get some intuition on the content of table 1 it is useful to make figures representing

the typical parameter ranges. Figure 1 shows five prototypical cases: ξ = −1, 0, 0.5, 1, 2

for p = 3. Let us start with the case ξ = 1 (figure 1(d)), where there are two regions:

a rectangle (z < 0) and a pentagon (z > 1) of which upper left corner is a line not a

curve. As ξ increases (figure 1(e)) the pentagon moves to the right (z > ξ) and its upper

left corner becomes a curve while the rectangle moves to the up (θ > 2ξ). As ξ decreases

(figure 1(c,b)) the pentagon, of which upper left corner becomes curve, goes down and the

rectangle does not move. After the pentagon becomes a rectangle at ξ = 0 it keeps going

down while the rectangle in z < 0 starts moving to the left (z < ξ). For comparison we

collect the boundaries of five cases in figure 1(f).

2.2.2 Class II: irrelevant charge

The irrelevant charge means a0 = 0 in the leading order so we start with an ansatz

ds2 = r
2θ
p−1

−dt2

r2z
+
L2
rdr

2

r2
+

p−2∑
i=1

dx̃2
i

r2
+

dỹ2

r2ξ

 ,
ϕ = ϕ0 log r , A = 0 , χi = k̃1x̃i , χp−1 = k̃2ỹ ,

(2.39)

where ϕ0, k̃1 and k̃2 are nonzero.
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ξ ≤ 0

z < ξ θ > p− 1 ζ = 2− p+ θ − ξ
1 < z θ < ξ(p− 1) ζ = 2− p+ θ − ξ

0 < ξ < 1

z < 0 θ > p− 1 ζ = 2− p+ θ − ξ

1 < z ≤ 1 + ξ θ <
p− 1

2

(
z −

√
(z − 2)2 + 4(ξ−1)(−z+1+ξ)

p−1

)
ζ = 2− p+ θ − ξ

1 + ξ < z θ < ξ(p− 1) ζ = 2− p+ θ − ξ
1 ≤ ξ

z < 0 θ > ξ(p− 1) ζ = 2− p+ θ − ξ

ξ < z ≤ 1 + ξ θ <
p− 1

2

(
z −

√
(z − 2)2 + 4(ξ−1)(−z+1+ξ)

p−1

)
ζ = 2− p+ θ − ξ

1 + ξ < z θ < p− 1 ζ = 2− p+ θ − ξ

For all cases: k̃2
1 <

2V0(z−1)
(p−1)z−θ

Table 1. Parameter range: Class I, V0 > 0.

-4 -2 0 2 4
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(b) ξ = 0
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(c) ξ = 1
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0

2

4
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θ

(d) ξ = 1

-4 -2 0 2 4

-4

-2

0
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θ

(e) ξ = 2

-4 -2 0 2 4

-4

-2

0

2

4

z
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(f) The boundaries of (a)–(e)

Figure 1. Prototypical cases of table 1 (p = 3).
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This case corresponds to a0 = 0 in class I so ζ does not appear in the leading order

solution but will be introduced when we consider a subleading order. First, the ‘exponent’

solution-parameters (z, ξ, θ) may be expressed in terms of action-parameters (δ, λ1, λ2) as

z =
2− (p− 1)δ2 + (p− 2)λ2

1 + λ2
2

λ1((p− 1)δ + (p− 2)λ1 + λ2)
,

θ = −(p− 1)δ

λ1
, ξ =

λ2

λ1
,

(2.40)

which is the same as the class I (2.28) except that ζ is undetermined. It is related to

the non-existence of the constraints (2.30) and (2.29) in class II. Consequently, the action

parameter γ is free and (δ, λ1, λ2) may be written in terms of three solution-parameters

(z, θ, ξ):

δ =
2θ

(p− 1)ϕ0
, λ1 =

−2

ϕ0
, λ2 =

−2ξ

ϕ0
, (2.41)

where

ϕ2
0 =

2(p− 1− θ) (1 + p(z − 1)− z − θ)
p− 1

− 2(ξ − 1)(ξ − z + 1) . (2.42)

The coefficient parameters read

ϕ0 = − 2

λ1
,

L2
r =

(2− p+ θ − ξ − z) (θ − (p− 1)z)

V0
,

k̃2
1 =

2V0(1− z)

θ − (p− 1)z
, k̃2

2 =
2V0(ξ − z)

θ − (p− 1)z
.

(2.43)

Note that the last equations can be written as

L2
1 =

θ − (p− 1)z

2V0(1− z)
k2

1 , L2
2 =

θ − (p− 1)z

2V0(ξ − z)
k2

2 , (2.44)

where L1 and L2 are determined by k1 and k2 for an ansatz (2.25).

After turning on the subleading gauge field mode generating a constant electric flux

proportional to a0

At(r) = a0r
ζ−z , (2.45)

we find

ζ = p− 2− p− 3

p− 1
θ − γϕ0 + ξ ,

ϕ2
0 =

2(p− 1− θ) (1 + p(z − 1)− z − θ)
p− 1

− 2(ξ − 1)(ξ − z + 1) ,

(2.46)

where ζ is a function of a free action parameter γ. This gauge field mode backreacts on

metric and ϕ at quadratic order as

∼ rβ , where β := p− 2 + ζ − θ + ξ , (2.47)
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ξ ≤ 0

z < ξ θ > p− 1 ζ > 2− p+ θ − ξ
1 < z θ < ξ(p− 1) ζ < 2− p+ θ − ξ

0 < ξ < 1

z < 0 θ > p− 1 ζ > 2− p+ θ − ξ

1 < z ≤ 1 + ξ θ <
p− 1

2

(
z −

√
(z − 2)2 + 4(ξ−1)(−z+1+ξ)

p−1

)
ζ < 2− p+ θ − ξ

1 + ξ < z θ < ξ(p− 1) ζ < 2− p+ θ − ξ
1 ≤ ξ

z < 0 θ > ξ(p− 1) ζ > 2− p+ θ − ξ

ξ < z ≤ 1 + ξ θ <
p− 1

2

(
z −

√
(z − 2)2 + 4(ξ−1)(−z+1+ξ)

p−1

)
ζ < 2− p+ θ − ξ

1 + ξ < z θ < p− 1 ζ < 2− p+ θ − ξ

Table 2. Parameter range: Class II, V0 > 0.

which gives a constraint on ζ because β should be positive(negative) if the IR is at

r → 0(∞). This constraint (inequality) was summarized in the third column in table 2.

After considering all conditions (2.17)–(2.20), we find that the parameter space of z, θ, ξ

are the same as class I as shown in table 2. Therefore, figure 1 are valid also for class 2.

For given z and θ, γ should be chosen to satisfy the inequality in the last column because

ζ is a function of γ for given z, θ and ξ (2.46).

2.3 The other classes

In this subsection we consider the other possible classes explained in subsection 2.1. Simi-

larly to the Class I and Class II in subsection 2.2, we first need to figure out the relations

between solution-parameters and action-paramters class by class. Next, we need to consider

the sub-leading modes to check the stability of the solution. Based on these information,

finally, we can find the allowed parameter range by investigating the conditions (2.17)–

(2.21) and stability conditions of subleading modes. Here, we summarized only the allowed

parameter range, relegating all details including the relations between solution-parameters

and action-paramters to appendix A and B.

2.3.1 Irrelevant axion: class III and VI

Irrelevant axion means that k̃1 = k̃2 = 0(χi = χp−1 = 0) at leading order in the IR. In

principle, there may be anisotropic solutions generated by the subleading axion mode due

to anisotropy in the action, λ1 6= λ2. However, after turning on the subleading axion mode

(χi = k̃1x̃i, χp−1 = k̃2ỹ) we find that λ1 must be the same as λ2 to satisfy the equations of

motion in the subleading order. This does not mean that this case becomes the isotropic

case. Because k̃1 6= k̃2 in the sub-leading order, it is a new kind of anisotropic solution

with λ1 = λ2.
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The irrelevant axion means k̃1 = k̃2 = 0 in the leading order so we start with an ansatz

Class III : ϕ = ϕ0 log r , A = a0 r
ζ−z dt , χi = 0 , χp−1 = 0 ,

Class VI : ϕ = ϕ0 log r , A = 0 , χi = 0 , χp−1 = 0 ,
(2.48)

where ϕ0 and a0 are nonzero. The metric ansatz is the same as (2.13) with IR cou-

plings (2.12).

Class III. After considering all conditions (2.17)–(2.20) and (A.9), we find that the

allowed parameter space is

z < 0 , θ > p− 1 , ϕ0λ > −2 ,

1 < z ≤ 2 , θ < (z − 1)(p− 1) , ϕ0λ < −2 ,

2 < z , θ < p− 1 , ϕ0λ < −2 ,

(2.49)

which is the same as the case I for ξ = 1 and represented in figure 1(d). The last inequality

and the extra condition for ϕ0 are explained in (A.8)–(A.10) in appendix.

Class VI. After considering all conditions (2.17)–(2.20) with (A.17) and (A.18), we find

that the parameter space is

z = 1 , θ < 0 , ζ < θ + 1− p , ϕ0λ < −2 . (2.50)

2.3.2 Mixed axions

Here we consider the case that only one of the k̃i is nonzero, which we called ‘mixed axions’

in subsection 2.1 because the axion in one direction is marginally relevant and the axion

in the other direction is irrelevant. This is a hybrid of the class I and III (a0 6= 0); and the

class II and IV (a0 = 0). The class I-i and II-i means k̃1 is nonzero and the class I-ii and

II-ii means k̃2 is nonzero. i.e. we assume that the leading solutions are written as

Class I-i : ϕ = ϕ0 log r , A = a0 r
ζ−z dt , χi = k̃1x̃i , χp−1 = 0 ,

Class I-ii : ϕ = ϕ0 log r , A = a0 r
ζ−z dt , χi = 0 , χp−1 = k̃2ỹ ,

Class II-i : ϕ = ϕ0 log r , A = 0 , χi = k̃1x̃i , χp−1 = 0 ,

Class II-ii : ϕ = ϕ0 log r , A = 0 , χi = 0 , χp−1 = k̃2ỹ ,

(2.51)

where ϕ0 and a0 are nonzero. The metric ansatz is the same as (2.13) with IR cou-

plings (2.12). The allowed parameter range is summarized in table 3, 4, 5 and 6 respectively.

3 Thermal diffusion and butterfly velocity

In this section we consider diffusion in the anisotropic system. Diffusion in strongly cor-

related systems is a very interesting subject because of its proposed relation to the chaos

properties such as the Lyapunov time (τL) and the butterfly velocity (vB), which are intro-

duced in (1.2). At finite density, charge and energy diffusion are coupled and two diffusion
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ξ ≤ 0

z < ξ θ > p− 1 ζ = 2− p+ θ − ξ λ2
λ1
< ξ

0 < ξ < 1

z < 0 θ > p− 1 ζ = 2− p+ θ − ξ λ2
λ1
< ξ

1 ≤ ξ

ξ < z ≤ 1 + ξ θ <
p− 1

2

(
z −

√
(z − 2)2 + 4(ξ−1)(−z+1+ξ)

p−1

)
ζ = 2− p+ θ − ξ λ2

λ1
> ξ

1 + ξ < z θ < p− 1 ζ = 2− p+ θ − ξ λ2
λ1
> ξ

Table 3. Parameter range: Class I-i, V0 > 0.

ξ ≤ 0

1 < z θ < ξ(p− 1) ζ = 2− p+ θ − ξ λ1
λ2
< ξ−1

0 < ξ < 1

1 < z ≤ 1 + ξ θ <
p− 1

2

(
z −

√
(z − 2)2 + 4(ξ−1)(−z+1+ξ)

p−1

)
ζ = 2− p+ θ − ξ λ1

λ2
> ξ−1

1 + ξ < z θ < ξ(p− 1) ζ = 2− p+ θ − ξ λ1
λ2
> ξ−1

1 ≤ ξ
z < 0 θ > ξ(p− 1) ζ = 2− p+ θ − ξ λ1

λ2
< ξ−1

Table 4. Parameter range: Class I-ii, V0 > 0.

ξ < 0

z = ξ θ > p− 1 ζ > 2− p+ θ − ξ λ2
λ1
< ξ

1 < ξ

z = ξ θ <
p− 1

2

(
ξ −

√
(ξ − 2)2 + 4(ξ−1)

p−1

)
ζ < 2− p+ θ − ξ λ2

λ1
> ξ

Table 5. Parameter range: Class II-i, V0 > 0.

constants D± describing the coupled diffusion of charge and energy can be obtained by the

generalized Einstein relation [10]10

D+D− =
σ

χ

κ

cρ
, (3.1)

D+ +D− =
σ

χ
+
κ

cρ
+
T (ζ̃σ − χα)2

cρχ2σ
, (3.2)

where σ, α, and κ are the electric, thermoelectric and thermal conductivity respectively. χ is

the compressibility, cρ is the specific heat at fixed charge density and ζ̃ is the thermoelectric

susceptibility.

If the charge density is zero, since α = ζ̃ = 0, the ‘mixing term’ (the third term

in (3.2)) vanishes. In this case D± are decoupled and D+ and D− can be identified with

10The conductivities may be diagonalized as in [57].
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ξ ≤ 0

z = 1 θ < ξ(p− 1) ζ < 2− p+ θ − ξ λ1
λ2
< ξ−1

0 < ξ < 1

z = 1 θ <
p− 1

2

(
1−

√
1 + 4(ξ−1)ξ

p−1

)
ζ < 2− p+ θ − ξ λ1

λ2
> ξ−1

Table 6. Parameter range: Class II-ii, V0 > 0.

the charge diffusivity (DC) and the thermal diffusivity (DT ) respectively. The mixing

term is also negligible in the incoherent regime where momentum relaxations is strong

(ki/µ � 1, ki/T � 1) [16]. Furthermore, It has been shown that in the low temperature

limit of the scaling geometry studied in section 2, the mixing term is negligible [34].11 In

this section, we consider this low temperature limit and focus on the anisotropic thermal

diffusivities defined by

DT,x :=
κxx
cρ

, DT,y :=
κyy
cρ

, (3.3)

and a specific combinations:

Ex :=
DT,x

v2
B,xτL

, Ey :=
DT,y

v2
B,yτL

, (3.4)

where vB,i is the butterfly velocity in the i direction.

The essential idea of the following analysis was already described in [34] and we closely

follow the steps therein. Our goal here is to extend the results in [34] in three aspects. i) to

understand Ex and Ey in terms of scaling exponents z and ξ and ii) to identify the allowed

range of Ex and Ey and see if there is any universal lower or upper bound. iii) to extend

the formalism to the case where gtt 6= g−1
rr . To achieve our goals, the analysis in section 2

are necessary.

For simplicity let us consider p = 3, in which case the action (2.1) becomes

S=

∫
d4x
√
−g
[
R− 1

2
(∂ϕ)2+V (ϕ)− 1

4
Z(ϕ)F 2− 1

2
W1(ϕ)(∂χ1)2− 1

2
W2(ϕ)(∂χ2)2

]
. (3.5)

We consider a general metric solution of the form

ds2 = −D(r)dt2 +B(r)dr2 + C1(r)dx2 + C2(r)dy2 , (3.6)

where we allow B 6= D and slightly generalize the formulas in [34] to the case B 6= D−1.

11The suppression of the mixing term in the low temperature limit of the scaling geometry has been

explained in detail in appendix A of [34]. The only modification in our case is the effect of anisotropic

parameter ξ. Because the argument in [34] is also valid in the anisotropic case, here we report the change

of key formula (A.8) in [34] due to the anisotropic parameter ξ:

T

cρ

(
αii
σii
−

(
∂s

∂ρ

)
T

)2

∼ T 1+((p−2)+ξ−θ)/z ,

where ii denotes xx or yy and we used cρ ∼ (∂s/∂ρ)T ∼ T ((p−2)+ξ−θ)/z and αii/σii ∼ T ((p−2)+ξ−θ)/z.
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The IR asymptotic form of the metric (3.6) is assumed to be (2.13), while its UV

asymptotic form is supposed to be isotropic AdS4 space. Note that the couplings and

potentials (2.12) are valid only at IR. For the asymptotically AdSp+1 space at UV, we

need to have suitable asymptotic potential terms at UV: it will be at least necessary to

have V (ϕ) at UV such that

V (0) = −p(p− 1)

L2
, V ′(0) = 0 , V ′′(0) = m2 , (3.7)

where we set ϕ = 0 at UV and m2 (the scalar mass squared) should not violate the BF

(Breitenlohner-Freedman) bound of a scalar field in AdSp+1 space. For example, we may

consider the following form:

V (ϕ) = a1e
b1ϕ + a2e

b2ϕ + · · · (3.8)

and choose the parameters a1, a2, b1, and b2 to satisfy the constraints (3.7), which can be

done always in principle. For more details, we refer to [58].

From the metric (3.6) the temperature and entropy density read

T =
1

4π

|D′|√
DB

∣∣∣∣
rh

, s = 4π
√
C1C2

∣∣∣
rh
. (3.9)

The electric conductivity (σxx), thermoelectric conductivity (αxx), and thermal conductiv-

ity (κ̄xx) have been obtained in terms of horizon data in [59]. In our convention they read12

σxx =

(
ρ2

k2
1W1

√
C2C1

+ Z

√
C2

C1

)∣∣∣∣∣
rh

, αxx =
4πρ

k2
1W1

∣∣∣∣
rh

, κ̄xx =
4πsT

k2
1W1

∣∣∣∣
rh

, (3.10)

where ρ is the charge density

ρ =

√
C1C2

DB
ZA′t , (3.11)

which is easily seen in (2.10). The thermal conductivity with an open circuit condition

(κxx) is

κxx = κ̄xx −
Tα2

xx

σxx
=

4πsTZ(ϕ(r))C2(r)

ρ2 + k2
1W1(ϕ(r))Z(ϕ(r))C2(r)

∣∣∣∣
rh

. (3.12)

All conductivities in (3.10) and (3.12) depend on the metric, the forms of couplings

and the profiles of the matter fields. However, the key observation made in [34] is that the

thermal conductivity with an open ciruit condition (κxx) is a function only of the metric.

It can be seen from the Einstein equations. By eliminating the second term including V

in (2.6) and (2.8) we have

B′C ′1
B2

+
C ′21
BC1

− C ′1C
′
2

BC2
− C1B

′D′

B2D
+
C1C

′
2D
′

BC2D
− C1D

′2

BD2
− 2C ′′1

B
+

2C1D
′′

BD

= 2k2
1W1 +

2ZC1A
′2
t

BD
.

(3.13)

12These DC formulas have been confirmed by computing the optical conductivities and taking the zero

frequency limit [60–62]. See also [63, 64] which were the first papers developing the techniques to calculate

the electric conductivity in terms of the black hole horizon data in massive gravity.
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Note that the right hand side is a combination of the stress energy tensor in the Ein-

stein equations and it is the combination that appears in the denominator of (3.12) after

substituting ρ with (3.11). Thus, κxx can be expressed only in terms of metric:

κxx =
32π2T (C−1

1 C2)
3
2D′

[(C−1
1 C2)(BD)−1D′2]′

∣∣∣∣∣
rh

. (3.14)

Note that the dependence of κxx on the matter fields and the couplings are still implicitly

encoded in the metric but there is no explicit matter and coupling dependence in κxx.

This suggests that there may be some universal feature. For the conductivities in the y-

direction, we only need to replace the subscripts x→ y and 1↔ 2 from (3.10) and (3.14).

For exmaple, from (3.14)

κyy =
32π2T (C−1

2 C1)
3
2D′

[(C−1
2 C1)(BD)−1D′2]′

∣∣∣∣∣
rh

. (3.15)

The formula (3.14) and (3.15) are reduced to the ones in [34] if B = D−1.

The specific heat can be computed from the entropy density in (3.9) as

cρ = T

(
∂s

∂T

)
ρ

=
2πT (C1C2)′√

C1C2

∣∣∣∣
rh

∂rh
∂T

, (3.16)

where rh is a function of T obtained by the first equation of (3.9). In principle, ∂rh
∂T also

can be written in terms of the derivatives of the metric but it is not so illuminating.

Finally, the butterfly velocities can be computed holographically by considering a shock

wave geometry and they are written in terms of the metric data at horizon [22, 34]. For

anisotropic case

vB,x =
2πT√
C1m

∣∣∣∣
rh

, vB,y =
2πT√
C2m

∣∣∣∣
rh

, (3.17)

where

m =

√
πT

(
(C1C2)′

C1C2

√
BD

)∣∣∣∣
rh

, (3.18)

which slightly generalize the formula of [22, 34] to the case B 6= D−1.

Having the general formulas for the thermal conductivity (κxx, κyy), specific heat

(cρ), and the butterfly velocity (vB,x, vB,y) for a metric of the form (3.6), we turn to our

anisotropic model in section 2. For all classes considered in there the metric is of the form

ds2 = rθ
(
−f(r)

dt2

r2z
+
L2
rdr

2

f(r)r2
+
L2

1dx2

r2
+
L2

2dy2

r2ξ

)
, (3.19)

with the emblackening factor

f(r) = 1−
(
r

rh

)z+1−θ+ξ
. (3.20)
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The temperature (3.9) is related to the horizon position rh as follows.

T =
r−zh |1 + z − θ + ξ|

4πLr
, rh =

(
|1 + z − θ + ξ|

4πLrT

) 1
z

. (3.21)

Thermal conductivities (3.14) and (3.15) are

κxx =
4π

2(1− z)
LrL

−1
1 L2r

θ−z−ξ+1
h , κyy =

4π

2(ξ − z)
LrL1L

−1
2 rθ−z+ξ−1

h , (3.22)

and the specific heat (3.16) is computed as

cρ = T

(
∂s

∂T

)
ρ

= 4π
1 + ξ − θ

z
L1L2r

θ−1−ξ
h , (3.23)

from the entropy density (3.9)

s = 4πL1L2r
θ−(1+ξ)
h ∼ T

1+ξ−θ
z . (3.24)

In (3.22) and (3.23) we replaced T with rh by using (3.21) to simplify the expression.

Thus, the diffusivities are

DT,x =
κxx
cρ

=
z

(2z − 2)(θ − 1− ξ)
LrL

−2
1 r2−z

h ,

DT,y =
κyy
cρ

=
z

(2z − 2(2− ξ)) (θ − 1− ξ)
LrL

−2
2 r2ξ−z

h ,
(3.25)

and the butterfly velocities (3.17) are

v2
B,x =

2πT

θ − 1− ξ
LrL

−2
1 r2−z

h , v2
B,y =

2πT

θ − 1− ξ
LrL

−2
2 r2ξ−z

h . (3.26)

Finally, by noticing that τL = (2πT )−1 we have

Ex =
DT,x

v2
B,xτL

=
1

2

zx
zx − 1

=
1

2

z

z − 1
, (3.27)

Ey =
DT,y

v2
B,yτL

=
1

2

zy
zy − 1

=
1

2

z

z − ξ
. (3.28)

Notice that the Ex and Ey depend only on z and ξ irrespective of θ and ζ. They are also

independent of charge density ρ and momentum relaxations k1 and k2. This universality

is nontrivial because the thermal conductivities, specific heat and butterfly velocity, all of

them depend on (θ, ζ, ρ, k1, k2) through (Lr, L1, L2, rh). When it comes to the combinations

Ex and Ey, all Lr, L1, L2 and rh are canceled out.
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To investigate if there is any lower or upper bound of Ex and Ey, we need to understand

the parameter region of z and ξ. We will restrict ourselves to positive zi. Based on the

allowed parameter region obtained in section 2 we find

• Class I and II

λ2

λ1
≥ 1 ⇒ 1

2
≤ Ex <

1

2

(
1

1− ξ−1

)
,

1

2
≤ Ey , (3.29)

λ1

λ2
≥ 1 ⇒ 1

2
≤ Ex ,

1

2
≤ Ey <

1

2

(
1

1− ξ

)
, (3.30)

where ξ = λ2
λ1

.

• Class I-i

λ2

λ1
> 1 ⇒ 1

2
≤ Ex <

1

2

(
1

1− ξ−1

)
,

1

2
≤ Ey , (3.31)

where ξ = −γ+δ+λ1
λ1

. Here k2 = 0 and λ1
λ2
> 1 is not allowed.

• Class I-ii

λ1

λ2
> 1 ⇒ 1

2
≤ Ex ,

1

2
≤ Ey <

1

2

(
1

1− ξ

)
, (3.32)

where ξ = − λ2
γ+δ+λ2

. Here k1 = 0 and λ2
λ1
> 1 is not allowed.

• Class II-i

λ2

λ1
> 1 ⇒ 1

2
≤ Ex =

1

2

(
1

1− ξ−1

)
, (3.33)

where ξ =
2−2δ2+λ21
λ1(2δ+λ1) . Here k2 = 0 and λ1

λ2
> 1 is not allowed. z = ξ so Ey is not

computed in our method.

• Class II-ii

λ1

λ2
> 1 ⇒ 1

2
≤ Ey =

1

2

(
1

1− ξ

)
, (3.34)

where ξ = λ2(2δ+λ2)
2−2δ2+λ22

with z = 1. Here k1 = 0 and λ2/λ1 > 1 is not allowed. z = 1 so

Ex is not computed in our method.

• Class III

λ1

λ2
= 1 ⇒ 1

2
≤ Ex = Ey =

1

2

(
z

z − 1

)
. (3.35)

• Class IV: z = 1 so Ei cannot be computed in our method.

We find that the lower bound of Ei is always 1/2. However, contrary to the isotropic

case, there may be an upper bound for class I, II, I-i, and I-ii. All of these have at least

one marginally relevant axion. This upper bound can be understood from the fact that for

0 < ξ ≤ 1, z > 1 and for ξ ≥ 1, z > ξ. For example, in (3.29), even though Ex does not

depend on ξ explicitly, its range depends on ξ because the available parameter range of z

depends on ξ. In this case it is z > ξ, which gives an upper bound.
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4 Conclusion

In this paper, we have studied the holographic systems so called ‘Q-lattice’ or Einstein-

Maxwell-Dilaton theory coupled to ‘Axion’ fields (EMDA). The dilaton is introduced to

support the scaling IR geometry and the axion fields are included to break translational

symmetry. Our main focus is to study the effect of spatial anisotropy which is introduced

in two ways: i) by making the different dilaton couplings to axion fields and ii) by consid-

ering the different momentum relaxation parameters for spatial directions. The former is

characterized by λ1 and λ2 in (2.12) and the latter is done by k1 and k2 in (2.5).

First, we have extended four classes of the isotropic IR geometry [32] to the anisotropic

case, which yields eight classes. For marginally relevant axion, where the momentum relax-

ation parameters (k1, k2) appear explicitly in the leading IR solution, the anisotropy of ki
and λi are related (i = 1, 2). However, for irrelevant axion, where the momentum relaxation

parameters (k1, k2) do not appear in the leading IR solution, the sub-leading order mode

analysis imposes the conditions λ1 = λ2, and ki and λi are not related. It is also possible

that only one of ki is zero. Therefore, in total there are four classes in terms of ‘relevance’

of axions: in the leading order solution, both ki are nonzero, both ki are zero, only one ki
is zero (in 2+1 field theory dimension, k1 = 0 and k2 = 0 are equivalent.) For every classes

the charge may be marginally relevant or irrelevant. i.e. the temporal gauge filed At may

be non-zero or zero in the leading order solution. Therefore, we have eight classes in total.

The solutions have many parameters so called ‘solution-parameters’, which include

two critical exponents: zi for a dynamical exponent along i-direction, θ for a hyperscaling

violating exponent, and ζ for the anomalous dimension of the field theory charge density.

In our representation zx = z and zy = z/ξ where ξ characterizes the anisotropy between x-

direction and y-direction. These solution-parameters should be restricted by some physical

conditions such as reality, positive specific heat, and null energy conditions. We have

identified those conditions in tables 1–10 and figure 1.

Next, we have considered thermal diffusion in anisotropic cases. For the holographic

systems with the metric

ds2 = −D(r)dt2 +B(r)dr2 + C1(r)dx2 + C2(r)dy2 , (4.1)

the thermal conductivity, specific heat, butterfly velocity in x-direction can be computed

in terms of the horizon data as

κxx =
32π2T (C−1

1 C2)
3
2 |D′|

[(C−1
1 C2)(BD)−1D′2]′

∣∣∣∣∣
rh

, (4.2)

cρ =
2πT (C1C2)′√

C1C2

∣∣∣∣
rh

∂rh
∂T

, v2
B,x =

4πT (C2

√
BD)

(C1C2)′

∣∣∣∣∣
rh

, (4.3)

which give

Ex =
DT,x

v2
B,xτL

=
8πC−1

1 C2|D′|√
BD[C−1

1 C2(BD)−1D′2]′

∣∣∣∣∣
rh

∂T

∂rh
, (4.4)
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where τL = (2πT )−1 is the Lyapunov time. We may obtain the quantities in y-direction

by switching the subscript 1↔ 2. Notice that κxx is originally a function of the couplings

and the profiles of the matter fields. All these explicit matter dependences were replaced

by the metric thanks to the Einstein equations, which suggests that there may be some

universal feature. However, (4.4) is still a complicated function of the metric components

so can not guarantee a universality by itself. For example, in general, it can be a function

of rh, which is a function of temperature, charge density, and momentum relaxations etc.

For the IR scaling geometry we have studied in section 2 the combination (4.4) is

reduced to a simple universal form:

Ex =
1

2

(
zx

zx − 1

)
=

1

2

(
z

z − 1

)
, Ey =

1

2

(
zy

zy − 1

)
=

1

2

(
z

z − ξ

)
. (4.5)

Notice that in this geometry the parameters Ex and Ey depend only on z and ξ irrespective

of θ, ζ, charge density ρ and momentum relaxations (k1 and k2). This universality is due

to cancellations between three quantities {κxx(κyy), cρ, vB,x(vB,y)}, all of which depend on

{θ, ζ, ρ, k1, k2} as well as {z, ξ}.
We also studied the possible range of Ex and Ey to see if there is any universal lower or

upper bound. Based on the parameter range analyzed in section 2 we find that the lower

bound of Ei is always 1/2. However, there may be an upper bound due to anisotropy,

which was summarized in (3.29)–(3.35). It would be interesting to understand how much

this lower and upper bound is robust in deformation of the theory, for example, with finite

magnetic field [34, 65] or with higher derivative gravity in ‘Q-lattice’ models.

In holography, it might be possible to construct theories with a less (or non) universal

Ei or without any universal bound of Ei by considering some complicated enough bulk

models. In condensed matter systems, as pointed out in [34], the expression Ei in (4.5) is

not expected to be universal for all systems with the same dynamical critical exponent. For

example, some models with z = 3/2 may give E ∼ 0.42 which is different from (4.5) [31].

Thus, a counter example regarding the universality in holographic models is not always

bad. The important direction will be to classify the conditions for the universality and

understand its origin from both gravity and condensed matter perspective, towards exper-

imental understanding and applications.
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A Irrelevant axion

Irrelevant axion means that k1 = k2 = 0(χi = χp−1 = 0) at leading order in the IR. Because

k1 6= k2 in the sub-leading order, it is a new kind of anisotropic solution with λ1 = λ2.

A.1 Class III: marginally relevant charge

The irrelevant axion means k̃1 = k̃2 = 0 in the leading order so we start with an ansatz

ds2 = r
2θ
p−1

−dt2

r2z
+
L2
rdr

2

r2
+

p−2∑
i=1

dx̃2
i

r2
+

dỹ2

r2ξ

 ,
ϕ = ϕ0 log r , A = a0 r

ζ−z dt , χi = 0 , χp−1 = 0 ,

(A.1)

where ϕ0 and a0 are nonzero.

By the equations of motion, solution-parameters (z, θ, ξ, ϕ0, ζ) may be expressed in

terms of two action-parameters (δ, γ) as

z =
ϕ2

0

(
δ2(p− 1)− 2

)
− 4(p− 1)

2(p− 1)(δϕ0 − 2)
, ϕ0 =

2(p− 1)

γ + δ(p− 2)
,

θ =
(p− 1)δϕ0

2
, ξ = 1 , ζ =

(δ − γ)ϕ0

2
.

(A.2)

They satisfy the following constraint

ζ = −(p− 1− θ) ≡ −dθ ≡ ζI , (A.3)

which corresponds to the relation between action parameters

γ = (2− p)δ +
2(p− 1)

ϕ0
. (A.4)

The remaining solutions parameters are

L2
r =

(z + p− θ − 1)(z + p− θ − 2)

V0
, (A.5)

a2
0 =

2(−1 + z)

−1 + p+ z − θ
, (A.6)

where ζ 6= z and ζ 6= z − 1 are assumed.

The action-parameters (δ, γ) may be written in terms of two solution-parameters (z, θ):

δ =
2θ

(p− 1)ϕ0
, γ =

−2ζ + 2
p−1θ

ϕ0
, (A.7)

where

ϕ2
0 = 2

(
θ2

p− 1
− zζ + 1− p

)
=

2(p− 1− θ) (1 + p(z − 1)− z − θ)
p− 1

.

(A.8)
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Note that all formulas so far are independent of λ1 and λ2 and they are free. However,

after introducing the subleading axion mode (χi = k̃1x̃i, χp−1 = k̃2ỹ) we find λ1 = λ2 := λ

and they backreact on metric and ϕ at quadratic order as

∼ rβ , where β := 2 + ϕ0λ, (A.9)

which gives a constraint on ϕ0λ because β should be positive(negative) if the IR is at

r → 0(∞). This constraint (inequality) was summarized in the third column in (A.10)

below. After considering all conditions (2.17)–(2.20), we find that the parameter space of

z, θ are

z < 0 , θ > p− 1 , ϕ0λ > −2 ,

1 < z ≤ 2 , θ < (z − 1)(p− 1) , ϕ0λ < −2 ,

2 < z , θ < p− 1 , ϕ0λ < −2 ,

(A.10)

which is the same as the case I for ξ = 1 and represented in figure 1(d). λ should be chosen

for given z, θ to satisfy the last inequality in (A.10) with (A.8). If λ is given, ϕ0 should be

chosen to satisfy the last inequality in (A.10), which further restricts the range of z and θ.

All formulas in this section are consistent with the formulas in Class I with replace-

ments: ξ = 1, λ1 = λ2 and k̃1 = k̃2 = 0.

A.2 Class IV: irrelevant charge

This class correspond to k̃1 = k̃2 = 0 = a0 in the leading order so we start with an ansatz

ds2 = r
2θ
p−1

−dt2

r2z
+
L2
rdr

2

r2
+

p−2∑
i=1

dx̃2
i

r2
+

dỹ2

r2ξ

 ,
ϕ = ϕ0 log r , A = 0 , χi = 0 , χp−1 = 0 ,

(A.11)

where the solution variables are determined by the action variable (δ, V0) as follows:

z = 1 , ξ = 1 , ϕ0 =
2δ(p− 1)

δ2(p− 1)− 2
, (A.12)

θ =
(p− 1)δϕ0

2
=

δ2(p− 1)2

δ2(p− 1)− 2
, L2

r =
(p− θ)(p− 1− θ)

V0
. (A.13)

We may deduce z = 1 from (A.6) by setting a0 = 0. The relation between ϕ0 and δ may be

understood by requiring z = 1 in the first equation of (A.2). Lr is can be read from (A.5)

with z = 1. The action variable δ reads

δ =
2θ

(p− 1)ϕ0
with ϕ2

0 =
2θ(1− p+ θ)

p− 1
. (A.14)

in terms of solution variables.
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Note that all formulas so far are independent of λ1, λ2 and γ because both axions and

charge are irrelevant. By turning on the subleading gauge field mode

At(r) = a0r
ζ−1 , (A.15)

we find

ζ = p− 1− p− 3

p− 1
θ − γϕ0 , (A.16)

where ζ is a function of a free action parameter γ. This gauge field mode backreact on

metric and ϕ at quadratic order as

∼ rβ , where β := p− 1 + ζ − θ . (A.17)

This mode analysis is parallel to class II from (2.45) to (2.47). If we turn on the subleading

axion mode (χi = k̃1x̃i, χp−1 = k̃2ỹ) we find λ1 = λ2 := λ and they backreact on metric

and ϕ at quadratic order as

∼ rβ , where β := 2 + ϕ0λ . (A.18)

This mode analysis is parallel to (A.9) in class III.

After considering all conditions we listed in case I with (A.17) and (A.18), we find that

the parameter space is

z = 1 , θ < 0 , ζ < θ + 1− p , ϕ0λ < −2 . (A.19)

B Marginally relevant and irrelevant axion

In this subsection we consider the case that only one of the ki is nonzero. This is a hybrid

of the class I and III (a0 6= 0); and the class II and IV (a0 = 0). The class I-i and II-i

means k1 is nonzero and the class I-ii and II-ii means k2 is nonzero.

B.1 Class I-i: marginally relevant charge

We assume that the classical solutions are written as

ds2 = r
2θ
p−1

−dt2

r2z
+
L2
rdr

2

r2
+

p−2∑
i=1

dx̃2
i

r2
+

dỹ2

r2ξ

 ,
ϕ = ϕ0 log r , A = a0 r

ζ−z dt , χi = k̃1x̃i , χp−1 = 0 .

(B.1)

By the equations of motion, the ‘exponent’ solution-parameters (z, ξ, θ, ζ) may be expressed

in terms of action-parameters (δ, λ1, γ) as

z = −2 + γ2 + ((p− 5)p+ 5)δ2 + (p− 2) (2 (δ + λ1) γ + λ1 (2(p− 2)δ + (p− 1)λ1))

(γ − δ)λ1
,

θ =
(1− p)δ
λ1

, ξ = −γ + (p− 2) (δ + λ1)

λ1
, ζ =

γ − δ
λ1

.
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Note that λ2 does not contribute to the IR solution because k̃2 = 0. A quick way to see this

solutions is to solve (2.30) for λ2 and plugging it to (2.28) making it λ2 independent. They

are not all independent and there is a constraint between solution-parameters (θ, ζ, ξ)

ζ = −(p− 2− θ)− ξ ≡ −(dθ − 1)− ξ ≡ ζI , (B.2)

which does not give any relation between action-parameters contrary to (2.30). The ‘coef-

ficient’ parameters are solved as

ϕ0 = − 2

λ1
, (B.3)

L2
r =

(p− 2 + z − θ + ξ)(z − θ + (p− 2)ξ)

V0
, (B.4)

a2
0 =

2(z − ξ)
p− 2 + z − θ + ξ

, (B.5)

k̃2
1 =

2V0(ξ − 1)

z − θ + (p− 2)ξ
. (B.6)

It can be understood by (2.35)–(2.37) by solving for k̃1 with k̃2 = 0 and plugging it back.

The action-parameters (δ,λ1,γ) may be written in terms of solution-parameters (z, θ, ξ):

δ =
2θ

(p− 1)ϕ0
, λ1 =

−2

ϕ0
, γ =

−2ζ + 2
p−1θ

ϕ0
, (B.7)

where

ϕ2
0 = 2

(
θ2

p− 1
− zζ + 2− p− ξ2

)
=

2(p− 1− θ) (1 + p(z − 1)− z − θ)
p− 1

− 2(ξ − 1)(ξ − z + 1) ,

(B.8)

where ζ can be replaced by (B.2).

Here, all formulas are independent of λ2. By considering the sub-leading axion mode

k̃2ỹ we find that it backreacts on metric and ϕ at quadratic order as

∼ rβ , where β := ϕ0λ2 + 2ξ , (B.9)

which gives a constraint on ϕ0λ2 because β should be positive(negative) if the IR is at

r → 0(∞). This and all other conditions (2.17)–(2.20) give us the parameter space shown

in table 7.

B.2 Class I-ii: marginally relevant charge

We assume that the classical solutions are written as

ds2 = r
2θ
p−1

−dt2

r2z
+
L2
rdr

2

r2
+

p−2∑
i=1

dx̃2
i

r2
+

dỹ2

r2ξ

 ,
ϕ = ϕ0 log r , A = a0 r

ζ−z dt , χi = 0 , χp−1 = k̃2ỹ .

(B.10)
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ξ ≤ 0

z < ξ θ > p− 1 ζ = 2− p+ θ − ξ, λ2
λ1
< ξ

0 < ξ < 1

z < 0 θ > p− 1 ζ = 2− p+ θ − ξ, λ2
λ1
< ξ

1 ≤ ξ

ξ < z ≤ 1 + ξ θ <
p− 1

2

(
z −

√
(z − 2)2 + 4(ξ−1)(−z+1+ξ)

p−1

)
ζ = 2− p+ θ − ξ, λ2

λ1
> ξ

1 + ξ < z θ < p− 1 ζ = 2− p+ θ − ξ, λ2
λ1
> ξ

Table 7. Parameter range: Class I-i, V0 > 0.

By the equations of motion, the ‘exponent’ solution-parameters (z, ξ, θ, ζ) may be expressed

in terms of action-parameters (δ, λ2, γ) as

z=
γ2+2(p−2)+2γ (λ2+(p−2)δ)−(p−2)δ2+λ2 (2(p−2)δ+(p−1)λ2)

(γ−δ)(γ+λ2+(p−2)δ)
,

θ=
(p−1)(p−2)δ

γ+λ2+(p−2)δ
, ξ=− (p−2)λ2

γ+λ2+(p−2)δ
, ζ =− (p−2)(γ−δ)

γ+λ2+(p−2)δ
.

(B.11)

Note that λ1 does not contribute to the IR solution because k̃1 = 0. A quick way to see this

solutions is to solve (2.30) for λ1 and plugging it to (2.28) making it λ1 independent. They

are not all independent and there is a constraint between solution-parameters (θ, ζ, ξ)

ζ = −(p− 2− θ)− ξ ≡ −(dθ − 1)− ξ ≡ ζI . (B.12)

which does not give any relation between action-parameters contrary to (2.30). The ‘coef-

ficient’ parameters are solved as

ϕ0 = −2ξ

λ2
, (B.13)

L2
r =

(p− 2 + z − θ)(p− 2 + z − θ + ξ)

V0
, (B.14)

a2
0 =

2(z − 1)

p− 2 + z − θ + ξ
, (B.15)

k̃2
2 =

2V0(1− ξ)
p− 2 + z − θ

. (B.16)

It can be understood by (2.35)–(2.37) by solving for k̃2 with k̃1 = 0 and plugging it back.

The action-parameters (δ,λ2,γ) may be written in terms of solution-parameters (z, θ, ξ):

δ =
2θ

(p− 1)ϕ0
, λ2 =

−2ξ

ϕ0
, γ =

−2ζ + 2
p−1θ

ϕ0
, (B.17)

where

ϕ2
0 = 2

(
θ2

p− 1
− zζ + 2− p− ξ2

)
=

2(p− 1− θ) (1 + p(z − 1)− z − θ)
p− 1

− 2(ξ − 1)(ξ − z + 1) ,

(B.18)

where ζ can be replaced by (B.12).
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ξ ≤ 0

1 < z θ < ξ(p− 1) ζ = 2− p+ θ − ξ, λ1
λ2
< ξ−1

0 < ξ < 1

1 < z ≤ 1 + ξ θ <
p− 1

2

(
z −

√
(z − 2)2 + 4(ξ−1)(−z+1+ξ)

p−1

)
ζ = 2− p+ θ − ξ, λ1

λ2
> ξ−1

1 + ξ < z θ < ξ(p− 1) ζ = 2− p+ θ − ξ, λ1
λ2
> ξ−1

1 ≤ ξ
z < 0 θ > ξ(p− 1) ζ = 2− p+ θ − ξ, λ1

λ2
< ξ−1

Table 8. Parameter range: Class I-ii, V0 > 0.

Similarly to the case I-i, all formulas here are independent of λ1. By considering the

sub-leading axion mode k̃1x̃i we find that it backreacts on metric and ϕ at quadratic order as

∼ rβ , where β := ϕ0λ1 + 2 , (B.19)

which gives a constraint on ϕ0λ1 because β should be positive(negative) if the IR is at

r → 0(∞). This and all other conditions (2.17)–(2.20) give us the parameter space shown

in table 8.

B.3 Class II-i: irrelevant charge

We assume that the classical solutions are written as

ds2 = r
2θ
p−1

−dt2

r2z
+
L2
rdr

2

r2
+

p−2∑
i=1

dx̃2
i

r2
+

dỹ2

r2ξ

 ,
ϕ = ϕ0 log r , A = 0 , χi = k̃1x̃i , χp−1 = 0 .

(B.20)

By the equations of motion, the ‘exponent’ solution-parameters (z, ξ, θ) may be expressed

in terms of action-parameters (δ, λ1) as

z = ξ , θ =
(1− p)δ
λ1

, ξ =
2− (p− 1)δ2 + (p− 2)λ2

1

((p− 1)δ + (p− 2)λ1)λ1
. (B.21)

Note that λ2 and γ does not contribute to the IR solution because k̃2 = a0 = 0. The first

equation can be understood by (2.43) where we set k̃2 = 0. The ‘coefficient’ parameters

are solved as

ϕ0 = − 2

λ1
, (B.22)

L2
r =

(p− 2− θ + 2ξ)((p− 1)ξ − θ)
V0

, (B.23)

k̃2
1 =

2V0(ξ − 1)

(p− 1)ξ − θ
. (B.24)

It can be understood by (2.43) by plugging z = ξ.
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ξ < 0

z = ξ θ > p− 1 ζ > 2− p+ θ − ξ, λ2
λ1
< ξ

1 < ξ

z = ξ θ <
p− 1

2

(
ξ −

√
(ξ − 2)2 + 4(ξ−1)

p−1

)
ζ < 2− p+ θ − ξ, λ2

λ1
> ξ

Table 9. Parameter range: Class II-i, V0 > 0.

The action-parameters (δ, λ1) may be written in terms of solution-parameters (θ, ξ):

δ =
2θ

(p− 1)ϕ0
, λ1 =

−2

ϕ0
, (B.25)

where

ϕ2
0 =

2(p− 1− θ) (1 + p(ξ − 1)− ξ − θ)
p− 1

− 2(ξ − 1) . (B.26)

Note that all formulas so far are independent of λ2 and γ because one axion (k̃2ỹ) and

the charge are irrelevant. By turning on the subleading gauge field mode

At(r) = a0r
ζ−ξ , (B.27)

we find

ζ =
(p(p− 3) + 2(θ + 1)) + (1− p)(γϕ0 − ξ + θ)

p− 1
, (B.28)

where ζ is a function of a free action parameter γ. This gauge field mode backreact on

metric and ϕ at quadratic order as

∼ rβ1 , where β1 := p− 2 + ζ − θ + ξ . (B.29)

If we turn on the subleading axion mode (χp−1 = k̃2ỹ) we find

λ2 =
p− 2 + ζ − θ − ξ

ϕ0
, (B.30)

and they backreact on metric and ϕ at quadratic order as

∼ rβ2 , where β2 := ϕ0λ2 + 2ξ . (B.31)

After considering all conditions (2.17)–(2.20) with the conditions for (B.29) and (B.31),

we find that the parameter space which is shown in table 9.

B.4 Class II-ii: irrelevant charge

We assume that the classical solutions are written as

ds2 = r
2θ
p−1

−dt2

r2z
+
L2
rdr

2

r2
+

p−2∑
i=1

dx̃2
i

r2
+

dỹ2

r2ξ

 ,
ϕ = ϕ0 log r , A = 0 , χi = 0 , χp−1 = k̃2ỹ .

(B.32)
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By the equations of motion, the ‘exponent’ solution-parameters (z, ξ, θ) may be expressed

in terms of action-parameters (δ, λ1) as

z = 1 , θ =
(1− p) (λ2 + (p− 1)δ) δ

2 + λ2
2 − (p− 1)δ2

, ξ =
λ2 (λ2 + (p− 1)δ)

2 + λ2
2 − (p− 1)δ2

. (B.33)

Note that λ1 and γ does not contribute to the IR solution because k̃1 = a0 = 0. The first

equation can be understood by (2.43) where we set k̃1 = 0. The ‘coefficient’ parameters

are solved as

ϕ0 = −2ξ

λ2
, (B.34)

L2
r =

(p− 1− θ)(p− 1− θ + ξ)

V0
, (B.35)

k̃2
2 =

2V0(ξ − 1)

θ − (p− 1)
. (B.36)

It can be understood by (2.43) by plugging z = 1.

The action-parameters (δ, λ2) may be written in terms of solution-parameters (θ, ξ):

δ =
2θ

(p− 1)ϕ0
, λ2 = − 2ξ

ϕ0
, (B.37)

where

ϕ2
0 = 2θ

(
θ

p− 1
− 1

)
− 2(ξ − 1)ξ , (B.38)

Note that all formulas so far are independent of λ1 and γ because one axion (k1xi)

and the charge are irrelevant. By turning on the subleading gauge field mode

At(r) = a0r
ζ−1 , (B.39)

we find

ζ =
2 + γϕ0 + 3θ − ξ + p(p− 3− γϕ0 − θ + ξ)

p− 1
, (B.40)

where ζ is a function of a free action parameter γ. This gauge field mode backreact on

metric and ϕ at quadratic order as

∼ rβ1 , where β1 := p− 2 + ζ − θ + ξ . (B.41)

If we turn on the subleading axion mode (k̃1x̃i) we find

λ1 =
p− 4 + ζ − θ + ξ

ϕ0
, (B.42)

and they backreact on metric and ϕ at quadratic order as

∼ rβ2 , where β2 := ϕ0λ1 + 2 . (B.43)

After considering all conditions (2.17)–(2.20) with the conditions for (B.41) and (B.43),

we find that the parameter space which is shown in table 10.
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ξ ≤ 0

z = 1 θ < ξ(p− 1) ζ < 2− p+ θ − ξ, λ1
λ2
< ξ−1

0 < ξ < 1

z = 1 θ <
p− 1

2

(
1−

√
1 + 4(ξ−1)ξ

p−1

)
ζ < 2− p+ θ − ξ, λ1

λ2
> ξ−1

Table 10. Parameter range: Class II-ii, V0 > 0.

C Consistency check by coordinate transformation

In order to compare the results in section 3 with [34], let us summarize the main formulas

in [34]. The metric is written as

ds2 = −U(r̄)dt̄2 +
dr̄2

U(r̄)
+ h1(r̄)dx̄2 + h2(r̄)dȳ2 , (C.1)

of which IR geometry is parameterized as

U(r̄) = L−2
t r̄u1

(
1−

r̄∆
h

r̄∆

)
, h1(r̄) = L−2

x r̄2v1 , h2(r̄) = L−2
y r̄2v2 , (C.2)

where ∆ = v1 + v2 + u1 − 1. The parameters Ex and Ey are obtained as

Ex =
DT,x

v2
B,xτL

=
u1 − 1

u1 − 2v1
, Ey =

DT,y

v2
B,yτL

=
u1 − 1

u1 − 2v2
. (C.3)

As a consistency check, we may consider the coordinate transformation between (C.1)

and our metric (3.19)

ds2 = rθ
(
−f(r)

dt2

r2z
+
L2
rdr

2

f(r)r2
+
L2

1dx2

r2
+
L2

2dy2

r2ξ

)
.

Two metrics are related as follows.

{t̄, r̄, x̄, ȳ}=

{
t,
Lr
θ−z

rθ−z,x,y

}
,

u1 =
θ−2z

θ−z
, 2v1 =

θ−2

θ−z
, 2v2 =

θ−2ξ

θ−z
,

L2
t =

(
Lr
θ−z

) 2z−θ
z−θ

, L2
x =

1

L2
1

(
Lr
θ−z

) θ−2
θ−z

, L2
y =

1

L2
2

(
Lr
θ−z

) θ−2ξ
θ−z

.

(C.4)

We have confirmed all of our results agree to [34] by using this coordinate transformation.

For example,

Ex =
z

2z − 2
=

u1 − 1

u1 − 2v1
, Ey =

z

2z − 2ξ
=

u1 − 1

u1 − 2v2
. (C.5)
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