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1 Introduction and summary

Quantum complexity C is a quantity defined for a quantum system, where unitary oper-

ations, called gates, are applied to pairs of qubits.1 For a state |ψ〉 complexity is defined

as the minimum number of such gates that have to be applied to a simple reference state

to produce |ψ〉. It has been argued [1] that due to the Heisenberg uncertainty principle

quantum complexity obeys a bound on its growth rate:

dC
dt
≤ 2M

π
, (1.1)

where M is the mass of the system (check references [2]–[5] for some violations of this

bound).

Recently a holographic recipe has been proposed [5, 6] to compute complexity for

thermofield double states in strongly coupled quantum field theories. (For related work,

including a few lecture notes, see [7]–[59].) The proposal of [5, 6], which we refer to

as Complexity-Action (CA) proposal, makes use of the holographic representation of the

thermofield double state in a strongly coupled quantum field theory in terms of the eternal

1We will consider the case of two-gates, but one can easily generalize the discussion to the k-gates.
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asymptotically AdS black hole [60]. On this spacetime one can define the Wheeler-DeWitt

patch, shown in figure 1. The patch is anchored at boundary times tL and tR, and the

proposal of [5, 6] equates the complexity of the thermofield dual state |ψ(tL, tr)〉 with the

action evaluated on the Wheeler-DeWitt patch SWdW:

C(ψ(tL, tR)) =
SWdW

π~
, (1.2)

It was also shown in [5, 6] that for the Einstein-Hilbert action, AdS black holes saturate

the bound (1.1).

In this paper we add massless matter in the fundamental representation to N = 4 super

Yang-Mills and compute the corresponding corrections to dC/dt. We achieve this by adding

a small number of flavor branes to the stack of the D3 branes. At strong ’t Hooft coupling,

we need to study flavor branes propagating in asymptotically AdS5×S5 background. The

action of D-branes is just the DBI action, and thus the CA correspondence identifies the

correction to quantum complexity with the DBI action evaluated on the Wheeler-DeWitt

patch

δC =
SDBI,WdW

π~
. (1.3)

Note that the variational problem for the DBI action is well defined and there is no need

to introduce boundary terms in (1.3). We will see that δC can be written as a function of

temperature times the contribution of the flavor degrees of freedom to the total mass of the

system, δM . One may wonder whether the growth rate of the total quantum complexity

still obeys the inequality (1.1),

dCtot

dt
≡ dC
dt

+
d(δC)
dt

?
≤ 2Mtot

π
= 2

(
M
π

+
δM
π

)
. (1.4)

We will show that the corrections have the form

d(δC)
dt

= −K(x)
δM
π
, x = πLT, (1.5)

with K(x) a monotonically increasing function. It is important to note that this correction

is negative because of the overall minus sign that appears in front of the Lorentzian DBI

action. Hence, the flavor corrections reduce the rate at which complexity grows and the

bound (1.1) is no longer saturated. In our computations we neglected the back reaction

from the flavor branes (which corresponds to the small number of flavors), focussed only

on trivial embeddings and considered the late-time limit. Note that the flavor corrections

are parametrically small and thus the complexification rate cannot become negative.

The rest of the paper is organized as follows. In section 2 we review the proposal

of [5, 6]; section 3 covers some generalities of the D3/Dq systems. In section 4 we compute

corrections to the complexity growth and to the mass of the system. We conclude in

section 5.

2 Review of the Complexity-Action proposal

A concrete way for computing complexity in QFTs is not yet known. However, for some

strongly coupled QFTs, such as N = 4 super Yang-Mills, an equivalent gravitational

– 2 –
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Figure 1. Penrose diagram of an AdS-Schwarzschild black hole. The red lines represent the future

and past singularities, while the black lines crossing the diagram are the event horizons. The area

enclosed by the green lines and the future singularity is the WdW patch at times tL and tR. If tL
is let to evolve infinitesimally the result is the patch shown in blue. This evolution then makes the

patch to lose regions 3 and 4 while gaining regions 1 and 2.

description is available. One may then hope that a geometric prescription for evaluating

complexity will be easier to define. In this article, we will use the proposal of [5, 6].

The authors of [5, 6] provide a prescription for evaluating the complexity of the ther-

mofield double state in the dual gauge theory. For a conformal field theory (CFT) with

a holographic dual, the finite temperature state is described by the AdS-Schwarzschild

spacetime. (We are considering temperatures above the Hawking-Page transition [62].)

An important role in the proposal is played by the Wheeler-DeWitt patch, denoted as

WdW patch from now on (see figure 1). The proposal states that the complexity C of the

thermofield double-state is given by (1.2) where SWdW is the Einstein-Hilbert action,

S =
1

16πG

∫
M

√
−g (R− 2Λ) +

1

8πG

∫
∂M

√
hK, (2.1)

evaluated over the WdW patch. As usual, the Einstein-Hilbert action is supplemented by

the York-Gibbons-Hawking term (YGH), for the variational problem to be well defined.

This proposal allows one to directly compute dC/dt and check whether or not the

bound (1.1) is respected. Differentiating the holographic complexity is straightforward.

Suppose tL evolves for an infinitesimal amount δt. Such an evolution changes the WdW

patch as shown in figure 1. To compute the change in the action, one needs to evaluate

it on the four regions denoted in figure 1. However, as already noted in [5, 6], the action

evaluated on region 2 is cancelled by that on region 3, while region 4 shrinks to zero in

the limit tL � β. We will be interested in precisely this limit (large time behavior of the

complexity growth). So only region 1, the region behind the future singularity, contributes

to the rate of change of the holographic complexity. The result presented in [5, 6] is the

– 3 –
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remarkably simple answer
dC
dt

=
2M
π
, (2.2)

which exactly saturates the bound (1.1).

3 D3/Dq systems

3.1 Generalities

In this article, we are interested in studying the holographic complexity for a strongly

coupled gauge theory with fundamental matter fields (fields transforming under the funda-

mental representation of the gauge group). To this end, we consider D3/Dq systems [61].

These systems are made out of a stack of Nc D3-branes and a number Nf of Dq-branes

(the flavour branes). Strings stretching between the Nc D3-branes give rise to N = 4

SYM, while strings stretching between the D3-branes and the flavour Dq-branes introduce

fields that transform in the fundamental representation of the gauge group. To simplify

the discussion, we will focus on the probe limit, where the number of flavor branes is much

smaller than that of the color branes: Nc � Nf . In this limit, the Dq-branes can be

treated as probes, propagating in the spacetime created by the stack of the D3-branes, i.e.,

AdS5 × S5, without backreaction.

TheDq-branes span a (q+1)-dimensional worldvolume and thus wrap a (q+1)-subspace

of AdS5 × S5.

There are in principle many ways of embedding an AdSn × Sm (n,m ≤ 5) into the

background AdS5×S5, i.e., several ways of choosing an Sm inside the S5 or an AdSn inside

the AdS5. The embedding is usually specified by a set of scalar functions determining how

the subspaces are chosen inside the 5-sphere and AdS5. For example, for the case of

the D3/D7 configuration one can consider any of the following embeddings: AdS5 × S3,

AdS4 × S4 or AdS3 × S5.

However, from all possible embeddings of the form of AdSm × Sn, only those with

|m− n = 2| preserve supersymmetry. This means that only the configurations D3/D3,

D3/D5 and D3/D7 preserve sypersymmetry and are thus stable. Moreover, all of them

can be specified by just one embedding function.

We will be interested in evaluating the complexity of the thermofield double. In the

dual gravitational language, this can be achieved by considering Dq branes propagating

in the AdS-Schwarzschild spacetime, which describes N = 4 Super Yang Mills at finite

temperature. Its metric is given by

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

3 + L2dΩ2
5;

f(r) = 1 +
r2

L2
− M

r2
,

(3.1)

where M = 8G
3πM. Apart from the dependence on L, the radius of curvature of both

the AdS5 and the S5 spaces, the AdS-Schwarzschild metric also depends on an additional

– 4 –
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parameter M which is proportional to the mass of the black hole. The Penrose diagram of

the AdS-Schwarzschild spacetime is depicted in figure 1.

To evaluate the contribution to the complexity of the state from the flavor degrees of

freedom in the large Nc and large ’t Hooft coupling λ limit, we simply need to evaluate the

action for the propagation of the probe Dq branes in the AdS-Schwartzchild background

on the WdW patch. The action which governs the propagation of the Dq branes is the

DBI action:2

SDBI = −NfTDq

∫ √
−gDq, (3.2)

where the tension of the Dq-brane is given by

TDq =
1

(2πls)qgsls
. (3.3)

The string length `s and the string coupling constant gs are related to the ’t Hooft coupling

λ and the colour degrees of freedom Nc through

λ = g2
YMNc = 2πgsNc, L4 = 4πgsNcl4

s , (3.4)

where L denotes the AdS radius of curvature as above. In (3.2) gDq denotes the determinant

of the induced metric of the Dq branes, which depends on the details of the embedding.

The embeddings we consider in this article, are the trivial embeddings, and correspond

to adding massless flavor matter in the N = 4 SYM Lagrangian. As explained above, the

asymptotic form of the induced metric will be AdSm × Sn. Evaluating the DBI action on

asymptotically AdS geometries leads to divergences which can be treated with holographic

renormalization [63, 64]. Holographic renormalization for the case of D3/Dq systems was

studied in [65]. For technical reasons it is convenient to express the AdS-Schwarzschild

metric in Fefferman-Graham coordinates

ds2 = L2

{
dz2

z2
+
L2

4z2

[
1− z4

L4

(
1 + 4

M

L2

)]2
dτ2

F (z,M)
+
F (z,M)

4z2
dΩ2

3 + dΩ2
5

}
, (3.5)

where

F (z,M) = L2 − 2z2 +
z4

L2

(
1 + 4

M

L2

)
. (3.6)

The boundary of AdS is now at z = 0, while the horizon is mapped to

zH ≡ z(r = rH) =
L2√

L2 + 2r2
H

. (3.7)

The radial coordinates (z, r) are related to one another as follows:

z(r) =
L2[

L2 + 2r2 + 2
√
r4 + L2r2 − L2M

]1/2
, r2 = L2F (z,M)

4z2
. (3.8)

2The Euclidean DBI action has a positive sign. Also, we will denote the Euclidean action as I instead

of S to avoid confusion with entropy. Note that the variation of this action is proportional to just δgµν , so

no boundary terms are needed here to make the variational problem well defined.

– 5 –
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The trivial embeddings considered in this paper are described by induced metrics with

asymptotics of the form AdSm × Sn, where m+ n = q + 1 and

ds2
Dq = L2

{
dz2

z2
+
L2

4z2

[
1− z4

L4

(
1 + 4

M

L2

)]2
dτ2

F (z,M)
+
F (z,M)

4z2
dΩ2

n−2 + dΩ2
q−n+1

}
.

(3.9)

As explained above, we will use Holographic Renormalization in order to deal with the

divergent contributions in
∫ √

gDq. The procedure consists of the following steps: firstly,

we introduce a cutoff surface at z = ε and define covariant counterterms on the z = ε

surface such that the divergences are cancelled. Then, we take the limit ε → 0 to remove

the cutoff. The appropriate counterterms were worked out in [65] and are of two classes; the

ones needed to regulate the volume part of the integral and the ones required to regulate

the contributions from the embedding functions. For trivial embeddings only the former

type of counterterms appear since the embedding functions are zero. As a result, for the

induced metrics quoted in (3.9) the following counterterms are required:

Iren = IDBI + Icount; Icount = NfTDq

∫
√
γ(L1 + L2) = NfTDq

∫
√
γ(−a+ bRγ)

a =


L/4 for AdS5

L/3 for AdS4

L/2 for AdS3

L for AdS2

b =


L3/48 for AdS5

L3/12 for AdS4

0 for AdS3

0 for AdS2

(3.10)

where Rγ is the Ricci scalar associated with the induced metric γ on the constant z surface.

4 Complexity and energy of the D3/Dq systems

In this section we address the main question of this article. We compute the time derivative

of the DBI action over the WdW patch and express it in terms of the energy of the system,

in order to check if (1.1) is respected. We first study in detail the D3/D7 and D3/D5

configurations and then discuss the general case. For each system, we start by working out

the correction to the energy due to the flavor branes and then compute the rate of change

of the complexity.

4.1 Complexity and energy of the D3/D7 system

4.1.1 Energy of the system

The thermodynamic properties of a system are derived from its Euclidean action, which

in this case in the DBI action, ID7. The correction to the free energy of the black hole is

given by δF = TID7 and the energy is obtained from the thermodynamic relation

δM = δF + TδS, δS =
∂δF

∂T
. (4.1)

– 6 –



J
H
E
P
0
1
(
2
0
1
8
)
1
2
7

In terms of inverse temperature β = 1/T , the above relation can be expressed as

δM = δF + β
∂δF

∂β
. (4.2)

To compute δM we thus need to evaluate the Euclidean DBI action on the D7-brane

configuration:

ID7 = NfTD7
L9

16

∫ β

0
dτ

∫
dΩ3

∫
dΩ3

∫ zH

0

F (z)

z5

[
1− z4

L2

(
1 + 4

M

L2

)]
= NfTD7

L9

16
V 2

Ω3
β

[
−L2

4z4
+

1

z2
+

(L2 + 4M)z2

L6
− (L2 + 4M)2z4

4L10

]zH
0

.

(4.3)

As anticipated above, the action diverges when z → 0. Introducing a cutoff at z = ε and

evaluating the relevant counterterms from (3.10) yields

Icount = NfTD7V
2

Ω3
β

[
− L

11

64ε4
+

L9

16ε2
+O(ε2)

]
, (4.4)

which exactly cancels the divergences of ID7 without introducing any finite contribution.

The final result is

Iren
D7 = NfTD7

L9

16
V 2

Ω3
β

[
−L2

4z4
H

+
1

z2
H

+
(L2 + 4M)z2

H

L6
−

(L2 + 4M)2z4
H

4L10

]
. (4.5)

To compute the thermodynamic quantities we’re interested in, we need to write Iren
D7

as a function of β. To do so we use (3.7) to relate zH with rH, where rH is the position

of the horizon of the AdS-Schwartzchild black hole in the original coordinates (3.1) and is

related to the temperature as [66],

rH(β) =
L2π +

√
L4π2 − 2L2β2

2β
= L

x+
√
x2 − 2

2
. (4.6)

Note that there is a minimum temperature allowed, namely T =
√

2
πL . This is the tempera-

ture below which black holes cannot exist.

Solving f(rH) = 0, one finds that

r2
H = L2−1 +

√
1 + 4M/L2

2
, (4.7)

which, together with (3.7), leads to

zH =
L2

(L2 + 2r2
H)1/2

→ zH =
L(

1 + 4M
L2

)1/4 . (4.8)

Substituting into our result for Iren
D7 (zH,M) results in

Iren
D7 =

NfTD7L
7V 2

Ω3
β

32

[
4

(
1 + 2

r2
H

L2

)
−
(

1 + 2
r2

H

L2

)2
]
. (4.9)

– 7 –
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It is easy to express Iren
D7 (β) in terms of the inverse temperature β by using (4.6). Apply-

ing (4.2) then leads to the following expression for the energy of the D7 system

δMD7 =
NfTD7L

7V 2
Ω3

32
HD7(β).

HD7(β) ≡ 6

[
L4π4

β4
− L2π2

β2
+
L2π3

√
L4π2 − 2L2β2

β4

]
.

(4.10)

In the planar limit, L/β →∞, this agrees with eq. (4.28) in [67] (see also [68] for a similar

computation for massive enbeddings).

4.1.2 Complexity

Here we discuss the complexity computation. The Penrose diagram of the D3/D7 system

is still the one shown in figure 1, so our integral will split into the same 4 regions. The

difference is that now our action is3

δC = SDBI = −NfTD7

∫
WdW

√
−g. (4.11)

Note that no surface terms are needed since the variation δSDBI contains no terms depend-

ing on δ(∂σgµν)
∣∣∣
∂M

. With our action, the integrals from parts 2 and 3 again cancel each

other out, and the region 4 doesn’t contribute either because it shrinks to zero size.4 So we

are only left with region 1, which is bounded by the surfaces r = 0 and r = rH. Working

with the metric as in (3.1), the integrand is
√
−g = r3L3. (4.12)

The time derivative of the action is then simply

dSDBI

dt
= −NfTD7

d

dt

∫ √
−g = −NfTD7L

3

∫
drr3

∫
dΩ3

∫
dΩ3

= −NfTD7L
3V 2

Ω3

r4
H

4
= −NfTD7L

7V 2
Ω3

r4
H

4L4
.

(4.13)

We would like to express our result for the complexity as a function of the temperature

and the energy of the system. To introduce the energy into the last equation we use (4.10)

to write the overall factor in (4.13) as

NfTD7L
7V 2

Ω3
=

32 δMD7

HD7(β)
. (4.14)

So, using (4.14) and (4.6) yields

d(δC)
dt

=
dSDBI

dt
= −δM

π
KD7(x),

KD7(x) ≡ 8rH(β)4

HD7(β)
=

1

12

x2
[
1 +

√
1− 2

x2

]4

x2
[
1 +

√
1− 2

x2

]
− 1

, x = πLT.

(4.15)

3Recall that the Lorentzian action has negative sign.
4In the Einstein gravity case studied in [5] a topological argument is needed to rule this part out because

the integrand there is R; since our integral is just a volume for us this argument is trivial.
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Figure 2. Plot of the function KD7(x) starting from the minimum value xmin =
√

2. The horizontal

orange line is the value to which it asymptotes, namely 2/3.

Note that there is a minimum value x can take, being xmin =
√

2. The function K(x) is

plotted on figure 2. The function is monotonically increasing, positive and ranging between

the value 1/6 at the minimum and asymptotically approaching 2/3.

Due to the minus sign present in (4.15) the correction lowers the speed at which the

system complexifies, so the bound is respected but not saturated.

4.2 Complexity and energy of the D3/D5 system

4.2.1 Energy of the system

To compute the correction to the energy of the D3/D5 due to the flavor D5 branes in the

probe limit, we will follow exactly the same steps as in section 4.1. The Euclidean action

is in this case given by

ID5 = TD5Nf

∫
√
g = TD5NfβV

2
Ω2

L7

8

∫ zH

0
dz

[
1− z4

L4

(
1 + 4M

L2

)]
z4

√
F (z)

= −
TD5NfβV

2
Ω2
L7

8

[
F (z)3/2

3L2z3

]zH
ε

,

(4.16)

with divergenent terms of the form

Idiv
D5 = −TD5NfβV

2
Ω2

[
L8

24ε3
− L6

8ε2
+O(ε)

]
. (4.17)

The relevant counterterms are

Icount = NfTD5

∫
√
γ(L1 + L2) −→ Iren = I + Icount

L1 =
−L
3
, L2 =

L3

12
Rγ .

(4.18)

Just as in the D3/D7 case, the holographic renormalization procedure removes the diver-

gent parts without adding any finite terms. The final result is:

Iren
D5 = −

TD5NfβV
2

Ω2
L5

8

[
F (zH)3/2

3z3
H

]
. (4.19)

– 9 –
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Using (4.8) it’s immediate to see that

F (zH) = L2 4r2
H/L

2

1 + 2r2
H/L

2
, z3

H =
L3

(1 + 2r2
H/L

2)3/2
, (4.20)

which allows us to write the renormalized action as

Iren
D5 = −

TD5NfβV
2

Ω2
L5

3

r3
H

L3
. (4.21)

The correction to the free energy of the D3/D5 system is

δFD5 = −
TD5NfV

2
Ω2
L5

3

r3
H

L3
. (4.22)

With the help of (4.6) we obtain the free energy as a function of the inverse temperature,

FD5(β) and use the standard thermodynamic relations (4.2) to obtain

δM =
TD5NfV

2
Ω2
L5

3
HD5 (x) ,

HD5 (x) =
2x4 + 2x3

√
x2 − 2− 2x2 − 1

2
√
x2 − 2

, x ≡ πLT.
(4.23)

4.2.2 Complexity

Let’s now see how the complexity is related to the energy in the D3/D5 system. The

arguments made in section 4.1.2 regarding the contribution of the different parts of the

WdW patch are still valid, and clearly the first equality in (4.13) is still true (changing

TD7 ↔ TD5), the only difference being the explicit form of
√
−g. The induced metric is in

this case asymptotically AdS4 × S2:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

2 + L2dΩ2
2 , (4.24)

with the determinant √
−g = r2L2. (4.25)

Following exactly the same steps which lead us to (4.13) and dividing by Vx to obtain a

density, leads to
dSDBI

dt
= −

NfTD5V
2

Ω2
L5

3

r3
H

L3
. (4.26)

Similar to the D3/D7 case, the factor multiplying r3
H/L

3 in the equation above can be

expressed in terms of the energy of the system

TD5NfV
2

Ω2
L5

3
=

δM

HD5(x)
. (4.27)

This together with (4.6) transforms the equation for dSDBI/dt into

d δC
dt

= −δM
π
KD5(x),

KD5(x) =

(
x+
√
x2 − 2

2

)3

H−1
D5(x), with x = πLT.

(4.28)
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Figure 3. The function KD5 vs temperature, starting from the minimum value xmin =
√

2. The

horizontal orange line is the value to which it asymptotes, namely 1/2.

Note again, that there is a minimum value allowed for x, namely x =
√

2. The func-

tion is positive, monotonically increasing and ranges between 0 at the minimum and the

asymptotic value 1/2 (see figure 3).

4.3 The general case: D3/Dq systems

Having gained some insight from the detailed study of the D3/D5 and the D3/D7 systems,

we move on to consider the generic D3/Dq system. As we will see, the qualitative features

of the complexity of the thermofield double state in the presence of flavour matter fields,

remain the same for both stable and unstable (non-supersymmetric) configurations.

4.3.1 The energy of the D3/Dq systems

As discussed above, the different embeddings of the Dq-branes are submanifolds of the

AdS5×S5 generated by the background D3-branes, with the asymptotic form of AdSn×Sm

where m + n = q + 1. Regarding the energy computation, all the divergent parts in the

Euclidean action come from the AdSn part of the manifold. The induced metric on the Dq

branes is given in (3.9) and its determinant is equal to:

√
g =

Lq+2

2n−1
z−n

[
1− z4

L4

(
1 + 4

M

L2

)]
F (z)

n−3
2 . (4.29)

It is straightforward to evaluate the Euclidean DBI action IDq to obtain

IDq = NfTDq

∫
√
g = NfTDq

[
− Lq

2n−1(n− 1)

F (z)
n−1
2

zn−1

]zH
0

βVΩn−2VΩq−n+1 . (4.30)

To proceed it will be convenient to separately analyze the cases where the AdSn part of

the embedding is of even or odd dimensionality.

When n is an even integer. As one can see from (4.30), for n even, the Euclidean

action is given in terms of the metric function F (z) elevated to a half-integer power. The

behaviour of IDq for small z can be split into two types of contributions

Ieven
Dq

∣∣∣
z→0
→ f (z) + g

(
1

z

)
, (4.31)
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where f(z) and g(1
z ) represent polynomial functions in z and 1

z respectively, with vanishing

zeroth order terms. f(z) then vanishes when evaluated at z → 0, while g(1
z ) is divergent

but its divergences are exactly cancelled by the relevant counterterms and no constant

piece is introduced. The result is then given by contributions from just the horizon as

IDq = −NfTDq
Lq

2n−1(n− 1)

F (zH)
n−1
2

zn−1
H

βVΩn−2VΩq−n+1

= −NfTDq
Lq

n− 1

(rH

L

)n−1
βVΩn−2VΩq−n+1 ,

(4.32)

where we have used (4.20) in the last equality.

We can now write the free energy FDq = TIDq and use (4.2) to obtain the energy of

the system as,

δM = NfTDq
Lq

(n− 1)
HDq(x)VΩn−2VΩq−n+1 ,

HDq(x) =

(
rH(x)

L

)n−2 2 + (n− 2)x
√
x2 − 2 + (n− 2)x2

2
√
x2 − 2

,
rH(x)

L
=
x+
√
x2 − 2

2
.

(4.33)

When n is an odd integer. In this case F (z) is elevated to an integer power, and the

result is a polynomial in even powers of z, i.e.,

F (z)
n−1
2 = A0 +A2z

2 + · · ·+A2(n−1)z
2(n−1) , (4.34)

This implies that the quantity F
n−1
2 /zn−1 in (4.30) contains a constant term, independent

from z. Once more the divergent terms at the boundary z = 0 are precisely cancelled by

the relevant counterterms and the Euclidean action is given by

IDq = −NfTDq
Lq

2n−1(n− 1)

[
F (zH)

n−1
2

zn−1
H

− c0

]
βVΩn−2VΩq−n+1 . (4.35)

Clearly the constant term, indicated by c0, is cancelled by the same z-independent term

in F (zH)
n−1
2

zn−1
H

.

In practice, there exist only two non-trivial embeddings in this class: those which

asymptote to AdS3 and those which asymptote to AdS5. The latter case was addressed

in the context of the D3/D7 system, we only need to consider the AdS3 case. From (3.9)

and (4.29) we can see that we are now working with

ds2
Dq = L2

{
dz2

z2
+
L2

4z2

[
1− z4

L4

(
1 + 4

M

L2

)]2
dτ2

F (z,M)
+
F (z,M)

4z2
dθ2 + dΩ2

m

}
,

√
gDq =

L4

4
z−3

[
1− z4

L4

(
1 + 4

M

L2

)]
dz dτ dθ(LmdΩm).

(4.36)

It is straightforward to apply the general result above to the case n = 3 to obtain:

IDq = −
NfTDqL

q

4
βVΩ1VΩq−2

(
1 +

2r2
H

L2

)
, (4.37)
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where we used the relation between (zH, F (zH)) and rH from (3.7). Evaluating (4.2) then

yields

δM =
NfTDqL

2VΩ1

2
HDq(x),

HDq(x) =
x3 + x2

√
x2 − 2√

x2 − 2
.

(4.38)

4.3.2 Complexity of the D3/Dq system

When n is an even integer. We follow exactly the same steps as in the previous

sections to evaluate the time derivative of the DBI action SDBI = −NfTDq
∫ √
−g, which

is given by
dSDBI

dt
= −

NfTDqL
q

n− 1

(rH

L

)n−1
VΩn−2VΩq−n+1 . (4.39)

As usual, we can solve (4.33) for NfTDqL
q to write this derivative as

d δC
dt

= − δM
πHDq(x)

(rH

L

)n−1
= −

√
x2 − 2

(
x+
√
x2 − 2

)
2− (n− 2)x

√
x2 − 2 + (n− 2)x2

δM
π
≡ −KDq(x)

δM
π

.

(4.40)

When n is an odd integer. For odd n we only need to consider n = 3 and focus on

embeddings which asymptote to AdS3 as in 4.3.1. Similarly to the previous sections we

obtain
d δC
dt

=
dSDBI

πdt
= −

NfTDqL
q

2π

(rH

L

)2
VΩ1 VΩq−2 , (4.41)

which coincides with equation (4.39) for n = 3. As usual, we can solve the energy equation

to express the numerator as a function of δM . This produces the final result

d δC
dt

= −
r2

H

L2

δM
πHDq(x)

= −
√
x2 − 2(x+

√
x2 − 2)

4x2

δM
π

. (4.42)

Clearly, the correction to the complexity due to the probe, flavor branes is negative

and monotonically decreasing for all the D3/Dq systems.

5 Conclusions

Introducing fundamental matter leads to a correction term to the left-hand side of (2.2)

which is negative. It is interesting that the growth of quantum complexity in systems

with fundamental matter seems to be slower than that with just adjoint matter. It would

be interesting to compare this with a direct computation in field theory. Note that the

presence of extra matter in the bulk was shown to reduce the rate of complexity growth

in [5].

It would be interesting to compute the flavor corrections to the complexification rate

using the complexity-volume proposal [8]. It is not immediately clear to us how to generalize

this proposal to include flavor corrections.

It would also be interesting to study the behavior of the quantum complexity growth in

non-conformal field theories. In gravity, one could investigate asymptotically AdS domain

wall solutions or general Dp/Dq systems.

– 13 –
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