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1 Introduction

Since their prediction by Zeldovich, Kobzarev and Okun [1, 2] and Kibble [3], cosmolog-

ical DWs remain in the focus of theoretical study for more than forty years. DWs are

formed during the phase transitions in the early universe once the discrete symmetry of

the underlying gauge theory is spontaneously broken. After creation, their average number

per a Hubble radius remains constant for some time, so, if they were stable, their energy

density potentially could dominate and overclose the Universe [4–7]. To avoid this, DWs
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either must be unstable, what happens if the discrete symmetry was only approximate, or

disappear via some other mechanism. The basic viable field model of cosmological DWs

is that of real scalar field with the biased potential [8]. Collapsing unstable DWs gen-

erate gravitational waves, whose spectrum, sensible to particular underlying models, can

be an important source of information about the early universe. In view of the forth-

coming experimental studies of relict gravitational waves, this subject attracted attention

recently [8–14], for a review see [15]. Particular models considered include the hybrid infla-

tion [9], the standard model extended to the very early universe [14], the Higgs model [11],

the next-to-minimal supersymmetric standard model [12] and some other. The results are

based on numerical simulations of creation and annihilation of DW with account for gravi-

tational radiation computed via the correlation functions of the energy-momentum tensors.

These are in good agreement with the simple estimates based on the quadrupole formula

for gravitational radiation of non-relativistic systems [13].

Collapsing DWs emit gravitational radiation due to their intrinsic dynamics, so the

above mentioned numerical simulations seem to give major contribution to graviton pro-

duction from the motion of the unstable DWs. These calculations, however, do not take

into account gravitational interaction of DW with surrounding matter which may lead to

additional generation of gravitational waves, maybe subdominant, but with distinct spec-

tral properties. This may be especially important if one assumes that the spontaneously

broken discrete symmetry was exact, so no intrinsic instability of DWs is supposed. Here

we would like to discuss one such a mechanism which may be considered as generalization of

the gravitational bremsstrahlung in particle collisions. We will be interested in perforating

collisions of particles with extended objects. For more generality, we consider this process

in any dimensions keeping in mind also the braneworld scenarios of the Randall-Sundrum

II type [16–19]. There the DW corresponds to factoring of the AdS5 geometry which leads

to a particularly simple analytical description.

Recall that punctures of DWs, producing holes inside them, may serve as an alternative

mechanism of DW destruction [20]. In the models admitting both the DWs and the cosmic

strings, the hole of finite size in the wall must be surrounded by the string. Formation

of such a hole changes the overall energy balance forcing the hole either to shrink due to

tension of the string, or to expand due to DW tension, eventually eating the wall. More

precisely, as was shown in [20], at least four holes are needed for the second option to be

realized. The holes in the DWs could be created by bulk black holes perforating them [21],

so physics of perforation is worth to be explored in detail. The field-theoretical treatment of

the collision of black holes with DWs was developed in [22]. These effects can be regarded

as topological phase transitions. Other aspects of such transitions in the composite brane-

black hole systems were studied in [19, 23–27]. In the context of the braneworld models,

the interaction of black holes with DWs attracted much attention in connection with the

conjectured creation of black holes in particle collisions on the brane and their possible

escape into the bulk [28–30]. (In this framework we prefer to use the term “brane”, though

we always deal with branes of co-dimension one, that is with DWs.)

The problem considered here, though is related to the above issues, is, however, some-

what different. We discuss perforation of DWs by elementary particles of the surround-
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ing plasma (or bulk particles in the braneworld case) which classically have zero size, so

our effects rather are dynamical than topological. We use the framework first suggested

in [31] and further developed in [32–34], which essentially consists of perturbative descrip-

tion of gravitational interaction of the Nambu-Goto DW and the classical point particle

in Minkowski space. This approach opens a way to describe analytically the branon ex-

citation of the wall revealing creation of the free branon wave. This phenomenon was

first found within the RS II five-dimensional model [31] and then generalized to arbitrary

dimensions [32] showing that the branon effects are dimension-dependent in view of the

different causal structure of propagators of massless fields in even and odd space-time di-

mensions [35–37]. The particle-DW interaction has the growing potential, so there are no

free asymptotic states. Still it turned out possible to introduce the dressed momenta for

both objects which are instantaneously conserved during the collision [33]. We also calcu-

lated emission of scalar waves under perforation assuming that the particle (but not the

wall) to interact with a scalar field apart of gravity [34].

Here we calculate genuine gravitational radiation from the same system suggesting

this as new and mechanism of radiation: “piercing gravitational radiation” (PGR), with

some novel conceptual and technical features. First, the system has no wave zone. This

prompted us to revisit derivation of the spectral-angular distribution of radiated energy

not referring to wave zone. Second, the effective radiating current contains a light-like

part (due to the free branon) with associated problems in constructing the retarded so-

lutions of the D’Alembert equation with light-like sources [38–40]. Furthermore, radia-

tion exhibits peculiar infrared and collinear [41–44] divergences, typical for radiation from

massless charges in gauge theories (for more detailed discussion see [45]). Recently, these

matters were extensively studied in connection with the memory effect [40, 46–49] and the

Bondi-Metzner-Sachs asymptotic symmetries [50]. Though we do not discuss these very

interesting subjects here, we feel that our radiation problem provides a novel interesting

setting for these studies too.

Physically, PGR may be relevant for cosmic DWs, providing additional low-frequency

contributions to the standard spectrum of gravitons from collapsing walls, which is typ-

ically dies off in the infrared [15]. Detailed study of such applications, however, remains

beyond the scope of the present paper which is mostly restricted to theoretical aspects of

the problem.

2 The setup

We consider the gravitating system of an infinite Nambu-Goto DW of plain topology and a

point particle. Omitting the self-gravity of each object, we treat the full metric generated by

them via Einstein equations and the motion of both objects in this metric self-consistently

in the framework of the perturbation theory on the Minkowski background in terms of

the coupling constant κ (κ2 = 16πGD), where GD is the D-dimensional Newton constant

(we use the units c = 1). When gravity is switched off, the following geometry of the

collision is assumed: the plane infinite Nambu-Goto brane sits at rest in D-dimensional

Minkowski space-time, so that its world-volume is orthogonal to z-axis. A point particle of
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mass m is moving along z-axis with some initial velocity such that it reaches the wall and

perforates it. The D−dimensional cartesian coordinates are therefore split as xM = (xµ; z),

xµ ∈M1,D−2, the metric signature is (+,−, . . . ,−). Our conventions for the Riemann and

Ricci tensors are: RBNRS ≡ ΓBNS,R−ΓBNR,S +ΓANSΓBAR−ΓANRΓBAS and RMN ≡ δBA RAMBN .

2.1 The model

We keep notation introduced in the previous papers [32–34]. The (D−2)-dimensional DW

propagating in the D-dimensional space-time MD with the metric gMN , has the world-

volume VD−1 parametrized by arbitrary coordinates σµ, µ = 0, 1, 2, . . . , D−2 and defined

by the embedding equations xM = XM (σµ), M = 0, 1, 2, . . . , D − 1 . The point mass

propagates normally to the DW along the worldline xM = zM (τ), affinely parametrized

and described by the Polyakov action using the einbein e(τ). To total action governing the

system reads

S =− µ

2

∫ [
XM
µ XN

ν gMNγ
µν − (D − 3)

]√
−γ dD−1σ − 1

2

∫ (
e gMN ż

M żN +
m2

e

)
dτ−

− 1

κ2

∫
RD
√
−g dDx . (2.1)

Here µ denotes the brane tension, XM
µ = ∂XM/∂ σµ are the tangent vectors on the DW

world-volume and γµν is the inverse metric on it, γ = detγµν .

Variation of (2.1) with respect to XM gives the brane equation of motion in the co-

variant form

∂µ
(
XN
ν gMNγ

µν√−γ
)

=
1

2
gNP,MX

N
µ X

P
ν γ

µν√−γ , (2.2)

while variation with respect to γµν gives the constraint equation(
XM
µ XN

ν −
1

2
γµνγ

λτXM
λ XN

τ

)
gMN +

D − 3

2
γµν = 0 ,

whose solution defines γµν as the induced metric on VD−1:

γµν = XM
µ XN

ν gMN

∣∣
x=X

. (2.3)

Varying S with respect to e(τ) and zM (τ) one obtains the equations

e2gMN ż
M żN = m2 (2.4)

and

d

dτ

(
eżNgMN

)
=
e

2
gNP,M ż

N żP , (2.5)

respectively, while variation over gMN leads to the Einstein equations

GMN =
1

2
κ2
[
TMN + T̄MN

]
, (2.6)
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with

TMN = µ

∫
XM
µ XN

ν γ
µν δ

D
(
x−X(σ)

)
√
−g

√
−γ dD−1σ ,

T̄MN = e

∫
żM żNδD

(
x− z(τ)

)
√
−g

dτ (2.7)

for the energy-momentum tensor of the brane and a particle, respectively. Eventually in

our expansions we will use Einstein equations with lowercase indices.

Though the infinitely thin DW is still compatible with the full non-linear gravity,

the point-like particle is not. But it sensible to consider our system in the context of the

perturbative gravity on Minkowski background. In this approach one presents the metric as

gMN = ηMN + κhMN ,

and expands all quantities in powers of κ, making use of ηMN to raise and to lower the

indices. It is convenient to define the quantity

ψMN ≡ hMN −
h

2
ηMN , h ≡ ηMN hMN ,

and to choose the flat-space harmonic gauge (in all orders in κ)

∂Nψ
MN = 0 . (2.8)

2.2 Iteration scheme

Like in the particle scattering problem, we use the simultaneous expansions of the particle

world-line zM (τ), the DW embedding functions XM (σµ) and the metric deviation hMN

in κ. It is understood that in zero order the particle moves freely along the line orthogonal

to the wall and pierces it. The subtle point of this setting is that actually the gravitational

potential of the Nambu-Goto plane wall is growing in space, so the system has no free

asymptotic states at all. Consequently one can not define the momentum of the particle

in the initial state. This gives rise to complications in establishing the momentum balance

equation. However, as was discussed in our previous paper [33], there is a way out in

constructing the “dressed” momenta, so we will not enter into this here. We still can use

the formal expansions of the unknown functions in the gravitational constant keeping in

mind that we are actually considering a vicinity of the wall whose size is small with respect

to curvature radius of an exact DW metric. Gravitational field of DW is repulsive, so to be

able to pierce the DW, the particle must have enough energy in order not to be reflected.

We will see in what follows that for any particle velocity there is some domain from which

the particles reach DW. We will call this velocity dependent domain the piercing layer, its

size will be defined in the section 2C. So actually our iterative scheme applies only to the

piercing layer.

With this in mind, we proceed now with formal expansions

Φ = 0Φ + 1Φ + 2Φ + . . . , (2.9)
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where Φ denotes collectively the set of variables: zM (τ), e(τ), XM (σ) and hMN (x). The

left superscript labels the order in terms κ.

The zeroth order is trivial. It describes a free plane unperturbed brane and a particle

moving with constant velocity (uM = γ(1, 0, . . . , 0, v)) perpendicular to the brane where

γ = 1/
√

1− v2:

0zM (τ) = uMτ ,

in the absence of the gravitational field hMN = 0 . The Lagrange multiplier e is chosen to be

equal to the corresponding particle mass 0e = m, so that the trajectories are parametrized

by proper time and the velocity satisfies the normalization condition ηMNu
MuN ≡ u2 = 1.

In the zeroth order in κ the brane is assumed to be unexcited

0XM = ΣM
µ σ

µ ,

where ΣM
µ are (D − 1) constant bulk Minkowski vectors which can be normalized as

ΣM
µ ΣN

ν ηMN = ηµν ,

so the corresponding induced metric on VD−1 is flat. Obviously, this is a solution to the

eq. (2.2) for κ = 0, and the corresponding induced metric is four-dimensional Minkowski

metric γµν = ηµν . Thus it is convenient with no loss of generality to fix

ΣM
µ = δMµ .

In other words, we choose the Lorentz frame where the unperturbed brane is at rest.

The first order correction is obtained next. The zeroth order straight particle trajectory

and the flat brane are sources of the first order gravitational field 1hp
MN ≡ h̄MN of the

particle and 1hbr
MN ≡ hMN of the brane, respectively:

1hMN = hMN + h̄MN .

In turn, hMN causes the first order deviation of the trajectory 1zM , while h̄MN pro-

duces the first order deviation 1Xµ(σ) of the embedding functions. In the process, the

first correction 1e of the einbein fields is also obtained. Explicitly, from the zeroth order

trajectories one obtains the zeroth order particle energy-momentum tensor

0T̄MN = m

∫
uMuNδD

(
x− 0z(τ)

)
dτ ,

which in this order has only t, z− components, and from the first order Einstein equations

for particle field, given by

� h̄MN = −κ
(

0T̄MN − 1

D − 2
0T̄ ηMN

)
, (2.10)

the first order correction 1hMN to the metric is obtained. In what follows, the stress-tensor

and the gravitational field of the particle will be denoted by bar.
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Passing to the D-dimensional Fourier-transforms

h̄MN (x) =
1

(2π)D

∫
e−iqxh̄MN (q) dDq , T̄MN (x) =

1

(2π)D

∫
e−iqxT̄MN (q) dDq ,

we obtain the retarded solution in the momentum representation

h̄MN (q) =
2πκmδ(qu)

q2 + iεq0

(
uMuN −

1

D − 2
ηMN

)
. (2.11)

In the coordinate representation we find (for D > 4):

h̄MN (x) = −
κmΓ

(
D−3

2

)
4π

D−1
2

(
uMuN −

1

D − 2
ηMN

)
1

[γ2(z − vt)2 + r2]
D−3
2

, (2.12)

where r =
√
δijσiσj is the radial distance on the wall from the perforation point. This is

just the Lorentz-contracted D-dimensional Newton field of the uniformly moving particle.

The zeroth-order expression for the brane energy-momentum tensor TMN reads:

0TMN = µ

∫
ΣM
µ ΣN

ν η
µν δD

(
x− 0X(σ)

)
dD−1σ ,

so the Einstein equation for the first-order brane field is given by:

�hMN = −κ
(

0TMN − 1

D − 2
0TηMN

)
, 0T ≡ 0TMNηMN .

The Fourier-space solution is given by

hMN (q) =
(2π)D−1κµ

q2

(
ΞMN −

D − 1

D − 2
ηMN

)
δD−1(qµ) , (2.13)

where ΞMN ≡ Σµ
MΣν

Nηµν , while in the coordinate space it reads

hMN =
κµ
2

(
ΞMN −

D − 1

D − 2
ηMN

)
|z| = κµ|z|

2(D − 2)
diag (−1, 1, . . . , 1, D − 1) . (2.14)

3 First order dynamics

3.1 Particle’s motion

Using 1hMN and the zeroth order solution in equations (2.4) and (2.5) one obtains for 1e

and 1zM the equations1

1e = −m
2

(
κhMNu

MuN + 2 ηMNu
M 1żN

)
(3.1)

and

d

dτ

(
1euM +m 1żM

)
= −κm

(
hPM,Q −

1

2
hPQ,M

)
uPuQ , (3.2)

1Our gauge condition is gMN ż
M żN = 1. To this order it reduces to 1e = 0.
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which upon elimination of 1e give

1z̈M = −κ
(
hPM,Q −

1

2
hPQ,M

)
uPuQ , (3.3)

or, in the components,

1z̈ 0 = 2kv γ2 sgn(τ) , δz̈ ≡ 1z̈D−1 = k (Dγ2v2 + 1) sgn(τ) , (3.4)

where a parameter is introduced

k =
µκ2

4 (D − 2)

playing the role of the inverse bulk curvature radius in the full non-linear treatment. Ac-

cording to (3.4) the gravity force between the DW and the particle is repulsive. (Recall

that this “antigravity” is caused by the dominance of the DW tension (negative pressure)

in the energy-momentum tensor of the wall.)

Integrating (3.4) twice with initial conditions δzM (0) = 0, δżM (0) = 0, one has

1z0 = kvτ2 γ2 sgn(τ) , δz =
1

2
kτ2

(
Dγ2v2 + 1

)
sgn(τ) . (3.5)

Substituting (3.5) into (3.1) one can check that the gauge condition 1e = 0 is satisfied.

3.2 Piercing layer

We now discuss physical restrictions of our iterative scheme in more detail. Suppose that

a point particle moving in the linearized gravitational field of the brane passes through the

point zl > 0 with the velocity dz/dt = v < 0. According to eq. (3.4) it has a (proper) accel-

eration z̈ = a = k (Dγ2v2 + 1). This particle reaches the brane at the proper time moment

τ0 =
|v|γ

k(Dγ2v2 + 1)

(
1−

√
1− 2kzl(Dγ2v2 + 1)

v2γ2

)
. (3.6)

With account for the reflection symmetry, it is clear that if |z| > zl, where

zl(v) =
v2γ2

2k(Dγ2v2 + 1)
, (3.7)

the particle will be reflected, while if |z| < zl it reaches the brane and passes through it.

Thus the eq. (3.7) defines the boundary of the velocity-dependent layer of particles which

pierce the brane. Or, conversely, for given z, only those particles which have the velocity

v > vl(z), where vl(z) is the inverse function to zl(v), namely,

vl(z) =
1

γ

√
2kz

1− 2kzD
, (3.8)

will reach DW and pierce it.

We will see in the next subsection that the parameter k defines the curvature of the

DW gravitational field. The linearized metric of the wall is correct if kz � 1 [32]. In
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the non-relativistic case one has kzl = v2/2, so our approximation is consistent and the

piercing layer is small in the units k−1. In the ultrarelativistic case kzl = (2D)−1, so the

layer size is of the order of the inverse curvature. In this case the condition of validity of

the linearized approximation for the brane metric is only marginally satisfied.

Formally, the unperturbed motion is free in our scheme, but one has to keep in mind

that the validity of this description is restricted to particles in the piercing layer only. Since

this requirement is imposed a posteriori, one can expect that formal application of such an

approach will face certain problems. Indeed, as we will see, the spectrum of gravitational

waves will require cut-offs to get finite results.

3.3 The RS2 setup

The piercing layer can be described using the full non-linear treatment as well. A con-

venient setup is the one-brane Randall-Sundrum model (RS II) [16] adapted to arbitrary

dimensions. Note that geodesic motion in the RS II setup was earlier considered with

different motivation in [51–56].2 The metric of the RS II model reads:

ds2 = e−2k|zRS |ds2
M − dz2

RS ,

where ds2
M is the flat metric on the brane. At the distance small compared with the

curvature radius of the AdS bulk, kzRS � 1, so that e−2k|zRS | ' 1 − 2k|zRS | we see that

zRS differs from our previous z by a coordinate transformation. Indeed, the gauge for the

RS solution is non-harmonic. To pass to the harmonic gauge used above one writes

zRS = z − 2kz2sign(z) , (3.9)

reproducing the linearized metric (2.14). Note that this transformation is non-singular on

the brane: ∂zRS/∂z = 1 at z = 0. For brevity, we omit an index in zRS in the rest of

this section.

Using the non-vanishing Christoffel symbols

Γ0
ij = −e−2k|z|k ηij sgnz Γijz = −k δij sgnz, (3.10)

in the geodesic equation ẍM + ΓMLRẋ
LẋS = 0 one derives the following two equations

ẗ = 2k ṫż sgnz, z̈ = e−2k|z|k ṫ2 sgnz ,

whose solution is

z(t) = ± 1

2k
ln
(
k2t2 + e2k|z0|[1∓ 2kv0t]

)
, (3.11)

where v0 = −(dz/dt)t=0. The time T needed for the particle at an initial distance l to

reach the brane is

T =
1

k

[
e2klv0 −

√
e4klv2

0 − e2kl + 1

]
, (3.12)

2Actually the bulk in the RS II model is anti-deSitter, and the negative cosmological constant is present,

but for our local considerations restricted by the vicinity of the brane this is irrelevant.
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so we find the following condition of piercing: the lowest initial value of the velocity v0 has

to be

vmin
0 = e−2kl

√
e2kl − 1 .

As a function of the product kl, the velocity vmin
0 has the maximum 1/2 at kl = ln 2/2.

Hence, if v0 > 1/2, the particle reaches the brane independently of the initial distance.

Conversely, for the fixed initial velocity v0, the largest initial distance lmax is

lmax =
1

2k
ln

(
1−

√
1− 4v2

0

2v2
0

)
, v0 <

1

2
. (3.13)

Thus in our problem the non-relativistic limit implies either the Minkowski limit of the

metric, or an initial particle position on the brane. In the non-relativistic limit one has

lmax ' v2
0

2k
,

which reproduces the result of the previous subsection (3.7) taken in the non-relativistic

approximation. The particle velocity at the moment of piercing is given by

vbr ≡
dz

dt

∣∣∣∣
t=T

= −
√
e4klv2

0 − e2kl + 1 , (3.14)

so the condition of applicability of the perturbation theory is

v0 − |vbr|
v0

� 1 .

Being translated to the possible values of kl, this gives

kl� 1, (3.15)

so

v0 − |vbr|
v0

' kl
(

2− 1

v2
0

)
and kl� 1 is sufficient for the validity of our iterative scheme. Hence, expanding T (3.12)

in powers of k one obtains

T ' l

v0

[
1 +O(kl)

]
, (3.16)

what corresponds to the linear gravity.

3.4 Deformation of domain wall

Now we consider perturbations of DW due to gravitational interaction with the particle.

For this we have to use the metric deviation due to the particle. In accordance with our

iterative scheme we neglect particle’s acceleration in the wall gravity when we calculate its

proper gravitational field, considering the unperturbed particle trajectory.
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Perturbations of the Nambu-Goto branes in the external gravitational field were ex-

pensively studied in the past, see e.g. [57, 58]. The derivation is particularly simple in the

Minkowski background . First, from eq. (2.3) we find the perturbation of the induced metric

δγµν = 2 ΣM
(µ δX

N
ν)ηMN + κh̄MNΣM

µ ΣN
ν ,

where brackets denote symmetrization over the indices with a factor 1/2. Linearizing the

rest of the eq. (2.2), after some rearrangements one obtains the following equation for the

deformation of the wall:

ΠMN �D−1 δX
N = ΠMN JN , ΠMN ≡ ηMN − ΣM

µ ΣN
ν η

µν , (3.17)

where �D−1 ≡ ∂µ∂µ and ΠMN is projector onto the (one-dimensional) subspace orthogonal

to VD−1. The source term in (3.17) reads:

JN = κ Σµ
P Σν

Q ηµν

(
1

2
h̄PQ,N − h̄NP,Q

)
z=0

. (3.18)

Using the aligned coordinates on the brane σµ = (t, r), we will have δMµ = ΣM
µ , so the

projector ΠMN reduces the system (3.17) to a single equation for the M = z component.

Thus only the z-component of δXM and JM is physical. Generically, the transverse de-

formations of branes can be viewed as Nambu-Goldstone bosons (branons) which result

from spontaneous breaking of the translational symmetry [59]. In the brane-world models

these are coupled to matter on the brane via the induced metric (for a recent discussion

see [60, 61]). In our case of co-dimension one there is only one such branon. The remaining

components of the perturbation δXM can be removed by transformation of the coordinates

on the world-volume, so δXµ = 0 is nothing but the gauge choice. Note that in this gauge

the perturbation of the induced metric δγµν does not vanish, contrary to the perturbation

of the particle ein-bein e.

Denoting the physical component as Φ(σµ) ≡ δXz we obtain the branon (D − 1)-

dimensional wave equation:

ηµν
∂

∂σµ
∂

∂σν
Φ(σ) = J(σ), (3.19)

with the source term J ≡ Jz. Substituting (2.12) into the eq. (3.18) we obtain the source

term for the branon:

J(σ) = −κ
[

1

2
ηµν h̄

µν,z − h̄ z 0,0

]
z=0

= − λvt

[γ2v2t2 + r2]
D−1
2

, (3.20)

where

λ =
κ2mγ2Γ

(
D−1

2

)
4π

D−1
2

(
γ2v2 +

1

D − 2

)
.

Construction of the retarded solution of the eq. (3.19) was explained in [31, 32], the

result consists of two terms:

Φ(t, r) = −Λ sgn(t) Ia + 2 Λ θ(t) Ib , Λ ≡
√
π λ

2
D−2
2 γ3Γ

(
D−1

2

) , (3.21)
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with

Ia(t, r) =
1

r
D−4
2

∞∫
0

dy JD−4
2

(yr) y
D−6
2 e−yγv|t| ,

Ib(t, r) =
1

r
D−4
2

∞∫
0

dy JD−4
2

(yr) y
D−6
2 cos yt ,

from which the first describes the odd in time brane deformation caused by the Lorentz-

contracted Newton field of the particle, while the second is the shock branon wave arising

at the moment of perforation and then freely propagating outwards along the brane. For

D = 4 these two integrals diverge logarithmically, though, as it was shown in [32], the cor-

responding regularized solutions exist. Here we will use the direct solution of the eq. (3.19)

in the momentum representation:

Φ(q) = − iπκ
2m

γ

qz δ(q0 − v qz)
qMqM (qµqµ + 2iεq0)

(
γ2v2 +

1

D − 2

)
. (3.22)

4 Gravitational radiation formula revisited

Traditionally, both electromagnetic and gravitational radiation is computed in terms of

fluxes of the field momentum in the wave zone, which is well-defined only in the asymp-

totically flat space-time. Our space-time is not asymptotically flat, so one should revisit

the derivation. In particular, the energy-momentum flux through the lateral surface of the

world-tube turns out to be non-zero [34]. Meanwhile, one can transform the flux at infinity,

when it is well defined, into the volume integral extended through the space-time. This

allows one to express the radiation power as an integral over the graviton momentum from

the square of the source stress-tensor in the momentum representation contracted with

polarization tensors [62]. Here we present the derivation of essentially the same formula

without reference to the wave zone.

4.1 The second order

In the second order in κ one obtains the leading contribution to gravitational radiation.

Actually, the source of radiation consists of three ingredients. The first is due to the particle

which has constant acceleration before and after piercing. This has certain analogy with the

Weinberg’s approach [62] to compute gravitational radiation from the system of particles

colliding at a point: in that case one has the constant momenta before and after collision

which instantaneously change on a finite amount. In our case it is the (proper) time

derivatives of the momenta before and after collision which are constant and opposite,

changing sign at the moment of perforation. The second contribution comes from the

deformation of the brane world-volume caused by varying gravitational field of the moving

particle. Recall, that in our setting the brane is plane and non-excited once gravitational

interaction is switched off. Finally, for consistency of calculations, the gravitational stresses

have to be taken into account, these are described using Weinberg’s expansion of the
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Einstein tensor up to the second order in the gravitational constant [62]. The gravitational

stresses constitute the third component of the source.

The Einstein equation expanded up to the second order together with the correspond-

ing expansion of the metric leads to the following equation for the second-order (trace-

reversed) metric deviation: 2ψMN :

� 2ψMN = −κ τMN , (4.1)

with the source containing three terms:

τMN = 1T̄MN + 1TMN + SMN . (4.2)

The first is the particle term following from the eq. (2.7):3

1T̄MN (x) = m

∫ [
2 1ż(MuN) + κ

(
2uPhP (MuN) −

h

2
uMuN

)
− uMuN 1zP∂P

]
× δD

(
x− 0z(τ)

)
dτ . (4.3)

The second term 1TMN represents the brane contribution. To compute it, one substitutes

the first-order metric deviation (2.12) and the first-order brane perturbations into the

eq. (2.7), keeping the quantities of the desired order:

1TMN =
µ

2

∫ [
4 Σµ

(M
1Xν

N)ηµν + 4 h̄λ (MΣλ
N) − 2 Σµ

MΣν
N

(
h̄µν + 2 ηLRΣR

(µ
1XL

ν)

)
+Σµ

MΣν
Nηµν

(
h̄λλ − h̄+ 2 1XL

λΣλ
L − 2 1XL∂L

)]
δD
(
xA − ΣA

ασ
α
)
dD−1σ , (4.4)

where Σ
α
M ≡ ΣN

ν η
ναηMN (and the similarly for 1XM

µ ).

To construct the stress term one uses the expansion of the Einstein tensor in powers

of hMN in the harmonic gauge:

GMN = −κ
2
�ψMN −

κ2

2
SMN +

∑
n>2

κnN (n)
MN , (4.5)

where � = ∂M∂
M is the flat d’Alembert operator, SMN is the O (h2) part of GMN given

by

SMN =hP,QM

(
hNQ,P−hNP,Q

)
+hPQ

(
hMP,NQ+hNP,MQ−hPQ,MN−hMN,PQ

)
(4.6)

− 1

2
hPQ,MhPQ,N−

1

2
hMN�h+

1

2
ηMN

(
2hPQ�hPQ−hPQ,LhPL,Q+

3

2
hPQ,Lh

PQ,L

)
,

and the last term collects higher orders. The radiation amplitude in the leading order will

contain contribution of stresses arising as interaction, rather than self-action. It will be

therefore convenient to consider SMN as a quadratic form of h keeping in mind that in

each term we have to retain only the mixed products of particle’s and wall’s contributions,

so we will use the notation SMN (h, h) in all case when we need to state this explicitly.

3Symmetrization over two indices is defined as A(MN) ≡ (AMN +ANM )/2.
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This notation will be also useful to distinguish the orders of expansions used in various

occasions. In particular in the source term in the eq. (4.1) for the second order metric

deviation one has to use the squares of the first-order quantities 1hMN in S keeping only

the products of hh̄-terms and not h̄h̄ and hh responsible for the self-action. Note that the

S-part of the source is non-local contrary to the particle and the wall terms in space-time.

This non-locality is due to the non-linearity of the underlying full Einstein theory and, as

will be shown, it leads to an important difference in the radiation spectrum compared with

the results of linear theories like electromagnetism. More detailed discussions of this point

can be found in [63] within the four-dimensional theory, and in [64] in arbitrary dimensions

within a simpler scalar model.

Using the equations for the first-order fields it is straightforward to verify that

∂Nτ
MN = 0 ,

which guarantees the validity of the gauge fixing condition (2.8) to this order.

4.2 New derivation

One starts with the particle equation of motion in an external gravitational field (3.3)

written in terms of the covectors:

z̈M =
1

2
gAB,M ż

AżB . (4.7)

The idea is to present the change of the particle momentum ∆P̄M (eventually we will

consider the full time of motion) as the integral over the entire space-time. This is done

passing to the energy-momentum tensor:

∆P̄M = −m
∫
z̈Mds = −1

2

∫
gAB,M T̄

AB√−g dDx .

Similarly we can present the change of the momentum of the wall, this quantity is assumed

to be finite, while the momentum itself is infinite (for more detailed discussion see [34]).

Using the eq. (2.2) we obtain:

∆PM = −µ
∫
∂µ
(
XN
ν gMNγ

µν√−γ
)
dD−1σ

= −µ
2

∫
gAB,MΣAB√−γ dD−1σ

= −1

2

∫
gAB,MT

AB√−g dDx . (4.8)

Denote the total matter energy-momentum tensor TMN ≡ T̄MN + TMN . Since TMN is a

symmetric conserved tensor, one has

TAM ;A =
1√
−g
(
TAM
√
−g
)
,A
− 1

2
gAB,MTAB = 0 .

The change of the total momentum ∆PM will read:

∆PM = −
∫ (

TAM
√
−g
)
,A
dDx = −

∫ (
TAM,A

√
−g + TAM

√
−g,A

)
dDx ,
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or, equivalently,

∆PM = −
∫ [

TAM,A +
1

2
TAMg

NLgNL,A

]√
−g dDx . (4.9)

Now we use the Einstein equations TAM = 2GAM/κ2 and expand the Einstein tensor

in order to express the quantities in terms of metric deviations of various orders. Since

the expected radiation power is quadratic in the amplitude which itself is the second order

quantity, we will need here to keep terms up to fourth order. Denoting the third order

tensor in (4.5) as N
(3)
MN ≡ CMN and the quatric term as N

(4)
MN ≡ QMN , we will have:

GMN =− κ
2
� 1ψMN +

[
−κ

2
�( 2ψMN )− κ2

2
SMN ( 1h, 1h)

]
+
[
−κ

2
�(3ψMN )− κ2SMN ( 2h, 1h) + κ3CMN ( 1h, 1h, 1h)

]
+
[
−κ

2
�(4ψMN )− κ2

2
SMN ( 2h, 2h) + 3κ3CMN ( 2h, 1h, 1h)

− κ2SMN (3h, 1h) + κ4QMN ( 1h, 1h, 1h, 1h)
]
, (4.10)

where multiple arguments in the cubic and quatric terms indicate the order of variables in

the corresponding products. Since in each order the Einstein equations read:

k+1GMN =
κ2

2
kTMN ,

one obtains the following two lowest order equations:

� 1ψNM = −κ 0TNM (4.11)

� 2ψNM = −κ
(

1TNM + SNM
)
. (4.12)

The sum τNM ≡ 1TNM +SNM has zero divergence in accordance with the gauge choice in each

order of ψMN . Recall again that in all products of the first order metric deviations one has

to keep only the crossed particle-brane terms.

Replacing the stress-energy tensor by an expanded Einstein tensor (4.10) one has to

eliminate all contributions of the first-order (non-radiative) ψMN ; thus the lowest order of

gNLgNL,A is κ 2hA. The lowest order of TAM,A is 1TAM,A by virtue of 0TAM,A = −� 1ψAM,A = 0

by the gauge fixing. Finally, the lowest order of TAM is 1TAM due to (4.11), described in

details in [65].

Hence:

• Instead of TAM,A in (4.9) we write 2GAM,A/κ2, then substitute all tower (4.10), elimi-

nate all � (k+1ψAM,A) = 0 and all terms with 1h as multiplier,4 therefore

TAM,A ' −SAM,A( 2h, 2h) plus higher orders; (4.13)

• The same procedure applied to TAMg
NLgNL,A, gives

1

2
TAMg

NLgNL,A ' −
1

2
2h,A�

2ψAM plus higher orders. (4.14)

4Such neglects will be denoted as '.
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Substituting this into (4.9) one gets

∆PM =

∫ [
SAM,A( 2h, 2h) +

1

2
2h,A�

2ψAM

]√
−g dDx (4.15)

where SNM with mixed indices is defined in the same way and reads

SNM = − 1

κ2

(
2G

(2)N
M + κ�ψNM

)
.

Eventually (also omitting all 1h-terms)5

SNM ( 2h, 2h) = ηNLSML( 2h, 2h)− 2hNL� 2ψML.

Calculating the divergences

∂NSMN ( 2h, 2h) =
1

2
� 2ψAB 2hAB,M −

1

2
2hMN�

2h,N + 2hAB� 2hMA,B

and

∂N ( 2hNL� 2ψML) =
1

2
2h,L� 2ψML + 2hNL� 2hML,N −

1

2
2hMN�

2h,N

and substituting into the eq. (4.15), to arrive at

∆PM =
1

2

∫
2hAB,M�

2ψAB = −κ
2

∫
2hAB,Mτ

AB dDx . (4.16)

This is a standard representation of the energy-momentum loss as radiation reaction work,

see, e.g., [65]. Then passing to the momentum representation and taking M = 0 one ends

up with the following expression for the emitted energy

Erad =
κ2

4(2π)D−1

∑
P

∞∫
0

ωD−2dω

∫
SD−2

dΩ
∣∣εSNP τSN (k)

∣∣2 , (4.17)

where {εP} represents the set of D(D−3)/2 polarization tensors, to be constructed below.

To summarize, we have reproduced the familiar formula for gravitational radiation

without appealing to asymptotic behavior, which is far from being trivial in our problem

(see more detailed discussion in [33]). This does not mean that these conditions are ir-

relevant: they still can manifest themselves in spoiling the convergence properties of the

integral. This is what will actually happen, but the use of the integrand as the spectral-

angular distribution of the radiation energy still makes sense.

4.3 Polarization tensors

Here we construct the polarization states in the gauge convenient to further calculations.

In D dimensions there are D(D − 3)/2 independent second-rank symmetric tensors εP ,

satisfying the following conditions:

• transversality:

kNεPMN = 0 , k̄NεPMN = 0 , (4.18)

where kM = (ω,k), k̄M = (ω,−k);

5Note that we started with mixed indices tensor, but in fact we compute the perturbative expansion of

GMN with lowercase indices.
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• tracelessness:

ηMNεPMN = 0 ;

• orthonormality:

εPMNε
MN P ′ = δPP

′
.

To proceed, we first construct D− 2 space-like unit vectors eMa orthogonal to k and k̄ and6

among themselves:

ηMNe
M
a e

N
b = −δab, kMe

M
a = 0, k̄Me

M
a = 0 . (4.19)

To specify them further, introduce the unit space-like vector n (n2 = −1), associated with

the unit sphere SD−3 within the DW, and the angle ψ between k and the z-axis (the line

of particle motion). Then the graviton wave-vector will be parametrized as

k = ω (n sinψ, cosψ). (4.20)

Next parametrize the sphere SD−3 by (D − 4) polar angles θ1, θ2, . . . , θD−3 running from

0 to π and one azimuthal angle φ running from 0 to 2π. Then the desired orthogonal D−2

unit vectors will consist of the following two

eψ = (0, n cosψ,− sinψ), eφ = (0, ∂φn, 0)

and the D − 4 vectors

ei = (0, ∂θin, 0) .

They all satisfy the conditions (4.19) and have no temporal component by construction.

From them only the vector eψ has the bulk component, while the remaining vectors belong

entirely to the wall and satisfy the mutual orthogonality conditions:

ηµνe
µ
ae
ν
b = −δab , δije

i
ae
j
b = δab , a, b = φ, θi .

Now, using the above unit vectors, define the following two sets of symmetric polar-

ization tensors:

• (D − 2)(D − 3)/2 tensors labeled by pairwise indices rs:

εrsMN =
erMe

s
N + esMe

r
N√

2
r, s = φ, i, ψ , (4.21)

• D − 3 tensors labeled by a single index α = i, z

εαMN =
1√

α(α+ 1)

[
α eαMe

α
N −

α−1∑
β=1

eβMe
β
N − e

φ
Me

φ
N

]
, (4.22)

6This also implies orthogonality to the time direction vector (k + k̄)/2ω = (1, 0, . . . , 0).

– 17 –



J
H
E
P
0
1
(
2
0
1
8
)
1
2
0

where the last one can be rewritten as

εzMN =

(D − 3) eψMe
ψ
N −

D−4∑
j=1

ejMe
j
N − e

φ
Me

φ
N√

(D − 3)(D − 2)
. (4.23)

It is the only one possessing the bulk indices via the eψMe
ψ
N -term.

For future purposes, it is worth noting that the polarization tensors εiψ, εφψ and εz, with

i = φ, θi contain bulk indices (z-directed) through the vector eψM , while the remaining εij ,

and εi do not.

5 Radiation amplitudes

According to eq. (4.17) we have to compute the polarization projections of the effective ten-

sor current on the graviton mass-shell, k2 = 0. The total current τµν (4.2) consists of three

terms: the brane term 1TMN (k), comprising contribution of the reversible deformation due

to the variable gravitational field of the moving particle and the shock branon wave arising

at the moment of piercing; the particle term 1T̄MN (k), encompassing corrections to the

free motion due to the gravitational field of the brane; and SMN (k), the bilinear product

of hMN and h̄MN , which is the stress-tensor of the gravitational field. It is worth noting

that though the sum of the three terms is uniquely defined up to longitudinal kM terms

vanishing under polarization projection, each separate contribution is gauge dependent, so

the following calculation of separate terms is associated with specific gauge choices for the

brane and the particle which were described above and will be commented again later.

5.1 The brane amplitude

The first-order brane stress-tensor in the coordinate representation is given by (4.4). Spec-

ifying the variations of the world-volume embedding functions as 1XN = Φ(σ) δNz and

passing to the Fourier-transform we obtain:

1TMN (k) =
µ

4π

∫ [
−4 ikλΦ(q) Σλ

(MηN)z + 4 Σλ
(M h̄N)λ(q)− 2 Σµ

MΣν
N h̄µν(q)

+ ΞMN

(
h̄zz(q)− 2 i kzΦ(q)

)]
δD−1(kµ − qµ) dDq , (5.1)

where Φ(qM ) is defined by the eqs. (3.18), (3.19) and (3.20) and reads

Φ (qM ) = − i π κ
2m

γ

qz δ(q0 − v qz)
qMqM (qµqµ + 2iεq0)

(
γ2v2 +

1

D − 2

)
. (5.2)

Now compute contractions of the various terms in (5.1) with the polarization tensors.

Taking into account that h̄MN (qM ) in (2.11) consists of uMuN and ηMN terms, one can

establish the rules:

• the products of δλ(MηN)z with εMN
ij and εMN

i vanish since ei have no z−component;
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• the combination kλδ
λ
(MηN)z has zero contractions with the polarization tensors εMN

iψ

by virtue of orthogonality of kM and eMi ;

• the contractions of Σµ
MΣν

Nuµuν with all polarization tensors are zero since uµ has

only temporal non-vanishing component, while the corresponding components of eMi
and eMψ are zero;

• the contraction Σµ
MΣν

Nηµνε
MN
ij vanishes by virtue of the mutual orthogonality of ei

and ej in the brane spatial sector;

• the term Σµ
MΣν

Nηµνε
MN
i is zero due to tracelessness in the brane spatial sector;

• the term ΞMNε
MN
iψ vanishes since the vector n is unit and hence n · ∂θin = 0;

• finally, the products of uλu(MΣλ
N) from hλ (MΣλ

N) with polarizations εMN
ij , εMN

iψ and

εMN
i vanish since the vectors entering them do not have both t− and z−components.

Thus we see that the only non-zero polarization projection comes from εz, so one is left

with the only scalar amplitude Tz(k) ≡ TMN (k) εMN
z . Moreover, similar considerations

imply that one can truncate the relevant polarization tensor to

εMN
z =

√
D − 3

D − 2
eMψ e

N
ψ . (5.3)

The non-vanishing contractions are:

Σµ
MΣν

Nηµνε
MN
z =

√
D − 3

D − 2
sin2ψ , kλ δ

λ
(MηN)zε

MN
z = −

√
D − 3

D − 2
ω cosψ sin2ψ . (5.4)

So collecting all the non-zero terms and integrating over q we obtain:

1Tz(k) = −
√
D − 3

D − 2

κ2µm

2

γv sin2ψ

ω2 + k2
⊥γ

2v2

[
ω2 cosψ

v (kµkµ + 2iεk0)

(
γ2v2 + αD

)
+ γ2v2 − αD

]
,

where k2
⊥ ≡ δijk

ikj and αD ≡ (D − 2)−1. Taking into account the on-shell condition

kMk
M = 0, this quantity can be rewritten as

1Tz(k) =−
√
D − 3

D − 2

κ2µm

2ω2

γv sin2ψ

1 + γ2v2 sin2ψ
(5.5)

×
[

cosψ

v [cos2ψ + 2iεk0]

(
γ2v2 +

1

D − 2

)
+ γ2v2 − 1

D − 2

]
.

We note the infrared divergence of this amplitude at ω → 0, which is not surprising since

our procedure did not take into account the finite depth of the piercing layer. We will

deal with this problem later on. Another interesting feature is that the amplitude remains

non-zero in the limit v → 0. This is related to branon excitation which takes place even

with infinitesimal v, for more details see [31]. Also, one can see that the amplitude diverges

as ψ → π/2, i.e. along the DW. This divergence is another artefact of our approximation,

to be dealt with later on.
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The divergence of the brane amplitude along the wall is due to brane excitation Φ. If

one puts Φ = 0 by hand (this may correspond to Z2-symmetric braneworld models or to

the case of two mirror particles impinging upon the wall), then

1Tz(k)
∣∣∣
Φ=0

= −
√
D − 3

D − 2

κ2µE
2ω2

v sin2ψ

1 + γ2v2 sin2ψ

[
γ2v2 − 1

D − 2

]
. (5.6)

Thereby in this case the amplitude does not blow up at ψ = π/2 and the angular distribu-

tion is finite.

5.2 The particle amplitude

The first-order particle stress-tensor was found in the preceding section in the coordinate

representation (4.3):

1T̄MN =
m

2

∫ (
4 1ż(MuN) + κ

(
4uPhP (MuN) − huMuN

)
− 2uMuN ( 1z · ∇)

)
δD(x−uτ) dτ

with zM given by (3.2) and (3.5). The corresponding amplitude in the momentum repre-

sentation reads:

1T̄MN (k) =
m

2

∫
dτ ei(ku)τ

[
2 i(k 1z)uMuN + 4u(M

1żN)

− κ h(τ)uMuN + 4κ uPu(MhN)P (τ)
]
, (5.7)

where the brane gravitational field hMN (τ) is given by (2.14), restricted to the unperturbed

trajectory:

hMN (τ) =
κµ
2

(
ΞMN −

D − 1

D − 2
ηMN

)
γv|τ | ,

and 1zM (τ) is given by (3.5). For 1T̄MN (k) the non-zero contribution gives only the polar-

ization εz, yielding the product 1T̄z(k). Contracting (5.7) with (5.3) and using the integrals

∞∫
−∞

eiατ |τ | dτ = − 2

α2
,

∞∫
−∞

eiατ τ2 sgn(τ) dτ = − 4i

α3
,

one obtains

1T̄z(k) = −
[

D − 3

4(D − 2)3

]1/2 κ2µmv

γω2

[
(D − 2)γ2v2 − 1

]
v cosψ + 2

(1− v cosψ)3
sin2ψ . (5.8)

This amplitude, apart from the infrared, has also the angular divergence at ψ = 0 in the

case of the massless particle v = 1. This is the well-known collinear divergence encountered

in quantum perturbation theory for interacting massless particles. In classical theory this

is the line divergence of the retarded potentials [66].
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5.3 The stress contribution

The stress tensor is given by eq. (4.6). Substituting hMN = hMN + h̄MN and keeping only

the cross terms one obtains a bi-linear form of h and h̄. Anticipating zero contractions of

ηMN−part with traceless polarization tensors, one can drop it from the beginning. The

Fourier transform of the product of two fields becomes convolution in the momentum

representation presented by the integrals over the variable qM . The following integrals are

useful in such a computation:∫
δ(qu) δD−1(qµ)

q2(k − q)2
dDq =

γ3v3

(ku)3(k̄u)
,∫

δ(qu) δD−1(qµ)

q2(k − q)2
qM1 . . . qMn d

Dq =

(
ku

γv

)n−3 δM1z . . . δMnz

(k̄u)

(with k̄M introduced in (4.18)). After lengthy but straightforward calculations one obtains

the following expression:

SMN (k) =
κ2µm

γv q̃2(k − q̃)2

[
ΞPQk

PkQ uMuN +

(
γ2v2 − 1

D − 2

)
q̃M q̃N + (ku)2 ΞMN+

+
[
(ku) + (k̄u)

]
q̃(MuN) − 2 (ku) kA ΞA(MuN)

]
,

with q̃M = (0, . . . , 0, kz−k0/v). Here the longitudinal terms proportional to k(MBN) (with

any D-vector BM ) were also omitted in view of transversality of polarization tensors. On

shell k2 = 0 this expression reduces to

SMN (k) =
κ2µmγ3v3

(ku)3 (k̄u)

[
(kz)2 uMuN +

(
γ2v2 − 1

D − 2

)
q̃M q̃N + (ku)2 ΞMN

+ 2 γ k0 q̃(MuN) − 2 (ku) kA ΞA(MuN)

]
.

One can notice that the stress tensor contains the same tensor structures as 1T̄MN (k) and
1TMN (k), so the only polarization tensor giving non-zero result will be again εMN

z . The

following contractions can be easily found

q̃Me
M
ψ = −(ku)

γv
sinψ , kA ΞA(MuN)ε

MN
z = −

√
D − 3

D − 2
γv ω sin2ψ cosψ ,

in addition to (5.4). Using them, the projected stress-tensor amplitude can be presented as:

Sz(k) =

√
D − 3

D − 2

κ2µmv3 sin2ψ

γ (k0 − vkz)3(k0 + vkz)

[
γ2v2(kz)2 − (ku)2

(D − 2)γ2v2

]
.

Finally, using the on shell parametrization k = ω(1, sinψ n, cosψ), one obtains:

Sz(k) =

√
D − 3

D − 2

κ2µmv

γ ω2

sin2ψ

(1− v cosψ)3(1 + v cosψ)

[
γ2v4 cos2ψ − (1− v cosψ)2

D − 2

]
. (5.9)

Here one also observes both the infrared and the angular divergences.
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5.4 The destructive interference in the ultrarelativistic limit

In the ultrarelativistic limit v → 1 (γ →∞) both the particle and the stress amplitudes

have similar behavior near the forward direction ψ � 1 which could give the leading contri-

bution to radiation (this follows from the integrals (A.1)). However, keeping the common

singular factors and expanding the rest as

sinψ ≈ ψ , 1− v cosψ ≈ ψ2 + γ−2

2
, (5.10)

one finds for large γ � 1

1T̄z(k) = −1

2

√
D − 3

D − 2

κ2µE sin2ψ

ω2 (1− v cosψ)3

(
1 +O(γ−2)

)
(5.11)

and

Sz(k) =
1

2

√
D − 3

D − 2

κ2µE sin2ψ

ω2(1− v cosψ)3

(
1 +O(γ−2)

)
, (5.12)

where E = mγ is the particle energy. So in the leading in γ order, these two amplitudes

exactly cancel. This is manifestation of the destructive interference which reflects the equiv-

alence principle in the language of flat space, which was encountered in the bremsstrahlung

problem for point particles [63–65, 67, 68]. After cancelation of the leading terms, the sum

of (5.8) and (5.9) has two orders of gamma less than the each term separately.

On the other hand, the brane amplitude (5.5) in the forward direction is approxi-

mated as

1Tz(k)
∣∣∣
ψ�1
≈ −

√
D − 3

D − 2

κ2µE
ω2

γ2 sin2ψ

1 + γ2 sin2ψ
(5.13)

and thereby is of order of O(ω−2κ2µE). Comparing it with (1 − v cosψ)−2 = O(γ4) one

concludes that at ψ ≈ 0 the brane contribution is always subleading.

Thus in the small-angle region the main contribution still comes from the sum of
1T̄ (kM ) and S(kM ). Expanding these with more accuracy and keeping the subleading

terms, one finds to the main order:

τz(k)
∣∣∣
ψ�1
≈ −1

8

√
D − 3

D − 2

κ2µE sin2ψ

γ2 ω2(1− v cosψ)3

[
D + 2

D − 2
+ γ2 sin2ψ

]
. (5.14)

The total amplitude is peaked at ψ ∼ 1/γ in any dimensions,7 with the magnitude ∝ γ2.

The qualitative picture in D = 4, 5, 6 is shown on the figure 1.

The dependence of the radiation amplitude on the particle Lorentz factor in D = 4 is

shown on the figure 2.

7More precisely, the position of maximum is ψ =
(√

D2+12−4

D−2

)1/2/
γ, plus small corrections.
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Figure 1. The angular dependence of the radiation amplitude for γ = 15 in four (black), five (red)

and six (green) spacetime dimensions (units κ2µEω−2 = 1 are understood).

Figure 2. The angular dependence of the radiation amplitude in four dimensions for different

values of Lorentz factor: γ = 15 (green), γ = 30 (red) and γ = 45 (black) (units κ2µEω−2 = 1

are understood).

5.5 The massless case

The limiting case, corresponding to the piercing of DW by photons, is the case where mass

tends to zero with fixed energy. The latter represents the photon’s frequency in ~ = 1

units. The corresponding change should be observable in the angular dependence of the

radiation amplitudes. Indeed, the position of the maximum O(1/γ) for the ultrarelativistic

particle goes to zero, while the height γ2 blows up to infinity.
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Figure 3. Angular dependence of the (absolute values) radiation amplitudes for photon: particle

(black), brane (blue) and stress (green) contributions and the total amplitude (red) in doubly

logarithmic mode (in units C = 1).

Directly taking the limits of (5.5), (5.8) and (5.9) one gets

1Tz(k) = −2C

[
cosψ

cos2ψ + 2iεk0
+ 1

]
, 1T̄z(k) = −C cosψ cos2(ψ/2)

sin4(ψ/2)

Sz(k) = C
cos2ψ

sin4(ψ/2)
, C ≡

√
D − 3

D − 2

κ2µE
4ω2

, (5.15)

with no dependence on the Lorentz factor. Here E stands for the photon frequency. One no-

tices that for the small angles the brane contribution is regular, while both T̄z(k) and Sz(k)

blow up as ψ−4. Combining them, the total amplitude in the small-angle domain reads:

τz(k) = −C cosψ

sin2(ψ/2)
, (5.16)

and thus blows up as ψ−2 when ψ approaches zero. Thus the destructive interference in

this case consists in the diminishing of the angular blow-up power by two powers. The plot

on figure 3 illustrates these observations.

Note that these curves are the same for any D, all D-dependence is contained only in

the factor C.

To summarize this section, we list the main results:

• the radiation amplitude consists of a single polarization, responsible for emission into

the bulk;

• the amplitude has the universal infrared divergence ω−2;
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• in the ultra-relativistic case the radiation amplitude is peaked in the forward direc-

tion, though the leading contributions of the particle and the stresses mutually cancel

due to destructive interference;

• the brane amplitude blows up along the DW and remains non-zero in the limit v → 0.

6 The spectral and angular distribution of PGR

From eq. (4.17) one obtains simple expression for the spectral-angular distribution of the

total εz-polarized PGR:

dErad

dωdΩ
=

κ2

4 (2π)D−1
ωD−2 |τz(k)|2 . (6.1)

In view of the spherical symmetry on brane, we integrate over sphere SD−3 (all angles

except ψ) obtaining for the total emitted energy

Erad =
κ2

(4π)D/2Γ
(
D−2

2

) ωmax∫
ωmin

dω ωD−2

π∫
ψmin

dψ sinD−3 ψ |τz(ω, ψ)|2 . (6.2)

The integrand typically is peaked along ψ = 0, and for massive particles (finite γ) it is

non-divergent there (actual integration is performed according to appendix A). But in the

massless limit it is divergent, so the cut-off at ψmin is required. This cut-off depends on the

particular physical problem which is supposed to replace our simplified model and may be

either classical, or quantum. In what follows we will discuss this in more details.

Taking into account that all radiation amplitudes scale as ω−2 in the entire spectrum,

the substitution of τz(k) into (6.1) after integration over angles leads to the frequency

distribution

dErad

dω
∝ κ6µ2m2 ωD−6. (6.3)

This quantity is infrared-divergent in all dimensions less than six. This also is the conse-

quence of the oversimplified nature of our model which indicates the need of the infrared

cut-off. For D > 5 an ultraviolet cut-off is also required. These again can be classical or

quantum, especially in the case of massless particles. Recall that in the classical domain

we have two intrinsic length parameters in the full non-linear theory — the inverse bulk

curvature k−1 and the gravitational radius associated with the particle energy E , namely

rE ∼
(
κ2E

)1/(D−3)
.

In addition, in more realistic DW models one encounters other physical length parameters:

the DW thickness δ and the finite longitudinal size of the DW. Finally, applicability of the

perturbation theory requires the distances in the bulk direction to be restricted from above

by the size of the piercing layer (3.7) which is of the order of the bulk curvature radius for

the photons, and is O(v2) for non-relativistic velocities.
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6.1 The ultra-relativistic case: beaming in the bulk direction

The dominant part of the total radiation still can be beamed even if the corresponding par-

ticle and stress contribution mutually cancel. Substituting (5.14) into (6.2) one encounters

the competing over the polar angle ψ: V D+1
6 , γ2 V D+3

6 and γ4 V D+5
6 , as introduced and

evaluated in the appendix A. In the leading order one obtains

Erad =
(D − 3) Γ

(
D+6

2

)
Γ
(

6−D
2

)
30 (D − 2)2(4π)D/2 Γ(D/2)

(κ3µE)2QD γ
6−D , (6.4)

where frequency factor QD is

QD =


1/ωmin, D = 4;

ln
ωmax

ωmin
, D = 5;

ωD−5
max /(D − 5), D > 5.

(6.5)

The factor Γ
(

6−D
2

)
indicates that for D > 6 the formula (A.6) is irrelevant. Indeed, for

D = 6 the integral V 11
6 exhibits the non-beamed logarithmic behavior (A.8). The two re-

maining integrals are still “beamed” (A.6), but the power of γ in the denominator (5.14)

makes the forward-direction contribution to be of the same order as non-forward contribu-

tions which are more difficult to access analytically. For D > 6 it is not hard to combine

contributions V D+1
6 , V D+3

6 and V D+5
6 (choosing the appropriate case out of (A.6), (A.7)

or (A.8)), but the total forward radiation is negligible due to the small phase volume of the

forward-direction beaming cone ψ . γ−1. Thus it is natural to consider the cases D = 4,

D = 5 and D > 6 for the ultrarelativistic particle separately.

D = 4. The direct application of (6.4) yields:

Erad =
1

80π2

(κ3
4µE)2γ2

ωmin
, (6.6)

where we traded the particle mass in favor of the energy E = mγ. Obviously this diverges

in the massless limit when γ →∞. This divergence is a consequence of the collinear

divergence of the amplitude, which requires the angular cut-off ψmin:

Erad =
1

80π2

(κ3
4µE)2

ωmin (ψmin)2 . (6.7)

It is expected that the cut-off has quantum nature, like in the case of synchrotron radiation

of massless particles [45], which is beyond the scope of our treatment. Otherwise, one can

think of the factor (ψmin)−1 as an effective maximal Lorentz factor γ∗.

D = 5. This case is “softer” as containing a single power of γ: now from (6.4) we have:

Erad =
7

3 · 28π2
(κ3

5µE)2γ ln
ωmax

ωmin
. (6.8)

In this case one can find reasonable cut-offs from applicability conditions of our approach.

The cutoffs ωmin and ωmax come from the corresponding coordinate cutoffs discussed in the
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appendix B. Another restriction could come from non-infinite longitudinal size of physical

DW, and one has to combine them together. This stimulates us to revisit the 1st-order

deformation of the brane, given by Φ ≡ Φa + Φb [32, eqs. 5.14, 5.17], with

Φa = − κ2
5E

8π2r
arctan

r

γvt
, Φb = −κ2

5E
8πr

θ(t) θ(r − t) ,

where θ(x) stands for the Heaviside step-function. The absolute value of both these is

maximal for small r, hence the maximal z−direction brane deformation has to be taken at

r = rmin (for |t| > zmin), or at r = 0, t = zmin in Φa, yielding

|Φ|max =
κ2

5E
8π2rmin

'
3r2
E

rmin
,

where we take into account (B.7). Demanding for the brane deflection to be secured by the

“true” minimal available-for-consideration z-coordinate, in order to keep the validity of the

perturbation theory (what implies |Φ|max = zmin), and taking into account the correlation

between z and r for the branon wave we conclude:

rmin ' zmin = O(rE) , (6.9)

since these two exceed the “previous” minimal values rmin = rEγ
−1/(D−3) and zmin =

= rEγ
−(D−2)/(D−3) in (B.7). Thus

ωmax = O(1/rE) , (6.10)

independent of the graviton direction.

Second, here we are basically consider the RSII setting where the brane is five-

dimensionally infinite. Let consider for the moment the case with infinite Lorentz factor

within the RSII model. Note, the zeroth-order field in our model is Minkowskian every-

where. This fact preserves the conservation laws [32, 33], and the dynamics of particle and

brane is self-consistent. But if we consider times

t > L ≡ zmax

in RSII-setting, the free particle after the shock collision moves in the true RSII-metric

which is exponentially decaying. Hence the corresponding branon wave, Φb, propagating

outward the piercing point, when reaching the value r = L has to be deformed significantly.8

In other words, we have to put

rmax = O(L) , krmin = O(1/L) . (6.11)

The minimal value of frequency ω is determined by the two inverse length parameters:

both longitudinal, 1/zmax, and transverse, 1/rmax. Noticing that the two latter coincide,

we conclude

ωmin = O(1/L) . (6.12)

8Such a non-perturbative analysis lies beyond our goals here.
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Substituting (6.10) and (6.12) into (6.8) one obtains:9

Erad =
7

3 · 28π2
(κ3

5µE)2γ ln
L

rE
. (6.13)

Normalizing it by the particle energy, we have:

ε ≡ Erad

E
' 7

25

r2
Eγ

L2
ln
L

rE
, (6.14)

and we can consider two cases described in [34]: the resolution is that the existence of krmin

prevents the angle ψ to approach zero:

ψmin ∼ arcsin
krmin

ωmax
' rE

L
� 1 .

Notice, the result (6.13) is got after the ψ-integration from 0 to π, whereas in the relativistic

case we thus have to integrate the angular distribution (6.1) from ψmin. Since the integrand

is beamed inside the cone 0 < ψ . 1/γ, the final result depends upon the relation between

1/γ and ψmin. Namely, expressing the radiation efficiency (6.13) in terms of inverse minimal

emission angle, it estimates as

ε ∼ rE
L

ln
L

rE
, (6.15)

or ln γ∗/γ∗ in terms of effective Lorentz factor γ∗ ≡ ψ−1
min. Since the function ln x/x does

not exceed 1 for x > 1, there is no efficiency catastrophe in our model. In fact, we assume

L/rE ' γ∗ � 1, so ε� 1.

D > 6. As was deduced above, the most of the angular contribution is taken from the

angles of order O(1). Meanwhile, in six dimensions both the “beaming” region ψ . O(γ−1)

and ψ & O(γ−1) contribute on equal footing, that implies for the local values of the angular-

distribution curve at ψ ' O(γ−1) to be in γ times greater than the same one at ψ ' O(1).

The plot on figure 6 confirms this conclusion. Thus we have the “local” beaming, with the

total contribution as

Erad =
6

(4π)5
(κ3

6µE)2

(
ln 2γ − 107

60

)
ωmax , D = 6. (6.16)

For D > 6 the γ � 1 limit has to be applied to the region ψ = O(1). Doing this, one

obtains the estimate

τz(k)
∣∣∣
ψ=O(1)

∼ κ2µE
ω2

f(ψ) , Erad ∼ (κ3µE)2QD , (6.17)

where f(ψ) denotes some function of order O(1) with no characteristic dependence on

γ � 1 inside.

9Despite the cutoffs are defined as approximate values of declared order, we have kept the numerical

pre-factor due to the logarithm changes insignificantly with respect to the deviation of approximate ωmax

and ωmin.
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Figure 4. Angular distribution of the emitted radiation at zero-speed for D = 4.

6.2 Non-relativistic case: the brane contribution

As it was mentioned above, the brane contribution survives in the limit v → 0 (5.5). In

this case the angular distribution is symmetric with respect to the brane’s plane. Thus we

deal with the pure brane configuration of waves, the corresponding plot is shown on the

figure 4.

However, the term 1/kz in 1Tz(k) is presented in the generic case v > 0, thus one can

expect the blow up of the curve of the total emission angular distribution at angle ψ close

to π/2, i.e. when the graviton is emitted tangent to the brane: from (5.5) we have now:

τz(k)
∣∣∣
ψ≈π/2

= −
√
D − 3

D − 2

κ2µm

2ω2 cosψ

γ

1 + γ2v2

(
γ2v2 +

1

D − 2

)
. (6.18)

Introducing the complement ψ′ ≡ π/2− ψ and estimating, we conclude:

τz(k)
∣∣∣
ψ≈π/2

' −κ2µE
ω2ψ′

.

This indicates to the imposing of a cutoff on the kz and ψ′: indeed, from the maximal zmax

we can deduce:

kzmin = O(1/L) , ψ′min = ψmin .

Integration of (6.18) yields the “brane” contribution to the spectrum:

Ebr ' (κ3µE)2QD+1

kzmin

, (6.19)

with Qn introduced in (6.5). However, in the non-relativistic case the maximal z-size of

applicability of our approach is z < zl(v) which goes to zero as v2 for small velocities. So

in the non-relativistic case one could do better considering particle motion in the exact

brane background, we leave this for the future work.
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Figure 5. The total angular distribution of the emitted radiation for full source (red) and reduced

one, with no brane excitation (black) for D = 5, γ = 15.

Z2-symmetric case. When both half-spaces of the brane hyperplane are equivalent, the

brane excitation is absent:

Φ = 0 .

Thus the brane contribution to the total radiation amplitude is given by:10

1T ∗z (k) ≡ 1Tz(k)
∣∣∣
Φ=0

= −
√
D − 3

D − 2

κ2µE
2ω2

v sin2ψ

1 + γ2v2 sin2ψ

[
γ2v2 − 1

D − 2

]
. (6.20)

Thereby in this case the amplitude does not blow up at ψ = π/2 and the angular distribu-

tion is finite. The characteristic plot with/without counting of Φ is shown on figure 5. One

sees that the reduction of Φ eliminates the infinite brane-motivated background at ψ ∼ π/2.

The total angular distribution may be integrated for D > 6 in the ultra-relativistic

case.11 For γ � 1 one obtains:

τ∗z (k)
∣∣∣
ψ∼1,Φ=0,γ�1

=

√
D − 3

D − 2

κ2µE
ω2

1/2

1− v cosψ
. (6.21)

The plot illustrating this approximation, is given on figure 7. Squaring of (6.21) and

substituting it into (6.2) leads to the integrals V D−3
2 which for D > 6 turn out to be “non-

beamed” and for D = 6 logarithmic,12 thus taking help of (A.7) this yields:

E∗rad =
1

27πD/2
(D − 3) Γ

(
D−6

2

)
(D − 2) (D − 5) Γ(D − 4)

(κ3µE)2ωD−5
max D > 7 , (6.22)

with ωmax discussed above (6.10).

10The amplitude, emitted energy and radiation efficiency, corresponding to this mirror case, will be

denoted with uppercase star.
11Remarkably, the validity of the low-angle approximation is extended to the angle region of order O(1),

as it shown on figure 6.
12The result reproduces (6.16) with logarithmic precision.
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Figure 6. The reduced angular distribution of the emitted radiation (red) versus the approximation

by formula (5.14) (black) for D = 6, γ = 150. For higher values of γ two curves are more close to

each other.

Figure 7. The reduced angular distribution of the emitted radiation (red) versus the approximation

by formula (6.21) (black) for D = 7, γ = 30. For higher values of γ two curves are more close to

each other.

The formula (6.22) obtained for an ultrarelativistic particle, does not contain “free”

Lorentz factor. Also, the angular cut-off at small angles is not required. Thus in higher

dimensions there is no strong enhancement of the emitted radiation in the ultrarelativistic

case. Omitting the brane’s blow-up, the dependence of the emitted energy upon the speed

of piercing particle is shown on figure 8.
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(a) (b)

Figure 8. The emitted radiation against the speed of particle (a) and Lorentz factor (in logarithmic

mode) (b) in D = 7 dimensions, normalized by the maximal value given by eq. (6.22).

The radiation efficiency is estimated as:

ε∗ ∼
(rE
L

)2
ln
L

rE
, D = 6 ε∗ ∼

(rE
L

)2
, D > 6 .

To summarize, the total efficiency of radiation can conveniently be expressed through

the ratio of the beamed part to the brane contribution χ ≡ E∗rad/Ebr giving

ε ' ε∗θ(χ− 1) +
ε∗

χ
θ(1− χ) ,

where θ(x) is the Heaviside step-function. In four and five dimensions the beamed radiation

dominates, while in higher dimensions the most of radiation is emitted at large angles.

7 Conclusions

In this paper we investigated new mechanism of gravitational radiation from DWs, called

PGR, due to their collisions with surrounding particles which perforate DWs and pass

through. Within our model the DW-particle interaction was assumed to be purely gravita-

tional and small, so the perturbative scheme on the Minkowski background is applicable.

The gravitational force in this system is repulsive, so the particle must have the momen-

tum transverse to the wall large enough in order to overcome repulsion and to perforate

the wall. In plasma with some velocity distribution such particles form a layer whose

size depends on their velocity; this size becomes large in the ultrarelativistic limit and for

massless particles.

In the perturbation theory, gravitational radiation arises in the second, post-linear

order. This is similar to perturbative treatment of gravitational bremsstrahlung under

relativistic collisions of point particles, but in our case situation is more complicated since

the wall is an extended object with an intrinsic dynamics due to tension. Another difference

is that the force between the particle and the wall does not fall off with distance, so
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there are no asymptotically free states. So to calculate gravitational radiation in such

a collision we had to resolve some conceptual and technical problems. One problem is

failure of the traditional theory of radiation based on the notion of the wave zone which

is absent in our case. So we had to reconsider formula for gravitational radiation without

recurring to asymptotic conditions. The second problem is that, due to absence of free

asymptotic states, perturbative description of gravity is restricted to certain distances

around the wall, while the formal expansions in terms of gravitational coupling constant

require considering in zero order an infinite motion of the free particle. Also, the point

particle is not a good approximation itself, since any mass has an associated gravitational

radius. Similarly, physical DW has a finite width, while we used the Nambu-Goto action.

These oversimplifications allowed us to compute the radiation amplitudes analytically at the

expense of the infrared and the ultraviolet divergences of the spectra, as well as (collinear)

divergences in the angular distribution in the limit of massless particle. So we had to

perform an additional analysis to motivate the choice of cutoffs needed to extract finite

answers from the perturbation theory.

Due to the symmetry of the problem, the emitted radiation is polarized in single

tensorial state, responsible for the bulk emission of GW. The radiation amplitude consists

of the contribution due to the particle, to the DW and to gravitational stresses. The total

radiation amplitude is factorized into the product of the frequency part and the angular part

depending upon the single angle. The frequency factor ω−2 has an infrared blow-up, proper

for the particles collisions [62] in general, though stronger. The angular part has divergence

corresponding to gravitons emitted along the brane which is absent in the case of two mirror

particles. In the non-relativistic limit the particle and stress contributions vanish, so only

the brane contribution remains. For an ultrarelativistic particle the radiation amplitude

in the forward direction is damped by two powers of γ with respect to the particle term

only due to destructive interference with the stress tensor contribution. Despite this, the

radiation amplitude has a peak at ψ ∼ 1/γ (with the same order of half-width), proper to

radiation from fast particles (bremsstrahlung), with magnitude ∼ γ2.

The angular-frequency distribution of the emitted radiation, obtained after squaring

the total amplitude and adding the dimension-dependent phase-volume factor, have the

following features. The frequency distribution scales as ∼ ωD−6 in the entire spectrum and

therefore has infrared divergence in four dimensions, the ultraviolet divergence in higher

dimensions, and both of them for D = 5. All of them are removed by the appropriate

cutoffs which may depend upon the particular DW model. The amplitude peak, discussed

above, causes the beaming of the emitted gravitons, with characteristic cone angle 1/γ, as

it common for fast particles. Such a beaming is realized in four and five dimensions, that

reflects the corresponding enhancement of the emitted energy as gamma-factors in numer-

ator. In the massless limit one uses the cutoff related with the applicability of linearized

fields. However, in higher dimensions the dominant region of angular distribution shifts to

the large angles, due to volume factor of the phase space. In this case the radiation tangent-

to-brane becomes dominant even with cutoff imposing. Thus in higher dimensions there is

no strong enhancement of the emitted energy for relativistic/ultrarelativistic velocities, as

well as no beaming of the emitted waves.
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In the massless limit the radiation amplitude has no peak and blows up as ψ approaches

zero. However, the resulting angular amplitude scales as sinD−7ψ and regular for D > 6.

The cutoff imposing solves this divergence at D = 4 . . . 6 in the same manner like for

ultrarelativistic case with finite Lorentz factor exceeding the effective “cutoff” factor γ∗.

In the non-relativistic limit the radiation due to the brane deflection dominates. Omitting

the brane’s influence, the radiation is roughly isotropic. The radiation efficiency depends on

the braneworld model and dimensionality. In higher dimensions with infinite-sized brane

it is found to be of order ln γ/γ or less, where for very high Lorentz factor one has to

substitute it by effective γ∗ = L/rE � 1.

In this paper we did not consider realistic cosmological applications: this would require

different setting of the whole problem. But from our results it is clear that this mechanism

may be relevant in the lower-frequency spectrum of the relic gravitons. Mention that the

graviton spectrum from collapsing unstable domain walls is not divergent in the infrared

but has maximum at some finite frequency [15]. Also, our mechanism is universal and

applicable to stable DWs as well.
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A Angular integration

Here we compute the angular integrals of the generic form

V n
m =

π∫
0

sinnψ

(1− v cosψ)m
dψ (A.1)

with integers m,n, and estimate them in the leading order in γ � 1. Making use of the

formula [70]

π∫
0

sin2ν−1 θ

(a−bcosθ)m
dθ=

(
2/b
)ν−1/2√

πΓ(ν)
(
a2−b2

) 2(ν−m)−1
4 P

1/2−ν
ν−m−1/2

(
a√

a2−b2

)
, (A.2)

valid for any real a > |b|, and Re ν > 0, we express the result in terms of the associated

Legendre function of the first kind Pµν (z). In our case a = 1, b = v, so:

V n
m = (2/v)n/2

√
π Γ
(n+ 1

2

)
γ−n/2+mP

−n/2
n/2−m(γ). (A.3)

In non-relativistic limit v � 1 we start directly from (A.1) and expand it in powers of v.

Integration over ψ gives

V n
m =

π∫
0

(
1 +mv cosψ

)
sinnψ dψ +O (v2) =

√
π Γ
(
n+1

2

)
Γ
(
n+2

2

) +O (v2) . (A.4)
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For γ � 1 one can use the asymptotic formula [69]:

P λρ (γ) =

(
Γ(−ρ− 1/2)

2ρ+1
√
π Γ(−ρ− λ)

γ−ρ−1 +
2ρΓ(ρ+ 1/2)√
π Γ(ρ− λ+ 1)

γρ
)(

1 +O(γ−2)
)
. (A.5)

For 2m > n+ 1 the leading power of γ comes from the first term in parenthesis of (A.5),

thus retaining it one finds

V n
m =

2m−1Γ
(
n+1

2

)
Γ
(
m− n+1

2

)
Γ(m)

γ2m−n−1 . (A.6)

Being applied to the computation of radiation flux, this type corresponds to beamed emis-

sion inside the spatial cone with characteristic angle of order O(γ−1). Beyond this cone

the integrand in (A.1) decreases rapidly. An alternative derivation of this answer can be

found in appendix of [75].

For 2m < n + 1 the behavior of Legendre function is governed by the second term in

parenthesis of (A.5); thus one obtains

V n
m =

2n−mΓ
(
n+1

2

)
Γ
(
n+1

2 −m
)

Γ(n−m+ 1)
. (A.7)

In the borderline case 2m = n+ 1 the behavior of the integral is logarithmic. Indeed,

inserting the expansion (5.10) into (A.1) one integrates 1/ψ from O (γ−1) to O (1). Both

terms in (A.5) become actual, hence representing n = 2m− 1 + ε, we take the well-defined

limit ε→ 0, to obtain an asymptotic in this transition case:

V 2m−1
m = 2m

[
ln 2γ −Hm−1

]
+O (γ−2) , (A.8)

where Hn =
n∑
k=1

k−1 stands for the n-th harmonic number. It has to be pointed out

that for contemporarily reasonable values of the Lorentz factor γ � 1, the O (1)−term is

comparable with O (ln γ)−term. This justifies the presence of non-logarithmic term here.

In the special cases of interest here, with m = 2 and 6, integrals of this type are given by

V 3
2 = 4

(
ln 2γ − 1

)
, V 11

6 = 64

(
ln 2γ − 137

60

)
. (A.9)

Furthermore, the generalization of angular integrals of the form

V n
m1,m2

=

π∫
0

sinnψ

(1− v cosψ)m1(1 + v cosψ)m2
dψ

in UR limit can be reduced into the case of single V n
m if m ≡ max{m1,m2} > (n+ 1)/2. In

this case the domination domain is 0 . . . O (1/γ) if m = m1, π −O (1/γ) . . . π if m = m2

and both of them if m = m1 = m2. The leading in γ order thereby is given by

V n
m1,m2

=


2−m2V n

m1
, m1 > m2;

2−m+1V n
m, m1 = m2;

2−m1V n
m2
, m1 < m2.

(A.10)

where V n
m1

and V n
m2

are given by (A.6). For arbitrary v or if m 6 (n+ 1)/2, the integrals

of this type can be computed numerically.
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B Applicability of the perturbation theory

The linearized field generated by the DW approximately coincides with the full non-linear

solution iff the bulk distance is small with respect to the brane-curvature radius, the latter

is given by

L ≡ (κ2µ)−1.

In order to justify the correspondence of the linearized field generated by the particle

one has to take into account the motion. In the particle rest frame the metric gener-

ated by the particle, is the Schwarzschild — Tangherlini one: in the isotropic coordinates

(t̃, x̃1, . . . , x̃D−1) it is given by

ds2 =

[
1− (%g/%)D−3

]2
[1 + (%g/%)D−3]2

dt̃2 −
[
1 +

(%g
%

)D−3
] 4
D−3

δij dx̃idx̃j , (B.1)

where % ≡
(
δij x̃

ix̃j
)1/2

and i, j run from 1 to D − 1. Here % > %g and %g stands for the

isotropic-coordinate gravitational radius, which is given by

%g =
1√
π

[
2 Γ
(
D−1

2

)
Gm

D − 2

] 1
D−3

. (B.2)

Now we transform (B.1) to our Lab frame which is the unexcited-brane rest frame, with

coordinates (t, x1, . . . , xD−2, z) used in the main text. Applying the Lorentz boost in

z−direction t = γ(t̃+ vx̃D−1), z = γ(x̃D−1 + vt̃), xi = x̃i, and introducing the dimension-

less factor

A ≡
(
%g
%

)D−3

=
2mGΓ

(
D−1

2

)
(D − 2)(

√
π%)D−3

with

% =
√
γ2(z − vt)2 + r2, r2 = δijx

ixj .

the line element (B.1) reads

ds2 =
(
1 +A

) 4
D−3

ds2
M+

[(
1−A
1 +A

)2

−
(
1 +A

) 4
D−3

]
γ2(dt− vdz)2, (B.3)

where ds2
M = ηMNdxMdxN is Minkowskian metric.

Thereby

A =
2GE Γ

(
D−1

2

)
(D − 2)(

√
π%)D−3γ

� 1

is sufficient for validity of a Taylor expansion: retaining the first order, one obtains

ds2 =

[
1 +

4A

D − 3

]
ds2
M −

4(D − 2)A

D − 3
γ2(dt− vdz)2. (B.4)

The non-zero components of this metric are:

g00 = 1− 4A

D − 3

[
(D − 2)γ2 − 1

]
g0z =

4(D − 2)A

D − 3
γ2v

gzz = −1− 4A

D − 3

[
(D − 2)γ2v2 + 1

]
gxkxk = −1− 4A

D − 3
(B.5)
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which after substitution of κ2 = 16πG exactly correspond to those ones of the linearized

solution h̄MN (2.12)

h̄MN (x) = −
κmΓ

(
D−3

2

)
4π

D−1
2 %D−3

(
uMuN −

1

D − 2
ηMN

)
. (B.6)

Thereby the cut-offs due the moving particle are

rmin ' rg , zmin ' rg/γ . (B.7)

Introducing the energy-associated gravitational radius rE as

rE =
1√
π

[
2 Γ
(
D−1

2

)
GE

D − 2

] 1
D−3

,

which is assumed to be constant independently of γ, one observes that when tending

to the massless limit, the minimal-length cutoffs due to the moving particle vanish as

rmin ∼ γ−1/(D−3), zmin ∼ γ−(D−2)/(D−3).

If we live on the brane, piercing by the bulk black hole will excite explosive branons

whose energy can be transformed to matter on the brane. To calculate such effects on has,

however, to apply different techniques.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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