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1 Introduction

The long and short distance behaviour of QCD-like theories depends significantly on the

number Nf of fermion flavours and on the representation of the gauge group under which

the fermions transform. For sufficiently small Nf the β-function is negative and the well-

known scenario with confinement and asymptotic freedom occurs. However, for large Nf

above a certain limit Nu
f asymptotic freedom is lost, the β-function is positive and has an

infrared fixed point at the origin. The theory then has a scaling behaviour like φ4-theory

and is non-interacting in the continuum limit. Between these two cases different interesting

scenarios are expected. For Nf below the triviality limit Nu
f , the perturbative β-function

to two or three loops shows asymptotic freedom near the origin, but develops an infrared

fixed point, called Banks-Zaks fixed point, at a finite value of the coupling [1]. If Nf is

just below Nu
f , this fixed point is at weak couplings, and the scaling behaviour can be

obtained perturbatively. The theory is asymptotically free at short distances, and shows

conformal behaviour at large distances, i. e. it is infrared conformal. For smaller Nf the

IR-fixed point moves towards stronger couplings, such that perturbation theory ceases to

be reliable. Finally, decreasing Nf further below a certain value N l
f , the IR-fixed point will

disappear and the QCD scenario sets in. The region between Nu
f and N l

f is the conformal

window. Its upper edge can be estimated perturbatively, but the determination of its lower

edge is a non-perturbative problem.

For a theory with Nf below, but near to N l
f , the β-function is always negative, but

might approach zero near a certain finite value of the coupling, see figure 1. In this case the

coupling will not run, but evolve rather slowly in a certain range of distances or momenta,

respectively. Such a behaviour is called walking, and in the walking regime the theory

behaves approximately conformal [2].

For a given theory, the question to which of these scenarios it belongs, is of funda-

mental importance for its characteristic features. Based on the perturbative β-function
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Figure 1. Sketch of the β-functions for QCD-like, conformal, and walking scenarios.

and approximate solutions of the Schwinger-Dyson equations, Dietrich and Sannino [3]

have mapped out the phase diagram for non-supersymmetric theories with fermions in dif-

ferent representations of the gauge group SU(N) as a function of N and Nf . It turns out

that for representations higher than the fundamental one, the boundaries of the conformal

window are expected to be at rather small values of Nf . In particular, for the adjoint

representation they might be near Nf = 1 and 2. To locate their true values requires, how-

ever, non-perturbative methods. Therefore, in recent years the scaling behaviour of various

theories has been investigated by means of Monte Carlo simulations in the framework of

lattice gauge theory.

SU(N) gauge theory with fermions in the adjoint representation has been studied for

Nf = 2 by various collaborations and appears to be IR-conformal, see e. g. [4] and [5, 6]

for reviews. A study of SU(2) with Nf = 1 fermion flavours [7] gives indications for IR-

conformal behaviour, too. The case of Nf = 1/2 describes one flavour of Majorana fermions

and corresponds to N = 1 supersymmetric Yang-Mills theory, which has been studied by

our collaboration, see [8] and references therein. This theory is QCD-like concerning its

scaling behaviour.

It is the purpose of this article to present results about SU(2) gauge theory with

Nf = 3/2 flavours of fermions in the adjoint representation of the gauge group, where 3/2

means 3 flavours of Majorana (or Weyl) fermions. Preliminary results have been presented

in [9]. We have investigated the masses of various particles, including mesons, glueballs and

spin 1/2 fermion-glue bound states, the string tension, and the mass anomalous dimension,

in order to gain insights into the IR behaviour of the theory.

2 Gauge theory with adjoint fermions on the lattice

We consider SU(2) gauge theory coupled to fermions transforming under the adjoint rep-

resentation of the gauge group. In the continuum the covariant derivative acting on a

fermion field

ψ(x) = ψa(x)T a , (2.1)
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where T a = σa/2, a = 1, 2, 3, are the generators of SU(2), is given by

Dµψ(x) = (∂µψ(x) + i g[Aµ(x), ψ(x)]), (2.2)

with the gauge field Aµ(x) = Aaµ(x)T a.

The lattice formulation of the theory that we use employs the Wilson gauge action

built from the plaquette variables Up and the Wilson-Dirac operator in the adjoint repres-

entation. The lattice action is

SL = β
∑
p

(
1− 1

2
trUp

)
+
∑
xy,f

ψ̄fx(Dw)xyψ
f
y , (2.3)

where Dw is the Wilson-Dirac operator

(Dw)x,a,α;y,b,β = δxyδa,bδα,β

− κ
4∑

µ=1

[
(1− γµ)α,β(Vµ(x))abδx+µ,y + (1 + γµ)α,β(V †µ (x− µ))abδx−µ,y

]
.

(2.4)

Here β = 1/g2 is the inverse bare gauge coupling, and the hopping parameter κ is related to

the bare fermion mass via κ = 1/(2m0+8). The link variables Uµ(x) are in the fundamental

representation of the gauge group SU(2). The gauge field variables Vµ(x) in the adjoint

representation are given by [Vµ(x)]ab = 2 tr[U †µ(x)T aUµ(x)T b].

The lattice extension in all spatial directions is denoted by the number Ns of lat-

tice points. In our simulations the extension in the temporal direction is always given

by Nt = 2Ns.

The number of fermion flavours is conventionally counted in terms of Dirac fermions.

Majorana fermions, satisfying the Majorana condition

ψ = ψTC, (2.5)

where C is the charge conjugation matrix, possess half the number of degrees of freedom as

Dirac fermions and are counted as Nf = 1/2. Consequently Nf = 3/2 is to be interpreted

as 3 species of Majorana fermions. In this case the index f in the lattice action counts

Majorana fermions and runs from 1 to 3.

In order to reduce lattice artefacts we use in our simulations an improved version of

the lattice action with a tree-level Symanzik improved gauge action and stout smearing

for the link fields in the Wilson-Dirac operator [10]. The stout smearing is iterated three

times with the smearing parameter ρ = 0.12.

For Majorana fermions the fermion integration∫
[dψ] e−

1
2
ψDwψ = Pf(CDw) = ±

√
detDw (2.6)

yields the Pfaffian of the Wilson-Dirac matrix. With 3 Majorana fermion fields the func-

tional integrals contain a factor (detDw)3/2, which can be treated with the PHMC al-

gorithm. The possible sign of Pf(CDw) has to be taken into account in the observables by
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Figure 2. The eigenvalues of the Wilson-Dirac operator for the near-critical runs R1 (Ns = 24)

and R3 (Ns = 32), represented in the complex plane. The smallest eigenvalues in a region around

the real axis are determined. We observe a good agreement between the two runs by rescaling the

eigenvalues with N1.4
s . This scaling of the eigenvalues is in accordance with the scaling by 1 + γ∗

investigated in [11], assuming γ∗ ≈ 0.4.

reweighting. In simulations not too close to the critical hopping parameter κc, negative

signs are very rare and it was not necessary to consider them in the parameter regions of

our simulations for the determination of the masses.

In order to check the possible presence of a negative sign we have generated two runs

at the critical parameters corresponding to mPCAC ≈ 0 (runs R1 and R3, see table 1).

The eigenvalue distribution for these runs does not completely match the bounds of the

polynomial approximation, but they can still be used to check the general properties of the

sign problem in this theory without determining the otherwise necessary correction factors

on the configurations. We observe that even at these critical parameters no negative sign

is obtained for the measured configurations and a gap in the imaginary part Wilson-Dirac

eigenvalues around zero appears. The general features of the spectrum scale with the

volume (see figure 2). Consequently the rather large finite size effects in these runs are

most likely preventing a fluctuating Pfaffian sign in this theory. We did not observe such

an effect in supersymmetric Yang-Mills theory.

For generating field configurations on the lattice we have used the two-step polynomial

hybrid Monte Carlo (PHMC) algorithm [12]. It is based on polynomial approximations

of the inverse powers of the Wilson-Dirac matrix. The first polynomial gives a rough

approximation that is corrected by the second polynomial. The polynomials were chosen

such that the lower bound of the approximation interval was about a factor 10 smaller than

the smallest occurring eigenvalues. The resulting two-step approximation is so good that

no further correction by a reweighting factor is necessary in practice.
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Figure 3. Sketch of the mass spectrum as a function of the fermion mass mr for a QCD-like

(left) and a IR conformal (right) scenario. Indicated are the masses of the pseudoscalar (PS) and

vector (V) mesons, the scalar (0++) glueball and the square-root of the string tension σ.

3 Model parameters and continuum limit

In an asymptotically free gauge theory the lattice spacing a mainly depends on the gauge

coupling β. For increasing β the lattice spacing decreases exponentially. The size of a in

physical units can be fixed in terms of a dimensionful quantity like the Sommer scale r0 or

the string tension σ, which is used to set the scale.

In an IR conformal theory the situation is different. In the close vicinity of the fixed

point the coupling β is an irrelevant parameter and the model depends only weakly on it.

Due to the absence of a mass scale the size of the lattice spacing can only be compared to

the physical extent L = Nsa of the lattice, and the continuum limit has to be defined in

terms of the ratio a/L.

Nevertheless, away from the IR fixed point towards the Gaussian fixed point at g2 = 0

a relevant dependence on β is expected. The theory is asymptotically free in the ultraviolet,

and the continuum limit would be reached by sending β to infinity. Near the IR fixed point

the dependence on β appears as a correction to scaling.

In addition, the mass term in the action plays an important role. Non-zero masses are

relevant parameters that break conformal symmetry and imply corrections to scaling. In

the presence of mass terms the renormalisation flow doesn’t run into the IR fixed point,

but may pass close by. The running of β is then expected to be rather slow.

The dependence of particle masses on the renormalised fermion mass mr would be quite

different for theories in the different scenarios. In a theory above the conformal window,

with confinement and chiral symmetry breaking, the mass of the pseudo-Goldstone boson

vanishes when the fermion mass mr goes to zero, whereas the other particle masses approach

a finite value, see figure 3.

In the IR conformal scenario all particle masses and the string tension would asymp-

totically scale to zero in the conformal limit according to

M ∝ m1/(1+γ∗)
r , (3.1)

where γ∗ is the value of the mass anomalous dimension at the fixed point [13, 14].

In this scenario the ratios of masses are approximately constant for small mr. These

ratios represent universal features of (near) IR conformal theories [15].
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β Ns κ amPCAC

A 1.5 16 0.137 0.02270(18)

B 1.5 16 0.135 0.11604(44)

C 1.5 16 0.132 0.23236(83)

D 1.5 24 0.1351 0.10986(12)

E 1.5 24 0.134 0.15632(15)

F 1.5 24 0.133 0.19515(20)

G 1.5 24 0.132 0.23207(22)

H 1.5 32 0.1359 0.07380(07)

J 1.7 16 0.130 0.12890(77)

K 1.7 24 0.133 0.03360(30)

L 1.7 24 0.132 0.06628(08)

M 1.7 24 0.130 0.12882(15)

N 1.7 32 0.132 0.06635(12)

O 1.7 32 0.130 0.12910(04)

P 1.7 32 0.1285 0.17366(04)

Q 1.7 48 0.1322 0.05990(05)

R1 1.7 24 0.134 −0.00097(22)

R3 1.7 32 0.134 −0.00052(11)

Table 1. Parameters of the simulation ensembles.

In practice, however, the limit of vanishing fermion mass mr cannot be reached in

numerical simulations. In a near conformal theory severe finite size effects would occur for

small mr, and have a substantial influence on the mass spectrum. Moreover, the simulation

algorithms slow down strongly at small fermion masses and in this way limit the accessible

parameter range.

In our simulations we have chosen two values of β = 1.5 and 1.7. We checked that

these inverse gauge couplings are above the value of the bulk (“finite temperature”) phase

transition. In order to control finite volume effects, lattices of size 163 × 32, 243 × 48 and

323 × 64 have been used for both values of β.

The renormalised fermion mass has been varied by a series of values for the hopping

parameter κ. As renormalised fermion mass mr we take the PCAC mass mPCAC, determined

by means of the PCAC (partially conserved axial current) relation. The lattice sizes and

parameters for the ensembles with positive fermion mass are summarised in table 1.

The mass of the pseudoscalar meson in lattice units was in the range 0.13 to 1.0. Most

relevant for finite size effects are the lightest particle masses, which in our simulations

turned out to be the scalar glueball and the pseudoscalar meson. As the mass of the

pseudoscalar meson can be determined much easier and precisely, we consider this one as

a measure for the low mass scale.

Our results for the various masses show that at β = 1.5 ensemble A, and at β = 1.7

ensembles J and K have sizeable finite size effects, so that these ensembles are usually

discarded in the analysis, apart from the cases where finite size scaling effects are included.
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4 Scaling of the lightest particle masses

The spectrum of colour neutral particles in this model consists of bound states of gauge

bosons (“gluons”) and fermions. In addition to mesonic particles and glueballs, spin 1/2

bound states of gluons and fermions are possible due to the adjoint representation of the

fermions. In the mesonic sector we consider the scalar and pseudoscalar ones, created by

the operators ψ̄σaψ and ψ̄γ5σ
aψ, a = 1, 2, 3, respectively, and the vector and pseudovector

mesons, created by ψ̄bγkψ
c and ψ̄bγ5γkψ

c, respectively, where k = 1, 2, 3 is in the spatial

direction. In addition, the scalar glueball and the spin 1/2 fermion-glue bound state,

represented by σµν tr [Fµνψ], have been investigated. Apart from the particle masses we

have also calculated the string tension σ from the static quark-antiquark potential, where

“quark” means a particle in the fundamental representation of the colour gauge group. The

square-root of σ has dimensions of a mass and scales as a mass. Therefore we include it in

our analysis of the scaling behaviour. The techniques for the calculation of the propagators,

masses and string tension have been explicated in [4] and for details we refer to this article.

Figure 4 shows the particle masses as a function of the fermion mass. All masses

appear to scale downwards towards the limit mPCAC = 0. The lightest particle, being well

separated from the rest, is the scalar glueball. So the overall behaviour indicates a scenario

different from the QCD-like one, where the pseudoscalar pseudo-Goldstone boson is lightest

particle. As expected for a theory in the conformal window, all masses scale approximately

in the same way and their ratios are constant as shown in figure 5.

In order to substantiate this impression we have investigated the scaling behaviour

of masses. To begin with, consider the pseudoscalar meson. In a QCD-like situation

this particle is the pseudo-Goldstone boson of spontaneously broken chiral symmetry, and

its mass vanishes with mr ≡ mPCAC according to the Gell-Mann-Oakes-Renner relation

mPS ∝ m
1/2
r . On the other hand, in an IR-conformal scenario mPS would scale to zero as

mPS ∝ mk
r with an exponent k = 1/(1 + γ∗) that can be different from 1/2. In order to

determine the exponent k we fitted ln(mPS) as a linear function of ln(mr). As mentioned

above, ensembles A, K and J are omitted in view of finite size effects. Being even more

restrictive concerning possible finite size effects, one would also leave out the ensembles N,

L and Q with the smallest fermion masses at β = 1.7, remaining with M, O, P.

The data points show a nice linear behaviour. For β = 1.5 the fit gives an exponent

k = 0.691(2), and for β = 1.7 we obtain k = 0.743(14) from ensembles (M, O, P). An

estimate of the systematic error is obtained by considering different subsets of ensembles.

For β = 1.7 we get k = 0.775(8) from the Ns = 32, 48 lattices (N, O, P, Q), and k = 0.780(7)

from ensembles L – Q. Thus the exponent is evidently different from 0.5, indicating the

IR-conformal scenario. In this case, the other masses should show scaling with the same

exponent. We considered the weighted average of the logarithms of the other masses

mS,mV,mPV,m0++ ,m1/2 and mσ =
√
σ, the weights given by the inverse variances as

usual, as a function of ln(mr). Again a nice linear behaviour can be seen. From the linear

fit we obtain k = 0.608(17) for β = 1.5 and k = 0.667(54) for β = 1.7, ensembles M,

O, P. These values are compatible with the ones from mPS and give clear support for the

IR-conformal scenario.
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Figure 4. Particle masses and
√
σ as a function of amPCAC for β = 1.5 (above) and β = 1.7

(below).
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√
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Figure 6. Weighted averages of the logarithms of the particle masses at β = 1.7 as a function of

ln(amPCAC), and the scaling fit with exponent k = 0.751. Note that the second symbol from right

stands for two close-by data points and the three leftmost points are not included in this fit.

The overall estimate of the mass anomalous dimension is obtained by the same fit, now

including the pseudoscalar mass. For β = 1.5 this gives k = 0.675(24). The corresponding

number for β = 1.7, ensembles M, O, P, is k = 0.751(8). For comparison, we get k =

0.817(36) from N, O, P, Q, and k = 0.817(24) from L – P. Figure 6 shows the averaged

logarithmic masses for β = 1.7 and the fit with k = 0.751.

To conclude, the particle masses show scaling behaviour of the IR-conformal scenario

with an exponent k ≈ 0.67, corresponding to γ∗ ≈ 0.5, for β = 1.5, and k = 0.75(7),

corresponding to γ∗ = 0.33(13), for β = 1.7.
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5 Mode number

An alternative method for the determination of the mass anomalous dimension is based on

the spectral density of the Dirac operator [16–20]. The mode number ν(Ω) is defined to

be the number of eigenvalues of the hermitian operator D†wDw below some limit Ω2. The

mode number obeys a scaling law [17]

ν(Ω) = ν0 + a1(Ω
2 − a22)2/(1+γ

∗) (5.1)

for sufficiently small values of Ω2 − a22, where a2 is proportional to mPCAC. Therefore, a

fit of ν(Ω) to this function in a suitable range [Ωmin,Ωmax] allows to estimate the mass

anomalous dimension γ∗.

The choice of the fit range [Ωmin,Ωmax] is a sensitive issue. For a small fit range near

a scale Ω, the resulting value for the mass anomalous dimension can be considered as an

effective anomalous dimension γ(Ω), which approximates the corresponding renormalisa-

tion group function [18]. For large Ω it is expected that γ(Ω) decreases and approaches

its value zero at the asymptotically free UV fixed point. On the other hand, for small Ω

finite volume effects and effects of the non-vanishing fermion mass mPCAC will disturb the

scaling behaviour. Therefore the fit range should be located in an intermediate regime,

where the effects of the finite volume and non-zero fermion mass can be neglected [17, 20].

For an infrared conformal theory the coupling runs very slowly for a wide range of scales at

low µ, and there the anomalous dimension γ varies slowly, too, approximatively developing

a plateau at the value γ∗. Investigations of the β-function in the MiniMOM scheme for

this theory [21] indicate that the Nf = 3/2 theory appears to be close to the edge of the

conformal window.

The techniques and the code that we have implemented to compute the mode number

have been tested in the Nf = 2 case and presented in ref. [9]. We have used different meth-

ods for the non-linear fit to eq. (5.1) including parallel tempering together with conjugate

gradient techniques. The fit of a large number of data points requires particular techniques

for the determination of the correlated χ2 [22]. The results for the fits over intervals of

fixed length and varying lower end Ωmin are shown in figures 7 and 8 for the runs at β = 1.5

and β = 1.7, respectively.

At β = 1.5 we obtain reasonable fits with an acceptable p-value and a correlated χ2

per degree of freedom in a certain region of Ω values for the ensembles with the smallest

fermion masses. However, there is no pronounced plateau for the obtained values in this

range. The best fits are obtained at rather large values of Ω. Further in the infrared, the

correlated χ2 of the fit drastically increases, which is an indication of fermion mass effects.

We take the final value from the middle of the range where the correlated χ2 per degree

of freedom is below 2.5 for ensemble H, and the width of this range as an estimate for the

error. This provides a rough estimate of γ∗ ≈ 0.5± 0.05.

In contrast to the case of β = 1.5, a considerable plateau of the fitted values is obtained

at β = 1.7 in the infrared region. The plots of the fit results agree in a large range of Ωmin

values for the ensembles Q and N. Hence they are quite insensitive to a change of the

fermion mass and the volume. Even the plot for ensemble R3, at approximate zero fermion

– 10 –



J
H
E
P
0
1
(
2
0
1
8
)
1
1
9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

γ

Ωmin

κ = 0.1351

κ = 0.1359 linear transf.

Figure 7. Fitted value of the mass anomalous dimension for the ensemble at β = 1.5, κ = 0.1351

(ensemble D), and κ = 0.1359 (ensemble H). Ωmin denotes the lower end of the fitting interval,

while the upper end is fixed to Ωmin +0.07. The Ωmin values on the x-axis are rescaled by the linear

transformation Ω′min = 0.88Ωmin + 0.1 for κ = 0.1359 in order to collapse the two ensembles. In the

shaded region we obtain the best fits for both ensembles. Fits with a correlated χ2 per degree of

freedom larger than 4 are excluded.

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

γ

Ωmin

κ = 0.1340

κ = 0.1320

κ = 0.1322

Figure 8. Fitted value of the mass anomalous dimension for the ensemble at β = 1.7, κ = 0.1322

(ensemble Q), κ = 0.1320 (ensemble N), and κ = 0.1340 (ensemble R3), as in figure 7. Ensembles

N and R3 are only shown for comparison. Fits of the data from ensemble Q with a correlated χ2

per degree of freedom larger than 4 have been excluded from the figure. The final value represented

by the shaded region in the plot is only obtained from a fit in the plateau region of ensemble Q.
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Figure 9. A cross check of the scaling exponents obtained from the mode number with the scaling of

the particle masses. These figures show a fit to the hyperscaling hypothesis of the masses including

volume scaling. The points with the smallest values on the x-axis correspond to the ensembles B

(β = 1.5) and K (β = 1.7). The lines correspond to a linear fit, in case of β = 1.7 without the data

of ensemble K.

mass, agrees with these data. Due to the uncertainties originating from the polynomial

choices in the PHMC algorithm at ensemble R3, we have only considered ensemble Q for

the final fit. We obtain a value of γ∗ ≈ 0.377(3). Taking also the uncertainties in the

determination of the fitting interval into account, the estimate is γ∗ ≈ 0.38(2).

We made a crosscheck of the obtained values of γ∗ with the hyperscaling of the mass

spectrum. As shown in figure 9, the agreement with the expected functional behaviour

is reasonable. We can also vary the exponents close to the measured values in order to

minimise the sum of the χ2 from the linear fits. In this way we obtain a minimum around

γ∗ ≈ 0.46(2) for β = 1.5 and γ∗ ≈ 0.37(2) for β = 1.7. This shows that the values for

the mass anomalous dimension obtained from the mode number are consistent with the

hyperscaling of the mass spectrum.

6 Conclusions

We have analysed the spectrum of bound states masses in SU(2) gauge theory with Nf =

3/2 flavours of adjoint fermions at two values of the inverse gauge coupling β = 1.5 and 1.7.

The scaling of the masses as a function of the fermion mass mPCAC indicates an infrared

conformal behaviour of this theory. The fixed point value of the mass anomalous dimension

is estimated to be γ∗ ≈ 0.5, for β = 1.5, and γ∗ = 0.33(13), for β = 1.7. An independent

estimate has been obtained from the scaling of the mode number of the hermitian Wilson-

Dirac operator. For β = 1.5 we only get a rough estimate of γ∗ ≈ 0.5, whereas for β = 1.7

a plateau shows up at a value of γ∗ ≈ 0.38(2).

For a conformally behaving theory in the infinite volume limit the value of γ∗ should

be independent of the gauge coupling. On the other hand, for a theory in the vicinity of

an IR fixed point, scaling violations are present, which increase towards the UV regime.
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The fact that our estimates at the two gauge couplings do not exactly coincide indicates

the influence of scaling violations and cutoff effects.
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