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1 Introduction

The conformal bootstrap approach [1–3], in its modern revival [4–36], is the latest of a set

of powerful tools applied to the study of critical systems in different dimensions. One of

the most surprising features of this approach is that some of the fundamental properies

characterizing the critical systems, like the scaling dimensions of local operators and their

operator product expansion (OPE) coefficients are (numerically) obtained under the only

assumption that these systems are described by a conformal field theory (CFT), with no

reference to Lagrangians, coupling constants or equations of motion. On the contrary in all

the conventional approaches, like ε-expansions [37] or Monte Carlo calculations, the choice

of a specific Lagrangian is mandatory. This intriguing difference between conventional and

bootstrap approaches calls for an analytical explanation.

A first step in this direction was taken in ref. [38] in the context of φ4 theory in 4− ε
dimensions. It was shown that the anomalous dimensions of scalar operators at the first

non-trivial order in the ε-expansion can be computed under the following three axioms:

(I) The Wilson-Fisher (WF) fixed point is described by a CFT. (II) in the ε → 0 limit

the vacuum expectation values of n-point functions approach those of the free field theory.

(III) At the WF fixed point φ3 is a descendant of φ as a consequence of the equation of

motion. Such an approach has been generalized in various ways in [39–46]. In particular

in [43] it was shown that the axiom (III) is redundant and, in the spirit of bootstrap,

no equations of motion nor any kind of Lagrangians were assumed. How to turn on the

interaction without resorting to any interaction term or coupling constant? The recipe is

very simple: one looks for a consistent smooth conformal deformation of a free theory in

d − ε where the scaling dimensions ∆O of the operators O of the deformed theory differ

from those Of of the free theory with the same quantum numbers by corrections which

can be expanded in powers of ε

∆O = ∆Of + γO = ∆Of + γ
(1)
O ε+ γ

(2)
O ε2 + . . . (1.1)

– 1 –



J
H
E
P
0
1
(
2
0
1
8
)
1
1
3

where the γO’s are the anomalous dimensions. A stringent requirement is that there is

a one-to-one mapping between the local operators of the free and the interacting theory.

It turns out that this deformation can be consistently made only for some special values

of the space-time dimensions d. These coincide with the upper critical dimension dm =

2m/(m − 2) (integer or rational [47]) where, in the standard RG approaches to a scalar

theory perturbed with a φm potential, the WF fixed point is defined as a non-trivial zero

of the β-function in d = dm − ε.
Matching suitable four-point functions in the ε → 0 limit with the free theory data

yields at once the anomalous dimensions of φp for any integer p at the first non-trivial

order, while so far no information was obtained on the spectrum of spinning operators

within such a method. There are other approaches that provide it for the special case of

weakly broken higher-spin (HS) currents. For instance, from a Mellin space representation

of the four-point, the anomalous dimensions of these currents and other scalar operators up

to ε3 [48–50] and even higher order [51] have been obtained. Similarly, in a study relying in

a standard Lagrangian description of conformal theories with weakly broken HS symmetry,

the leading order anomalous dimensions of these currents have been determined from the

classical non-conservation equations [52, 53]. WF fixed points with O(N) symmetry have

been studied in the large global charges limit in [54]. In another study relying instead in

the conformal bootstrap [55, 56], the spectrum of these broken currents, at the leading

order, follows from crossing symmetry and the exact conservation of the stress tensor.

The aim of this paper is to compute, at the leading order in ε, the anomalous dimensions

of a much larger class of primary operators Op,` of arbitrary spin `, namely a set of those

that in the Gaussian limit can be written in terms of symmetric traceless combinations of `

derivatives and p+1 copies of the scalar field φ. Their scaling dimensions can be written as

∆p,` = (p+ 1)
d− 2

2
+ `+ γp,` , (1.2)

with γp,` = γ
(1)
p,` ε+γ

(2)
p,` ε

2 + . . . . The special case p = 1 describes the HS conserved currents

which are no longer conserved (for ` 6= 2) at the WF fixed point, as they acquire an anoma-

lous dimension; they are called sometimes weakly broken HS currents. On the contrary

the stress tensor turns out to be exactly conserved in the present approach, as expected.

All our calculations rely in a unique group-theoretical mechanism, the conformal mul-

tiplet recombination first pointed out in [38]. Here we apply it in the form developed

in [43, 45]. Schematically, taking d ∼ 4 for simplicity, the argument runs as follows. Con-

sider the following fusion rule of the Gaussian theory

[Op,`]× [φpf ] = c1[φf ] + c2[φ3
f ] + . . . , (1.3)

where [O] denotes a (suitably normalized) primary, the ci’s are OPE coefficients and the

dots contain all other primaries which do not participate in the game. Using the equation

above, the four-point function 〈Op,` φpf Op,` φ
p
f 〉 can be written as

〈φpf Op,`Op,` φ
p
f 〉 = c2

1

∑
α∈Hφf

〈φpfOp,`|α〉〈α|Op,`φ
p
f 〉

〈α|α〉
+ c2

2

∑
α∈H

φ3
f

〈φpfOp,`|α〉〈α|Op,`φ
p
f 〉

〈α|α〉
+ . . .

(1.4)
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α ∈ HO denotes a state of the conformal multiplet generated by the primary O|0〉 = |O〉
and normalized so that 〈O|O〉 = 1. At the WF fixed point, because of the mentioned

recombination, [φ3] is absorbed by [φ] as a sub-representation and the fusion rule becomes

[Op,`]× [φp] = (c1 +O(ε))[φ] + . . . . (1.5)

Thus in the corresponding four-point function the second sum disappears while in the first

sum new terms show up because now the conformal multiplet [φ] becomes long:

〈φpOp,`Op,` φp〉 =
(
c2

1 +O(ε)
)( ∑

α∈Hφf

〈φpf Op,`|α〉〈α|Op,` φ
p
f 〉

〈α|α〉

+
∑
β∈Hχ

〈φpOp,`|β〉〈β|Op,` φp〉
〈β|β〉

)
+ . . . (1.6)

χ is a descendant of φ with scaling dimension ∆χ = d
2 + 1 + O(ε2). The norm of |χ〉

depends on that of |φ〉 and goes to zero in the ε → 0 limit (for more details see next

section). Actually the c2
2 of the free theory is replaced by

c2
2 → c2

1

〈φpOp,`|χ〉〈χ|Op,` φp〉
〈χ|χ〉

(1.7)

In the ε → 0 limit χ is indistinguishable from φ3
f , hence the two expansions (1.4)

and (1.6) must coincide. We find an infinite set of matching conditions, one for each pair

of integers p = 1, 2, . . . and ` = 0, 1, . . . ,

lim
ε→0

[(γφ + γφp − γp,`)(γφ + γφp − γp,` + 2− d− 2`)]2

4d (d− 2) γφ
=

(
c2

c1

)2

. (1.8)

In this form such constraints are valid not only for d near 4, but also for d near 3, the upper

critical dimension of a φ6 perturbation and, more generally, for the fractional d = 2k/(k−1)

corresponding to the upper critical dimension of the multicritical points of higher order,

associated with φ2k potentials.

For ` = 0 the equations above coincide with those found in [43, 45] and used to compute

γφp to the first order for any integer p > 1 and to the second order for p = 1. Here we

extend the calculation to any spin `. In the particular case of weakly broken higher-spin

currents, i.e. p = 1, we have c2 = 0 and these matching conditions tell us simply that

γ
(1)
1,` = 0, a well known property of the WF fixed point at d = 4 − ε and at d = 3 − ε.

In order to calculate the first non-vanishing term of γ` ≡ γ1,` we found it useful to study

certain five-point functions which lead to the right answer in a surprisingly simple way. We

found indeed the following new set of matching conditions

lim
ε→0

(γ` − 2γφ)(d− 4 + 2`+ γ` − 2γφ)(d− 2 + 2`)

2d(d− 2)γφ
= m− 1 . (1.9)

Here m is an arbitrary integer m > 2 and d = dm − ε, where

dm =
2m

m− 2
(1.10)
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is the upper critical dimension for a perturbing potential φm.1 In particular these matching

conditions give at once, at the first non-vanishing order, the anomalous dimensions of the

weakly broken HS currents for any ` in d − ε space-time dimensions with d = 3, 4, 6.

According to our definitions, γ`=0 ≡ γφ2 . In such a case these equations allow to compute

the ε2 contribution of γφ2 in the multicritical cases. This was not possible with the first

set (1.8) of constraints.

Admittedly, owing to the huge amount of tensor structures involved, no much is known

about the properties of the conformal block expansions of the four-point function (1.6) for

general `. Much less is known about similar expansions of the five-point. However we are

only interested in the couplings of the external operators to the scalar χ. Here only a single

tensor structure appears and all calculations simplify dramatically.

This paper is organized as follows. In section 2 we describe a simple algebraic method to

classify all the possible representations of the conformal group in d dimensions admitting

a primary descendant in the case of symmetric traceless representations of the rotation

subgroup SO(d). In section 3 we collect some useful properties of primary operators with

spin, in section 4 we write the general matching conditions and their consequences. The

body of the paper includes also some conclusions. Appendix A contains some formulas of

the free field theory which are useful to compute the OPE coefficients c1 and c2.

2 Null states

The Euclidean conformal group SO(d+ 1, 1) admits representations that are reducible but

not completely reducible, i.e. they can have an invariant subspace whose complement is

not invariant. The states of this invariant subspace have null norm (null states) and the

corresponding multiplet is said to be long. The bosonic free field theory does not have this

kind of representations (the corresponding conformal multiplets are short). The Wilson-

Fisher fixed points can be seen as the points where some multiplets recombine to form a

long multiplet.2

It is instructive to investigate the mechanism of appearance of null states operat-

ing with the Lie algebra of the conformal group. A standard basis is D,Pµ,Kµ, Jµ ν ,

(µ, ν = 1, . . . d), which generate respectively the dilatation, the translations, the special

conformal transformations and the SO(d) rotations. Applying this algebra to a state

|∆, `〉 = limε→0O∆,`(x)|0〉, where O∆,` is an arbitrary local operator and |0〉 a confor-

mally invariant vacuum, generates a whole representation of the conformal group. A state

with minimal ∆min = ∆′ is said primary, all other states, where ∆ = ∆′ + n, (n = 1, 2 . . . )

are descendants. A primary state is annihilated by the Kµ’s. If |∆′, `′〉 is the only state

which is annihilated by the Kµ’s the representation is irreducible, while if there is a primary

descendant, i.e. a descendant state with Kµ|∆′ + n, `〉 = 0, this state has null norm and

generates an invariant subspace of null states.

1In most cases we have to assume m to be an even integer and we find it useful to parameterize it with

m = 2q + 2, with q = 1, 2, . . . ; q and d are related by d = 2(q + 1)/q.
2Actually this multiplet does not contain exactly null states, but states whose norm goes to zero as their

scaling dimension approaches the free field value.
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The conformal multiplets generated by the fusion of two scalars correspond to symmet-

ric, traceless tensors. The complete list of the primary descendants that could appear in

the OPE of two scalars can be obtained in various ways. One point of attack follows form

the study of the conformal blocks G∆,`(u =
x2

12x
2
34

x2
13x

2
24
, v =

x2
23x

2
14

x2
13x

2
24

) contributing to a four-point

function of scalars 〈O1(x1)O2(x2)O3(x3)O4(x4)〉. These are eigenfunctions of the Casimir

invariants C2, C4, . . . that can be formed with the Lie generators

CiG∆,`(u, v) = ci(∆, `)G∆,`(u, v) , (2.1)

where the first two Casimir eigenvalues are, respectively,

c2(∆, `) =
1

2
∆(∆− d) +

1

2
`(`+ d− 2) , (2.2)

c4(∆, `) = ∆2(∆− d)2 +
1

2
d(d− 1)∆(∆− d)

+ `2(`+ d− 2)2 +
1

2
(d− 1)(d− 4)`(`+ d− 2) .

Higher order Casimir invariants are redundant when considering symmetric, traceless ten-

sors. These conformal blocks can be written as sum of poles in ∆. As eq. (1.6) suggests,

poles occur at special ∆’s where a descendant state becomes null. The location of poles,

their residues as well as the remaining entire function can be computed [20] solving the

Casimir differential equations. Ref. [57] uses instead a group-theoretical method, looking

for all primary descendants that arise when the dimension ∆′ of the primary varies. In

both cases one finds three sequences of poles, as shown in table 1.

Here we give a two-line algebraic derivation of such a table. Let |∆′, `′〉 be a pri-

mary state and |∆ = ∆′ + n, `〉 a primary descendant. Since they belong to the same

representation, they must share the eigenvalues of the Casimir invariants, namely

c2(∆′, `′) = c2(∆, `) , c4(∆′, `′) = c4(∆, `) . (2.3)

As first pointed out in [45], the solutions of these two algebraic equations yield the complete

list of primaries admitting a primary descendant, reproduced in table 1. End of the proof.3

If d is an even integer, some of the above solutions coalesce, giving rise to double poles

in the conformal blocks [57]. In this paper we study theories in d− ε dimensions, so we do

not need to consider these exceptional cases.

Among the primaries admitting a primary descendant, the one with ∆′ = d
2 − 1 and

`′ = 0 has the same quantum numbers of a scalar free field φf in d space-time dimensions.

Is there any restriction in a unitary theory assuming this to be a free field? The answer is

no, of course, but since this fact is not always clearly stated in literature, we quote here

a theorem due to Weinberg [58]: in a scale-invariant relativistic theory any local scalar

operator ψ(x) having scaling dimension ∆ψ = d
2 − 1 is necessarily a free field:

∂2 ψ(x) = 0 . (2.4)

3As already mentioned, such a list applies to primaries that belong to the traceless symmetric represen-

tations of SO(d). For more general representations higher order Casimir invariants are necessary.
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Parent primary Primary descendant

∆′k ∆k `

1− `′ − k 1− `+ k `′ + k k = 1, 2, . . .
d
2 − k

d
2 + k `′ k = 1, 2, . . .

d+ `′ − k − 1 d+ `+ k − 1 `′ − k k = 1, 2, . . . , `

Table 1. List of solutions of the algebraic system (2.2). The ∆′
k’s in the first column give the

positions of poles of a generic conformal block defined in (2.1). The second and third columns list

the scaling dimension ∆k and the spin ` of the primary descendant belonging to the representation

generated by the parent primary |∆′, `′〉.

It is interesting to note that in this way the equation of motion of a free field has been

obtained in a purely group-theoretical manner, with no reference to Lagrangians or to any

sort of dynamical principles.

Ref. [57] obtained the explicit form of the polynomials in the Lie algebra elements

which generate null states when applied to the primaries listed in the first column of table

1. That transforming the primary state |d2 − 1, 0〉 into the corresponding null state of the

second column of the table is P 2|d2 − 1, 0〉 ≡ −∂2|d2 − 1, 0〉 = |d2 + 1, 0〉 which in view of the

above theorem is actually zero. Therefore the conformal multiplet generated by a bosonic

free field φf is short. Turning on the interaction by letting φ acquire anomalous dimensions

implies that this descendant is no longer zero. However, strictly speaking, it is no longer a

null state; in fact its norm is [57]

〈∆, 0|K2 P 2|∆, 0〉 = 8d∆(∆−∆φf ) , (2.5)

as a consequence of the commutation relations

[Kµ, Pν ] = 2i (ηµνD − Jµν) , (2.6)

combined with the constraints

Kµ|∆, 0〉 = Jµν |∆, 0〉 = 0 , 〈∆, 0|Pµ = 〈∆, 0|Jµν = 0 , 〈∆, 0|∆, 0〉 = 1 . (2.7)

Putting ∆ = ∆φ = ∆φf + γφ, we see that this state becomes null when it approaches

the free field theory, where it disappears. This fact has an important role in the study

of the possible smooth deformations of a free theory. As mentioned in the introduction,

we say that a free field theory in d dimensions admits a smooth deformation in d − ε

if there is a one-to-one mapping to another CFT in which any local operator Of of the

free theory corresponds to an operator O of the deformed theory with the same spin and

limε→0 ∆O = ∆Of . For a general d such a deformation does not exists because ∂2φ does

not have a corresponding operator in the free theory. There are however special values of d,

where there is a scalar φm−1
f having the same scaling dimensions of the vanishing operator

∂2φf which restores the one-to-one correspondence. Thus from the degeneracy condition

(m− 1)∆φf = ∆φf + 2 the upper critical dimension (1.10) follows.

– 6 –
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3 Spinning operators

In this section we use the methods and the notations of [57] to derive some useful properties

of local operators belonging to symmetric and traceless representations of SO(d). A primary

operator of spin ` is denoted by

O(x, z) = Oµ1...µ`(x)zµ1 . . . zµ` , (3.1)

where zµ is a vector of Cd that can be consistently assumed to satisfy z · z = 0 as a

consequence of the null traces of the tensor (3.1). One can recover the tensor indices by

applying recursively the Todorov differential operator defined as [60]

Dµ
z ≡

(
ν + z · ∂

∂z

)
∂

∂zµ
− 1

2
zµ

∂2

∂z · ∂z
. (3.2)

where ν = d
2 − 1.

The two-point function of a canonically normalized primary of spin ` and scaling

dimensions ∆ is

〈O(x1, z1)O(x2, z2)〉 =
(zµ1 Iµν(x12)zν2 )

`

(x2
12)∆

(3.3)

with xij ≡ xi − xj and Iµν(x) ≡ δµν − 2xµxν/x
2.

The three-point of the spinning primary O1(x1, z) with two scalar primaries O2(x2)

and O3(x3) reads

〈O1(x1, z)O2(x2)O3(x3)〉 =
c123 (z · y)`(

x2
12

)∆1+∆2−∆3−`
2

(
x2

23

)∆2+∆3−∆1+`
2

(
x2

31

)∆3+∆1−∆2−`
2

, (3.4)

with yµ ≡ xµ31

x2
31
− xµ12

x2
12

. We can infer the OPE

O1(x, z)O2(0) = c123
(−x · z)`

(x2)
∆1+∆2−∆3+`

2

O3(0) + . . . , (3.5)

indeed inserting this OPE in the l.h.s. of (3.4) with xµ = xµ1 , xµ2 = 0 and x2 � x2
3 yields

the r.h.s. .

We want to exploit this OPE to obtain two important and useful properties of the

conserved spinning operators (see also [59]). Within these notations the conservation law

of J`(x, z) ≡ O1(x, z) reads
∂

∂x
·Dz J`(x, z) = 0 . (3.6)

Applying this differential operator to both sides of (3.5) gives

cJO2O3 (d− 4 + 2`) (∆` + ∆2 −∆3 − d+ 2− `) = 0 . (3.7)

For ∆2 = ∆3 we obtain ∆` = d−2+`, the well known scaling dimension of a conserved HS

current. For ∆2 6= ∆3 the above equation tells us that the OPE coefficient must vanish:

∂

∂x
·Dz J` = 0 & ∆2 6= ∆3 ⇒ cJO2O3 = 0 . (3.8)

– 7 –
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Such a theorem will be useful in our derivation of the anomalous dimensions of weakly

broken HS currents.

We write now the previous OPE in the form

φp(0)φ(x) = cp `
(x · z)`

(x2)
∆φp+∆φ−∆p,`+`

2

Op,`(0, z) + . . . , (3.9)

where Op,` is a spinning primary with scaling dimensions ∆p,` = (p+ 1)∆φf + γp,` in d− ε
as in (1.2), φ is an interacting scalar field and φp is normalized in such a way that

〈φp(x)φp(0)〉 =
1

(x2)∆φp
. (3.10)

A simple example of a spinning primary of the free field theory is

Of2,2 = N
[
φf (z · ∂φf )2 − d− 2

d
φ2
f (z · ∂)2 φf

]
, (3.11)

where N is a normalization factor. Notice that there is an overall sign ambiguity in the

definition of Op,` which entails a sign ambiguity in the OPE coefficients. The anomalous

dimension of Op,` depends on ratios of these c’s, so this sign ambiguity as well as the

dependence on the normalization factor N disappear.

The computed anomalous dimensions of this kind of spinning operators are explicitly

written in eq.s (4.8) and (4.9) . It is worth to stress that such a result is only valid for a

primary operator. For instance [φ3] has a descendant of spin 2 which is degenerate with the

above primary in the Gaussian limit, while its anomalous dimension is γφ3 (see eq. (4.5)),

which is very different from (4.8) and (4.9).4

Using the explicit expression (3.11) it is easy to evaluate c2,2, however this direct

method would imply lengthy calculations for general cp,`. A much simpler approach is

based on the following observation: all the Op,` we are interested in are generated in the

free field theory by the fusion rule

[φpf ]× [φf ] =
√
p[φp−1

f ] +
∞∑
`=0

cp,`[Ofp,`] . (3.12)

where the spinning operators Ofp,` are built with ` derivatives acting on p + 1 copies of

φf , hence their dimension is (p + 1)d−2
2 + `. Contrarily to what happens in the more

general fusion rule [φpf ] × [φqf ] with q > 1, it turns out that the indices of derivatives are

not contracted each other, then the spin of these operators coincides with the number of

derivatives. This dramatically simplifies the computation of the cp,`’s. Actually appendix

A describes a way to obtain these coefficients. The result is

c2
p,` =

p(ν)`(2ν)` + (−1)`(2ν)`(p ν)`
`! ((p+ 1)ν + `− 1)`

, (3.13)

4Notice that the spectrum of local operators of the free-field theory is highly degenerate at large `. This

degeneracy is completely removed at the WF fixed point.

– 8 –
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where (x)y ≡ Γ(x+y)
Γ(x) is the Pochhammer symbol and ν = d

2 − 1. In the interacting theory

we have

〈φp|Op,`|φ〉 = cp,` +O(ε) . (3.14)

It is important to notice that in the free field theory, for large values of p and `, the spectrum

of this spinning operators is highly degenerate: there are many inequivalent ways to build

a primary. There are however two infinite families of non-degenerate operators, namely

` < 4 and p arbitrary, or p < 3 and ` arbitrary, as shown in [61]. We shall see in the next

section how to explicitly calculate the anomalous dimensions of all the primaries belonging

to these two families.

In accordance with (1.7) we need to compute 〈φp|Op,`|χ〉 ≡ 〈φp|Op,`P 2 |φ〉, where

〈φp| = limx2→∞〈0|φp(x)(x2)∆φp . Here |χ〉 = limx→0 P
2φ(x)|0〉 and Op,`(x, z) is evaluated

at x2 = 1 and z · x = 1, so that the associated three-point function coincides numerically

with the OPE coefficient. Operating with P 2 = −∂2 on both sides of (3.9) it follows at

once

〈φp|Op,`|χ〉 = Mp,` 〈φp|Op,`|φ〉 (3.15)

with5

Mp,` = (∆φ + ∆φp −∆p,` + `) (∆p,` −∆φ −∆φp − 2 + d+ `)

= (γφ + γφp − γp,`) (d− 2 + 2`) +O(ε2) . (3.16)

In our study of certain five-point functions we also need to know 〈χ|J`|χ〉 ≡ 〈φ|K2J`P 2 |φ〉.
Repeating the above calculation we find

〈χ|J`|χ〉 = N` 〈φ| J` |φ〉 , (3.17)

with

N` = M1,` (2∆φ −∆1,` + 2 + `) (∆1,` − 2∆φ + d− 4 + `)

= 2 (2γφ − γ`) (d− 2 + 2`) (γ` − 2γφ + d− 4 + 2`) +O(ε3) . (3.18)

The denominator of (1.7) has been already computed in (2.5); it reads

1

〈χ|χ〉
≡ 1

〈φ|K2 P 2 |φ〉
=

Q

∆φ −∆φf

=
Q

γφ
, (3.19)

with

Q =
1

4d(d− 2)
+O(ε) . (3.20)

Equations (3.16), (3.18) and (3.20) are the main ingredients to formulate the matching

conditions discussed in the next section.

5Notice that M is very similar, but not identical to the analogous quantity calculated in [57]. There it

referred to a primary descendant of a spinning operator that appears in the OPE of two scalars. Here the

spinning primary is an external operator and M refers to χ, the primary descendant of φ.
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4 Matching conditions

The free field theory of a single real scalar is invariant under the Z2 transformation φf →
−φf , therefore the fusion rule (1.3) can be only generalized to those upper dimensions dm
where the primary descendant φm−1

f is an odd power 2q + 1 = m− 1 of φ

[Ofp,`]× [φpf ] = cOp,`φpφ[φf ] + cOp,`φpφ2q+1 [φ2q+1
f ] + . . . . (4.1)

The first OPE coefficients cOp,`φpφ ≡ cp,l can be extracted from the fusion [φpf ] × [φf ] as

we saw in the previous section (see eq. (3.13)). Similarly the second OPE coefficients

cOp,`φpφ2q+1 ≡ cq,p,l can be computed from the fusion [φpf ] × [φ2q+1
f ]. More specifically, as

eq. (A.4) shows, they are the coefficients of the following conformally invariant function

p!(2q + 1)!

(q!)2
uν(p+1)/2

q+1∑
k=0

v−kν

(k!)2(p− q − k)!(q − k + 1)!

=

∞∑
n=0

∞∑
`=0

c2
n,q,p,`Gν(p+1)+2n+`,`(u, v) , (4.2)

where the G∆,`’s are the conformal blocks contributing to the φpfφ
2q+1
f channel of the four-

point function 〈φpfφ
2q+1
f φpfφ

2q+1
f 〉 and c0,q,p,` ≡ cq,p,`. Unfortunately we did not find a closed

expression for these coefficients for general q and `.

The matching conditions (1.8) can be written more precisely in the form

lim
ε→0

M2
p,`Q

γφ
=

(
cq,p,`
cp,`

)2

, (4.3)

where Mp,` and Q are defined in (3.16) and (3.20).

When ` = 0, then γp,0 ≡ γφp+1 and eq.s (3.13) and (4.2) give at once

cq,p,0
cp,0

=

(
p

q

) √
(2q + 1)!

(q + 1)!
. (4.4)

In such a case the matching conditions define a set of recursion relations that have been

completely solved in [45]. The solution reads

γ
(1)
φp =

q(p− q)q+1

(q + 1)q+1
, γ

(2)
φ = 2 q2

[
((q + 1)!)2

(2(q + 1))!

]3

. (4.5)

Thus, the only remaining unknown in (4.3) is γp,`. This equation can be further simpli-

fied considering the four-point function 〈φq φq+1Op,` φp〉. The associated matching condi-

tion reads

lim
ε→0

Mq,0Mp,`Q

γφ
=

cq,p,`
cp,`

cq,q,0
cq,0

. (4.6)

Now this equation is linear in γp,` and the solution is

γ
(1)
p,` = γ

(1)
φp + 4γ

(2)
φ

cq,p,`
cp,`

1 + q

q(1 + q `)

(√
(2q + 1)!

)3

((q + 1)!)2
; (4.7)

– 10 –



J
H
E
P
0
1
(
2
0
1
8
)
1
1
3

cp,` is given in (3.13) and cq,p,` is implicitly defined in (4.2). Actually, when Op,` is degen-

erate this equation is of no practical use. In such a case the fusion rule (3.12) we used to

construct Op,` does not select a single primary, but a linear combination of them; these

have different anomalous dimensions in d− ε, therefore when both p and ` are large it does

not apply.6 Let us see some specific examples where it works. There is no primary of spin

` = 1 in a theory with a single real scalar. For d = 4− ε we have for any p and any ` > 1

γ
(1)
p,2 =

(p− 1)(4 + 3p)

18
, γ

(1)
p,3 =

(p2 − 3)

6
, γ

(1)
2,` =

1

3
+

2 (−1)`

3 (`+ 1)
. (4.8)

Similarly for d = 3− ε

γ
(1)
p,2 =

(p− 1)(p− 2)(5p+ 18)

150
, γ

(1)
p,3 =

(p− 2)(7p2 + 11p− 90)

210
, γ

(1)
2,` = 0 . (4.9)

In d = 4 − ε and p < 12 these γ’s have been also computed in [61] and the results agree.

When ` > 3 and p > 2 these operators are degenerate in the free theory limit. For instance

for ` = 4 and p > 2 the space of primaries has dimension two [61], while the equation

above reads

γ
(1)
p,4 =

p(p− 1)

6
+

√
2(p− 1)(2p3 − 11p2 + 78p− 104)

15
√
p2 + p+ 6

. (4.10)

It gives the exact value for p = 2 and an intermediate value between the two exact γ’s in

the other cases. For large values of ` one could apply the inversion formula of [62] (see

also [63]) to extract the OPE coefficients of (4.2) in this limit.

In accordance with the theorem (3.8) we have, in the case p = 1,

cq,1,` ≡ cJ` φφ2q+1 = 0 , (4.11)

moreover γ
(1)
φ = 0, then γ

(1)
p,` = 0.7

Further information on the anomalous dimensions of J` can be gained by studying

the five point function 〈φq φq+1J` φq φq+1〉. In the factorization scheme shown in figure 1

we have

〈φqφq+1J` φqφq+1〉 =
∑
O

∑
O′

cOcO′cJ
∑
α∈HO

∑
β∈HO′

〈φq φq+1|α〉〈α|J`|β〉〈β|φq φq+1〉
〈α|α〉 〈β|β〉

, (4.12)

where cO ≡ cOφqφq+1 and cJ ≡ cOO′J` . In view of the already mentioned theorem (3.8), if

J` is conserved and O, O′ are scalars, then cOO′J` ∝ δO,O′ . In particular, in the free field

theory the two factorization channels always contain the scalars φf and φ2q+1
f . The OPE

coefficients of these two contributions are respectively c2
φf φ

q
f φ

q+1
f

cφf φf J` ≡ c2
q,0cφf φf J` and

6I thank L.F. Alday for this important remark and for pointing out ref. [61] to me. Note that eq. (4.7)

is still true even in the degenerate case, provided we assume that Op,` is an eigenfunction of D in d− ε and

the OPE coefficients cp,` and cq,p,` are computed with this operator.
7This is only true for the upper critical dimensions d = 2(q + 1)/q. For the more general case d =

2m/(m − 2), which includes d = 6, the above matching conditions do not apply. Nevertheless we shall

extract the anomalous dimensions of J` also in such a case.
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Figure 1. The factorization channels of the five-point under study.

c2
φ2q+1
f φqf φ

q+1
f

c
φ2q+1
f φ2q+1

f J` = (2q + 1)c2
q,q,0cφf φf J` , where we used the useful identity (see

appendix)
cφpfφ

p
fJ`

cφf φf J`
= p . (4.13)

Turning on the interaction, φ2q+1 becomes a descendant of φ and the second contri-

bution has to be absorbed by the first, in accordance with (1.7). Therefore the matching

condition of the five-point function under study takes the form

lim
ε→0

M2
q,0 N`Q

2

γ2
φ

= (2q + 1)

(
cq,q,0
cq,0

)2

. (4.14)

When combined with (4.3) it leads to

lim
ε→0

N`Q

γφ
= 2q + 1 . (4.15)

On substituting (3.18) we find at once

γ
(2)
` = 2 γ

(2)
φ

(
1− (ν + 1)(ν + 2)

(`+ ν)(`+ ν − 1)

)
, (4.16)

with ν = d
2 − 1 = 1

q . The above reproduces the correct second-order anomalous dimension

of J` at d = 4− ε [37]. This expression is true more generally at the multicritical WF fixed

points at d = 2(q + 1)/q − ε which include the physically relevant case at d = 3− ε. In all

the cases we have γ
(2)
2 = 0, as expected by the conservation of the stress tensor at the WF

fixed point.

There is a simple modification that allows to generalize the above matching condition

to the general case of the upper critical dimension dm = 2m/(m − 2). Let us see for

simplicity the case d = 6 − ε, where the scalar becoming a descendant of φ is φ2. At the

Gaussian fixed point we have the fusion rule [φf ]× [φf ] = 1 +
√

2 [φ2
f ] + spinning primaries.

In the interacting theory φ2 is no longer a primary, hence it should be replaced by φ, but

limε→0 cφφφ = 0. The resulting matching condition of the four-point 〈φφφφ〉 reads8

lim
ε→0

c2
φφφ

Q∆φ(∆φ + 2− d)

γφ
= 2 . (4.17)

It can be used to express the OPE coefficient cφφφ of the interacting theory in terms of

the anomalous dimensions of φ. More generally, at a WF fixed point in which the primary

8Such a relation has been first pointed out by Yu Nakayama in some unpublished notes. I thank him

for sharing with me his notes.
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descendant φm−1 is a even power m− 1 = 2r we have

lim
ε→0

c2
φrφrφ

Q∆φ(∆φ + 2− d)

γφ
=

(2r)!

(r!)2
, (4.18)

with d = 2(2r+1)
2r−1 − ε. The matching condition of the five-point function 〈φrφrJ` φrφr〉,

when combined with (4.18) and (4.13) gives the promised generalization

lim
ε→0

N`Q

γφ
= m− 1 =

dm + 2

dm − 2
, (4.19)

valid for any integer m. Notice however that the first non-vanishing anomalous dimensions

of J` in d = 6− ε are O(ε), since in this case, unlike what happens at d = 4− ε, at d = 3− ε
and at the other multicritical fixed points described by (4.5), now γ(1) 6= 0. Precisely we

have γ
(1)
φ = − 1

18 , so the equation above yields

γ
(1)
` = −1

9

(
1− 12

(`+ 1)(`+ 2)

)
, (4.20)

which exactly agrees with the known results [53]. The minus sign reflects the fact that this

WF fixed point is described by a non-unitary CFT.

The matching condition (4.19) applies also when ` = 0, where it gives a new equation9

for the anomalous dimension of J0 ≡ φ2. This is useful in the multicritical case, where γ
(1)
φ2

is vanishing (see eq. (4.5)). This new equation gives

γ
(2)
φ2 =

4q(2 + q)

(q − 1)
γ

(2)
φ =

8q3(q + 2)

q − 1

[
((q + 1)!)2

(2(q + 1))!

]3

. (4.21)

In particular the d = 3 scalar theory perturbed with a φ6 potential (i.e. q = 2) gives

γ
(2)
φ2 = 4

125 , as can be directly checked by putting ` = 0 in (4.16). Eq. (4.21) agrees with

the results obtained with more conventional methods based on the Lagrangian formulation

and equations of motion [46].

5 Conclusions

In the present paper we studied some physical properties of perturbative Wilson-Fisher

fixed points under the only assumption of their conformal invariance. Using a generalization

of the method developed in [43, 45], we computed, to the first non-trivial order in the ε

expansion, the anomalous dimensions of a large set spinning operators Op,` that in the

Gaussian theory have scaling dimensions ∆ = (p + 1)(d2 − 1) + `. In accordance with

the bootstrap philosophy no Lagrangian was assumed. The interaction was implicitly

turned on by assuming that the local operators acquire anomalous dimensions. The WF

fixed points were defined using only conformal invariant concepts, with no reference to the

renormalization group. They were seen as smooth conformal deformations of scalar free-

field theories (see the precise definition around eq. (1.1)), where it was somewhat hidden

the notion of UV and IR fixed points of the RG.

9The only exception is d = 6− ε because φ2 is not a primary there.
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All the computations of the present paper rely on a unique group-theoretical mecha-

nism, the conformal multiplet recombination. Schematically, it tells us that the free field

scalar φf corresponds to a short multiplet, while the multiplet of the corresponding inter-

acting field is long; in the ε → 0 limit thy must agree. We derived in this way two sets

of matching conditions — (4.3) and (4.19) — which encode the wanted information on

O∆,`. The former describes the matching conditions of certain four-point functions which

generalize to ` 6= 0 those already considered in [43, 45]. The latter is completely new and

is obtained by matching conditions of the five-point function sketched in figure 1. We used

it to compute the anomalous dimensions of the subclass of spinning operators J` ≡ O1,`;

they are conserved an the Gaussian fixed point, while acquire anomalous dimensions at

the WF fixed point. The resulting single equation (4.19) tells us that the stress tensor is

automatically conserved at any (permitted) space-time dimension, while for ` 6= 2 yields

the first non-vanishing contribution of the anomalous dimensions of the HS currents. In

the more conventional approaches these results require different Lagrangians with different

perturbing potentials, namely φ4 in d = 4− ε, φ6 in d = 3− ε, and φ3 in d = 6− ε.
There are several directions one can pursue. The most obvious one is to extend our

analysis to O(N) invariant models. Another interesting extension would be to apply this

approach to generalized free-field theories, following the line initiated in [43, 45] for the

scalar primaries. Notice that in the present approach, unlike other conformal bootstrap

calculations, the crossing symmetry has not been used. Enforcing this powerful symmetry

in our scheme could hopefully generate new results.

It would be finally important to find some connection of our method to other bootstrap-

inspired analytic approaches. In an elegant study which relies on turning the crossing

equations into an algebraic problem [55, 56], the HS symmetry is explicitly broken by

introducing a small parameter g. At first non-trivial order in g the spectrum of weakly

broken currents follows. Unfortunately this method cannot apply to more general, non

conserved, spinning operators; notice also that the conservation of the stress tensor does

not follow automatically, and has to be assumed as a further constraint. It would be

interesting to combine such an algebraic form of the crossing equations with the mechanism

of conformal multiplet recombination used here. Another powerful way to obtain analytic

information about the spectrum of the primary operators in a WF fixed point relies upon

a Mellin space representation of correlation functions [48–50]. It gives at the moment the

analytic results of higher order in the anomalous dimensions and OPE coefficients. So far

it has been only applied to the four-point function 〈φφφφ〉. An extension of the analysis

to 〈φpφφpφ〉 would provide information on a much larger class of spinning operators.
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A OPE coefficients of the free-field theory

In this appendix we collect some useful formulae on the conformal block expansions and

OPE coefficients of a scalar free field theory. Here φ is the free fundamental scalar and φp

denotes the normal ordered scalar primary :(φ)p:√
p!

. The normalization is chosen in such a

way that

〈φp(x1)φp(x2)〉 =
1

(x2
12)p ν

. (A.1)

Applying the Wick’s contractions to the four-point function 〈φp(x1)φr(x2)φp(x3)φr(x4)〉
with p ≥ r and comparing it with the standard parameterization of a generic CFT, namely,

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
g(u, v)

|x12|∆
+
12 |x34|∆

+
34

(
|x24|
|x14|

)∆−12
(
|x14|
|x13|

)∆−34

, (A.2)

where ∆±ij = ∆i±∆j , i, j = 1, 2, 3, 4 and ∆i is the scaling dimension of Oi, while u =
x2

12x
2
34

x2
13x

2
24

and v =
x2

14x
2
23

x2
13x

2
24

are the cross ratios, we have

gp,r(u, v) =

r∑
h=0

gh(u, v) ≡
r∑

h=0

p!r!

(h!)2
u(p+r−2h)ν/2

r−h∑
k=0

v−kν

(k!)2(p− h− k)!(r − h− k)!
. (A.3)

Each gh(u, v) can be expanded in terms of conformal blocks Ga,b∆,`(u, v), i.e. eigenfunctions

of the quadratic and quartic Casimir invariants of the conformal group. ∆ and ` are

the scaling dimension and the spin of the primaries that could appear in the OPE of

φp(x1)φr(x2) and a = ν r−p2 , b = −a. The set of primaries contributing to gh(u, v) belongs

to the linear Regge trajectory ∆n,` = (p+ r − 2h+ 2n)ν + `:

gh(u, v) =
∞∑
n,`

c2
φp φrO∆n,`

Ga,b∆n,`
(u, v) . (A.4)

Knowing the spectrum of the contributing primaries one may compute term by term the

associated OPE coefficients, using for instance the method described in appendix A of [45].

In some cases from the first few OPE coefficients one can infer the general form for any `

and n. In particular if we put r = 1 in (A.3) we find

gp,1(u, v) = p uν(p−1)/2 + uν(p+1)/2
(

1 +
p

vν

)
. (A.5)

The first term describes a single primary, as

uν(p−1)/2 = Ga,−aν(p−1),0(u, v) , a =
ν(1− p)

2
, (A.6)

while the primaries contributing to the second term belong to the linear Regge trajectory

∆` ≡ ∆0,` = (p + 1)ν + `. They coincide with the set of spinning operators considered in

the present paper. It is not difficult to verify, using the method of [45], that associated

OPE coefficients are those given in (3.13).
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In the study of the five-point function we need to compute the OPE coefficient cφpφpJ` ,

where the conserved HS current J` has scaling dimension 2ν+`. This can be extracted from

the conformal block expansion of gp,p(u, v), more precisely from the term gp−1 of (A.3).

We have

gp−1(u, v) = p2 uν
(

1 +
1

vν

)
. (A.7)

Apart from the p2 factor, it coincides with the g function of 〈φ(x1)φ(x2)φ(x3)φ(x4)〉, there-

fore we can infer at once eq. (4.13).
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