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1 Introduction

Black hole solutions are extremely useful in studying the holographic properties of strongly

coupled quantum matters. For example, the Reissner-Nordstrom-Anti de Sitter black holes

are of particular usage in the study of the electronic structure of the dual quantum sys-

tems [1]. The holographic methods also yield disordered quantum systems with no quasi-

particle excitations [2, 3]. However, the precise bulk dual of the recent proposed model,

the Sachdev-Ye-Kitaev (SYK) model, is still elusive [4, 5]. The SYK models are theo-

ries of Majorana fermions in zero spatial dimensions with q−body infinite-range random

interactions in Fock space [6–8].

As one of the simplest strongly interacting system with a gravity dual, the SYK model

has many interesting features including thermodynamic properties, correlation functions

and the absence of quasiparticle in a non-trivial solvable limit in the presence of disorder

at low temperature [9–40]. All these properties suggest a gravity-dual interpretation of

the model in the low-temperature strong-coupling limit and it is believed that the SYK

models are connected holographically to black holes with AdS2 horizons with non-vanishing

entropy in the T → 0 limit. It has been conjectured that the bulk gravity dual of the SYK

model is the two dimensional Jackiw-Teitelboim model of dilaton-gravity with a negative

cosmological constant, while there are also some hints that it is actually Liouville theory.

In [41], the authors show that the spectrum of the SYK model can be interpreted as that

of a three-dimensional scalar coupled to gravity. They further conjectured that the bulk

dual of the SYK model is indeed a three dimensional theory.

The main purpose of this paper is to study a class of charged Banados-Teitelboim-

Zanelli-like (BTZ-like) black hole solutions in general d + 2-dimensional spacetime with a

momentum dissipating source. The BTZ black hole sultions are asymptotically AdS3 and

can be dimensionally reduced to solutions of various two dimensional Jackiw-Teitelboim

theories. In [42], a bulk theory with the BTZ black hole solution are utilized to study the
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late time behavior of the analytically continued partition function Z(β + it)Z(β − it) in

holographic 2d CFTS. We will also compare the transport coefficients of such BTZ-like

solutions with those of the SYK models. Recently, aimed to build a connection between

transport at strong coupling and quantum chaos, it has been conjectured that there is a

universal relation between diffusion constant and the butterfly velocity D ∼ v2
Bτ with a

fundamental quantum thermal timescale τ ∼ ~/kBT [43–49]. In the holographic setup, the

butterfly velocity in an isotropic system is defined as [50] v2
B = 4πTgrr

dg′xx(rH)

√
g′tt/g

′
rr, where

the prime indicates a radial derivative and d is the dimension of spatial coordinates. This

relation is somehow inspired by the shear viscosity bound proposed by Kovtun, Son and

Starinets [51]. But recent developments have shown that the shear viscosity bound can

be strongly violated in anisotropic systems and momentum dissipated systems [52–59] (see

also [60–64] for discussions on the diffusion bounds). In incoherent metals without a Drude

peak, transports are dominated by diffusive physics in terms of charge and energy instead

of momentum diffusion. One naturally guesses that the charge diffusion constant Dc and

energy diffusion constant De could play a crucial role. In the diffusion-butterfly effect

scenario, the electron-phonon interactions of strongly correlated materials behave as a

composite, strongly correlated soup with an effective velocity vB [45]. A natural candidate

for such a velocity is provided by the butterfly effect [3, 45]. We will study this relation for

BTZ-like black holes. Interestingly, we also check the diffusivity-butterfly velocity relation

in an extremal case: in a d+2-dimensional Lifshitz spacetime with a hyperscaling violating

factor, the butterfly velocity behaves as v2
B =

2πTrz−2
H

(d−θ) . As d → θ, the butterfly velocity

becomes divergent. Now the question is that do the diffusion constants also diverges in the

d→ θ limit? We are going to study this special condition in details.

Last but not least, in some of the previous literature [3, 65], the relation D ∼ v2
Bτ was

studied with non-zero dynamical exponent z and hyperscaling violating factor θ. But only

one gauge field was considered in the action. Actually, to realize Lifshitz geometry with

z > 1, one needs to introduce at least one auxiliary gauge field in additional to the real

Maxwell field [66–68]. The auxiliary gauge field is responsible for supporting the Lifshitz-

like vacuum of the background, while the Maxwell field makes the black hole charged. It

is interesting to check the relation D ∼ v2
Bτ in the presence of two gauge fields. Moreover,

it was found in [69] that finite DC electric conductivity can be realized simply because of

the presence of the auxiliary U(1) charge even without translational symmetry breaking.

Another purpose of this paper is to examine the diffusion-butterfly velocity relation with

such finite DC conductivity but without translational symmetry breaking.

As a byproduct, we will also verify the universal formula of dc electric conductivity

proposed in [70] for translational-symmetry broken BTZ-like black holes. This formula

(i.e.
∏
i σii|qi=0 =

∏
i Z

d
i Ad−2) states that the ratio of the determinant of the dc electrical

conductivities along any spatial directions to the black hole area density A in zero-charge

limit has a universal value.

The structure of this paper is organized as follows. In section 2, we present the general

formalism for the black hole solutions. Five concrete examples of BTZ-like black holes are

derived. We briefly address dimensional reduction of BTZ black holes and the Jackiw-
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Teitelboim theory in section 3. The diffusivity and butterfly-velocity of charged BTZ black

hole with momentum dissipation are discussed in section 4. The transport properties of

BTZ-like black holes with an extra hyperscaling violating factor are presented in section 5.

Discussions and conclusions are presented in section 6. In the appendix, we provide DC

transport coefficients for general d+ 2-dimensional black holes in the presence of two U(1)

gauge fields.

2 The general formalism

In order to show how the BTZ-like black hole solution emerges, we first consider a gen-

eral (d + 2)-dimensional action with an arbitrary Lifshitz dynamical exponent z and a

hyperscaling violating factor θ

S = − 1

16πGd+2

∫
dd+2x

√
−g

[
R+ V (φ)− 1

2
(∂φ)2 − 1

4

n∑
i=1

Zi(φ)F 2
(i) −

1

2
Y (φ)

d∑
i

(∂χi)
2

]
,

(2.1)

where we will use the notation Zi = eλiφ and Y (φ) = e−λ2φ in what follows and χi = βδIix
i

is a collection of d−massless linear axions introduced to break the translational symmetry

and β denotes the strength of momentum relaxation and disorder of the dual condensed

matters. The action consists of Einstein gravity, axion fields, and U(1) gauge fields and a

dilaton field. For simplicity, we only consider two U(1) gauge F
(1)
rt and F

(2)
rt in which the first

gauge field plays the role of an auxiliary field, making the geometry asymptotic Lifshitz,

and the second gauge field is the exact Maxwell field making the black hole charged.

The Einstein equation is given as

Rµν =
1

2
∂µφ∂νφ+

Y

2

∑
i

∂µχi∂νχi +
1

2

∑
i

ZiF
ρ
(i)µF

(i)
µρ −

gµν
4(d− 2)

∑
i

ZiF
2
(i) −

V (φ)

d− 2
gµν .

The equations of motion for the dilaton field and axion fields are obtained as

0 = �φ+ V ′(φ)− 1

4

∑
i

Z ′i(φ)F 2
(i) −

1

2
Y ′(φ)

∑
i

∂(χi)
2, (2.2)

0 = ∇µ
(
Y (φ)∇µχi

)
. (2.3)

The Maxwell field equation is

0 = ∇µ
(
Zi(φ)Fµν(i)

)
. (2.4)

The dilaton field can be solved from the combinations of the (r,r) and (t,t) components

(i.e. Rrr −Rtt) of the Einstein equation and the solution read

φ = ν ln r =
√

2(d− θ)(z − 1− θ/d) ln r. (2.5)

Assumed the metric takes the form ds2 = r2α

(
− r2zf(r)dt2 + dr2/r2f(r) + r2d~x2

d

)
and

α = −θ/d, the Maxwell equation can be solved as

F(i)rt = Z−1
i (φ)rα(2−d)+z−d−1Qi. (2.6)

– 3 –
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The metric function f(r) can be solved from the (x, x)-component of the Einstein equation[
rd(α+1)+zf(r)

]′
=
rα(d+2)+z+d−1

(α+ 1)

(
V0r

γν

d
− 1

2d

∑
i

r−2d(α+1)−λiνQ2
i −

β2

2
r−λ2ν−2−2α

)
.

(2.7)

The solution yields its form

f(r) =
V0r

2α+γν

d(α+ 1)[γν + α(d+ 2) + z + d]
−
∑
i

Q2
i r
−2α(d−1)−νλi−2d

2d(α+ 1)[α(2− d) + z − d− λiβ]

−mr−dα−z−d − β2
0r
−2z−2α

2(1 + α)(d− z − 2α+ dα)
, (2.8)

where we have set V (φ) = V0r
−2α, Zi(φ) = eλiφ and Y (φ) = 1/Z2. We normalize the first

term in the metric function to be one, so we have γ = −2α/β and V0 = (dα + z + d −
1)(dα+ z + d).

By further using the equation of motion for the dilaton field, we finally arrive at(
4ν

d(α+1)
− 8α

β

)
V =

∑
i

eλiφF 2
(i)

(
λi−

ν

d(α+1)

)
+2α2

(
ν

α+1
−λ2d

)
r−λ2ν−2α. (2.9)

We then obtain the expressions for λi, Q1 and α

λ1 = − 2α(d− 1) + 2d√
2d(α+ 1)(α+ z − 1)

, λ2 =

√
2(α+ z − 1)

d(α+ 1)
, (2.10)

Q2
1 =

2(z − 1)V0

(dα+ z + d− 1)
, α = −θ/d. (2.11)

The associated black hole solution was first obtained by some of us in [71–73]:

ds2 = r−
2θ
d

(
− r2zf(r)dt2 +

dr2

r2f(r)
+ r2d~x2

d

)
,

f(r) = 1− m

rdθ
+

Q2
2

r2(dθ−1)
− β2

r2z−2θ/d
, (2.12)

F(1)rt = Q1

√
2(z − 1)(d+ z − θ)rd+z−θ−1,

F(2)rt = Q2

√
2(d− θ)(d+ z − θ − 2)r−(d+z−θ−1),

χi = βiax
a, β2

0 =
1

d

d∑
i=1

−→
β a ·
−→
β a,

−→
β a ·
−→
β b = β2

0δab for i ∈ {1, d},

where β2 =
d2β2

0
2(d−θ)(d2+2θ−(z+θ)d)

.

The above metric function holds under the condition that Q2 and β2 are finite and

Q1 does not contribute to the metric function, since F(1)rt is introduced to realizing the

Lifshitz scaling. The constraints from the null energy condition of the gravity yields

(d− θ)[d(z − 1)− θ] ≥ 0 and (z − 1)(d + z − θ) ≥ 0. We recover the normal AdS ge-

ometry, when F(1)rt = 0 as the dynamical exponents take the values z = 1 and θ = 0. The

black hole solution can also recover that of the Lifshitz black hole solution as β = 0 [68].
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The event horizon locates at r = rH satisfying the relation f(rH) = 0. One can express the

mass parameter m in terms of rH:

m = rd+z−θ
H +Q2

2r
2−d−z+θ
H − β2r

d−z−θ+2θ/d
H . (2.13)

By further introducing an coordinate u = rH/r, we can recast f(r) as

f(u) = 1− ud+z−θ +
Q2

2

r
2(d+z−θ−1)
H

[
u2(d+z−θ−1) − ud+z−θ

]
+

β2

r
2z−2θ/d
H

[
ud+z−θ − u2z−2θ/d

]
.

(2.14)

The corresponding Hawking temperature is given by

T =
(d+z−θ)rzH

4π

[
1− d+z−θ−2

d+z−θ
Q2

2r
−2(d+z−θ−1)
H − d

2+2θ−(z+θ)d

d(d+z−θ)
r

2θ/d−2z
H β2

]
. (2.15)

The entropy density is given by s = 4πrd−θH . The specific heat of this black hole can be

evaluated via cQi,β = T (∂s/∂T )Qi,β . The butterfly velocity is

v2
B =

2πTrz−2
H

(d− θ)
. (2.16)

The DC transport coefficients in this general background are given in section 5. The more

detail derivation of the DC transport coefficients in this background was obtained in [71, 73]

(see also [74–80] for more recent work).

We now present several examples when black hole solutions become “critical” as the

charge density Q2 or axion density β2 is formally zero. In other words, when one of the

term in f(r) is zero, we need to work out the solution very carefully because those terms

would produce a logarithmic term in the metric function. This can also be seen in the

differential equation of f(r), i.e. (2.7). Such a logarithmic term can greatly modify the

solution especially the behavior of the electric field. The result is that the metric function

f in any d ≥ 1 dimension can be recast in a form similar to charged BTZ black holes in

2 + 1 dimensions. In general, there are five conditions that the logarithmic term appears

in the metric function as shown in table 1.

• Case I. Critical black hole solutions at d+ z−θ−2 = 0 and d2 + 2θ− (z+θ)d 6= 0 Note

that in this case, we have d2 + 2θ− (z+ θ)d = 2(2− z)(d− 1). A well-defined solution can

be achieved in the following form [71, 73]

f(r) = 1− m

r2
− q2

2 ln r

2(2− z)r2
− β2

r2z−2θ/d

= 1− r2
H

r2
+

q2
2

2r2(2− z)
ln
rH

r
− β2

r
2z−2θ/d
H

(
r2

H

r2
− r

2z−2θ/d
H

r2z−2θ/d

)
,

F(1)rt = q1r, F(2)rt = q2r
−1, (2.17)

where m, q1 and q2 are finite physical parameters without divergence as (d+z−θ−2)→ 0.

The metric function can recover that of charged BTZ black hole solution as β = 0. A

– 5 –
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only d+ z − θ − 2 = 0 the mass and Q2 related terms are degenerated

only d2 + 2θ − (z + θ)d = 0 the mass and axion related terms are degenerated

d = θ, z 6= 2 the Q2 and axion related terms are degenerated

(d = θ, z = 2) or (d = 1, z = 1 + θ) all mass, Q2 and axions related terms are degenerated

Table 1. Summarization of five conditions that the logarithmic term will appear in the metric

function f(r).

careful examination of (2.17) reveals that they satisfy the corresponding Einstein equation

and Maxwell equation. The Hawking temperature is given by

T =
rzH
2π

(
1− q2

2

4(2− z)r2
H

− β2(d+ θ − dz)

dr
2z−2θ/d
H

)
. (2.18)

• Case II. Critical black hole solutions at d + z − θ − 2 6= 0 and d2 + 2θ − (z + θ)d = 0

The metric function and gauge fields in this case take their forms

f(r) = 1− m

rd+z−θ +
q2

2

r2(d+z−θ−1)
− dβ2

0

2(d− θ)rd+z−θ ln r, (2.19)

F(1)rt = q1r
d+z−θ−1, F(2)rt = q2r

−(d+z−θ−1). (2.20)

We can also express the metric function in terms of the event horizon radius

f(r) = 1−
(
rH

r

)d+z−θ
+

q2
2

r
2(d+z−θ−1)
H

[(
rH

r

)2(d+z−θ−1)

−
(
rH

r

)d+z−θ]
− β2

rd+z−θ ln
rH

r
.

(2.21)

Note that only the linear scalar term in the metric function becomes a logarithmic term.

The black hole temperature yields

T =
rzH
4π

[
(d+ z − θ)−

(
β2rθ−d−zH + q2

2r
−2(d+z−θ−1)
H (d+ z − θ − 2)

)]
. (2.22)

On the other hand, as q2 → 0 the metric is analogous to the charged BTZ black hole

metric.

• Case III. As d = θ but z 6= 2, the two terms containing Q2
2 and β2 in the metric function

degenrate, that is to say

Q2
2

r2(d+z−θ−1)
− β2

r2(d+z−θ−1)
r

2
d

(d−θ)(d−1) → Q2
2 − β2

r2(d+z−θ−1)
− 2

d
(d− θ)(d− 1)β2 ln r

r2(d+z−θ−1)

=
Q2

2 − β2

r2(d+z−θ−1)
− (d− 1)β2

0

d+ 2θ
d − z − θ

ln r

r2(d+z−θ−1)

=
q2

2

r2(d+z−θ−1)
− (d− 1)β2

0

d+ 2θ
d − z − θ

ln r

r2(d+z−θ−1)
,

where we have used the relation

r
2
d

(d−θ)(d−1) → 1 +
2

d
(d− θ)(d− 1) ln r (2.23)

– 6 –
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and q2
2 := Q2

2 + β2. So in this condition, the metric function can be written as

f(r) = 1− m

rd+z−θ +
q2

2

r2(d+z−θ−1)
− (d− 1)β2

0

d+ 2θ
d − z − θ

ln r

r2(d+z−θ−1)

= 1− m

rz
+

q2
2

r2(z−1)
− (d− 1)β2

0

2− z
ln r

r2(z−1)
,

F(1)rt = q1r
z−1, F(2)rt = q2r

−(z−1).

Here q2 and β0 are finite and physical parameters under the d−θ → 0 limit (z 6= 2), instead

of diverging Q2 and β. The metric function written in terms of the event horizon is given by

f(r) = 1−
(
rH

r

)z
+

q2
2

r2z−2

[
1−
(
rH

r

)2−z]
+

(d−1)β2
0

(z−2)r2z−2

((rH

r

)2−z
lnrH−lnr

)
. (2.24)

The Hawking temperature evaluated at the event horizon yields

T =
zrzH
4π
− q2

2(z − 2)r2−z
H

4π
+

(d− 1)β2
0r

2−z
H

4π(z − 2)

[
1− (z − 2) ln rH

]
. (2.25)

• Case IV. Critical black hole solutions at d+ z − θ − 2 = 0 and d2 + 2θ − (z + θ)d = 0

This condition yields two solutions d = 1, z = 1 + θ or d = θ, z = 2. We focus on the

d = 1 and z = 1 + θ here and obtain a very particular black hole solution

ds2 = r−2θ

(
− r2zf(r)dt2 +

dr2

r2f(r)
+ r2dx2

)
, (2.26)

f(r) = 1− m

r2
− q2

2 + β2
0

2(1− θ)r2
ln r (2.27)

= 1− r2
H

r2
+

q2
2 + β2

0

2(1− θ)r2
ln
rH

r
, (2.28)

F(1)rt = q1r, F(2)rt = q2r
−1. (2.29)

The scalar potentials are given by

A(1)t = µ1

(
1− r2

r2
H

)
, A(2)t = q2 ln

r

rH

. (2.30)

The chemical potentials and charge density are given by µ1 and µ2 = −q2 ln rH, respec-

tively. Notice that µ1 does not correspond to the chemical potential of the black hole and

as r → ∞, A(1)t → ∞. The event horizon locates at r = rH satisfying f(rH) = 0. The

Hawking temperature is given by

T =
r1+θ

H

2π

(
1− q2

2 + β2
0

4(1− θ)r2
H

)
. (2.31)

The metric function is actually a three-dimensional BTZ-like black hole solution with a

Lifshitz dynamical exponent and a hyperscaling factor. As θ = 0 and then q1 = 0, we

– 7 –
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recover the standard charged BTZ black hole solution obtained in (4.1) since θ = 0 and

d+ z − θ = 2 infers z = 1. The entropy density and the butterfly velocity are

s =
r1−θ

H

4G
, v2

B =
2πTrz−2

H

(d− θ)
. (2.32)

The relation between the butterfly velocity and diffusion constant will be studied in detail

in what follows.

• Case V. As to d = θ and z = 2, the null energy condition is satisfied. The metric

becomes

ds2 = −r2f(r)dt2 +
dr2

r4f(r)
+ d~x2, (2.33)

f(r) = 1− r2
H

r2
+

(q2
2 + β2

0)

r2
ln
rH

r
, (2.34)

F(1)rt = q1r, F(2)rt = q2r
−1. (2.35)

The corresponding Hawking temperature is T = rH
π

(
1− q2

2+β2
0

4r2
H

)
. The entropy density is

a constant s = 1/4G. The metric given here is very special since it has non-zero Hawking

temperature, but constant entropy density. The associated specific heats are also vanish-

ing. The butterfly velocity becomes divergent as d→ θ. The transport coefficients in this

case are also very special

σ11 =
1

r2
H

+
q2

1

β2
0

, σ12 = σ21 =
q1q2

β2
0

, (2.36)

σ22 = 1 +
q2

2

β2
0

, α1 =
4πq1

β2
0

, α2 =
4πq2

β2
0

, (2.37)

κ̄ =
16π2T

β2
0

. (2.38)

Both dc electric conductivity σ22 driven by the real Maxwell field and the thermoelectric

conductivities α1 and α2 are constants. It is worth future investigating whether this black

hole solution and its boundary dual has any more physical meaning.

In the following discussions, we first discuss the relation between the charged BTZ

black hole and its dimensioanl reduction to Jackiw-Teitelboim theory. Then we study

diffusions and butterfly velocity for momentum dissipated-charged BTZ black holes. The

hyperscaling violating factor modified BTZ black holes will also be examined.

3 Dimensional reduction and Jackiw-Teitelboim theory

The gravitational duality of the original SYK model is argued to be a two-dimensional

dilaton AdS2 gravity [81], i.e. the Jackiw-Teitelboim theory. A three-dimensional gravity

can be reduced to Jackiw-Teitelboim theory by dimensional reduction. In the context of

the AdS3/CFT2 duality, a two-dimensional CFT has a holographic bulk dual. At the high
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temperature the thermal state of the theory is dual to a BTZ black hole. Consider a

three-dimensional gravity in general

S = − 1

16πG3

∫
d3x
√
−g
[
R+ 2Λ− 1

4
F 2

]
. (3.1)

The corresponding black hole solution is the BTZ black hole solution of the form

ds2 = −r2f(r)dt2 +
dr2

r2f(r)
+ r2dx2, (3.2)

f(r) = 1− r2
H

r2
+

q2

2r2
ln
rH

r
, Frt = −q

r
. (3.3)

Assume that there is a single coordinate called ϕ, which is independent of the gravitational

field in three dimensions and the metric takes the form

ds2 = hij(x
i)dxidxj + Φ2(xi)dϕ2, (3.4)

where i, j = 0, 1. The action (3.1) simply reduces to that of the Jackiw-Teitelboim theory

S =

∫
d2x
√
−h Φ

[
R+ 2Λ− 1

4
F 2

]
. (3.5)

The BTZ solutions written in the form as (3.4) yield a solution to the Jackiw-Teitelboim

model

ds2 = −r2f(r)dt2 +
dr2

r2f(r)
, Φ = r, (3.6)

f(r) = 1− r2
H

r2
+

q2

2r2
ln
rH

r
, Frt = −q

r
. (3.7)

In [82], some of us consider a new higher dimensional SYK model with complex fermions

on bipartite lattices and obtain linear in temperature resistivity, thermal conductivity and

specific heat.

4 Diffusion and butterfly velocity of disordered BTZ black holes

A special case is d = 1, φ = 0, V (φ) = 2, Y (φ) = 1 and Z(φ) = 1. This corresponds to the

Case IV discussed in section 2. In this case, the action reduces to that of BTZ black hole

with a momentum dissipation term:

S = − 1

16πG3

∫
d3x
√
−g
[
R+ 2Λ− 1

2
(∂χ)2 − 1

4
F 2

]
− 1

8πG3

∫
∂M

d2x
√
−hK + Sct,

It is well known that the naive free energy of the charged BTZ black hole is logarithmically

divergent. Jensen found the divergence is due to the Weyl anomaly of the boundary

CFT [81]. The counter-term is given by [81]

Sct =
1

8πG3

∫
r=rΛ

d2x
√
−h
(

1 +
R[h]

2
− 1

4
ln rΛ∂iχ∂

iχ

)
− 1

2

∫
r=rΛ

d2x
√
−hFraF ra ln rΛ.
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One of the solutions to the above action is given by the 2 + 1-dimensional charged BTZ

metric and a linear scalar field

ds2 =
1

z2

(
− f(z)dt2 + dx2 +

dz2

f(z)

)
,

f(z) = 1− z2

z2
h

+
q2 + β2

0

2
z2 ln

z

zh
, (4.1)

At(z) = q ln
z

zh
, χ1 = β0x.

The black hole temperature is given by T =
4−z2

h(q2+β2
0)

8πzh
. The charge density and chemical

potential can be obtained from the near-boundary expansion of the gauge field jt = q and

µ = −q ln rH. The renormalized free energy is given by

F = −1

2
Ts+

1

2
µq +

1

4
q2 + β0Φ, (4.2)

where Φ = −1
2β0 ln(2πT +

√
q2

1 + β2
0 + 4π2T 2). The horizon radius expressed in terms of

T , q and β0 goes as

zh =
2

β2
0 + q2

(√
4π2T 2 + β2

0 + q2 − 2πT

)
. (4.3)

The entropy density reads

s = 4πz−1
h = 4π

(
1

2

√
β2

0 + q2 + 4π2T 2 + πT

)
. (4.4)

The butterfly velocity can be evaluated as

v2
B = 2πTzh =

4πT

β2
0 + q2

(√
4π2T 2 + β2

0 + q2 − 2πT

)
. (4.5)

The DC conductivity is obtained as

σ = zh +
q2

β2
0

zh =
2

β2
0

(√
4π2T 2 + β2

0 + q2 − 2πT

)
. (4.6)

The compressibility and the thermoelectric susceptibility can be expressed as

χ =

(
∂q

∂µ

)
T

=
−a11

a11 log
(

1
2

√
β0

2 + q2 + 4π2T 2 + πT
)

+ q2
, (4.7)

ζ =

(
∂s

∂µ

)
T

=
−2πq

(√
β2

0 + q2 + 4π2T 2 + 2πT
)

a11 log
(

1
2

√
β2

0 + q2 + 4π2T 2 + πT
)

+ q2
, (4.8)

where a11 = β2
0 + q2 + 2πT (2πT +

√
β2

0 + q2 + 4π2T 2). The specific heat at fixed charge

density are

cq = T

(
∂s

∂T

)
q

= 4π2T +
8π3T 2√

β0
2 + q2 + 4π2T 2

. (4.9)
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The temperature dependence of the entropy density and the specific heat obtained here

is similar to that of 1 + 1-dimensional SYK model with complex fermions on bipartite

lattices [82]. The Seebeck coefficient and the thermal conductivity are given by

α = ᾱ =
4πq

β2
0

, (4.10)

κ̄ =
16π2T

zhβ
2
0

=
16π2T

β2
0

(
1

2

√
β2

0 + q2 + 4π2T 2 + πT

)
, (4.11)

κ = κ̄− α2T

σ
=

32π2T

((
1
2

√
β2

0 + q2 + 4π2T 2 + πT
)2
− q2

β0
2+q2

)
c2

1

(√
β2

0 + q2 + 4π2T 2 + 2πT
) . (4.12)

In general, the diffusion constants D± are related to the transport coefficients and thermal

quantities through the Einstein relations [83]

D+D− =
σ

χ

κ

cρ
, (4.13)

D+ +D− =
σ

χ
+
κ

cρ
+
T (ξσ − χα)2

cρχ2σ
. (4.14)

The diffusion constants are solved as

D± =
c2 ±

√
c2

2 − 4c3

2
, (4.15)

where

c2 =
σ

χ
+
κ

cρ
+M, c3 =

σ

χ

κ

cρ
, M =

T (ζσ − χα)2

cρχ2σ
. (4.16)

In the absence of the mixing term M, D+ and D− simply reduce to the charge diffusion

Dc and the energy diffusion De. We then find the two diffusion constants in the strong

momentum dissipation limit (β0/T � 1) turn out to be

D+ =
2

β0
− 4πT

β2
0

+ . . . , (4.17)

D− =
2

β0
− 4πT

β2
0

+ . . . (4.18)

The mixing term M has similar temperature dependence as D−

M =
8q2

β3
0

+ . . . (4.19)

Compared with D−, the mixing term M can be neglected in the incoherent regime. The

term v2
Bτ expanded at large β0 yields

v2
Bτ =

2π

rH

=
4π

β0
− 8π2T

β2
0

+ . . . (4.20)
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We can see that in the incoherent regime β0/T � 1, D± ∼ v2
Bτ with τ = ~/kBT . This

implies that the BTZ black hole indeed satisfies the proposed relation between the diffu-

sion constant and the butterfly velocity. As shown in figure 1, the diffusion constant D±
approximate to a value parallel to the line v2

Bτ in the incoherent regime when the temper-

ature is fixed. However, as the axion β0/µ is fixed, D− coincides with v2
Bτ and D+ ≥ v2

Bτ

as the temperature goes up.

The low temperature and low charge density expansion of the diffusion constants and

butterfly velocity are as follows

D+ =
2

β0
− 2πT

β2
0

+O(T 2), (4.21)

D− =
2

β0
− 2πT

β2
0

+O(T 2), (4.22)

v2
Bτ =

4π√
β2

0 + q2
− 8π2T

β2
0 + q2

+O(T 2). (4.23)

The mixing term between the charge- and energy- diffusion is given as

M =
2q2

β2
0

√
β2

0 + q2

1− β2
0 + q2(

β2
0 + q2

)
ln
(

1
2

√
β2

0 + q2
)

+ q2

2

+O(T ), (4.24)

which cannot be ingored at low temperature but finite charge density so D+ and D− may

not interpreted as charge diffusion Dc and energy diffusion De. As shown in figure 1, both

in the incoherent regime and in the low temperature limit, v2
Bτ has the trend to go to

zero, implying there is no propagation of the chaos in these cases. One can also check the

dimension of these quantities here: [q] = [β0] = 1, [α] = −1, [r] = [1/z] = 1. Assuming

[T ] = 1, we have [σ] = −1, [κ] = −1, [α2T/σ] = −1, [D±] = −1 and [v2
Bτ ] = −1 which is

consistent. Notice that in [82], 1 + 1-dimensional SYK model with complex fermions on

bipartite lattices shows similar temperature dependence of the electric conductivity and

the charge diffusion.

On the other hand, we are able to check the validity of the universal dc electric con-

ductivity proposed in [70] ∏
i σii
Ad−2

∣∣∣∣
qi=0

=
∏
i

Zdi

∣∣∣∣
r=rH

. (4.25)

Substituting equation (4.6) at zero charge density, the black hole area and gauge coupling

Z2 = 1 into (4.25) and evaluating at the event horizon, we can see that (4.25) is satisfied.

5 Diffusion of BTZ-like black holes with a hyperscaling violating factor

In order to check the universal relations between diffusivity and the butterfly velocity, let

us first work with arbitrary parameters d, z and θ. After obtaining the general ansatz for

D+ and D−, we then discuss the five black hole solutions given in section 2 and check the
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Figure 1. Diffusion constants D± and the butterfly effect v2Bτ as functions of the axion field and

temperature. (Top) The diffusion constants D+ (red), D− (green) and v2Bτ (blue) as functions of

β0, where we have set µ = 1 and T = 1. (Bottom) The diffusion constants D+, D− and v2Bτ as

functions of β0, where we have set µ = 1 and β0 = 1.

diffusion-butterfly velocity relation. For simplicity of calculation, we mainly consider the

incoherent limit as follows

β0

µ
� 1,

β0

T
� 1,with

µ

T
finite. (5.1)

In addition, we only focus on the charge- and energy-diffusions and thus neglect the mixing

term M in (4.16). The metric function and the Hawking temperature are given in (2.14)

and (2.15), respectively. The specific heat at fixed charge density is given by

cq = T

(
∂s

∂T

)
q

=
2∂rg

1/2
xx√
grr

∂rg
d/2
xx

∣∣∣∣
rH

∂rH

∂T
= 4πT (d− θ)rd−θ−1

H

∂rH

∂T
. (5.2)
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The charge density yields

qi =
g
d/2
xx√
grrgtt

Z2F(i)rt. (5.3)

The chemical potential is thus µ2 = q2r
2−d−z+θ
H /(d+ z − θ − 2) and one can obtain the

chemical potential of Reinssner-Nordstrom black hole µ = q2/rH as d = 2, z = 1 and θ = 0.

In general, the chemical potential depends on the details of the full bulk geometry. However,

the black hole solution obtained here mainly describe the IR geometry. We assume that the

infra-red region of the geometry that dominates the behavior of the charge compressibility

in what follows [46]. The compressibility is found to be

χ =

(
∂q2

∂µ

)
T

= (2 + θ − d− z)rd+z−θ−2
H . (5.4)

Since there are two U(1) gauge fields, the DC electric conductivity in this case is actually

a 2× 2 matrix. The general ansatz has been obtained by some of us in [73]

σ11 =

(
g
d−2

2
xx Z1(φ) +

q2
1

β2
0Y (φ)g

d/2
xx

)∣∣∣∣
r=rH

= r
2θ−2θ/d−2d
H +

q2
1

β2
0

r
2z+θ−2−d−2θ/d
H , (5.5)

σ22 =

(
g
d−2

2
xx Z2(φ) +

q2
2

β2
0Y (φ)g

d/2
xx

)∣∣∣∣
r=rH

= rd+2z−θ−4
H +

q2
2

β2
0

r
2z+θ−2−d−2θ/d
H , (5.6)

σ12 = σ21 =
q2q1

β2
0

r
2z+θ−2−d−2θ/d
H . (5.7)

The thermoelectric conductivity α and thermal conductivity κ̄ are obtained as

ᾱ1 =
4πq1

β2
0Y (φ)

∣∣∣∣
r=rH

=
4πq1

β2
0

r
2z−2−2θ/d
H , (5.8)

ᾱ2 =
4πq2

β2
0Y (φ)

∣∣∣∣
r=rH

=
4πq2

β2
0

r
2z−2−2θ/d
H , (5.9)

κ̄ =
16π2Tg

d/2
xx

β2
0Y (φ)

∣∣∣∣
r=rH

=
16π2T

β2
0

r
d+2z−2−θ−2θ/d
H . (5.10)

One may notice that even q1 is zero now, σ11 = r
2θ−2θ/d−2d
H has non-trivial contributions

from the pair production of the boundary dual quantum field. That is to say, once the

fluctuations of the auxiliary gauge field are turned on, there exists a discontinuity from the

expressions of transport coefficients of Lifshitz spacetime to those of the AdS geometry.

Assuming the charge current induced by the auxiliary gauge field is vanishing J1 = 0, we

are able to focus on the diagonal elements [71]

σDC = rd+2z−θ−4
H +

q2r
2θ+2z−d−2θ/d
H

β2r2+θ
H + q2

1r
2z+d
H

,

αDC = ᾱDC =
4πr

2z+θ−2θ/d
H

β2r2+θ
H + q2

1r
2z+d
H

,

κ̄DC =
16π2Tr

2z+d−2θ/d
H

β2r2+θ
H + q2

1r
2z+d
H

.
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Similarly, we have the thermal conductivity at zero electric current

κDC =
16π2Tr3d+2z

H

q2
2r

4+3θ
H + (β2r2+θ

H + q2
1r
d+2z
H )r

2d+2θ/d
H

. (5.11)

Considering only the charge diffusion Dc and the energy diffusion De and in the strong

momentum relaxation limit, we obtain

Dc =
σ

χ
=

rz−2
H

d− θ + z − 2
+O

(
1

β2
0

)
, (5.12)

De =
κ

cq
=
rz−2

H (dz − 2θ)
(
d2 − dθ − dz + 2θ

)
d2(d− θ)

+O
(

1

β2
0

)
. (5.13)

Hereafter, our discussion work in the strong momentum relaxation limit. Singularities

can be observed as d + z − θ = 2 and d = θ. We may able to remove the singularities

since the metric become critical in these cases. The butterfly velocity can be computed by

considering a shock wave geometry and written in terms of the metric at the horizon [50, 84]

v2
B =

4π2T 2

√
gxxm2

∣∣∣∣
rH

, m2 = πT
∂rg

d
xx

gdxx
√
−grrgtt

∣∣∣∣
rH

. (5.14)

In our case v2
B =

2πTrz−2
H

(d−θ) . From (5.12) and (5.14), we see that the relationship

Dc =
(d− θ)

2π(d− θ + z − 2)
v2
Bτ, (5.15)

De =
(dz − 2θ)(d2 − dθ − dz + 2θ)

2πd2
v2
Bτ. (5.16)

holds independently of the details of the bulk solution. However, from the expressions of

the diffusion constants (5.12), we cannot obtain the diffusion constants of BTZ black holes

evaluated in section 4. So do the five examples listed in table 1. The reasons are that the

black hole temperature and the chemical potential are greatly modified for those cases. As

θ → 0, The relations between diffusion constants and the butterfly velocity are given by

Dc =
d

2π(d+ z − 2)
v2
Bτ, (5.17)

De =
(d− z)z

2π
v2
Bτ. (5.18)

We discuss the diffusion constants of the five special cases listed in table 1 in details:

• Case I: d− θ + z − 2 = 0, (d2 − dθ − dz + 2θ) 6= 0. In this case, the chemical po-

tential becomes logarithmic µ = −q ln rH. The Hawking temperature is reformulated

in (2.18). The diffusion constants behave as

Dc =
σ

χ
= −rz−2

H ln rH + · · · , (5.19)

De =
κ

cq
=

2(d− 2)(d− 1)(z − 2)rz−2
H

d2
+ · · · . (5.20)
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Notice that as d = 2 or d = 1, the energy diffusion constant De at leading order is

vanishing and in this case, one shall consider the O(1/β2
0) order instead. The butterfly

velocity multiplied by τ is given by

v2
Bτ =

2πrz−2
H

(2− z)
. (5.21)

Note that rH is a function β0, T and charge density. The ratios Dc/v
2
Bτ and De/v

2
Bτ are

all finite in this case.

• Case II: d− θ + z − 2 6= 0, (d2−dθ−dz + 2θ) = 0. The diffusion constants read

Dc =
σ

χ
=

(d− 2)rz−2
H

2(d− 1)(z − 2)
+ · · · , (5.22)

De =
κ

cq
= rz−2

H +O(β2
0) + · · · . (5.23)

The butterfly velocity multiplied by τ is given by

v2
Bτ =

2π(d− 2)rz−2
H

d(z − 2)
. (5.24)

The ration between the diffusion constants and v2
Bτ is given by Dc/v

2
Bτ = d

4π(d−1) and

De/v
2
Bτ = d(z−2)

2π(d−2) .

• Case III: d = θ, z 6= 2. The diffusion constants in this case yield

Dc =
σ

χ
=

rz−2
H

z − 2
+ · · · , (5.25)

De =
κ

cq
=
rz−2

H (d− 1)[(z − 2) ln rH − 2]

(d− θ)
+ · · · . (5.26)

The butterfly velocity multiplied by τ is given by

v2
Bτ =

2πrz−2
H

(d− θ)
. (5.27)

As d → θ both the energy diffusion and the butterfly velocity diverges, but their ratio is

finite De
v2
Bτ

= (d−1)[(z−2) ln rH−2]
2π .

• Case IV: d = 1, z = 1 + θ. The diffusion constants are given by

Dc =
σ

χ
= −rz−2

H ln rH + · · · , (5.28)

De =
κ

cq
=

rz−2
H

2(2− z)
+ · · · . (5.29)

One can easily verify that as d = 1, z = 1 and θ = 0 and in the strong incoherent limit, the

diffusion constants Dc and De recover the ansatz given in the previous section (4.21)–(4.22).

This reflects that the calculations in this section is consistent with the previous section.

The butterfly velocity multiplied by τ is given by

v2
Bτ =

2πrz−2
H

(2− z)
→ finite. (5.30)

We can see that the ratio between De and v2
Bτ is finite De/v

2
Bτ = 1

4π .
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• Case V: d = θ, z = 2. The diffusion constants are obtained as

Dc =
σ

χ
= − ln rH + · · · , (5.31)

We can express the charge diffusion in terms of the black hole temperature Dc = ln 2 −
2πT/β0, where we have used rH = πT +

√
q2

2 + 4π2T 2 + β2
0/2. In this case the specific heat

cq is zero and the energy diffusion might be ill-defined. The butterfly velocity times τ

v2
Bτ =

2πrz−2
H

(d− θ)
→∞. (5.32)

Notice that in this case, the metric takes a very special form

ds2 = −r2f(r)dt2 +
dr2

r4f(r)
+ dx2, (5.33)

f(r) = 1− r2
H

r2
+

(q2
2 + β2

0)

r2
ln
rH

r
, (5.34)

F(1)rt = q1r, F(2)rt = q2r
−1. (5.35)

The entropy density in this case is s = 1/4G and the Hawking temperature is

T = rH
2π

(
1− q2+β2

0

2r2
H

)
. The specific heat becomes vanishing since the entropy density takes a

constant value. The universal dc electric conductivity
∏
i σii|qi=0 =

∏
i Z

d
i Ad−2 is satisfied

for all the above five cases.

• Diffusivity in the absence of disorder parameter. This is a very intriguing situ-

ation that even without translational symmetry breaking (i.e. β = 0), finite DC electric

conductivity can still be realized because of the presence of the auxiliary U(1) charge q1 [64].

In the strong auxiliary gauge field limit q1 →∞, the charge diffusion constant Dc reads

Dc =
rz−2

H

d− θ + z − 2
. (5.36)

The energy diffusion constant De is given by

De =
(d+z−θ)z
(d−θ)q2

1

r
z+θ−d−2θ/d
H +

q(d+z−θ−2)(2d+z−2−2θ)

q2
1(d−θ)

r
2−3d−z+3θ−2θ/d
H . (5.37)

In this case, the behavior of the energy diffusion is different from the charge diffusion.

Notice that the non-vanishing of the auxiliary charge density q1 is a consequence of z 6= 1.

We then consider a special 2 + 1-dimensional black hole solution with a non-zero

hyperscaling violating factor. Note that as d = 1 and d + z − θ − 2 = 0, we have a very

particular black hole solution as

ds2 = r−2θ

(
− r2zf(r)dt2 +

dr2

r2f(r)
+ r2dx2

)
, (5.38)

f(r) = 1− M

r1+z−θ −
q2

2 + β2
0

2(1− θ)r1+z−θ ln r,

= 1− r2
H

r2
− q2

2 + β2
0

2(1− θ)r2
ln
rH

r
, (5.39)

F(1)rt = q1r, F(2)rt = q2r
−1, Z1 = r−2, Z2 = 1. (5.40)
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The event horizon locates at r = rH satisfying f(rH) = 0. The Hawking temperature is

given by

T =
r1+θ

H

2π

(
1− q2

2 + β2
0

4(1− θ)r2
H

)
. (5.41)

As θ = 0 and then q1 = 0, we recover the standard BTZ black hole solution obtained in (4.1)

since θ = 0 and d = 1 infers z = 1. The entropy density and the butterfly velocity are

s =
r1−θ

H

4G
, v2

B =
2πT

(1− θ)r1−2θ
H

. (5.42)

The transport coefficients are obtained as

σ11 =
1

r3−θ
H

+
q2

1

β2
0r

1−θ
H

, σ12 = σ21 =
q1q2

β2
0r

1−θ
H

, (5.43)

σ22 = rθ−1
H +

q2
2

β2r1−θ
H

, α1 =
4πq1

β2
0

, α1 =
4πq2

β2
0

, (5.44)

κ̄ =
16π2Tr1−θ

H

β2
0

. (5.45)

We observe that as θ → 0, the quantity q1 becomes vanished but the DC conductivity

σ11 = r−3
H is not vanishing. The situation is very subtle in that if we set z = 1 and θ = 0 in

the action (2.1), then the auxiliary gauge field, σ11 and σ12 do not appear at the all. This

reflects that once the fluctuations of the auxiliary gauge field is turned on, there exists a

discontinuity in the θ → 0, (d + z − θ) → 2 and q1 → 0 limit since σ11 does not vanish in

this limit [72].

On the other hand, as θ = −1, the black hole solution shows its strange behaviors since

r2
H < (q2 + β2

0)/8 corresponds to T < 0 and r2
H ≥ (q2 + β2

0)/8 corresponds to T ≥ 0. More-

over, the black hole has its maximal Hawking temperature Tmax = 1
2π as r2

H � (q2 + β2
0)/8.

Moreover, the null energy condition is violated as θ = −1 and d = 1. It seems that this

black hole solution is not very physical.

6 Conclusion and discussions

In summary, we obtain a class of black hole solutions analogous to charged BTZ black holes

by considering d+2-dimensional action with non-trivial Lifshitz dynamical exponent z and

hyperscaling violating factor θ. Those BTZ-like black hole solutions can be realized because

special combinations of d, z and θ lead to divergence of the mass-, charges- and axions-

related terms. Such divergences can be annihilated by renormalizing the mass parameter.

As summarized in table 1, there are five concrete cases that such charged BTZ-like black

hole solutions can be realized.

We then show that the action of the charged BTZ black hole can be reduced to the

Jackiw-Teitelboim theory by dimensional reduction. We find that the relation D ∼ v2
Bτ

is well obeyed by the standard charged BTZ black holes in the incoherent limit. We thus

study the diffusions for general d, z and θ and obtain general expressions for the charge and
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the energy diffusions. We carefully evaluate the diffusions for those five special cases. We

can see that for cases I and II, the ratio Dc/v
2
Bτ is finite, while De ∼ v2

Bτ is valid for cases

I, II, III, IV and V. In this sense, the energy diffusion seems more general than the charge

diffusion. However, for case V, the charge diffusion is finite and the energy diffusion seems

ill-defined, while v2
Bτ is divergent. Since there are two U(1) gauge fields in the theory, we

calso calculate the diffusion constants in the absence of momentum relaxation parameter

β. In this case, the charge diffusion is same as that of the momentum dissipated case, but

the energy diffusion has O(1/q2
1) dependence.

We also examine the universial electrical DC conductivity formula and find that for

Lifshitz spacetime with auxiliary U(1) gauge fields, this formula is satisfied.
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