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1 Introduction

Scattering amplitudes are the building blocks for the computation of observables in quan-

tum field theory and string theory (see [1] for a review). The progress in their understanding

and calculation in recent years has been enormous. Usual Feynman diagram techniques

become too complicated as the number of external legs or loops increases and any alter-

native procedures are always desirable. The Cachazo-He-Yuan (CHY) formalism [2, 3]

represents a very promising route in this direction. It presents n-point amplitudes as an

(n− 3)-dimensional integral over the moduli space of n-punctured spheres, fully localized

on the solutions to the so-called scattering equations (SE) [2, 4–7]. A proof of this formula

for arbitrary n was given by Dolan and Goddard [8]. The CHY proposal for the calculation

of tree-level scattering amplitudes has an interpretation in terms of ambitwistor strings [9–

13] defined on a Riemann surface at genus zero. At loop level, supergravity integrands of

four-point amplitudes at one and two loops have been obtained when introducing higher

genus [11, 14–16]. Other connections to string theory amplitudes can be found in, for

example, [17–19].

The main difficulty with the CHY strategy is that the number of integrals defining

the n-point S-matrix elements, although being compensated by a delta function, grows

very rapidly. The reason is that the number of integrations to be carried out goes like
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the number of solutions to the SE, which is (n− 3)! for the n-point amplitude. There has

been steady progress in the understanding of the solutions to the SE and the calculation

of amplitudes obtained from them (see, for example, [20–27]).

In this work we focus on the physical interpretation of the solutions to the SE in terms

of the positions of the associated punctures on the Riemann sphere. We find that Sudakov

variables [28], which parametrize outgoing momenta in terms of its projections on two

incoming momenta and a vector transverse to their collision axis, are a very efficient way to

present the solutions to the SE, since they naturally encode momentum conservation. When

evaluating the scattering amplitudes it is also useful to work in the center-of-mass frame of

the two incoming particles. This is equivalent to partially fixing the SL(2,C) redundancy,

localizing two of the punctures at opposite poles of the sphere while leaving a third puncture

free. This residual symmetry corresponds to the freedom in the choice of the origin for the

azimuthal angle with respect to the axis defined by the incoming particles. Choosing this

global phase wisely allows for a simple representation of the scattering amplitude in terms

of the position of the punctures on the sphere, which also admit a simple representation.

In section 2, we review those aspects of the CHY approach which are of special interest

for our work. In particular, we discuss in detail the solution to the SE found in [6], which

exists for any number of external particles in four dimensions and which we write in terms

of the rapidities and the azimuthal angles of the emitted particles. In section 3, after

identifying two of the particles participating in the scattering as incoming, we work in their

center-of-mass frame taking the z axis as their direction of flight. This is done through a

double scaling limit involving the rapidities and transverse momenta.

Section 4 is devoted to describe the use of Sudakov variables in the simple case of four-

particle scattering. The punctures associated with the outgoing momenta are characterized

by a single Sudakov variable and one azimuthal angle, which parametrizes circles on the

Riemann sphere. Then we calculate the four-point amplitude for a scalar cubic theory

using this representation. In section 5 we analyze the more complicated case of the five-

point amplitudes. In this case four Sudakov variables and two azimuthal angles are needed

to parametrize the system of SE and the punctures positions. We show how to obtain a

second solution to the SE as the complex conjugate of the one previously discussed. At

the end of this section we evaluate the corresponding amplitude for a scalar theory and

express it as a simple function of the Sudakov variables. Finally, in section 6 we present

our conclusions and directions for future work.

2 The CHY formalism for scattering amplitudes

2.1 Momentum space and the punctured sphere

In a scattering problem the data are codified in a set of n on-shell D-dimensional momenta

pµi satisfying energy-momentum conservation

n∑
i=1

pi = 0, (2.1)

modulo Lorentz transformations. The departing point of the CHY formalism [2, 3] is a

mapping from these momenta into an internal space on the n-punctured Riemann sphere
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parametrized by the variables σi ∈ CP1 (with i = 1, . . . , n) through the identity

pµj =

∮
|z−σj |=ε

dz

2πi

vµ(z)∏n
k=1(z − σk)

, (2.2)

where

vµ(z) =

n∑
j=1

pµj

n∏
k=1
k 6=j

(z − σk). (2.3)

Due to momentum conservation, this is a vector-valued polynomial of degree n−2 satisfying

v(z)2 = 0. This latter null condition for v(z) implies the SE

Si(σ) ≡
n∑
j 6=i

sij
σij

= 0, (2.4)

where σij ≡ σi − σj and we have introduced the Mandelstam invariants

sij = (pi + pj)
2 = 2pi · pj . (2.5)

Although there are n equations, only n − 3 are linearly independent as a consequence of

SL(2,C) invariance. These SE have a total of (n − 3)! solutions mapping the space of

kinematic invariants into (n− 3)! points in the moduli space of n-punctured spheres.

The SE first appeared in ref. [7] in the study of the ground state configuration for the

Koba-Nielsen representation of scattering amplitudes of open strings,

An =

∫
dσ2 . . . dσn−2

n−1∏
i,j=1
i>j

σ
−2α′pi·pj
ij , (2.6)

where 0 = σ1 < σ2 < · · · < σn−1 = 1. The dominant saddle-point region was investigated

by Gross and Mende [4, 5] in the closed string case and by Gross and Mañes for open

strings [29]. In both cases, all sij are taken to be large simultaneously, corresponding

precisely to eq. (2.4).

2.2 Scattering amplitudes

Remarkably, as shown in [2, 3], all tree-level n-point Yang-Mills amplitudes in D dimensions

can be obtained from the following integral representation with support on the solutions

to the SE:

An = i gn−2
∫

dnσ

Vol[SL(2,C)]
σklσlmσmk

∏
i 6=k,l,m

δ

 n∑
j 6=i

2 pi · pj
σij

 ILIR. (2.7)

The invariance of this expression under SL(2,C) transformations of the σi guarantees

that the result is independent of the choice of {k, l,m}. In the integrand, IL carries the

color traces

IL =
∑

β∈Sn/Zn

Tr (T aβ(1)T aβ(2) · · ·T aβ(n))
σβ(1)β(2)σβ(2)β(3) · · ·σβ(n)β(1)

, (2.8)
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with the sum running over non-cyclic permutations. The second factor

IR = Pf ′Mn, (2.9)

is the reduced Pfaffian of the 2n× 2n antisymmetric matrix

Mn =

(
MA −MT

C

MC MB

)
. (2.10)

where the block matrices MA, MB, and MC are given by

M ij
A =


pi · pj
σij

for i 6= j

0 for i = j

,

M ij
B =


εi · εj
σij

for i 6= j

0 for i = j

, (2.11)

M ij
C =


εi · pj
σij

for i 6= j

−
∑
k 6=i

εi · pk
σik

for i = j
,

with εi the polarization vector of the i-th gauge boson. The reduced Pfaffian in eq. (2.9)

is defined as the Pfaffian of the matrix whose entries are obtained from Mn by removing

the k-th row and `-th column and multiplied by (−1)k+`σ−1k` .

Since the determinant of an antisymmetric matrix is the square of its Pfaffian, it is

natural that graviton amplitudes in Einstein-Hilbert gravity can also be written in the

form (2.7), with the gauge theory factor IL shown in eq. (2.8) replaced by a second copy

of the reduced Pfaffian

IL = Pf ′Mn,

IR = Pf ′Mn. (2.12)

This exhibits the double-copy structure of graviton amplitudes, already found in many

other physical setups [30–35]. Similarly, biadjoint scalar amplitudes can be obtained from

eq. (2.7) substituting the reduced Pfaffian in IR by a second copy of the gauge theory

factor (2.8), thus implementing the zeroth copy prescription [36].

2.3 Fairlie’s solution to the scattering equations

In this section we discuss a definite solution to the SE discussed by Fairlie in [6] (see

also [7]), which always exists for any multiplicity n. It has the form

σj =
p0j + p3j
p1j − ip2j

=

(
p0j + p3j

)(
p1j + ip2j

)
(p1j )

2 + (p2j )
2

=

(
p0j + p3j

)(
p1j + ip2j

)
(p0j )

2 − (p3j )
2

=
p1j + ip2j
p0j − p3j

, (2.13)
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where we work in D = 4 with the mostly-minus signature. Since σi admits two expressions

in terms of the momentum components, we can write two alternative identities to be

satisfied by the differences σij

σij
(
p1i − ip2i

) (
p0j − p3j

)
= pi · pj − p0i p3j + p3i p

0
j − ip1i p2j + ip2i p

1
j ,

σij
(
p1j − ip2j

) (
p0i − p3i

)
= −pi · pj + p0jp

3
i − p3jp0i + ip1jp

2
i − ip2jp1i . (2.14)

Subtracting both equations, we arrive at the expression(
p1i − ip2i

) (
p0j − p3j

)
−
(
p1j − ip2j

) (
p0i − p3i

)
= 2

pi · pj
σij

. (2.15)

We can use this identity to explicitly check that (2.13) is indeed a solution to the SE.

Summing over j with j 6= i we have

2

n∑
j=1
j 6=i

pi · pj
σij

=
(
p1i − ip2i

) n∑
j=1
j 6=i

(
p0j − p3j

)
−
(
p0i − p3i

) n∑
j=1
j 6=i

(
p1j − ip2j

)

= −
(
p1i − ip2i

) (
p0i − p3i

)
+
(
p0i − p3i

) (
p1i − ip2i

)
= 0, (2.16)

where we have made use of momentum conservation.

It is possible to bring these solutions into a more physical representation if we use the

following parametrization of on-shell momenta pj

pj = p⊥j (coshYj , cosφj , sinφj , sinhYj) , (2.17)

where Yj is the rapidity, φj the azimuthal angle, and the overall scale p⊥j equals the modulus

of the transverse component of the momentum. To connect this representation with the

one in terms of the n-punctured sphere, we notice that pj can be alternatively written as

pj = ωj (1,uj) , (2.18)

where we have introduced the unit vector

uj = (xj , yj , zj), u2
j = 1, (2.19)

and ωj is the energy of the j-th particle. Using this parametrization it is glaring how a null

momentum is completely specified by the energy of the particle and its direction of flight,

corresponding to a point on R× S2. Points on the celestial sphere S2 can be parametrized

either using stereographic coordinates ζj or the polar and azimuthal angles (θj , φj). They

are related by the following identities

xj = sin θj cosφj =
2eYj cosφj
1 + e2Yj

=
ζj + ζ̄j

1 + ζj ζ̄j
,

yj = sin θj sinφj =
2eYj sinφj
1 + e2Yj

= i
ζ̄j − ζj
1 + ζj ζ̄j

, (2.20)

zj = cos θj =
e2Yj − 1

1 + e2Yj
=
ζj ζ̄j − 1

1 + ζj ζ̄j
,
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Figure 1. Geometric interpretation of the rapidity Yj and azimuthal angle φj .

which can be inverted to give

ζj = eYjeiφj =
sin θj

1− cos θj
eiφj = cot

θj
2
eiφj ,

ζ̄j = eYje−iφj =
sin θj

1− cos θj
e−iφj = cot

θj
2
e−iφj . (2.21)

This leads to the following parametrization of the particle momenta in terms of its energy

and the stereographic coordinates on S2

pj = ωj

(
1,

ζj + ζ̄j

1 + ζj ζ̄j
, i
ζ̄j − ζj
1 + ζj ζ̄j

,
ζj ζ̄j − 1

1 + ζj ζ̄j

)
. (2.22)

Using the previous representation of the particle momenta, we see that Fairlie’s solu-

tion (2.13) to the SE is simply given by

σj = ζj = eYj+iφj . (2.23)

Since we will make frequent use of this representation in the following, some remarks are

in order. In figure 1 we have represented a point in the celestial sphere and its image on

the complex plane whose origin coincides with the south pole. The direction of flight of

a particle with momentum pj labelled by the complex coordinate ζj is mapped onto the

point 2σj on that plane. At fixed rapidity Yj , the points lie on a circumference of radius

2eYj parametrized by the azimuthal angle φj .

3 Incoming momenta

In this section we investigate the structure on the punctured sphere for the two incoming

particles with momenta p and q in a general process in which the particles in the final
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state have momenta pi (with i = 1, . . . , n − 2). We will consider the case when the two

incoming particles’ spatial momenta lie along the z axis. It is convenient to work first with

the parametrization in terms of rapidities and azimuthal angles introduced in eq. (2.17)

p = ` (coshYp, cosφ, sinφ, sinhYp) ,

q = ` (coshYq,− cosφ,− sinφ, sinhYq) , (3.1)

where we have set both transverse momenta equal, p⊥ = q⊥ ≡ `. To study the limit

of vanishing transverse momenta, we take ` → 0 and |Yp|, |Yq| → ∞, while keeping the

center-of-mass energy

s = 2p · q = 2`2
[
1 + cosh (Yp − Yq)

]
(3.2)

finite. This limit can be implemented by introducing a parameter ε

Yp = −Yq = − log ε, (3.3)

that we eventually take to zero. A look at eq. (3.2) shows that in order to keep s finite we

are forced to take the double scaling limit

ε −→ 0, ` −→ 0 with
`

ε
=
√
s, (3.4)

in which the incoming momenta take the form

p −→
√
s

2
(1, 0, 0, 1),

q −→
√
s

2
(1, 0, 0,−1). (3.5)

We can rephrase this double scaling in terms of the position of the corresponding

punctures on the sphere {σp, σq}, which satisfy the identity

σp
σq

+
σq
σp

= 2− s

`2
. (3.6)

Equation (2.23) shows that for small ε the two punctures are located on a small circle

around the north and south poles of the Riemann sphere, which shrinks to a point when

ε→ 0, namely

σp = eYp+iφ =
eiφ

ε
−→∞,

σq = −eYq+iφ = −ε eiφ −→ 0. (3.7)

These punctures can be alternatively labelled by the unit vectors up and uq defined by

eq. (2.18). In our case, they take the form

up =

(
cosφ

coshYp
,

sinφ

coshYp
, tanhYp

)
,

uq =

(
− cosφ

coshYq
,− sinφ

coshYq
, tanhYq

)
, (3.8)

– 7 –



J
H
E
P
0
1
(
2
0
1
8
)
0
5
7

Figure 2. Stereographic projection for two incoming particles whose momenta lie close to the

z axis.

whose projections onto the equatorial plane lie on circles with respective radii

Rp =
1

coshYp
,

Rq =
1

coshYq
, (3.9)

which shrink to zero as |Yp,q| → ∞ (i.e., ε→ 0).

The geometric setup for the configuration discussed here is illustrated in figure 2, where

we show the punctures associated with the incoming particles very close to the north and

south poles of the Riemann sphere. The value of φ is ambiguous for points on the z axis

and without loss of generality we can set it to zero from now on, since this angle is a mere

artefact of the way we take the limit. On the complex plane this means that the limits

σq → 0 and σp →∞ are taken along the real axis.

4 Sudakov representation of the scattering equations: the four-point

case

After introducing our setup and conventions, we turn to study the formulation of the SE

formalism in terms of Sudakov parameters. We begin with the simplest case, that of a

general four-point scattering amplitude with incoming and outgoing momenta respectively

given by p, q and p′, q′, which are constrained by momentum conservation

p+ q − p′ − q′ = 0. (4.1)

We parametrize the two incoming momenta p and q as explained in the previous section.
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4.1 Punctures on the Riemann sphere

In the CHY formalism [2, 3], the momenta {p, q, p′, q′} are mapped into the moduli space

of spheres with four punctures, located respectively at the points {σp, σq, σp′ , σq′} ∈ CP1.

This is implemented by the identities

pµ =

∮
|z−σp|=ε

dz

2πi
ωµ(z),

qµ =

∮
|z−σq |=ε

dz

2πi
ωµ(z),

p′
µ

= −
∮
|z−σp′ |=ε

dz

2πi
ωµ(z), (4.2)

q′
µ

= −
∮
|z−σq′ |=ε

dz

2πi
ωµ(z),

where the meromorphic function ωµ(z) is fully determined by the condition that it has poles

at the location of the punctures whose residues are the corresponding particle momenta

ωµ(z) =
pµ

z − σp
+

qµ

z − σq
− p′µ

z − σp′
− q′µ

z − σq′
. (4.3)

The incoming momenta are parametrized as shown in eq. (3.1) with φ = 0. For the

outgoing particles, on the other hand, we write their momenta introducing a Sudakov [28]

representation. Due to momentum conservation (4.1), it is enough to parametrize the

combination

q1 ≡ p− p′ = αp+ β q + q1, (4.4)

with

q1 = q⊥1 (0, cos θ1, sin θ1, 0) . (4.5)

Then, the momentum p′ can be written as

p′ = p− q1 = `

(
(1− α) coshYp − β coshYq, 0, 0, (1− α) sinhYp − β sinhYq

)
+

(
0, (1− α+ β) `− q⊥1 cos θ1,−q⊥1 sin θ1, 0

)
, (4.6)

−→
(√

s

2
(1− α− β),−q⊥1 cos θ1,−q⊥1 sin θ1,

√
s

2
(1− α+ β)

)
,

where in the last expression we have taken the double scaling limit (3.4). From this we

read the particle energy

ωp′ =

√
s

2
(1− α− β) , (4.7)

whereas the on-shell condition leads to

0 = p′2 = −s(1− α)β − (q⊥1 )2 =⇒ |Q1|2 ≡ (q⊥1 )2 = s(α− 1)β, (4.8)
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where we have introduced the notation

Qj = q⊥j e
iθj . (4.9)

We repeat the same calculation for the momentum q′ of the second outgoing particle.

In terms of the Sudakov parameters, it reads

q′ = q + q1 = `

(
α coshYp + (1 + β) coshYq, 0, 0, α sinhYp + (1 + β) sinhYq

)
+

(
0, (α− 1− β) `+ q⊥1 cos θ1, q

⊥
1 sin θ1, 0

)
(4.10)

−→
(√

s

2
(1 + α+ β), q⊥1 cos θ1, q

⊥
1 sin θ1,

√
s

2
(−1 + α− β)

)
,

where we have reabsorbed a sign in a shift of θ1 by π. Comparing with the expression for

p′ in eq. (4.6) we see that this reflects the fact that, in the center-of-mass frame, the two

outgoing particles fly in opposite directions and therefore their azimuthal angles differ by

π. The energy of the particle is given by

ωq′ =

√
s

2
(1 + α+ β) , (4.11)

whereas the on-shell condition q′2 = 0 leads to the constraint

0 = q′2 = sα(1 + β)− (q⊥1 )2 =⇒ |Q1|2 ≡ (q⊥1 )2 = sα(1 + β). (4.12)

Consistency with the value of |Q1|2 found from the on-shell condition p′2 = 0 in eq. (4.8)

implies that α and β are not independent, but rather satisfy

α+ β = 0. (4.13)

This condition implies that

ωp′ = ωq′ =

√
s

2
, (4.14)

as it behoves a four particle scattering in the center-of-mass frame.

Let us recall that for the four-point function, the SE only have one solution. Thus, it

is enough to consider Fairlie’s solution (2.13) reviewed in section 2.3. This being the case,

the complex coordinate of the puncture in the sphere associated with the momentum p′ is

given by

σp′ ≡ eYp′+iφp′ =
Q1

β
√
s

=

√
1− α
α

ei(θ1+π), (4.15)

where in using (4.8) to write the result in terms of Q1 we have made a choice of phase for

the square root. In addition, the projection of the associated unit vector up′

up′ =
2√
s

(
q⊥1 cos(θ1 + π), q⊥1 sin(θ1 + π),

√
s

2
(1− 2α)

)
, (4.16)
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onto the equatorial plane lies on a circumference with radius

Rp′ = 2
√
α(1− α), (4.17)

where we have used the on-shell condition (4.8). Going to the Riemann sphere representa-

tion, the complex coordinate of the puncture associated with the particle of momentum q′ is

σq′ ≡ eYq′+iφq′ =
Q1

(1− α)
√
s

=

√
α

1− α
eiθ1 , (4.18)

where our choice of phase is consistent with the one used for σp′ in eq. (4.15). Thus, we

conclude

σq′ = − 1

σ∗p′
=

√
α

1− α
eiθ1 , (4.19)

indicating that the two punctures are located on antipodal points on the sphere. This

becomes obvious when computing the components of the unit vector uq′

uq′ =
2√
s

(
q⊥1 cos θ1, q

⊥
1 sin θ1,−

√
s

2
(1− 2α)

)
. (4.20)

Now, since after imposing (4.13) we see that uq′ = −up′ , the projection of both vectors

on the equatorial plane defines the same loci, namely a circumference with radius [cf.

eq. (4.17)]

Rp′ = Rq′ = 2
√
α(1− α), (4.21)

whereas their components along the direction of the incoming particles are

Zp′ = −Zq′ = 1− 2α. (4.22)

In figure 3 we provide a pictorial example of the parametrization proposed above.

The boundary of the moduli space of the sphere with four punctures is approached in

the limits α → 1 or α → 0. They correspond to the coincidence limit in which the

punctures associated with the outgoing particles collide with those of the incoming ones,

located at the north and south pole of the Riemann sphere. In the case α = 1
2 the radii

Rp′ = Rq′ = 2
√
α(1− α) reach the maximum value and the outgoing particles are emitted

along the equatorial plane.

4.2 The scattering equations and the four-point amplitude

In order to write the SE using the Sudakov parametrization, we need to compute the

Mandelstam invariants (2.5) where, according to our conventions p1 = p, p2 = q, p3 = −p′,
and p4 = −q′. For four particle scattering, they have the following explicit form

spq = sp′q′ = s, (4.23)

spp′ = sqq′ = −q21 = −t = sα, (4.24)

spq′ = sqp′ = −u = s(1− α). (4.25)
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Figure 3. Punctures on the Riemann sphere for the four particle scattering with momenta p+q −→
p′ + q′. In the limits α → 0, 1 the outgoing punctures collide with the incoming ones located at

the poles.

Since s is the only dimensionful quantity available, we use rescaled variables

sij = sŝij ,

Qi =
√
sQ̂i. (4.26)

It is straightforward to check that the SE associated with p is trivially satisfied

Sp
s

=
ŝpq
σpq
−
ŝpp′

σpp′
−
ŝpq′

σpq′
= 0, (4.27)

since we have σp =∞. In the case of the SE associated to q

Sq
s

=
ŝpq
σqp
−
ŝqq′

σqq′
−
ŝqp′

σqp′
, (4.28)

we have a nontrivial cancellation. The first term vanishes again because σp = ∞ and we

can use the explicit expressions

σp′ = −Q̂1

α
,

σq′ =
Q̂1

1− α
, (4.29)

together with σq = 0. Using this Sudakov representation, it is easy to check that the SE is

fulfilled

Sq
s

=
ŝqq′

σq′
+
ŝqp′

σp′
= −α(1− α)

Q̂1

+
(1− α)α

Q̂1

= 0, (4.30)

and similarly for the two remaining SE

Sp′
s

=
ŝp′q
σp′
−
ŝp′q′

σp′q′
= −α(1− α)

Q̂1

+
α(1− α)

Q̂1

= 0,

Sq′
s

=
ŝqq′

σq′
−
ŝp′q′

σq′p′
= −α(1− α)

Q̂1

+
α(1− α)

Q̂1

= 0. (4.31)
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The Sudakov representation provides a very convenient framework for the evaluation

of scattering amplitudes in the CHY formalism, notably simplifying the computations. To

illustrate this, we focus now on the calculation of the four-point amplitude in a ϕ3 scalar

theory. According to the general prescription given in [2, 3], the amplitude can be written

as the following integral supported on the solution to the SE

Aϕ
3

4 =

∫
dzp′δ

(
Sp′
) z2pqz

2
qq′z

2
q′p(

zpqzqq′zq′p′zp′p
)2

=

∫
dzp′

(zp′ − σq′)2
δ

(
sp′q
zp′
−

sp′q′

zp′ − σq′

)
, (4.32)

where all gauge generators are taken to be equal to one. Here we have partially fixed the

SL(2,C) invariance by setting zp =∞ and zq = 0 while leaving the third one

zq′ = σq′ =
Q1

(1− α)
√
s
, (4.33)

free. The integral defining the scattering amplitude has just one integration left over the

position of the p′ puncture. To carry out this integral, we notice that the argument of the

delta function has a single root located at [see (4.29)]

zp′ = − Q1

α
√
s
. (4.34)

Evaluating the derivative of Sp′ with respect to the integration variable at the

zero (4.34) gives

J ≡
∂Sp′

∂zp′

∣∣∣∣
zp′=−

Q1
α
√
s

=
s2α2(α− 1)

Q2
1

+
sα2(1− α)2

Q2
1

=
s2α3(α− 1)

Q2
1

, (4.35)

so we can simply write

Aϕ
3

4 =

∫
dzp′

[
zp′ −

Q1

(1− α)
√
s

]−2 Q2
1

s2α3(α− 1)
δ

(
zp′ +

Q1

α
√
s

)
=

[
sα2(1− α)2

Q2
1

] [
Q2

1

s2α3(α− 1)

]
=

(α− 1)

sα
=

1

s
+

1

t
. (4.36)

Notice that the phase introduced in Q1, which contains the azimuthal angle dependence,

cancels out in the final expression for the amplitude. This is only natural, since θ1 can be

set to zero by using the residual SL(2,C) transformations leaving invariant the position of

the punctures associated with the incoming particles. Using this Sudakov parametrization,

we see how the boundary of the 4-punctured sphere corresponding to the limit α → 0

is dominated by the t = 0 pole, while at the other branch of the boundary α → 1 the

amplitude vanishes. At the equator α = 1
2 the amplitude is completely dominated by the

pole at s = 0.
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5 Sudakov representation of the five-point amplitude

After the analysis of the four-point amplitude, we turn to the scattering of five particles

which enjoys some more interesting features, mainly the existence of a second solution to

the SE besides Fairlie’s. To fix notation, we will now study a generic five-point scatter-

ing amplitude of particles with momenta p + q → p′ + k + q′ satisfying the momentum

conservation identity

p+ q − p′ − k − q′ = 0. (5.1)

5.1 Location of the punctures

The mapping between particle momenta and the puncture positions is provided by the

relations listed in eq. (4.2) supplemented with the one for k

kµ = −
∮
|z−σk|=ε

dz

2πi
ωµ(z), (5.2)

where now the meromorphic function ωµ(z) is given by

ωµ(z) =
pµ

z − σp
+

qµ

z − σq
− p′µ

z − σp′
− kµ

z − σk
− q′µ

z − σq′
. (5.3)

To parametrize the momenta, we introduce two pairs of Sudakov parameters {α1, β1} and

{α2, β2} such that

q1 = p− p′ = α1p+ β1q + q1,

q2 = q′ − q = α2p+ β2q + q2, (5.4)

k = q1 − q2 = (α1 − α2) p+ (β1 − β2) q + q1 − q2,

where the transverse vectors have components

qi = q⊥i

(
0, cos θi, sin θi, 0

)
. (5.5)

Using again the notation introduced in eq. (4.9), and taking the double scaling limit (3.4),

we have

p′ = p− q1 = `
(

(1− α1) coshYp − β1 coshYq, 0, 0, (1− α1) sinhYp − β1 sinhYq

)
+
(

0, (1− α1 + β1)`− q⊥1 cos θ1,−q⊥1 sin θ1, 0
)

(5.6)

−→
(√

s

2
(1− α1 − β1),−q⊥1 cos θ1,−q⊥1 sin θ1,

√
s

2
(1− α1 + β1)

)
.

A similar analysis can be repeated for the remaining two outgoing particles. In terms of

the Sudakov parameters, their momenta take the form

q′ = q + q2 = `
(
α2 coshYp + (1 + β2) coshYq, 0, 0, α2 sinhYp + (1 + β2) sinhYq

)
+
(

0, (α2 − β2 − 1)`+ q⊥2 cos θ2, q
⊥
2 sin θ2, 0

)
−→

(√
s

2
(1 + α2 + β2), q

⊥
2 cos θ2, q

⊥
2 sin θ2,

√
2

2
(−1 + α2 − β2)

)
, (5.7)
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k = q1 − q2 = `

(
(α1 − α2) coshYp + (β1 − β2) coshYq, 0,

0, (α1 − α2) sinhYp + (β1 − β2) sinhYq

)
+

(
0, q⊥1 cos θ1 − q⊥2 cos θ2, q

⊥
1 sin θ1 − q⊥2 sin θ2, 0

)
−→

(√
s

2
(α1 + β1 − α2 − β2), q⊥1 cos θ1 − q⊥2 cos θ2,

q⊥1 − q⊥2 sin θ2,

√
s

2
(α1 − β1 − α2 + β2)

)
.

The associated energies are read off these expressions to be

ωp′ =

√
s

2
(1− α1 − β1) ,

ωq′ =

√
s

2
(1 + α2 + β2), (5.8)

ωk =

√
s

2
(α1 + β1 − α2 − β2),

which obviously satisfy energy conservation, ωp′ +ωq′ +ωk =
√
s. In addition, the on-shell

condition for the outgoing momenta fixes the magnitude of the transverse momenta in

terms of the Sudakov parameters

p′2 = 0 =⇒ |Q1|2 = s(α1 − 1)β1,

q′2 = 0 =⇒ |Q2|2 = sα2(1 + β2), (5.9)

k2 = 0 =⇒ |Q1 −Q2|2 = s(α1 − α2)(β1 − β2).

In fact, combining them we find a further identity

Q1Q
∗
2 +Q∗1Q2 = s(α2 − β1 + α1β2 + α2β1). (5.10)

It is important to stress at this point that, unlike the situation encountered in the four-

point amplitude, here the on-shell conditions for the outgoing particles do not lead to

consistency identities restricting the values of the Sudakov parameters. Thus, whereas in

the case of four particles the identity (4.13) implies the existence of a single independent

Sudakov parameter, in the five-point amplitude the four parameters remain independent.

The coordinates of the punctures associated with each momenta corresponding to

Fairlie’s solution are given by

σp′ =
Q1

β1
√
s

=

√
α1 − 1

β1
eiθ1 = eYp′+iφp′ , (5.11)

σq′ =
Q2

(1 + β2)
√
s

=

√
α2

1 + β2
eiθ2 = eYq′+iφq′ , (5.12)

σk =
Q1 −Q2

(β1 − β2)
√
s

=

√
(α1 − 1)β1e

iθ1 −
√

(1 + β2)α2e
iθ2

β1 − β2
= eYk+iφk , (5.13)
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which are the stereographic coordinates labelling the directions of flight of the particles. In

order to visualize the position of these punctures, it is convenient to use the unity vectors

up′ =
2√

s(1− α1 − β1)

×
(
− q⊥1 cos θ1,−q⊥1 sin θ1,

√
s

2
(1− α1 + β1)

)
,

uq′ =
2√

s(1 + α2 + β2)

×
(
q⊥2 cos θ2, q

⊥
2 sin θ2,

√
s

2
(−1 + α2 − β2)

)
, (5.14)

uk =
2√

s(α1 + β1 − α2 − β2)

×
(
q⊥1 cos θ1 − q⊥2 cos θ2, q

⊥
1 sin θ1 − q⊥2 sin θ2,

√
s

2
(α1 − β1 − α2 + β2)

)
.

Using the expression for q⊥i given in eq. (5.9), we see that the projections of up′ and uq′

lie onto the equatorial plane on circumferences with radii

Rp′ = 2

√
(α1 − 1)β1

(1− α1 − β1)2
,

Rq′ = 2

√
α2(1 + β2)

(1 + α2 + β2)2
. (5.15)

For the momentum k, we just need to notice that since θ1 and θ2 are respectively the

arguments of Q1 and Q2

q⊥1 cos θ1 − q⊥2 cos θ2 = Re
(
Q1 −Q2

)
,

q⊥1 sin θ1 − q⊥2 sin θ2 = Im
(
Q1 −Q2

)
. (5.16)

Hence, the equatorial projection of uk lies on a circumference of radius

Rk =
2|Q1 −Q2|

α1 + β1 − α2 − β2
= 2

√
(α1 − α2)(β1 − β2)

(α1 + β1 − α2 − β2)2
. (5.17)

In figure 4 we show a typical configuration for the five punctures on the Riemann

sphere. Several factorization channels can be identified in the expressions given in this

section. An interesting one corresponds to β1, α2 → 0, with both α1 and −β2 not close to

1. This limit sends the puncture associated with p′ to the north pole, while the puncture

for q′ approaches the south pole. In this limit the puncture for k remains at the equator

whenever α1+β2 = 0. Alternatively, we can keep σk at the equator by taking α1,−β2 → 1,

with β1 and α2 not close to 0. On the other hand, the puncture associated with k moves

to the south pole in the limit α1 → α2 and to the north pole if β1 → β2.
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Figure 4. Punctures on the Riemann sphere for the five-particle amplitude.

5.2 Scattering equations

To write the SE, we begin by computing the Mandelstam invariants (2.5) in terms of the

Sudakov parameters for the five-point amplitude

spq = s, sp′k = −s(α2 + β2), sq′k = s (α1 + β1) ,

spp′ = −sβ1, sqq′ = sα2, spk = s(β1 − β2),
sqk = s(α1 − α2), spq′ = s(1 + β2), sqp′ = s(1− α1), (5.18)

sp′q′= s(1− α1 + α2 − β1 + β2).

By inverting these relations, it is possible to express the Sudakov parameters in terms of

the invariants as

s α1 = sq′k + spp′ , s α2 = sqq′ , (5.19)

s β1 = −spp′ , s β2 = −sp′k − sqq′ . (5.20)

We know that for the five-point amplitude there must be two different solutions. One

of them is the one found by Fairlie [6, 7] that we have expressed in eq. (5.13) in terms of

Sudakov parameters. To find the second one, we write the ansatz

σp′ = Cp Q̂1,

σq′ = Cq Q̂2, (5.21)

with Cp and Cq two complex constants and we use the rescaled quantities defined in

eq. (4.26). A first condition comes from complying with the SE associated to q,

Sq ≡
1− α1

σp′
+
α2

σq′
+
α1 − α2

σk
= 0, (5.22)
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which determines σk to be

σk = (α2 − α1)

(
1− α1

CpQ̂1

+
α2

CqQ̂2

)−1
. (5.23)

Now we impose the SE associated to q′, which reads

Sq′ ≡
α2

σq′
+

1− α1 + α2 − β1 + β2
σp′q′

+
α1 + β1
σkq′

= 0, (5.24)

leading to the relation

σk
σq′

=
(α2 − α1)σp′

α2σp′ + (1− α1)σq′
=

(α2 − α1 − β1)σp′ + (1 + β2)σq′

α2σp′ + (1− α1 − β1 + β2)σq′
. (5.25)

Using the on-shell relations (5.9), this equation can be equivalently written as

α2β1σ
2
p′ −

(
Q̂1Q̂

∗
2 + Q̂∗1Q̂2

)
σp′σq′ +

|Q̂1|2|Q̂2|2

α2β1
σ2q′ = 0. (5.26)

Assuming σq′ 6= 0, this is a quadratic equation for the ratio
σp′
σq′

whose coefficients are

expressed only in terms of the Sudakov parameters. Its two solutions are given by

σ
(±)
p′

σ
(±)
q′

=
1

2α2β1

[
Q̂1Q̂

∗
2 + Q̂∗1Q̂2 ±

√(
Q̂1Q̂∗2 + Q̂∗1Q̂2

)2
− 4|Q̂1|2|Q̂2|2

]
, (5.27)

which admits the simpler form

σ
(+)
p′

σ
(+)
q′

=
Q̂1Q̂

∗
2

α2β1
,

σ
(−)
p′

σ
(−)
q′

=
Q̂∗1Q̂2

α2β1
. (5.28)

Being solutions to a quadratic equation with real coefficients, they are complex conjugate of

each other. Using now the second equation in (5.21), together with (5.25) and the on-shell

conditions (5.9), we arrive at the following expression of the solution σ
(+)
i to the SE

σ
(+)
p′ = Cq

(1 + β2)

β1
Q̂1,

σ
(+)
q′ = Cq Q̂2, (5.29)

σ
(+)
k = Cq

(1 + β2)

β1 − β2

(
Q̂1 − Q̂2

)
.

To fix the undetermined constant Cq we identify σ
(+)
i with Fairlie’s solution (5.13).

This fixes Cq to be

Cq =
e−iθ2

1 + β2
. (5.30)
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In order to understand the presence of the phase in this expression, we should point out

that, in setting σp = ∞ and σq = 0, we only partially fixed the SL(2,C) invariance of the

moduli space of punctured spheres. This leaves us with complex rescalings as the residual

invariance. We can make use of this freedom to set the phase of the constant Cq as in (5.30),

which geometrically corresponds to a change in the origin of the azimuthal angles in the

Riemann sphere. Our choice, which sets σ
(±)
q′ on the real axis, leads to a more symmetric

form of the two solutions to the SE for the five-point amplitude

σ
(+)
p′ = σ

(−)∗
p′ =

Q̂1e
−iθ2

β1
=

√
α1 − 1

β1
ei(θ1−θ2+π),

σ
(+)
q′ = σ

(−)∗
q′ =

Q̂2e
−iθ2

1 + β2
=

√
α2

1 + β2
, (5.31)

σ
(+)
k = σ

(−)∗
k =

(Q̂1 − Q̂2)e
−iθ2

β1 − β2
=

√
(α1 − 1)β1e

i(θ1−θ2) −
√
α2(1 + β2)

β1 − β2
.

The localization of the punctures on the Riemann sphere can be also given in terms of

the unit vectors

u
(±)
p′ =

1

1− α1 − β1

(
− 2
√

(α1 − 1)β1 cos γ,∓2
√

(α1 − 1)β1 sin γ, 1− α1 + β1

)
, (5.32)

u
(±)
q′ =

1

α2 + β2 + 1

(
2
√
α2(1 + β2), 0, α2 − β2 − 1

)
, (5.33)

u
(±)
k =

1

α1 + β1 − α2 − β2

(
2
√

(α1 − 1)β1 cos γ −
√
α2(1 + β2),

∓ 2
√

(α1 − 1)β1 sin γ, α1 − β1 − α2 + β2

)
, (5.34)

where we have defined γ = θ1 − θ2. As announced, σ
(+)
i corresponds to Fairlie’s solution,

after choosing the origin of azimuthal angles such that θ2 = 0 in eq. (5.14). The second

solution σ
(−)
i is obtained by reflecting the first one with respect to the y = 0 plane.

5.3 Scalar scattering amplitude

Having obtained the two solutions to the SE, we are now ready to calculate the five-point

amplitude for the ϕ3 scalar theory. Using the same partial fixing of SL(2,C) as in the

calculation of the four-point amplitude in eq. (4.32), we are left with the computation of

the integral over the position of the punctures associated with p′ and q′, namely

Aϕ
3

5 =

∫
dzp′dzq′ δ

(
Sp′
)
δ
(
Sq′
) z2pqz

2
qkz

2
kp(

zpqzqq′zq′kzkp′zp′p
)2

=

∫
dzp′dzq′ δ

(
Sp′
)
δ
(
Sq′
) z2k
z2q′z

2
q′kz

2
kp′
. (5.35)

To solve the delta function, we have to calculate the Jacobian

J =
∂Sp′
∂σp′

∂Sq′
∂σq′

−
∂Sp′
∂σq′

∂Sq′
∂σp′

. (5.36)
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Things can be made simpler if we rewrite the SE associated to q′ in the form

1

s
Sq′ =

α2

σq′
+

(1− α1 + α2 − β1 + β2)

σp′q′
+

(α1 + β1)

σkq′
(5.37)

=

(
α2σp′ + (1− α1 − β1 + β2)σq′

)
σp′q′σkq′

[
σk
σq′
−

(α2 − α1 − β1)σp′ + (1 + β2)σq′

α2σp′ + (1− α1 − β1 + β2)σq′

]
.

What makes this expression useful is that we have isolated the zero due to eq. (5.25). We

can then write one of the derivatives on support on the SE as

1

s

∂Sq′
∂σq′

∣∣∣∣
SE

=
α2σp′ + (1− α1 − β1 + β2)σq′

σp′q′σkq′

∂

∂σq′

[
σk
σq′
−

(α2 − α1 − β1)σp′ + (1 + β2)σq′

α2σp′ + (1− α1 − β1 + β2)σq′

]

=
(α1 − α2 − β1)α2σp′ +

[
(α1 − α2)β2 + (α2 − 1)β1

]
σq′

α2σp′ + (1− α1)σq′

(
σp′

σq′σp′q′σkq′

)
,

(5.38)

where we have used eqs. (5.25) and (5.26). This can be further simplified by reintroducing

σk to write

∂Sq′
∂σq′

∣∣∣∣
SE

= s
(1 + β2)σ

2
q′ + α2σkσp′

σ2q′σp′q′σq′k
. (5.39)

We now repeat the same procedure for the SE associated to p′, isolating the contribu-

tion to the zero

1

s
Sp′ =

(α2 − β1 + β2)σp′ + (1− α1)σq′

σp′q′σp′k

[
σk
σp′

+
(α1 − 1− α2 − β2)σq′ + β1σp′

(α2 − β1 + β2)σp′ + (1− α1)σq′

]
, (5.40)

and differentiating with respect to σp′ , we find

∂Sp′
∂σp′

∣∣∣∣
SE

= s
β1σ

2
p′ + (α1 − 1)σkσq′

σ2p′σp′q′σp′k
. (5.41)

Note that the two partial derivatives (5.39) and (5.41) can be mapped to each other by the

replacements

p′ ←→ q′,

−β1 ←→ 1 + β2, (5.42)

α1 ←→ 1− α2.

Similar techniques allow to obtain the remaining two derivatives

∂Sq′
∂σp′

∣∣∣∣
SE

= s
(α1 + β1) (1− α1 + α2 − β1 + β2)

(β1 − β2)σk + (α1 − α2)σp′

(
σk

σp′q′σq′k

)
,

∂Sp′
∂σq′

∣∣∣∣
SE

= s
(1− α1 + α2 − β1 + β2)(α2 + β2)

(β1 − β2)σk + (α1 − α2)σq′

(
σk

σp′q′σp′k

)
, (5.43)

which are also related by the transformations (5.42).
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We can return to the calculation of the amplitude, which can be written as the sum

over the two solutions complex conjugate of each other:

Aϕ
3

5 =

∫
dzp′dzq′ J −1δ

(
zp′ − σp′

)
δ
(
zq′ − σq′

) z2k
z2q′z

2
q′kz

2
kp′

+ c.c.

=
2

s2
Re

[(
σ2p′q′

σq′kσp′k

)
1

L −R

]
(5.44)

=
1

s2

[
1

α1 + β1
− 1

α2 + β2
+

1

(α1 + β1)β1
− 1

β1α2
+

1

α2(α2 + β2)

]
.

Here we have used the notation

L ≡
[
β1
σp′

σk
+ (α1 − 1)

σq′

σp′

] [
α2 + (1 + β2)

σ2q′

σkσp′

]
, (5.45)

R ≡
(1− α1 + α2 − β1 + β2)

2 (α1 + β1) (α2 + β2)σ
2
q′[

(β1 − β2)σk + (α1 − α2)σp′
][

(β1 − β2)σk + (α1 − α2)σq′
] , (5.46)

as well as the explicit expressions for the positions of the punctures given in eq. (5.31). In

fact, the on-shell conditions (5.9) can be written in the form

2 cos(θ1 − θ2) =
α2 − β1 + α1β2 + α2β1√
(α1 − 1)β1

√
(1 + β2)α2

, (5.47)

which is useful for the numerical evaluation of our expressions and shows how the relative

phase depends on the Sudakov variables.

In fact, it is possible to write an alternative expression for the amplitude (5.44) as

Aϕ
3

5 =
2

s2
Re

[(
σp′

σq′

)
1

LL̃−RR̃

]
, (5.48)

where

L =
σp′k
σp′q′

[
(α1 − 1)

σq′

σp′
+ β1

σp′

σq′

]
,

R =

(
σp′σp′k
σp′q′

)
(1− α1 + α2 − β1 + β2)(α1 + β1)

(α1 − α2 + β1)σp′ − (1 + β2)σq′
, (5.49)

and the quantities with tilde are defined by implementing the replacements (5.42) in

the form

Õ
(
α1, α2, β1, β2, θ1 − θ2

)
= O

(
1− α2, 1− α1,−1− β2,−1− β1, θ2 − θ1

)
. (5.50)

The reason behind the existence of such a simple representation is the freedom to redefine

the phase in the projective variables. This is part of the residual SL(2,C) freedom present

in our approach, after fixing the punctures associated with the two incoming particles. One

interesting feature of eq. (5.48) is related to the mathematical properties of the zeros of

this amplitude, an issue which has already been explored in [38, 39]. This will be further

investigated in a future publication.
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6 Conclusions and outlook

We have presented a first complete analysis on the use of Sudakov variables in the context

of the CHY calculation of scattering amplitudes. These amplitudes are represented as

integrals with support on the solution to the scattering equations. Using these variables

and a particular frame for the two incoming particles, it is possible to clearly identify the

solutions to the scattering equations as punctures on the Riemann sphere parametrized by

the rapidity and azimuthal angle, defined on the transverse plane to the collision axis of

the incoming particles, of each on-shell particle. The punctures for the emitted particles

are then living on circles parametrized by one Sudakov variable, in the four-point case,

and four Sudakov variables for five-particles amplitude. In this formulation of the CHY

calculation the final expression for a scalar amplitude has a very simple structure, given in

terms of the position of the punctures which are complex numbers carrying a phase defined

as the difference of azimuthal angles of the emitted particles.

In a future work we will generalize the Sudakov representation for a n-point amplitude

and show the different multi-particle factorization limits which are naturally parametrized

in this approach. The connection among gravitational and Yang-Mills amplitudes in this

approach from the point of view of Regge kinematics [40–43] is also of interest, together with

the corresponding soft theorems [35, 44–48]. Besides, it would be interesting to interpret

the role of the gluing operator recently investigated in [37] in terms of Sudakov variables.

Certainly, the relevance of this operator for the calculation of higher-loop amplitudes is

still to be investigated and exploring kinematical limits, such as multi-Regge kinematics

where the Sudakov representation is most useful, could be a possible route to understand

its meaning.
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